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Abstract

Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The 

onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subse-

quent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the 

irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies 

such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect 

the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at 

the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarc-

tion (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic 

cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and 

evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting 

to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include 

measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select 

combinations of therapies targeting specific pathways of cellular death and injury.
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Introduction

Unlike some organs that readily regenerate following 

injury, the adult heart lacks meaningful quantities of 

endogenous stem cells able to regenerate cardiomyocytes 

[70]—when a cardiomyocyte is lost, it is gone forever. It 

is, therefore, imperative to preserve the ones we have. In 

most cases, the heart endures extraordinarily well, con-

tinuing to function for upwards of 70 years or more with 

exactly the same cardiomyocytes it started with. However, 

an ST-segment elevation myocardial infarction (STEMI) 

causes an onslaught of damage that can wipe out over a 

billion cardiomyocytes [77]. Of patients who reach the 

hospital and are treated with optimal therapy, > 10% will 

die within 1 year, and many of those who survive will go 

on to develop heart failure as a consequence of the initial 

infarct [53, 82]. Over the past 25 years, the creation of an 

emergency care infrastructure enabling rapid myocardial 

reperfusion has greatly improved clinical outcomes [90]. 

Unfortunately, in many countries, the reward available 

from further logistical improvements in the implementa-

tion of this intervention appears to have reached its prac-

tical limit. For example, in the recent SWEDE HEART 

study, despite an impressive decrease in the numbers of 

deaths following STEMI, made after the introduction of 

emergency coronary care and the implementation of rep-

erfusion therapy, 1-year mortality has remained stubbornly 

high at ~ 15% [95].

Like the heart, the adult brain has extremely limited 

capacity to make new cells, and acute obstruction of a 

conduit artery causes the irreversible loss of cells—a typi-

cal ischaemic stroke causes the loss of ~ 1 billion neurons 

[87]. Stroke causes 9% of all deaths making it the second 

leading cause of death and one of the most costly and 

devastating clinical syndromes in the world [30]. Approxi-

mately 20% of strokes are caused by intracerebral haemor-

rhage, while the other ~ 80% are classified as ischaemic. 

With the discovery of thrombolysis, reperfusion therapy 

became an option for the treatment of ischaemic stroke. 

More recently, the introduction of mechanical thrombec-

tomy has brought about a paradigm shift in the optimal 

management of ischaemic stroke patients, in particular 

those with large vessel occlusion who had had poor reca-

nalization rates with thrombolysis [18]. Endovascular 

recanalization results in rapid restoration of blood flow 

to the ischaemic cerebrum with the promise of improving 

neurological salvage and functional outcome. The sequelae 

of reperfusion for stroke are similar to those seen during 

primary percutaneous coronary intervention for STEMI 

[58]. Importantly, in both the brain [35] and myocardium 

[58], early reperfusion is the only therapy that is proven 

to limit infarct size in patients. However, a substantial 

number of stroke patients who receive thrombolysis and/

or thrombectomy in the acute phase never fully recover 

[35]. This highlights the need to develop new adjunctive 

neuroprotective treatment strategies alongside reperfusion 

therapy.

Another of the major killers worldwide is cancer, which 

affects more than one in three people in their lifetime [74]. 

Anthracyclines such as doxorubicin are highly effective 

and commonly used chemotherapeutic agents, but are 

restricted by dose-limiting cardiotoxicity [74]. Although 

the incidence of anthracycline-induced cardiomyopathy 

has declined with contemporary dosing regimens, a sig-

nificant number of patients develop left ventricular dys-

function and heart failure. The exact proportion of patients 

affected is difficult to ascertain due primarily to methodo-

logical issues, but has been estimated to be in the range of 

3–26% [14]. The cause of myocardial injury is multifari-

ous, but is believed to include oxidative stress, inhibition 

of topoisomerase II β, mitochondrial dysfunction, and 

deficits in cardiomyocyte energy production, which lead 

to diffuse cardiomyocyte death [14, 37, 38, 74]. Although 

discussion focussed on anthracyclines, other types of can-

cer therapy such as HER2 inhibitors can cause similar car-

diac injury leading to heart failure [24, 97].

In all three fields mentioned above, and discussed dur-

ing this workshop, discoveries of protective agents that 

are effective in experimental studies have failed to trans-

late well to clinical studies in patients. The reasons for 

this have been extensively discussed in debates that have 

progressed similarly in each of the research domains. In 

the field of cardioprotection, recommendations have been 

published including those deriving from previous Hatter 

Institute workshops [11, 12, 15, 43, 67]. In neuroprotec-

tion, the Stroke Treatment Academic Industry Roundtable 

(STAIR) guidelines defined similar standards for optimal 

experimental design [34], which have been improved upon 

over subsequent years [65, 66]. Recommendations have 

also been published for pre-clinical studies of chemother-

apy-induced cardiotoxicity and associated assessment of 

early subclinical myocardial injury biomarkers such as 

microRNAs [72, 86]. A common theme in these guide-

lines is the apparent disconnect between overly simplistic 

experimental models using young, healthy animals, and 

the complex reality of the clinical scenario [11, 12, 15, 34, 

43, 47, 49, 55, 67, 84].

In view of the above, a key question discussed at the 

workshop was whether there is any commonality between 

the mechanisms of cell death that occur in these three 

pathologies and, if so, whether this knowledge can inform 

the development of improved cytoprotective modalities 

that are able to improve clinical outcome in patients.
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The same but di�erent

Superficially, at least, there are a number of obvious com-

monalities between STEMI and ischaemic stroke, which 

raise the interesting possibility that protective modalities 

successful in one scenario may also be effective in the other 

(Table 1). On the other hand, there are clearly also specific 

differences that may impede the blanket application of thera-

pies across these scenarios (Table 1). While cardiomyocyte 

death is also integral to cardiotoxicity after cancer chemo-

therapy, its similarity to the cell death that occurs during 

ischaemia–reperfusion is more controversial and will be 

discussed later.

Both ischaemic stroke and STEMI are usually caused by 

obstruction of a main conduit artery by a blood clot. In the 

heart, the clot typically forms in the region, where an athero-

sclerotic plaque has ruptured [99]. The resulting hypoperfu-

sion in the ischaemic “area at risk” will lead to cell death if 

recanalization does not occur promptly. Some of the area at 

risk will be salvaged by reperfusion, and its effectiveness can 

be further improved by interventions such as ischaemic pre- 

or post-conditioning [31, 41, 54]. In the brain, thromboem-

bolic stroke is more common, but up to 40% of all ischaemic 

strokes are of unknown aetiology [30]. In ischaemic stroke, 

there may be a zone of non-functioning but viable tissue 

that has the potential to recover its function if blood flow 

can be restored, for example, by therapeutic intervention. 

This region is referred to as the ischaemic “penumbra” [5].

At a cellular level, the response to ischaemia is broadly 

similar in the heart and brain [57]. Since neurons and car-

diomyocytes rely on high rates of oxidative phosphoryla-

tion for the production of ATP, in the absence of oxygen, 

ATP is rapidly depleted. While cells can survive on ATP 

produced by glycolysis for a short time, eventually, this 

decreases to levels that are insufficient to maintain essential 

ion homeostasis, and  Ca2+ begins to flood in and overload 

the cells. Reperfusion restores the essential flow of oxygen 

and nutrients to starved cells [21]. In both heart and brain, 

the mitochondria are the source of their own demise, as rapid 

re-activation of the electron transport chain results in a burst 

of superoxide production, which conspires with calcium to 

increase opening of the mitochondrial permeability transi-

tion pores (MPTP) [8, 28, 71, 89]. Above a critical thresh-

old, damage is irreversible and catastrophic injury results in 

cell death, primarily by necrosis/oncosis. Other types of cell 

death such as necroptosis are also involved [69, 93]. Apop-

tosis is important in the brain, but its role in the reperfused 

heart is more controversial [17, 59, 62, 68]. Although the 

mechanisms of cellular injury caused by ischaemia–reper-

fusion are very similar in the heart and brain, the brain is 

uniquely sensitive to damage caused by glutamate released 

from depolarized cells which causes glutamate excitotoxic-

ity [45, 83].

However, infarction causes more than just the death of 

cardiomyocytes or neurons. The vasculature is essential not 

just for delivery of oxygenated blood, but for insulating the 

parenchyma from blood constituents and excessive liquid. 

This is particularly important in the brain, where energy 

depletion and blood–brain-barrier dysfunction can result in 

malignant oedema, a major cause of death following stroke 

[9]. Disruption of the neurovascular unit (which comprises 

endothelial cells, pericytes, vascular smooth muscle cells, 

astrocytes, microglia, and neurons) may also lead to further 

neuronal death. The vessels of the heart have an analogous, 

non-fenestrated endothelial cell layer, which is in some sense 

a “blood-heart barrier”. Damage to the cardiac endothelium 

can also result in oedema [48].

The debate about the significance of the differences 

between brain and heart, and their impacts on protection, led 

to the question of what is the most important experimental 

outcome. In experimental myocardial infarction studies, the 

gold standard and primary measure of outcome is infarct 

size (as a percentage of area at risk) [15], which predicts 

progression to heart failure in patients [94]. However, in the 

brain, infarct location is far more important than infarct size 

per se in determining functional outcome. For this reason, 

both neuroscore and infarct size should be considered in 

neuroprotection studies. The use of multiparametric MRI 

to assess per-occlusion and follow-up brain damage has the 

potential to improve translation by providing the same imag-

ing endpoints in both the pre-clinical and clinical settings 

[19]. One of the greatest fears for the neurologist ministering 

to a patient with ischaemic stroke is haemorrhagic transfor-

mation [9, 30], whereas in the heart, haemorrhage is not a 

prime concern.

In both brain and heart, the degree of injury is highly 

dependent on the duration, extent and severity of ischaemia 

[51, 76]. The sole therapy available for each is reperfusion. 

The kinetics of reperfusion may be very different in patients 

treated with thrombolysis vs PCI or mechanical thrombec-

tomy. Most experimental models, however, study reperfu-

sion as an acute event. Rodent models of thromboembolic 

stroke amenable to thrombolysis do exist, but require more 

animals per group due to inherently greater experimental 

variability (see, for example, [102]). Reperfusion injury 

has been well studied in the heart, and is also thought to 

occur in the brain [4, 7, 68, 79, 83]. As such, targeting rep-

erfusion injury should be considered an effective means of 

developing additional adjunctive therapies in patients with 

acute ischaemic stroke [62, 88]. Another key determinant 

of ischaemia–reperfusion injury in both heart and brain is 

the extent of collateralization. In the brain, some functional 

redundancy of blood supply is naturally provided by the cir-

cle of Willis (Fig. 1)—although the precise anatomy of these 

vessels can be quite variable between patients. Furthermore, 

the functionality of secondary collateral pathways such as 
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leptomeningeal anastomoses is believed to be a main deter-

minant of stroke outcome [39].

Even after successful recanalization of the occluded ves-

sel, reperfusion at the level of the tissue may be limited—a 

situation called “no reflow”. No reflow occurs in both the 

heart and the brain but with very different kinetics and a par-

tially distinct mechanism [48, 52, 64]. No reflow can occur 

within 5–10 min of ischaemia in the brain [3], and may, 

therefore, contribute to neuronal death, whereas in the heart 

it only occurs after 30 + min and its contribution to cell death 

is less clear [64]. The fact that the brain is confined within a 

rigid skull may contribute to the differences in the manifes-

tation of no reflow [64]. In the brain, perfusion deficits occur 

in a gradient from the infarct through to an oligaemic region 

of mildly reduced blood flow, via an ischaemic penumbra of 

potentially salvageable tissue.

With regard to the above discussion, it was unanimously 

agreed that experimentally; in both heart and brain, it is 

crucial to accurately determine the volume of tissue that is 

ischaemic and, therefore, at risk of infarction. While in the 

heart, this can be readily achieved by Evans blue staining 

ex vivo, or the use of microspheres, in the brain this is not 

a trivial matter due to its extensive collateralization. The 

clinical method of estimating the ischaemic penumbra by 

measuring the per-occlusion perfusion/diffusion mismatch 

by MRI can also be applied in animal models of transient 

stroke (Fig. 2) [29]. Thus, MRI has the potential to improve 

the overall methodology of pre-clinical neuroprotection 

studies, with the advantage that it can also be used to provide 

a measure of infarct size that matches well with tetrazolium 

chloride staining [20].

The use of rodent models in cardioprotection and neu-

roprotection has limitations. There are clearly major differ-

ences between lissencephalic brains of small mammals and 

gyrencephalic brains of larger species, which lead to the 

recommendation to confirm results in rabbits or non-human 

primates [66]. Similar reasoning is frequently used to sup-

port the need for cardioprotection studies in pigs [56] prior 

to clinical studies, although one might question whether 

healthy pig hearts, with their low native collateralization, are 

generally the ideal model of patients with coronary artery 

disease (CAD), who may or may not be highly collateralized.

One factor specific to MI, which may have contributed 

to the poor translation of cardioprotection between animal 

models of ischaemia-reperfusion injury and patients, is 

the clinical use of  P2Y12 platelet inhibitors, which exhibit 
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coagulation-independent cardioprotection in their own right 

[12, 23]. Although nearly all STEMI patients receive such 

medication, platelet inhibitors are not used at the time of 

recanalization in stroke for fear of causing haemorrhagic 

conversion. Thus, this potential confounding factor is only 

relevant to STEMI and not to ischaemic stroke.

At another level, several parallels can be drawn between 

the mechanism of cardiac injury caused by STEMI and 

anthracycline cardiotoxicity, including the role of oxidative 

stress, mitochondrial damage, and cardiomyocyte death [37, 

38, 74]. It was noted that current clinical trials aim to treat 

heart failure after it has been detected, but not to prevent the 

cause—which is cardiomyocyte death. New experimental 

studies are needed of agents that are better able to protect the 

cardiomyocytes from anthracycline toxicity, with the added 

condition that they must absolutely not reduce the efficacy 

of the cancer treatment [74].

Cyto-protection—the present situation

A number of issues were discussed at this workshop that are 

relevant to each of the three pathological scenarios described 

above. It was agreed that one of the most promising forms of 

cyto-protection is the phenomenon of remote ischaemic con-

ditioning (RIC) [40, 46, 50]. RIC is a highly robust method 

of reducing myocardial infarct size in animal models [16] 

as well as in proof of concept clinical studies [51]. One out-

standing issue that was discussed at the workshop relates to 

the RIC protocol, which remains to be optimized in humans. 

Despite efforts made in this regard in animal models [16, 

60], clinical trials typically use a protocol of 3 or 4 cycles 

of 5 min upper limb ischaemia (maximum 200 mmHg) fol-

lowed by 5 min reperfusion, which was effective in phase 

1 trials [51]. Yet, no phase II trials have been performed.

RIC has repeatedly been shown to reduce the release of 

cell-death biomarkers such as troponin or creatine kinase 

in pilot studies of STEMI [51]. Interestingly, there are also 

indications of improvements in long-term clinical outcome 

with significant reductions in major adverse cardiac and 

cerebrovascular events (MACCE) [91] and mortality [36]. 

It was felt that STEMI remained the most important target 

for cardioprotection from RIC or pharmacological therapy. 

It was debated whether other settings such as CABG, which 

has had two neutral clinical outcome studies [42, 75], should 

still be considered amenable for cardioprotection [63, 96].

Results are eagerly awaited from the ERIC-PPCI/

CONDI-2 study investigating the effect of RIC on clinical 

outcomes in patients presenting with an STEMI undergo-

ing primary percutaneous coronary intervention [44]. All 

participants at the workshop agreed that the outcome of this 

pivotal study will determine the direction that cardiovascular 

research will take for the next decade. However, irrespective 

of the results of this study, what is true for the heart might 

not be true for the brain.

Evidence was shown that ischaemic preconditioning 

(IPC) may be able to protect cardiac cells from anthracy-

cline toxicity, while not increasing the survival of cancer 

cells [73]. A clinical study is currently being undertaken to 
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assess the efficacy of RIC in patients receiving doxorubicin 

for cancer therapy [22].

Derek Yellon presented data obtained using a new experi-

mental rat model that could potentially be used to evalu-

ate cardioprotection on a background of agents commonly 

administered to STEMI patients. These preliminary studies 

were designed to ascertain if it is possible to obtain an ani-

mal model more representative of patients and included the 

use of an anticoagulant, an analgesic and antiplatelet agent. 

The participants agreed that this represented a promising 

first step to overcoming some of the translational hurdles 

that have impaired translation.

The prevalence of obesity and diabetes is steadily increas-

ing and is predicted to cause the incidence of myocardial 

infarction and strokes to soar in the next two decades. Dia-

betes and other co-morbidities worsen the outcome from 

both STEMI and ischaemic stroke, and also impair cardio-

protective and neuroprotective strategies in animal models 

[32, 67, 80]. Given the above, Derek Yellon proposed that a 

multi-targeted strategy would be required to protect the heart 

or brain from IR injury as a way forward [25, 85].

However, despite the overall negative impact of diabetes 

on the cardiovascular system, it has perhaps been indirectly 

responsible for shining a glimmer of light onto the field 

of cardioprotection. There was an interesting discussion 

about the cardioprotective benefit that has now been seen 

in three, separate, large clinical trials of antidiabetic thera-

pies, namely, the SGLT2 inhibitors [2, 101]. These results 

from recent large clinical studies show conclusively that car-

dioprotection is a viable option. What is now required is to 

ascertain the mechanism by which these agents elicit their 

protection [13].

The way forward

A succinct set of ten guidelines were put forward at the pre-

vious Hatter meeting [12]. Many of these proposals have 

been incorporated into subsequent statements and recom-

mendations. In particular, it was felt that, given the multiple 

redundancies in cell death pathways, targeting of a single 

pathway may be unable to afford sufficient protection for 

clinical benefit. As such, it is important to investigate all the 

forms of cell death to achieve maximum protection.

To increase the potency of protection and inhibit alter-

native death pathways, a multi-target therapeutic approach 

may be necessary to achieve a clinically meaningful benefit 

[25]. Additive cardioprotection has been seen, e.g., with 

the caspase 1 inhibitor VX-765 administered at reperfu-

sion in  P2Y12 receptor antagonist-treated rats [6]. Com-

bination therapy may also have the potential to protect 

against acute ischaemic stroke, but this important concept 

remains unproven in this setting [81, 100]. To design a 

rational, multi-targeted approach, it is important to know 

the mechanisms and perform accurate dose–response experi-

ments. One promising avenue of research is exosomes. 

These are nanoparticles that have been shown to be cardio-

protective in animal models, which may be able to target 

multiple pathways via their protein and miRNA cargo [26, 

27, 92, 98]. However, many questions remain, including the 

real identity of their cellular target in the heart, and optimal 

methods for their purification and delivery [27].

All participants recognized that a better methodology will 

be required in order to close the translational “gap”. Ulti-

mately, two types of animal models are useful: one which 

is simplistic, conceptual and reductionist, which can inform 

about mechanisms and a second type of model that is com-

plex, real-world, clinical, translational, and pragmatic, which 

can be used as a test bed towards clinical translation.

In line with the previous recommendations, a system is 

urgently needed to enable the conduct of multi-centre animal 

trials, much like the CAESAR network previously estab-

lished in USA [61], or the MULTIPART network for neu-

roprotection [1]. Interestingly, such a multi-centre, blinded, 

randomized, controlled experimental infarct study was previ-

ously used successfully in the year 2000 to demonstrate that 

an adenosine A1 agonist at reperfusion was cardioprotective 

when administered prior to coronary occlusion in rabbits, 

but not when administered immediately prior to reperfusion 

[10]. All future studies should follow as closely as possible 

the appropriate guidelines [12, 15, 34, 65–67, 78] on effec-

tive translational research.
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