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Abstract

In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at 

a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and 

highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of D-AP5 as 

a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough 

leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was 

established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at 

pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of 

this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists 

to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
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Introduction

The 1980s proved to be a decade where N-methyl-D-aspar-

tate (NMDA) receptor-mediated neurotransmission became 

firmly established. Perhaps this is epitomized by the 1983 

paper published by Graham Collingridge and colleagues in 

the Journal of Physiology that changed our understanding of 

neuronal plasticity and, more widely, of the functional role 

of NMDA receptors in the central nervous system (CNS) 

[1]. With Steven Kehl and Hugh McLennan, they showed 

that a new selective NMDA receptor antagonist, 2-amino-

5-phosphonovalerate (APV), inhibited the induction of 

long-term potentiation (LTP) of the synaptic input to CA1 

neurones in hippocampal slices (Fig. 1a). Although cautious 

at the time, stating that ‘NMA receptors…may play a role in 

synaptic plasticity’, this observation, and the use of this new 

pharmacological tool are at the core of the now established 

role of NMDA receptors in excitatory neurotransmission, in 

many forms of synaptic plasticity and hence in learning and 

memory. In this brief review, we will consider what led up 

to this important discovery, what other related events sur-

rounded it, and what directly followed from these studies 

with APV in the 1980s.

APV is now more commonly known as 2-amino-5-phos-

phonopentanoate (AP5). Although some studies state that 

either the racemic mixture, D,L-AP5, or the single active 

isomer, D-AP5, was used, it is unclear from some reports, 

however, which chemical entity was used. Thus, for sim-

plicity and because D-AP5 is the active moiety within the 

racemate, D-AP5 has been used throughout the main body 

of this review.

Background to 1980 Discoveries

In 1949, Hebb had proposed that changes in synaptic 

strengthening underlying learning required coincident pre- 

and post-synaptic activity [2] and, by the end of the 1960s, 

short lasting forms of synaptic plasticity were described in 

invertebrates and in the spinal cord. In their seminal review 
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of 1968, Kandel and Spencer stated that ‘In contrast to the 

extensive data on spinal synapses, data on cortical synaptic 

plasticity are meager and, specifically, post-tetanic poten-

tiation (PTP) has not yet been studied in detail comparable 

to that in the cord. This is unfortunate, since the complex 

morphology of cortical synapses may indicate a capability 

for unusual plastic alteration.’ Indeed, although long lasting 

depression [3] and facilitation [4] were already observed in 

hippocampal synapses there were very few other accounts 

of synaptic plasticity in the mammalian brain [5]. The phe-

nomenon of long-term potentiation (LTP) was first detailed 

by Bliss and Lomo [6] in the dentate gyrus in vivo. Soon, 

however, hippocampal slices [7] became the preferred prepa-

ration for studying LTP [8–10]. LTP was shown to require 

cooperativity between strong afferent input from many fibres 

and a resulting strong depolarization of the postsynaptic 

neurone [11, 12]. Such potentiation was input specific so 

that other afferent inputs were unaffected [9] or reduced, 

i.e. heterosynaptic depression [13]. By contrast, a low rate 

of stimulation could lead to a long-term depression of all 

inputs [12]. The nature of the chemical transmitters involved 

in such processes was largely conjectural.

In the late 1970s, the concept emerged of different sub-

types of glutamate receptor that mediate synaptic excitation 

in the central nervous system [14, 15]. Initial observations 

with several natural and recently synthesized acidic amino 

acids indicated that that N-methyl-D-aspartate (NMDA) was 

a considerably more potent excitant of central neurones than 

L-glutamate and L-aspartate [16, 17]. An early indication that 

there might be subtypes of receptors for these acidic acids 

was the finding that the ratios of potency between D,L-homo-

cysteate or L-aspartate and L-glutamate, and later between 

NMDA and kainate, varied between different neuronal popu-

lations [18–20]. These findings were part of the developing 

concept of subtypes of glutamate receptors. Studies with 

other structurally constrained glutamate analogues from 

natural resources, such as kainic, domoic and quisqualic 

acids, suggested potential diversity of receptors mediating 

synaptic excitation. This diversity was supported by the 

observation that  Mg2+ reduced the effectiveness of NMDA 

to a greater extent than most other glutamate analogues [21]. 

Further development of this concept required discovery of 

suitable antagonists. Longer chain analogues of glutamate, 

namely α-amino-adipic and -suberic and diaminopimelic 

acids, were weak, selective antagonists of NMDA-induced 

excitation rather than that induced by quisqualate, kainate 

and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) and reduced some synaptic events [22–27]. Thus 

the concept of NMDA and non-NMDA (later to be known as 

AMPA and kainate) receptors became accepted [28].

By the mid-1970 s, there were a number of papers report-

ing the presence, uptake and calcium-dependent release of 

L-glutamate and/or L-aspartate, which provided powerful 

evidence toward a transmitter role for these acidic amino 

acids [29] but the lack of selective, potent and established 

receptor antagonists slowed further progress in this field.

D-AP5, NMDA and LTP

Hence, the description of 2-amino-phosphonovaleric acid 

[30] as a potent and selective NMDA receptor antagonist at 

synapses on spinal neurones was the breakthrough needed 

to allow a thorough investigation of the physiological role 

of NMDA receptors.

Collingridge, being a Bristol graduate with Jeff Watkins, 

a PhD student with John Davies and a postdoc with Hugh 

McLennan, was in a good position to examine the effects 

of this new pharmacological tool on hippocampal slices 

in vitro, a preparation being used for detailed electrophysiol-

ogy. Thus, Collingridge and collaborators first demonstrated 

that D-AP5, a gift from Jeff Watkins, was a more potent and 

selective NMDA receptor antagonist than previously used 
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Fig. 1  D-AP5, NMDA and NMDA receptor-dependent synaptic plas-

ticity in 1983. a Iontophoretic application of D-AP5 blocks induction 

of LTP, which can be readily induced after washout of the antagonist 

[1]. b Brief iontophoretic application of NMDA leads to a transient 

enhancement of field potential amplitude, which declines to baseline 

over time [1]. c Longer, bath application, of NMDA leads to a perma-

nent depression of synaptic transmission [49]
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compounds, the activity lying mainly in the D-isomer [31]. 

With his co-authors, he then went on to show that D-AP5 

reduced the synaptic potentiation in the CA1 region that fol-

lowed high frequency stimulation of the Schaffer collateral 

input (Fig. 1a) with minimal effect on synaptic potentials at 

low stimulation frequencies [1]. Thus, the role of NMDA 

receptors in the initiation of LTP following high frequency 

stimulation was established in this highly quoted paper 

(1830 citations; Web of Science; September 2018).

This basic observation, in hippocampal slices, of the role 

of NMDA receptors in synaptic plasticity was rapidly seized 

upon and replicated by other major researchers in LTP using 

different paradigms but with a common D-AP5-sensitive 

theme: Schaffer collateral/commissural pathways to CA1 

[32–35], perforant pathway to dentate gyrus in vivo [36, 

37]. However, LTP at some hippocampal synapses appeared 

not to be mediated by NMDA receptors. For example, only 

the commissural, and not the mossy fibre, input to CA3 was 

sensitive to D-AP5 [38].

The use of D-AP5 allowed the role of NMDA receptors 

in LTP to be extended to rat visual cortical slices, although 

in this tissue GABAergic inhibition appears to play a more 

important modulating role than in the hippocampus [39]. 

In parallel, Wolf Singer’s group showed that, at a critical 

period of development in the kitten visual cortex, D-AP5 

also prevented the normal developmental process of activ-

ity-dependent modifications, which results in orientation 

selectivity of neurones in the visual cortex [40, 41]. NMDA 

receptor antagonists prevent both the loss of inappropri-

ate synaptic connections and the strengthening of correct 

connections. Another form of learning during development 

mediated by NMDA receptors is imprinting in day-old 

chicks, a phenomenon in which both the learning itself and 

the subsequent increase in glutamate binding are sensitive 

to D-AP5 [42, 43].

Concurrent with these observations in mammals, the 

development of a retinotopic map in the tectum of frogs and 

goldfish was also reported to be impaired by D-AP5 [44–46]. 

Part of this re-wiring may require the growth of neurites 

and dendrites as well as cell survival processes that are also 

NMDA receptor-dependent [47, 48]. Interestingly both the 

ability to induce cortical LTP and the density of NMDA 

receptors appeared to peak during this critical period for 

development of cortical connections, stressing the impor-

tance of NMDA receptors in this form of plasticity [49].

Is NMDA Receptor Activation Sufficient for Inducing 
LTP?

The discovery that D-AP5 blocked induction of LTP sug-

gested that application of NMDA alone should be sufficient 

to induce plasticity. As shown in the original paper, brief 

exposure to NMDA results only in a transient enhancement 

of field potentials (Fig. 1b, [1]). In contrast, a longer applica-

tion of NMDA (Fig. 1c, [50]) or glutamate [50] resulted in 

a depression of synaptic transmission, later recognized as 

NMDA receptor-dependent chemical LTD [51]. Similarly, 

low frequency afferent stimulation, besides limiting the 

induction of LTP [52], can also induce a long-term depres-

sion of synaptic transmission [12], shown in the 1990s to be 

D-AP5-sensitive [53, 54].

The transient enhancement of the amplitude of the field 

potentials, seen following NMDA application (Fig. 1b), 

seemed similar to the initial decremental phase of LTP 

(Fig. 1a), termed short-term potentiation (STP); STP, just 

like LTP, was D-AP5-sensitive raising the question whether 

STP was essential to the establishment of LTP or whether 

it was a mechanistically distinct parallel event [1, 55, 56]. 

Eventually it was shown that NMDA receptors of differ-

ent subunit composition mediate induction of STP versus 

LTP [57] and that NMDA-induced enhancement of the field 

potential amplitude is distinct from STP, which is associ-

ated with a change in slope of field responses [58]. Gary 

Lynch’s group, did, however, show that successful induc-

tion of chemical LTP could be achieved when application of 

NMDA was followed by a brief application of D-AP5 [59], 

the antagonist possibly preventing the longer activation of 

NMDA receptors required for the induction of LTD, thus 

revealing the chemical LTP.

Why NMDA Receptors for LTP?

Understanding why NMDA receptors play a unique role in 

synaptic potentiation depended on two key observations.

The first relates to the explanation of (i) the strange cur-

rent–voltage curve of the NMDA receptor [60] and (ii) 

why  Mg2+ ions inhibit responses to bath application of 

NMDA [21]. The discovery was that  Mg2+ ions produce a 

voltage-dependent brake on channel conductance particu-

larly at hyperpolarised membrane potentials [61, 62]. The 

Schaffer collaterals release glutamate onto both NMDA 

and AMPA receptors, the latter dominating the synaptic 

potential because of the  Mg2+ block of the NMDA recep-

tor. Removal of  Mg2+ ions uncovered a slow NMDA com-

ponent of the EPSP [63]. The NMDA receptor component 

also rises more slowly than the AMPA receptor component, 

which decays quickly not giving sufficient time for the  Mg2+ 

block to be fully removed. The depolarisation resulting from 

AMPA receptor activation is not an absolute requirement: 

with AMPA receptors blocked, a slow synaptic depolarisa-

tion mediated by NMDA receptors is uncovered [64–67]. 

Thus the depolarization that follows temporal (or spatial) 

summation during high frequency stimulation of excita-

tory synaptic inputs is required to relieve the  Mg2+ ion 

block, which immediately increases the conductance of the 

NMDA receptor-coupled channel [68, 69]. This slow NMDA 
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receptor component can be observed during high frequency 

stimulation beneath the AMPA receptor-mediated synaptic 

potentials [70].

The second key observation is that NMDA receptors are 

readily permeable to calcium when the voltage-dependent 

 Mg2+ ion block is relieved [71]. The resultant increase in 

intracellular calcium, which can be visualised in dendritic 

spines receiving NMDA receptor activation [72] is the main 

driving force for plasticity in LTP induction protocols [73, 

74]. Calcium activates a complex array of secondary intra-

cellular events, including up-regulation of AMPA receptors 

at the potentiated synapse [75–78] and activation of pro-

tein kinases [79–82], that act as molecular switches [83, 84] 

and that also regulate protein synthesis dependence of the 

late phases of LTP [85, 86]. Much of this, including recruit-

ment of glutamate receptors to dendritic spines, was debated 

early [87, 88] and detailed in subsequent decades [89–91]. 

Nevertheless, although the field was in general agreement 

about the central role of NMDA receptors in initiating LTP, 

there was little consensus about the mechanisms of LTP 

expression, which could be mediated by pre-synaptic and 

post-synaptic mechanisms alike [92]. The differences in 

the outcome of various NMDA receptor activation proto-

cols depends among others on the extent to which different 

intracellular messaging systems are engaged and the type 

of synaptic plasticity that is induced or maintained [93, 94].

A further factor to consider is the role of inhibitory syn-

apses, which are recruited when afferent pathways are stimu-

lated with a tetanic pattern, including Schaffer collateral-

commissural fibres into CA1. GABAergic hyperpolarisation 

helps maintain the  Mg2+ brake on the NMDA receptor con-

ductance. Blocking GABA-A receptor-mediated inhibition 

reveals the NMDA receptor component at low and high 

frequencies of stimulation [68, 95] and facilitates LTP [96, 

97]. During high frequency bursts, postsynaptic GABAergic 

inhibition declines and hence allows calcium flux through 

NMDA receptor channels [98]. The more natural theta stim-

ulation allows very short trains of stimuli to induce LTP [99, 

100] in which postsynaptic GABAergic inhibition is less 

prominent, itself being regulated by presynaptic GABA-B 

receptor-mediated inhibition [93, 94].

Temporal summation or frequency dependence of the 

recruitment of NMDA receptors, the resultant dendritic 

depolarization and calcium entry are the driving forces of 

LTP [70, 101]. Thus, NMDA receptors function as coinci-

dence detectors that sense synchronised pre- and post-syn-

aptic activity and uniquely allow for the Hebbian principle 

of cooperativity, between strong afferent input and marked 

postsynaptic depolarization, which is required for synaptic 

strengthening [68, 69, 102, 103]. This aspect of coopera-

tivity can be side-stepped, as described above, by a small 

postsynaptic depolarization, reducing extracellular  Mg2+ ion 

concentration or reducing post- or pre-synaptic GABAergic 

inhibition, when low frequency stimulation can induce LTP 

[68, 103–105].

Ubiquity of NMDA Receptors

As is apparent from the above sections, NMDA receptors 

are not unique to the Schaffer collateral synapse on the CA1 

hippocampal pyramidal neurones. The development of D-

AP5, as a potent and selective NMDA receptor antagonist, 

allowed the role of NMDA receptors to be more widely 

investigated.

Indeed reports of a transmitter role for NMDA receptors 

onto spinal neurones in vivo using weaker NMDA receptor 

antagonists (see above) preceded the hippocampal papers. 

Interestingly using D-AP5, a single stimulus of peripheral 

afferents, unlike the initial reports in the hippocampus [1], 

could evoke NMDA receptor-mediated synaptic potentials 

in spinal neurones [30, 106]. The causal features of this dif-

ference are likely to be the more depolarized state in vivo 

and the temporal and spatial summation that occurs follow-

ing stimulation of a mixed population of primary afferents 

and internuncial neurones in the spinal cord experiments. 

Frequency-dependent depolarization and potentiation, sensi-

tive to NMDA receptor antagonists such as D-AP5, are also 

seen in these spinal pathways [107, 108].

Throughout the 1980s, D-AP5 was used to demonstrate a 

transmitter role for NMDA receptors throughout the brain; 

substantia nigra [109], dentate gyrus [110], interpeduncular 

nucleus [111], cerebellar Purkinje cells [112], neocortical 

neurones [113], red nucleus [114] and ventro-basal thalamus 

[115] as well as in sympathetic ganglia [116].

Most of the above studies were performed on rats or other 

mammals, although NMDA receptor-mediated D-AP5-sen-

sitive synaptic excitation was earlier demonstrated in the 

spinal cord of amphibians [117–119] and of fish [120, 121] 

and in the retina of fish [122, 123]. Interestingly, superfu-

sion of the exposed spinal cord with NMDA is able to initi-

ate fictive locomotion in both frogs and lampreys, a pattern 

blocked by D-AP5 [118, 120].

Thus it became apparent in the 1980s that NMDA 

receptors were important mediators of synaptic transmis-

sion throughout the central nervous system of vertebrates, 

although the question of the natural transmitter was still 

unanswered. L-Aspartate and L-glutamate, although mimick-

ing the effects of NMDA, were considerably less potent than 

NMDA itself in most assays, despite biochemical evidence 

supporting a transmitter role for these two amino acids [29]. 

Two key observations in the 1980s supported L-glutamate 

as the candidate. Firstly, in the absence of amino acid trans-

port processes, L-glutamate became tenfold more potent 

than NMDA on dissociated neurones [124]. Secondly, in 

binding studies, L-glutamate was tenfold more potent than 

L-aspartate as an inhibitor of radioactive D-AP5 binding to 



Neurochemical Research 

1 3

NMDA receptors in rat brain membranes [125] and had an 

indistinguishable autoradiographic distribution to D-AP5 in 

rat brain [126].

Epilepsy

Epilepsy results from changes in brain circuitry excitability 

that lead to bursts of cortical activity arising spontaneously 

or from otherwise subthreshold events. A prime example of 

such epileptogenesis is the phenomenon of kindling, a form 

of plasticity following repetitive brain stimulation that leads 

to epilepsy-like convulsions. Kindling has features in com-

mon with LTP [127, 128]. In particular, D-AP5 prevents the 

induction of the epileptiform activity, but also reduces the 

resultant seizure-like discharges, following kindling proto-

cols [129, 130].

However, the first real evidence of the role of NMDA 

receptors in epilepsy came from in vivo studies in Harry 

Bradford’s and Brian Meldrum’s laboratories. They showed 

that local administration of D-AP5 reduced seizures resulting 

from a cobalt-induced lesion [131] and both sound-induced 

seizures in DBA-2 mice and pentylenetetrazol-induced 

seizures in Swiss mice [132] as well as photic stimulated 

epilepsy in primates [133]. The striking correlation in 

potency between NMDA receptor antagonism in vitro and 

that against seizures of three competitive NMDA receptor 

antagonists substantiated the importance of NMDA recep-

tors as anticonvulsants [132].

This was followed by many publications showing that 

both induction and maintenance of many forms of epilep-

tiform activity in hippocampal slices [95, 134–137] and in 

cortical slices [138, 139] could be prevented by D-AP5. This 

included the blocking of ex vivo bursting epileptogenic foci 

in kainate-lesioned rat hippocampi [140] and in surgically 

removed human neocortex [141]. The bursting pattern of 

layer 4/5 neurones during slow wave sleep was also blocked 

by local ejection of D-AP5 [142].

The role of NMDA receptors in, and the use of NMDA 

receptor antagonists for, various forms of epilepsy is still a 

subject of therapeutic interest.

Pain

Another therapeutically important aspect of plasticity is the 

development of neuropathic and other chronic pain condi-

tions, for example phantom limb pain. Such maladapted 

plasticity may lead to hyperalgesia and allodynia, two symp-

toms that indicate nociceptive pathways have been abnor-

mally strengthened or new ones formed.

Because, as mentioned earlier, the polysynaptic excita-

tion of spinal neurones following afferent stimulation of 

hind limb nerves is mediated by NMDA receptors [22–24, 

30, 106], it was not surprising that NMDA and D-AP5, 

respectively, induced and reduced nociceptive responses 

following local application to the spinal cord [143–145].

Concerning plasticity, the phenomenon of ‘wind-up’ 

whereby repetitive nociceptor fibre stimulation leads to a 

potentiated response of spinal neurones [146] is thought to 

underlie central sensitization leading to hyperalgesia. This 

form of plasticity is prevented by D-AP5 following local spi-

nal application in vivo [107] and following bath application 

in vitro [147]. Unilateral foot paw tissue damage may result 

in secondary hyperalgesia in the contralateral limb, which 

can be prevented by spinal administration of D-AP5 [148]. 

Nevertheless weak bioavailability of D-AP5 has limited its 

use in vivo for researching the role of NMDA receptors in 

various pain states.

D-AP5 and Memory

Because LTP is thought to be one of the mechanisms under-

lying learning and memory, it was not surprising that the 

effects of D-AP5 were assessed in learning paradigms rapidly 

following the description of its block of LTP [1]. Parallels 

had already been drawn between the rate of decline of LTP 

and of loss of memory in older rats (reviewed in [149]).

Because of the low bioavailability of competitive NMDA 

receptor antagonists in general, D-AP5 was injected into the 

cerebral ventricles (i.c.v.) in the early experiments of Rich-

ard Morris and collaborators. Treated and untreated rats, 

placed in a large pool of opaque water, were compared for 

their ability to learn the position of a hidden escape platform 

over a 5 day period, a task now known as the Morris Water 

Maze. The results were highly significant in that the D-AP5 

treated animals took much longer to learn the location of the 

platform, spending much less time than the controls in the 

correct quadrant of the pool [36]. D-AP5-treated animals did 

not show deficits in a visual discrimination test suggesting 

a role for NMDA receptors specifically in spatial learning, 

which is thought to be a hippocampus-based phenomenon. 

By changing the time of administration of D-AP5, they were 

able to show that, in parallel with LTP, NMDA receptors 

were required for the acquisition or encoding of memory but 

not for its storage or retrieval [150], see also [151].

Similarly, i.c.v. D-AP5 disrupted acquisition of short term 

memory (radial maze) and attenuated retention of long term 

memory (passive avoidance) provided the drug was injected 

before the learning phase [152] and prior administration of 

D-AP5 could result in memory decline in an operant learning 

paradigm [153]. Acquisition of odour discrimination was 

also prevented by D-AP5 but previously learned memories 

were not disrupted [154]. These data extended the concept 

of an NMDA receptor-mediated LTP-like plasticity require-

ment from the hippocampal-based spatial domain to other 

forms of learning and memory.
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Neurotoxicity and Neuroprotection

In contrast to its positive role in neuroplasticity, excess 

NMDA receptor activation can lead to D-AP5-sensitive 

neurodegeneration [155, 156]. This sensitivity to NMDA-

induced neurotoxicity varies between populations of neu-

rones, a finding likely related to the differences in NMDA 

receptor expression and/or calcium buffering [157]. Release 

of glutamate following excessive and/or prolonged stimula-

tion of neuronal pathways can also result in D-AP5-sensitive 

degeneration of targetted neurones [158] similar to that fol-

lowing epileptiform activity in hippocampal slices [159, 

160].

Brain ischaemia and hypoglycaemia lead to high extracel-

lular levels of glutamate [161–163]. Although competitive 

NMDA receptor antagonists have been shown to be effective 

in reducing neuronal cell loss following temporary carotid 

artery occlusion [164] and hypoglycaemia [165], the hope 

for them as clinical agents [166] has not yet been realized.

Beyond D-AP5: Medicinal Chemistry Around 
the NMDA Receptor

Although the synthesis of NMDA was first reported in 1962 

[167], it wasn’t until much later that chemists developed 

more potent agonists by conformational restriction of either 

aspartate or glutamate (reviewed in [174]). Such agonists 

include α-tetrazolylglycine [168], the cyclobutane trans-

ACBD [169, 170] and the cyclopropanes D-CCG-II and 

L-CCG-IV [171–173].

Following the success of D-AP5 in forwarding our under-

standing of the role of NMDA receptors, medicinal chem-

ists in academia and industry continued to develop new 

compounds in order to increase potency and/or bioavail-

ability (reviewed in [174]). Increasing the affinity of D-AP5 

was achieved by conformational restriction for example by 

incorporating a double bond into the side chain (e.g. CGP 

37849 and its α-carboxyethyl ester CGP 39551, [175]), or 

incorporating the α-amino group and some of the side chain 

into a piperidine ring (e.g. CGS 19755, [176]). Like D-AP5, 

D-AP7, a longer chain analogue, was also found to be a 

competitive NMDA receptor antagonist and blocked LTP 

whereas D-AP4, D-AP6 and D-AP8 were essentially inac-

tive [32, 177, 178]. Conformational restriction of D-AP7 

led to the development of high affinity antagonists such as 

the piperazine derivatives D-CPP [179, 180] and D-CPPene 

[181], the decahydroisoquinoline LY274614 [182] and the 

phenylalanine SDZ EAB515 [183].

Several of these high affinity NMDA receptor antago-

nists were radiolabelled (e.g.  [3H]AP5 [125],  [3H]CPP [184], 

 [3H]CGS19755 [185] and  [3H]CGP 39653 [186]). They 

were used in binding assays and alongside  [3H]glutamate 

[187, 188] and  [3H]MK-801 [189] (a high affinity channel 

blocker) in autoradiography, to study the distribution of 

native NMDA receptors throughout different brain regions.

High affinity NMDA receptor antagonists were used 

in animal models of CNS disorders and were found to be 

anticonvulsant in models of epilepsy, neuroprotective in 

models of cerebral ischaemia and to be effective in models 

of chronic pain. Some, such as D-CPPene, also were taken 

into clinical trials for prevention of brain damage following 

stroke or head injury and for treatment resistant forms of 

epilepsy. Positive outcomes from such clinical trials, e.g. 

with D-CPPene and CGS19755, have been prevented by the 

occurrence of side effects, particularly of a psychogenic 

nature [190, 191] .

Coincidental but Related Pharmacological 
Discoveries of the 1980s

Interestingly, Collingridge and collaborators were not 

the only group studying LTP pharmacologically in 1983. 

Patrice Guyenet’s laboratory was independently showing 

that the effects of phencyclidine, ketamine and sigma opi-

ates blocked the long term potentiation of the population 

spike in CA1 region of the hippocampal slices [192, 193]. 

Equally independent was the observation that phencyclidine, 

ketamine and sigma opiates were selective NMDA recep-

tor antagonists on spinal neurones in vivo [194–196]. Thus, 

these two independent groups coincidentally provided extra 

support for the role of NMDA receptors in LTP [1].

Unlike competitive NMDA receptor antagonists, keta-

mine blocks within the receptor-coupled channel [197], 

pharmacologically mimicking the voltage-dependent block 

of  Mg2+ ions but with slower kinetics. Although there are 

concerns related to the specificity of ketamine and phen-

cyclidine as NMDA receptor antagonists, particularly at 

higher concentrations [198], its rapid CNS bioavailability 

and reversibility following systemic administration makes 

low doses of ketamine particularly useful for studying the 

effects of NMDA receptors in vivo.

By the 1980s, many of the pharmacological and clini-

cal properties of ketamine were already established in the 

absence of knowledge of it as an NMDA receptor antago-

nist. Developed as an anaesthetic, it was known for its good 

analgesia and its safety but with recognized emergence phe-

nomena including hallucinations [199]. In the 1980s strik-

ing similarities between the actions of ketamine and D-AP5 

emerged. For example, ketamine’s effect on polysynaptic 

responses of spinal neurones [194, 195], on hippocampal 

LTP [192], on spinal ‘wind-up’ [108], on cortical synaptic 

transmission [200], on cortical epileptiform activity [201], 

on sound-induced seizures [202] and on ocular dominance 

in the visual cortex [203] echoed the effects of D-AP5 cited 

above.
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Another major aspect of the NMDA receptor’s phar-

macology was discovered in the 1980s. Philippe Ascher’s 

group showed that glycine, or a glycine-like substance such 

as D-serine, was a required co-agonist for NMDA receptor 

activation [204]. This glycine-site was not sensitive to the 

traditional inhibitory antagonist, strychnine. Instead, com-

pounds such as HA-966 and 7-chlorokynurenate were shown 

to be NMDA receptor antagonists acting via this glycine site 

(for example [205–208]).

It is beyond the scope of this review to describe all the 

contributions that using ketamine and other non-competitive 

NMDA antagonists including glycine-site antagonists have 

made to our understanding of the importance of NMDA 

receptors. Some of this literature, concerning the effects of 

ketamine in synaptic plasticity, neuroprotection, epilepsy, 

pain and behaviour, is cited in previous reviews [198, 209].

Fig. 2  Trends in pharma-

cological sciences: Special 

Report 1991. Cover page: This 

supplement was a compila-

tion of the articles published 

each month during 1990 on the 

theme: “The Pharmacology of 

Excitatory Amino Acids” edited 

by David Lodge, and Graham 

L. Collingridge with Alison 

Abbott of Elsevier. The supple-

ment was sponsored by Leslie 

L. Iversen of Merck & Sharp 

and Dohme Research Labora-

tories. The Glutamate Tree of 

Life is represented in the “Cover 

design by Nigel Hynes, based 

on an original idea of David 

Lodge”
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Heterogeneity Within NMDA Receptors

Also in the 1980s, the possibility of subtypes of the NMDA 

receptor was first raised. Differential sensitivity of brain 

regions to quinolinic acid, a weak naturally occurring 

NMDA receptor agonist [210–212] suggested  NMDA1 and 

 NMDA2 receptor subtypes. Similarly, regional differences in 

the sensitivity to glycine and to a variety of NMDA recep-

tor antagonists [213] and to differential stimulation of  [3H]

MK-801 binding by L-glutamate in different brain regions 

[214, 215] and relative affinity of various competitive antag-

onists in autoradiography studies [216, 217] reinforced the 

idea of heterogeneity in NMDA receptor subtypes. Specific 

profiles were noted between the rat medial thalamus, the 

forebrain and the cerebellum [218].

Such suggestions pre-dated the cloning of NMDA recep-

tor subunits in the early 1990s, which confirmed this hetero-

geneity. The first cloned subunit [219] is now called GluN1 

and is the glycine-sensitive subunit. Cloning of the four glu-

tamate-sensitive subunits, GluN2A-D followed soon [220] 

and of two more glycine-sensitive GluN3 subunits followed 

later (reviewed in [221]). Defining the roles of the NMDA 

receptor subunits in aspects of plasticity has become a major 

interest of Collingridge and many others [57, 222–230].

Conclusions

The growing evidence of the role of glutamate and of 

NMDA receptors in particular, in synaptic transmission 

received a considerable boost in the 1980s. This was largely 

driven by the discovery of the highly selective NMDA recep-

tor antagonist, D-AP5, which enabled its use to establish a 

role for NMDA receptors in synaptic transmission and plas-

ticity [1, 30]. This review has focussed on some examples 

of the resulting explosion in knowledge, which were more 

thoroughly described in a 1991 Supplement of Trends in 

Pharmacological Sciences, which also included a poster 

depicting pharmacological tools that were available for tar-

geting of glutamate receptors, synaptic transmission and 

plasticity Figs. 2, 3.
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