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Abstract

This paper describes a model for image segmentation
that tries to capture the the low-level depth reconstruc-
tion ezhibited in early human vision, giving an impor-
tant role to edge terminations.

The problem is to find a decomposition of the domain
D of an image that has a minimum of disrupted edges—
Junctions of edges, crack tips, corners, and cusps—by
creating suitable continuations for the disrupted edges
behind occluding regions. The result is a decomposi-
tion of D into overlapping regions R U...UR,, ordered
by occlusion, which we call the 2.1-D Sketch.

Ezpressed as a minimization problem, the model
gives rise to a family of optimal contours, called non-
linear splines, that minimize length and the square of
curvature. These are essential in the construction of
the 2.1-D sketch of an image, as the continuations of
disrupted edges.

The paper describes an algorithm that constructs the
2.1-D sketch of an image, and gives results for several
ezample images. The algorithm yields the same in-
terpretations of optical illusions as the human visual
system.

Introduction

One of the principal goals of low-level vision is to seg-
ment an image. Thus if g(z,y), (z,y)eD, represents an
observed image (i.e. the light intensity striking the lens
from direction (x, y)), then we want to segment the do-
main D, i.e. partition D into regions Ry,..., Rx such
that R; is the part of the image in which the nearest
object is some object O; and on the boundary between
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any two regions R; and R;, object O; occludes object
O; or vice-versa. Another of the goals of low-level vi-
sion is to compute or estimate what David Marr called
the 24-D sketch associated to the image [1], i.e. the
depth image z(z,y) recording the distance from the
lens to the nearest object in the direction (z,y) and
its normalized partial derivatives:

p(z,y) = 2 /\[1+ 22 + 2}

0(z,y) = 2y/\J1+ 22 + 22

Marr proposed multiple sources of information con-
tained in the intensity image g(z,y) from which one
could hope to estimate the 2%-D sketch (z,p, ¢), but
it has proved hard to implement his program except
in cases where very accurate stereo or motion data is
available, or where the lighting and surface reflectances
are heavily constrained. In this paper, we want to pro-
pose a synthesis of these two goals, segmentation and
the 2%-D sketch, which greatly simplifies the numer-
ical burden of the 2%-D sketch and at the same time
simplifies 2D segmentation by incorporating occlusion
explicitly. We will call this the 2.1-D sketch.

Consider figure 1(a), an image of several blades of
grass against a blurred, distant background. A por-
tion of this image, somewhat simplified, is shown seg-
mented in figure 1(b) using 9 disjoint regions. How-
ever, the 9 regions do not correspond to 9 distinct ob-
jects in the world: there are only 4 objects reflect-
ing light - the 3 blades of grass and the background
“object”. Although each of these objects lies at vary-
ing depth, there is a simple ordering of the objects
telling you which objects occlude which others. So we
can describe the scene by a stage set with 4 “wings”,
transparent except where they contain an object (the
background is last and is everywhere opaque). This is
shown in figure 1(c).




(a)

(®)

Figure 1: (a) Blades of grass image, (b) a disjoint seg-
mentation; (c) the 2.1-D Sketch

This is what we mean by a 2.1-D sketch: it is a set
of regions R; in the domain D of the image which fill
up D but which may overlap, in general, plus a partial
ordering > on the regions indicating which are in front
of which others. Often there will be a background
object Ro behind all others for which Ry = D. Our
contention is that this type of segmentation is more
natural than the kind with disjoint, unordered R; and
that it captures the most accessible part of the 2%—D
sketch.

The chief reason for which we expect the 2.1-D
sketch to be readily computable is the presence of T-
junctions. T-junctions are points where the edges in
the image form a “T”, one edge I'; ending abruptly
in the middle of a second edge T'z. Such points nearly
always arise because I's is an occlusion edge and T'y is
any kind of edge (occlusion edge, shadow edge, surface
marking edge) on a more distant object whose continu-
ation disappears behind ['. Our experience with a va-
riety of photographs in many different settings is that
there are very often enough T-junctions to order most
of the visible objects in depth. Shading heuristics (not
precise shape-from-shading calculations) often provide
important complementary clues.

The importance of T-junctions in the human visual
system has been known for a long time, but its role
and power has been greatly clarified by recent work.
In particular, it has become increasingly clear that T-
junctions are computed early in the visual process and
are not merely part of an object recognition paradigm
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Figure 2: A demonstration from Kanizsa of the impor-
tance of T-junctions and terminators.

as in the early blocks-world algorithms of Guzman,
Roberts, Waltz, etc. The gestalt school of psychology
and, particularly, the contemporary psychologist Gae-
tano Kanizsa has made a thorough and deep analysis
of T-junctions [2]. Consider figure 2 from Kanizsa.
2(a) and 2(b) differ only in the addition of diagonal
lines which change the corners in 2(a) to T-junctions
in 2(b); 2(b) is unmistakably 3-dimensional. 2(a) and
2(c¢) differ only in the subtraction of short connecting
lines which change corners in 2(a) to terminators in
2(c).

We see that a terminating line is a weak form of
T-junction and that several aligned terminators are a
strong clue to occlusion. Likewise corners, especially
when pairs of their edges are aligned, are degenerate
forms of T-junctions, as in Kanizsa’s pac-man illusion,
see figure 3(a).

In all these cases, the mind seems to create a 3D
scene in which occluded parts of visible objects are
reconstructed. In the pac-man case, the mind goes
further and creates missing outlines of the nearer oc-
cluding triangle, explaining their absence in the raw
data by an accidental match of the lightuess of the
occluding object and the far background.
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Figure 3: (a) Kanizsa’s pac-man illusion; (b) a dis-
Jjoint segmentation with edge completions; (c) the 2.1-
D Sketch

A striking confirmation of the reality of these so-
called illusions and the illusory contours that we feel
we see was found by R. von der Heydt and his lab [3].
The responses of single cells in visual areas are cod-
ified by describing their visual field: the area within
which moving or stationary bars and edges produces
activity. They found, however, that many cells in vi-
sual area V2 ! responded when no actual stimulus was
present in their visual field, but when edges outside
this field produce illusory contours that cross this field.
Finally, we want to mention the beautiful experiments
of K. Nakayama who has explored human perception
of data in which various clues for depth—-T-junctions,
stereo, motion, etc.—conflict [4]. His results show in
many cases that T-junctions override other clues and
are always powerful organizing forces in an image.

Energy functionals

The piece-wise smooth model of the segmentation
problem in computer vision asks how to clip a picture
into as few and simple pieces as possible while keep-
.ing the color of each piece as smooth and/or slowly
varying as possible. One approach to the problem,
taken by Mumford and Shah [5], is to define a func-

1Known as Brodmann area 18 in man, this area is adjacent
to the primary visual area V1 (= area 17 = striate cortex) and
is a recipient of a high proportion of its axonal output.

tional that takes its minimum at an optimal piece-wise
smooth approximation to a given image. The image is
a function g defined on a domain D in the plane. It is
approximated by a function f, which is smooth except
at a finite set T' of piece-wise C! contours which meet
8D and meet each other only at their endpoints. The
functional defined below gives a measure of the match
between an image g and a segmentation f,T:

EM-S(f,I‘)=;12/I;(f—g)zdx-i-/;)\r||Vf||2dx+u/rds.

The first term asks that f approximate g, the second
asks that f vary slowly except at boundaries, and the
third asks that the set of contours be as short, and
hence as simple and straight as possible. The con-
tours of I' cut D into a finite set of disjoint regions
Ri,..., Ry, the connected components of D\T'.

In this paper, however, we seek a model that incor-
porates partially the way that g derives from a 2-D
projection of a 3-D scene. Rather than base our 2.1-D
model on a set of curves T that cuts D into disjoint re-
gions, we ask for a set of regions R; whose union equals
D, and with a partial ordering that represents relative
depth. The overlapping of regions gives in a sense the
most primitive depth information. The domain D is
considered as a window that reveals the value of g only
on a portion of the plane. As a result, contour inte-
grals will exclude portions of a contour that coincide
with the boundary of D.

Here is a variational formulation of the problem of
finding the 2.1-D sketch. We seek a functional Fs
much like Fp.g that achieves a minimum at the opti-
mal overlapping segmentation of g. Let {R1,..., R}
be a set of regions such that | J; R; = D, with a partial
ordering < that represents occlusion.

Ri=R\ |J R,
R;<R;

is the “visible” portion of R;. Throughout the pa-
per, R; denotes a closed subset of D with piecewise
smooth boundary and connected interior. The expres-
sion ({R;}, <) denotes an ordered set of overlapping
regions, which we will call a segmentation.

We then define the energy E»1({R;}, <) as

n
Z pr (gfm,-)gdx—i-e/ dx+/ ¢(r)ds | .
= R/ R; dR\oD

In this formula, m; is the mean of g on R}, and « is the
curvature of R;, i.e. ¥ where v parameterizes dR; by
arc length. The function ¢ : R — R is defined by

_ [ v+ak? for |k| < B/a
¢>(~)—{ v+Blk| for |&] > B/a




The scalar constants g, v, €, « and § in the definition
of ¢, determine the characteristics of a segmentation
which minimizes E3 ;. Their dimensions are:

u ~ intensity”!.dist.” !
v ~ dist.”!

a ~ dist.

B3 ~ dimensionless

e ~ dist.7?

This simple choice of model applies to a variety of
pictures. Its simplicity necessarily restricts the kinds
of pictures for which it is effective.

Firstly, the model does not allow self-overlapping
“woven” regions such as a garden hose would project,
nor folded regions such as produced by an image of a
sleeve whose edge disappears around the back of an
arm. This can be solved with a model that assigns
local occlusion relations along edges rather than trying
to find a global organization.

Secondly, the model is piece-wise constant: each re-
gion R; is given a constant intensity m;. This means
that the simple curved surface of a coffee mug, which
can project a single region with greatly varying bright-
ness, may wrongly be divided into several regions in a
minimum of E» 1. It also means that crack tips never
appear in any R;. This is solved by replacing the con-
stant m; with a smooth approximating function f; on
R;, and adding a penalty term Y [ [|Vfil]® to ask
that f; vary smoothly on R;.

Thirdly, transparency and shadows are not treated.
This can be solved by giving nearer regions the choice
of either occluding farther regions, or modifying them,
ie., shadows darken father regions, while water distorts
what is behind it.

Properties of E

The first and second terms of Es; are easily seen to
give, on R:

(varianceg:(g) + €) - area( R}).

This is the basic term that keeps g close to constant on
each region; without it, the trivial segmentation ({D})
achieves a minimum of E.

An interesting variant, due to Y. Leclerc, incorpo-
rating these terms, is

log(varianceg:(g) + €) - area(R;)

The term then approaches log(e) - area(R}), as
varianceg: (g) — 0. This variant is a first step to incor-
porating texture boundaries into energy functionals:
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Figure 4: A simple image with two edges, and two
possible 2.1-D Sketches.

Leclerc derived it by a minimum description length
argument, employing both the mean and the variance
of the intensity on each region. It causes a segmen-
tation of regions with the same mean intensity but
sufficiently different variances.

The second term of F 1 gives a penalty for the total
area of all regions. Its purpose is to encourage seg-
mentations in which small regions occlude larger ones.
Without an area term, the segmentations shown for
figure 4(a), in figures 4(b) and (c) give the same value
for E: with an area term (c) gives a lower value for
E. The parameter ¢ should be very small, because the
area term is intended only as a tie-breaker in otherwise
ambiguous situations.

The third term asks that the boundaries of regions in
the interior of D be short and not too curvy. It equals
v times the length of 8R; — 8D plus « times the inte-
gral of the curvature squared along the same bound-
ary, except where curvature exceeds B/a, whereupon
the term becomes 3 times the integral of the curvature.
Note that the integral of the curvature over a piece ¥
of OR; is just the total angle through which v turns.
This term discourages region boundaries from tracing
circuitous level-curves in their effort to minimize the
variance term. Moreover, this term determines a famn-
ily of contours that comprises the ideal continuations
of disrupted edges behind occluding regions, discussed
in the next section.

The purpose of ¢(-) changing from a quadratic to a
linear function at 8/« is to allow us to extend the defi-
nition of the second term to a contour which is smooth
except at a finite number of infinite-curvature points,
or “corners.” Suppose a contour y parameterized by
arc-length has corner points at ' = {e1,...,cx} C
[0,1]. Let arg} denote the angle between the tangent
to v and the positive z-axis. Then the curvature term
for v is given by

)
N\C

In other words, the penalty for a corner is proportional
to the change in tangent direction at the corner.

%ds + 8 Z largy(cs) — argi(c-)l-
ceC




Elastica

Minimizing Es.; involves interpolating hidden edges
behind occluding objects. Although this may seem
a rather fanciful pursuit, Kanizsa’s experiments [2]
have revealed that people often make such interpo-
lations automatically and without thinking whether
these imagined curves are justified by the visible parts
of the scene. For instance, subjects may report “see-
ing” partly occluded objects contradicting facts one
knows about the shapes and sizes of common objects?.
These human interpolations are hard to predict and
probably involve constructions based on a complex set
of remembered shapes. Here we only attempt to model
the simplest aspects of this. Suppose a region R; dis-
appears behind occluding objects at P € 9R; and reap-
pears at P;. Suppose to and t; are the unit tangent
vectors to 9R; at Py and P;. Then we can characterize
the invisible portion I' of OR; between Py and P; as
the curve which minimizes:

/F(u + ak?)ds

subject to the boundary conditions of beginning at
(Po, to) and ending at (Py,t).

This particular variational problem has a long his-
tory, having been first investigated by Euler in 17443.
The curves which minimize this integral have been
called “elastica” since then, and have appeared here
and there, esp. in treatises on elasticity (cf. [7], Chap-
ter 19 and (8] for a recent treatment). One reason why
they are not better known is that they are not express-
ible by simple functions, but require elliptic or similar
functions.

Putting complex coordinates in the plane, they may,
for instance, be written as logarithmic derivatives of
the theta function:

F(z) = (‘f—zlogﬁ(w, z+a)—b-z

where
- .
g(w’x) - Zemn w+2ring
n
and either
w = it, a= %‘, b:F’(%——%‘), some real t, or
w= “%, a=0, b= F’(% + %‘), some real t.

These forms generate the minimizing curves for any
v and « including those that make loops, i.e. which

2[2] p. 40-41 and p.88.
3De Curvis Elastica, an appendix to [6].
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Figure 5: Several elastica computed as described.

are minima in the topological class of curves with each
possible total turning angle between Py and P;. Some
examples are shown in figure 5.

Computationally, the simplest way to solve for them
seems to be hill-climbing: start with a convenient
chain Py = xg,x1,...,xy = P; of points joining
Py and Py for which x; — x¢ constant - tg and
XN-1—XN = constant-t; and let it evolve to decrease
J(v+ ak?)ds. Thus we may estimate the curvature «;
at x; as:

o = 0; —0;_y
YT (di+dish)/2
where x;41 — x; has length d; and orientation 6;. Its
second derivative can be estimated by:

2K

di_1(di + d;i_1)

o _ 2i€¢+1 2&,‘
Ri = (li(di + di_l) did;_ +

Then the curve evolves by:
new X; = X; +€(wc,«+an?-2a/c;‘vf)-(—sin(&i), cos(8;)),

for 2 < i< N -2 (nb. xo, x1, Xxy_1 and xu stay
fixed).

A Segmentation Algorithm

We outline a segmentation algorithm that finds the
2.1-D sketch of an intensity image I in three stages:
finding edges and T-junctions, hypothesizing continua-
tions, and minimizing E5 ; combinatorically with these
edges and continuations.

We have so far developed and coded only the third
stage in order to test the concepts behind E,; and
find whether this functional may be expected to give
reasonable results in general. The first two stages are
the subject of current investigations.




The first stage finds intensity edges using a com-
mon algorithm such as that of Canny [9]. It assembles
edge points into curves using estimates of tangent and
curvature in a neighborhood larger than nearest neigh-
bors on a grid. We are experimenting with a simple
curvature estimate based on the observed behavior of
end-stopped cells in the primate visual system. This
gives a set of curves ' = {71,-++,7&} which do not
intersect. Next, their endpoints are joined to nearby
curves, both to jump gaps and to form T-junctions and
corners. Corners and T-junctions can be confirmed us-
ing a cornerness measure, such as

(i 2

described by Kitchen and Rosenfeld in [10]. Along
edges, it takes maxima at points with the greatest 1-
dimensional curvature. In these cases, the endpoints
of the curves, v;(0) and (1), are tagged as corners
and T-junctions for the second stage.

To complete curves across the gaps left by the edge-
detector, we put a prior on the space of curves, with
fixed tangent and possibly also curvature at the end-
point. The prior can be a simple heuristic func-
tion that encourages completions across short, straight
gaps, with increasing penalty as curvature increases.
Very interesting work in the same direction has been
carried out by Zucker et. al., see [11].

For each completion that does not correspond to a
T-junction, we delete the two fragments of curves from
T and add the completed curve to I'. At T-junctions
and corners, we split the curves, so that at the end
of the first stage of the algorithm, I' = {71,--v 7}
is a set of curves which meet each other only at their
endpoints.

The second stage hypothesizes new contours from
edge termination cues, by matching up pairs of
endpoints, disqualifying unlikely matches via simple
heuristics, and computing continuations for the re-
maining candidate pairs.

One heuristic requires the length scale of a contin-
uation to be reasonably close-say, within an order of
magnitude-to the lengths of the two curve segments
being joined. Thus if two curves of length 1 are 15
units apart, they should be disqualified. We feel this
is an important heuristic and should be substantiated
with further empirical evidence. Another heuristic re-
quires that matching T-junctions have very similar in-
tensity on corresponding sides of the base of the T. A
third heuristic disqualifies a triple point if it contains
a cusp; these arise from markings on a curved surface,
and should not be continued. Near a triple point, it
is more difficult to approximate the curvature of one
edge due to its interaction with the others nearby.

2
I:cz

Iy

Ly
IZ'/!/

_Iy
I

)
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Continuations are computed using a prior, which in
this case should give an approximation to the elastica
described earlier. The new curves {vn41,...,7g} are
added to I, and are marked as “hypothetical.”

The third and final stage minimizes E,1 on I by
combinatoric search, to find the optimal segmentation
wherein all region boundaries lie along contours in I'.

GivenT = {7,...,7,}, aset of non-self-intersecting
contours which meet each other and 8D only at end-
points, we let II = {P1,..., P,} be the closures of
the connected components of D\I'. The algorithm
solves the problem of finding an overlapping segmen-
tation ({R;}, <) of D which minimizes E5 ; such that
OR; C UT.

In this setting, the algorithm needs only a finite
number of scalar values as input, together with an
embedded oriented planar graph whose edges are the
v € T, which we orient arbitrarily. The values neces-
sary, for each v € I' and for each P € I1, are:

1 |¥\8D], the length of the contour;

2 f'y\E)D #(x)ds, the curvature term of E computed
on the contour except where it coincides with 8D;

3 argy(0) and argy(1), the orientations of the tan-
gents at the endpoints of the contour;

4 gp, the mean value of an image function g D—
R on P; and

5 |P|, the area of P.

The vertices V of the embedded graph are the set of
points in D which are endpoints of some . To specify
the graph structure, it suffices to associate, to each
contour 7,

6 v~ and vy, the vertices it links, and
7 Py and P, the faces it separates,

labelled so that as one travels from v to v1y, Poy
is on one’s left and Py , on one’s right.

Given these as input, the general strategy is to com-
pute optimal segmentations for subsets of II whose
unions have connected interior, starting with just sin-
gle P’s, then in two’s, three’s, and so on, each time
using the previous results. This performs the desired
combinatoric search, and gives the 2.1-D sketch for
the image, given the curves and continuations from
the first two stages.

We have applied the combinatoric search algorithm
to the examples in figures 1(a) and 3(a). The contours
' which we used are those indicated in figures 1(b)
and 3(b): in the case of figure 3, we have added several
plausible candidates for the extensions of the bound-
aries of the visible regions. In both cases I consists of




11 disjoint regions P;, while T' has 25 edges in figure
1(b) and 18 edges in figure 3(b). In both cases, the
algorithm gives the intuitively “correct” overlapping
segmentation shown in figures 1(c) and 3(c), provided
the constants are correctly chosen. ¢ is unimportant
so long as it is relatively small. The other constants
need to satisfy a rather complex set of constraints:

1. The penalty 3 for angles must be sufficiently large
compared to x4 and v because introducing overlap-
ping regions trades fewer angles for greater inten-
sity variance and contour length.

2. On the other hand, if y is too small compared
to v and B, the energy will be minimized by the
null segmentation: no regions except for the back-
ground.

3. If p is too large compared to v and 8, then the
energy will be minimized by a segmentation with
many many contours, which follow small texture
features as well as true object boundaries.

A compromise which seems to work in most cases
is this. First compute the total variance of the image,
without any segmentation. Call this tot-var. Then
to get reasonable results out of the non-overlapping
Ep_g, we can set:

v = tot-var
- 40dia.m(D)p '

(This may be justified heuristically by assuming that
the contours may remove about half the total variance
and that to do so we may need about 10 horizontal and
10 vertical lines.) For E3;, the curvature coefficients
may be set by:

tot-var - max(curv) ,
60 #
tot-var ,

A 60

where max(curv) is the maximum of the expected cur-
vature of the contours which you want to preserve (i.e.
above this limit, the quadratic penalty turns to a lin-
ear one). The heuristic for 3 is to roughly equalize
the penalty for a right angle and a contour running
across the image. These gave us values which worked
for figures 1 and 3.

144

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(10]

(11]

D. Marr, Vision, New York: W H Freeman and
Company, 1982.

G. Kanizsa, Organization in Vision, New York:
Praeger, 1979, Ch. 1-2.

R. von der Heydt, E. Peterhans and G. Baum-
gartner, “Illusory Contours and Cortical Neuron
Responses,” Science 224 1260-1262, 1984.

K. Nakayama and S. Shimojo, “Towards a neural
understanding of visual surface representation,”
Cold Spring Harbor Symposium on Quantitative
Biology, Volume 55, The Brain, Edited by T.
Sejnowski, E.R. Kandel, C.F. Stevens and J.D.
Watson, to appear 1990.

D. Mumford, and J. Shah, Optimal Approxima-
tions of Piecewise Smooth Functions and Associ-
ated Variational Problems, Comm. in Pure and
Appl. Math., 1989, 42, pp.577-685.

L. Euler, Methodus inveniendi lineas curvas
mazimi minimive proprietate gaudentes, Lau-
sanne, 1744.

A. E. H. Love, A treatise on the mathematical
theory of elasticity, Cambridge: The University
Press, 1934.

R. Bryant, and P. Griffiths, Reduction for con-

strained variational problems and [ —"2—2ds. Amer.
J. Math., 108 (1986), p.525.

J. F. Canny, Finding Edges and Lines in Images,
MIT AI Technical Report No. 720, June 1983.

L. Kitchen and A. Rosenfeld, Gray-Level Corner
Detection, Technical Report TR-887, Computer
Science Center, University of Maryland, College
Park, 1980.

C. David and S. W. Zucker, Potentials, Valleys,
and Dynamic Global Coverings, McGill Uni-
versity Technical Report TR-CIM 89-1, March
1989.




