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Abstract. In this paper we introduce a new method for approaching the C0-rigidity
results for the Poisson bracket. Using this method, we provide a different proof for the
lower semi-continuity under C0 perturbations, for the uniform norm of the Poisson
bracket. We find the precise rate for the modulus of the semi-continuity. This extends
the previous results of Cardin–Viterbo, Zapolsky, Entov and Polterovich. Using our
method, we prove a C0-rigidity result in the spirit of the work of Humilière. We also
discuss a general question of the C0-rigidity for multilinear differential operators.

1 Introduction and Main Results

1.1 Lower semi-continuity of the uniform norm of the Poisson bracket.
The present note deals with the C0-rigidity phenomenon of the Poisson bracket.
More precisely, for a symplectic manifold (M,ω), we have a notion of a Poisson
bracket { · , · } : C∞(M)×C∞(M) → C∞(M). For given f, g ∈ C∞(M) and a local
coordinate chart, this bilinear form involves partial derivatives of the functions f, g.
Therefore, we have no control of the change of the values of {f, g} when we perturb
the functions f, g in the uniform norm. However, it turns out that when we restrict
ourselves to compactly supported functions on M , there exists a restriction on the
uniform norm ∥∥{f, g}∥∥ = sup

x∈M

∣∣{f, g}(x)
∣∣ ,

when we perturb f, g in the uniform norm. The first result in this direction was ob-
tained by F. Cardin and C. Viterbo [CV], who showed that if {f, g} is not identically
zero, then

lim inf
‖F−f‖, ‖G−g‖→0

∥∥{F, G}∥∥ > 0 .

This result was improved by M. Entov, L. Polterovich, F. Zapolsky ([EPZ], [Z],
[EP1]). It was shown in [EP1], that in fact, for any symplectic manifold (M,ω) and
any compactly supported f, g, we have

lim inf
‖F−f‖, ‖G−g‖→0

∥∥{F,G}∥∥ =
∥∥{f, g}∥∥ .

In both statements the functions F,G are compactly supported.
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We introduce a new approach to the C0-rigidity phenomenon. Our main result is
summarized in Theorem 1.1.4. Under the assumption that max{f, g} exists, we pro-
vide an explicit lower estimate for the sup{F,G}, when the functions F, G : M → R
are C0-close to f, g respectively.

The statement of Theorem 1.1.2 coincides with the abovementioned result from
[EP1], while stated under slightly more general conditions. In this case, our approach
enables us to provide a short proof of the statement.

In order to state the next theorem, we introduce the following definition.
Definition 1.1.1. Let (M, ω) be a symplectic manifold. We denote by Hb(M,ω)
the set of all smooth functions H : M → R, such that the Hamiltonian flow generated
by H is complete, that is, the solution exists for any finite time.

Theorem 1.1.2. Let (M, ω) be a symplectic manifold. Then, for any f, g ∈C∞(M),

lim inf
F,G∈C∞(M), G∈Hb(M,ω), ‖F−f‖,‖G−g‖→0

sup{F,G} = sup{f, g} .

The method of the proof of Theorem 1.1.2 is based on the positivity of the
displacement energy of an open subset in M(see [MS]).
Definition 1.1.3. Let (M, ω) be a symplectic manifold. Given a pair of smooth
functions f, g ∈ C∞(M), we define

Υ+
f,g(ε) := sup{f, g} − inf

F,G∈C∞(M),G∈Hb(M,ω),‖F−f‖6ε,‖G−g‖6ε
sup{F, G} ,

Υf,g(ε) :=
∥∥{f, g}∥∥− inf

F,G∈C∞(M),G∈Hb(M,ω),‖F−f‖6ε,‖G−g‖6ε

∥∥{F, G}∥∥ .

Then we have
Theorem 1.1.4. Let (M,ω) be a symplectic manifold. Assume that f, g ∈ C∞(M)
are such that {f, g} attains its maximum at some x ∈ M . Assume, in addition, that
x is not a critical point for the functions f, g. Then

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 6

(− {{{f, g}, f}, f}(x)− {{{f, g}, g}, g}(x)
)1/3

.

Let us mention that, in the case of a closed manifold (M,ω), the condition that x
is not a critical point for the functions f, g is satisfied automatically, if we assume
that {f, g} is not identically zero.

As will be seen from the proof of Theorem 1.1.4, the expression

−{{{f, g}, f}, f}
(x)− {{{f, g}, g}, g}

(x)

is non-negative, provided that the function {f, g} attains its maximum at the point x.
In the proof of Theorem 1.1.4 we use lower estimates for the symplectic displace-

ment energy. We use the notation e(W ) for the symplectic displacement energy of
the set W .

For our purposes the following weak estimate will suffice.
Proposition 1.1.5. Assume that we have a symplectic embedding

i : U ⊂ (R2n, ωstd) ↪→ (M, ω) .
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Consider a subset V ⊆ U of the form V = Q1 × Q2 × · · · × Qn, where
Q1, Q2, . . . , Qn ⊂ R2 are simply connected planar domains. Then we have

e(i(V )) > 1
2 min

(
Area(Q1), Area(Q2), . . . , Area(Qn)

)
.

The Proposition 1.1.5 follows from the inequality (see [MS])

e(A) > 1
2wG(A)

between the displacement energy e(A) of A, and the Gromov width

wG(A) = sup
{
πr2 | B2n(r) embeds symplectically in A

}
,

where B2n(r) ⊂ R2n is the standard Euclidean ball of radius r.
It is easy to see that replacing the functions f, F by −f,−F in Theorems 1.1.2

and 1.1.4, we will get the analogous statements concerning the C0-rigidity of the
infimum of the Poisson bracket. Both the rigidity of the supremum and of the
infimum imply the corresponding rigidity result for the uniform norm ‖{f, g}‖ of
the Poisson bracket, since we have

∥∥{f, g}∥∥ = max
(
− inf

M
{f, g}, sup

M
{f, g}

)
.

The coefficient 4 in the statement of the Theorem 1.1.4 is not the exact value,
and can be slightly improved using our method. On the other hand, weaker lower
estimates of the form

e(i(V )) > c min
(
Area(Q1), Area(Q2), . . . ,Area(Qn)

)

for the displacement energy, will affect only this coefficient, which will become larger.
The precise optimal value is still to be found.

It turns out that the estimate on Υ+
f,g(ε) in the Theorem 1.1.4 is sharp, up

to some constant factor. To obtain a lower bound for Υ+
f,g(ε), we first prove the

following local result.
Theorem 1.1.6. Let (M,ω) be a symplectic manifold. Assume that we have
f, g ∈ C∞(M). Denote by Φ : M → R the function

Φ = −{{{f, g}, f}, f}− {{{f, g}, g}, g}
.

Assume that {f, g} attains its maximum at the point x ∈ M , which is moreover a
non-degenerate critical point of {f, g}. Consider a neighborhood U of x, and assume
that

{f, g}(y) < {f, g}(x) ,

for every y ∈ U \ {x}. Then we can find a neighborhood V of x, V ⊂ U , such that
for small ε > 0 there exist smooth functions F, G : M → R, satisfying

‖F − f‖ 6 ε , ‖G− g‖ 6 ε ,

{F, G}(y) 6 {f, g}(x)− 1
3Φ(x)1/3ε2/3, ∀y ∈ U ,

and such that F = f , G = g on M \ V .

As a result of Theorems 1.1.4, 1.1.6, we obtain the following global result on a
closed manifold M .
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Theorem 1.1.7. Let (M, ω) be a closed symplectic manifold. Assume that we
have f, g ∈ C∞(M). Denote by Φ : M → R the function

Φ = −{{{f, g}, f}, f}− {{{f, g}, g}, g}
.

Assume that x = x1, x2, . . . , xN are all the points x ∈ M for which |{f, g}(x)| =
‖{f, g}‖, and assume that all of them are non-degenerate critical points of the func-
tion {f, g}. Denote

C = C(f, g) = min
(|Φ(x1)|, |Φ(x2)|, . . . , |Φ(xN )|)1/3

.

Then
1
3
C 6 lim inf

ε→0

Υf,g(ε)
ε2/3

6 lim sup
ε→0

Υf,g(ε)
ε2/3

6 6C .

It was shown in [Z], that in the case of dimension 2, if maxM{f, g} is attained,
then the statement of Theorem 1.1.2 in the dimension 2 case becomes local in the
sense of section 3 below, and does not require the condition of G ∈ Hb(M,ω).
However, for dimensions bigger than 2, the situation changes. It turns out that
the assumption G ∈ Hb(M, ω) in Theorems 1.1.2, 1.1.4 is essential. We show this
in Example 3.0.10 provided in section 3. Moreover, Example 3.0.11 in section 3
shows the non-locality of Theorem 1.1.4 for any symplectic manifold (M,ω), with
dim(M) > 2. Examples 3.0.10, 3.0.11 are closely related, and we refer the reader to
section 3 for a detailed explanation of these phenomena.

After establishing the these results, the statement of Theorem 1.1.4 was re-proved
by Entov and Polterovich [EP2], with the use of their own approach.

1.2 Conditions for the continuity of the Poisson bracket in the uniform
norm. Here we provide another application of the method, used to prove Theo-
rems 1.1.2, 1.1.4. It is natural to ask the following:
Question 1.2.1. Suppose we have a symplectic manifold (M,ω), functions
f, g, h ∈ C∞(M), and sequences

f1, f2, . . . , g1, g2, . . . ∈ C∞(M) ,

such that fn → f , gn → g, {fn, gn} → h uniformly on M . Is it true that h = {f, g}?
The answer in the general case is negative, as we see from the following example

due to Polterovich.
Example 1.2.2. On the plane R2 consider the following sequence of functions:

Fn(q, p) =
χ(p)√

n
cos(nq) , Gn(q, p) =

χ(p)√
n

sin(nq) ,

where χ ∈ C∞(R) given. Then {Fn, Gn} = χ(p)χ′(p), while Fn, Gn → 0 uniformly.
We provide a sufficient condition under which we have an affirmative answer to

this question.
Let us first introduce the notation needed for the formulation of the theorems in

this section.
Definition 1.2.3. Suppose we have a smooth manifold X endowed with a Rie-
mannian metric ρ and a smooth function h : X → R. Take an integer k > 1.



GAFA THE 2/3-CONVERGENCE RATE FOR THE POISSON BRACKET 5

For any x ∈ X, v ∈ TxX, with the unit norm ‖v‖ρ = 1, take a small ρ-geodesic
γ : [0, ε) → X, such that γ(0) = x, γ̇(0) = v. Then we denote

‖h‖x,v,1 :=
∣∣∣∣
d

dt
|t=0h(γ(t))

∣∣∣∣.
Next, for x ∈ X, denote

‖h‖x,1 := max
v∈TxX,‖v‖ρ=1

‖h‖x,v,1 .

For a given subset Y ⊂ X with compact closure Y ⊂ X, we denote

‖h‖Y,1 := sup
x∈Y

‖h‖x,1 .

For a given subset Y ⊂ X with compact closure Y ⊂ X, we denote

‖h‖Y := sup
x∈Y

|h(x)| .

We use the notation distρ(x, y) for the ρ-distance between a pair of points
x, y ∈ X.

We first prove
Theorem 1.2.4. Let (M,ω) be a symplectic manifold, and an open subset U ⊂ M
with compact closure U ⊂ M . Assume that we are given a Riemmanian metric ρ
on U , and smooth functions f, g ∈ C∞(M). Then there exists a constant C =
C(U, ρ, f, g) > 0, such that for any F1, G1, F2, G2 ∈ C∞(M), satisfying

‖F1 − f‖U , ‖F2 − f‖U , ‖G1 − g‖U , ‖G2 − g‖U < ε ,

we have

inf
y,z∈U

∣∣{F1, G1}(y)− {F2, G2}(z)
∣∣ 6 Cε max

(
1, ‖G1‖U,1, ‖G2‖U,1) .

As a corollary from Theorem 1.2.4 we obtain
Theorem 1.2.5. Let (M,ω) be a symplectic manifold. Assume that we have
functions f, g, h ∈ C∞(M), and sequences

f1, f2, . . . , g1, g2, . . . ∈ C∞(M) ,

such that fn → f , gn → g, {fn, gn} → h uniformly on M . Then if
max(‖fn − f‖U , ‖gn − g‖U )‖gn‖U,1 → 0 for any open U ⊂ M with compact closure,
then {f, g} = h. The norms can be taken with respect to any Riemmanian metric ρ
on M , and obviously the condition above does not depend on the metric.

The proof of Theorem 1.2.5 uses Proposition 1.1.5.
As it is easy to see, in Example 1.2.2 we have

max
(‖Fn‖, ‖Gn‖

)‖Gn‖1 → ‖χ‖2.

The result of Theorem 1.2.5 is in the spirit of the work of Humilière [H]. Actually,
he provides an affirmative answer to Question 1.2.1, if we assume that the sequences
of pairs (fn, gn) of functions belong to some additional structure, namely a pseudo-
representation of a normed Lie algebra.

Using Theorem 1.2.4, one can extend the notion of Poisson bracket for some class
of non-smooth functions.
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Definition 1.2.6. Given a manifold X, we say that the function f : X → R is of
the Hölder class α+, if for some Riemmanian metric ρ on X and any x ∈ X, we have

lim
distρ(x,y)→0

|f(x)− f(y)|
(distρ(x, y))α

= 0 .

Clearly the definition does not depend on the choice of the metric.

One can show that for given functions f, g : M → R of the Hölder class 1
2

+, one
can define in a canonical way the analog of the Poisson bracket {f, g}, such that for
any x ∈ M , {f, g}(x) is not a real number but a closed, finite or infinite interval
in R.

1.3 Rigidity for general multi-linear differential operators. In this sub-
section we restrict ourselves to compactly supported functions. We ask the following
general
Question 1.3.1. For a given smooth manifold Xn, for which multi-linear differential
operators on C∞(X), either of order 1 or bigger than 1, do we have some sort of
C0-rigidity?

We concentrate on the following two forms of C0 rigidity.
Definition 1.3.2. Assume that we have a multi-linear operator

B : C∞(X)×m → C∞(X) .

On the space C∞(X)×m consider the following metric: given

F = (f1, f2, . . . , fm) , G = (g1, g2, . . . , gm) ∈ C∞(X)×m,

denote
dC(F ,G) := max

16k6m
‖fk − gk‖ .

We say that B satisfies weak C0-rigidity if, for given F ∈ C∞(X)×m, such that
‖B(F)‖ > 0 we have

lim inf
dC(F̃ ,F)→0

∥∥B(F̃)
∥∥ > 0 .

We say that B satisfies strong C0-rigidity if, for given F ∈ C∞(X)×m, we have

lim inf
dC(F̃ ,F)→0

∥∥B(F̃)
∥∥ = ‖B(F)‖ .

On one hand, in the case of linear differential operators of the first order, the
C0-rigidity holds for any such operator, and moreover, it is local. We find an upper
bound for the error, and it can be easily shown that it is precise, up to a constant
factor. On the other hand, if we consider bilinear differential operators of the first
order, then the necessary condition for C0 rigidity is the anti-symmetricity of this
form. These statements are summarized in the following:
Theorem 1.3.3. Consider a smooth manifold Xn.

(a) Suppose we are given a differential operator of the first order

λ : C∞(X) → C∞(X) ,

and a smooth function f : X → R. Assume that λ(f) attains its maximum
at a point x, such that x is a non-degenerate critical point of λ(f). Take an
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arbitrary open neighborhood U ⊂ X of x. Then, for any smooth function
F : X → R satisfying ‖F − f‖U 6 ε, we have

sup
U

λ(F ) > λ(f)(x)−
(

9
2

)1/3 (− λ3(f)(x)
)1/3

ε2/3 −O(ε) .

(b) Consider a bilinear differential operator of the first order

B( · , · ) : C∞(X)× C∞(X) → C∞(X) ,

which is not antisymmetric. Then there exists a function h ∈ C∞(X), and se-
quences fn, gn ∈ C∞(X) with ‖fn−h‖, ‖gn−h‖ → 0 , such that B(h, h) 6= 0,
B(fn, gn) = 0, for every n.

Let us focus on linear differential operators of the first order. First of all, the
error is of the order ε2/3, as we had in the case of the Poisson bracket. This appears
to be surprising because of the following observation. Given a symplectic manifold
(M,ω), and a function g ∈ C∞(M), one can define the linear operator λ(f) := {f, g}.
On the other hand, consider any differential operator of the first order on an even-
dimensional manifold X. Then for any point x ∈ X, where the operator does not
vanish, there exists a neighborhood U of x and a symplectic structure ω on U , such
that our differential operator has the form λ(f) := {f, g} on U .

As we see, in Theorem 1.1.4(a) we have freedom in perturbing both of the func-
tions f, g, while the application of Theorem 1.3.3 allows us to perturb only one of
the functions; nevertheless, this greater freedom does not decrease the order of the
error. Moreover, as an intermediate result in the proof of Theorem 1.1.4, we obtain

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 1441/3

(
max

θ
P (θ)

)1/3
,

where P (θ) = −{{{f, g}, cos(θ)f + sin(θ)g}, cos(θ)f + sin(θ)g}(x). Replace the
functions f, g by

cos(θ)f + sin(θ)g,− sin(θ)f + cos(θ)g ,

for the value of θ, which gives us the maximum of P (θ). Then the coefficient
(−λ3(f))1/3 from Theorem 1.3.3 gives us the exact coefficient for the estimation
of the error in Theorem 1.1.4, up to an absolute constant. Also we see from the
proof of Theorem 1.1.6, that in the example which we provide there, we perturb
only one of the functions.
Question 1.3.4. Is it true, that in the case of general multi-linear differential
operators of the first order which satisfy the strong version of C0-rigidity, we also
have this phenomenon? That is, can the example which gives us the best error up
to an absolute constant be obtained by perturbing only one of the functions?

As we see, the constant 2/3 is not a special symplectic constant. We conjecture,
that in fact the order ε2/3 for the error is correct for any multi-linear differential
operator of the first order, which satisfy the strong version of C0-rigidity. It is evident
from the Theorem 1.3.3, that it will be true, provided the answer to Question 1.3.4
is affirmative.

Now we turn to the case of bi-linear differential operators of the first order. It
follows from Theorem 1.3.3 that in order to have some C0-rigidity for a bilinear
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differential operator of the first order on C∞(X), it is necessary for this operator to
be anti-symmetric. Actually, the statements of Theorems 1.1.2, 1.1.4 show that for
a given manifold X, their C0-rigidity results hold for all Poisson brackets derived
from some given symplectic structure ω on X, i.e. it holds for all non-degenerate
Poisson brackets on X. However, taking an arbitrary Poisson bracket on X, not
necessarily non-degenerate, i.e. a bilinear operator

{ · , · } : C∞(X)× C∞(X) → C∞(X) ,

which is skew-symmetric, satisfies a Leibnitz rule and the Jacobi identity, the man-
ifold X is stratified into a disjoint union of symplectic submanifolds, so we can
reduce the situation to the non-degenerate case. Therefore, the statements of The-
orems 1.1.2, 1.1.4 hold for any Poisson structure on a smooth manifold X. Ob-
serve that taking a Poisson structure { · , · } on a closed manifold X, and a non-
vanishing smooth function H(x) ∈ C∞(X), we can define a new bilinear operator
B(f, g) = H · {f, g}. Then B will satisfy a weak form of C0 rigidity. A priori,
we cannot claim that B should satisfy the strong C0-rigidity, because of the non-
locality, presented in Example 3.0.11. However, if we assume that X admits a
fibration pr : X → B such that for any fiber Y ⊂ X, the values of {f, g}|Y de-
pend only on the restrictions f |Y , g|Y , then, taking any positive H : B → R, the
form B(f, g)(x) = H(pr(x)){f, g}(x) will satisfy a strong form of rigidity, as can be
easily seen. For example, one can take a 3-dimensional torus T3 = (R/2πZ)3 with
coordinates (x, y, z) ∈ T3, together with a fibration T3 → T1, (x, y, z) 7→ z, and
consider

B(f, g) =
(
sin(z)2 + 1

)
(fxgy − fygx) .

It is easy to see that this particular B is not the Poisson bracket. As we see, in this
construction the form B is always degenerate.
Question 1.3.5. (a) Is it true that, for closed manifolds the weak C0 rigidity holds
only for multiples of a Poisson bracket by a non-vanishing function?

(b) Is it true that for closed manifolds, in the case of non-degenerate bilinear
forms, the strong C0-rigidity holds only for Poisson brackets?

Finally, the following example shows the existence of multi-linear operators of
order 1, of any number of functions, that satisfy the strong form of the C0-rigidity.
Example 1.3.6. Given a natural m > 1, take X = Rm, and define m-linear
Φ : C∞(X)m → C∞(X) as follows: taking f1, f2, . . . , fm ∈ C∞(X), define F :
Rm → Rm by F (x) := (f1(x), f2(x), . . . , fm(x)) and take B(f1, f2, . . . , fm) to be
the Jacobian JF : Rm → R. The strong C0 rigidity for this B follows from simple
volume considerations.

1.4 Higher multiplicities of the critical points of {f, g}. Theorem 1.1.4,
applied to the case when the function {f, g} has a degenerate maximum with mul-
tiplicity bigger than 2 at the point x, gives us only

Υ+
f,g(ε) = o(ε2/3) ,

without saying what is the order of Υ+
f,g(ε). It turns out that, after some modification

of the proof of Theorem 1.1.4, we obtain
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Theorem 1.4.1. Let (M, ω) be a symplectic manifold.
Assume that we have f, g ∈ C∞(M), such that {f, g} attains its maximum at

some x ∈ M , and assume that the function {f, g} has multiplicity 2l at the point x.
Assume in addition, that x is not a critical point for the functions f, g. Define a
differential operator

D(k) =
{{k, f}, f}

+
{{k, g}, g}

.

Then

lim sup
ε→0

Υ+
f,g(ε)

ε2l/(2l+1)
6 −9

(
1
2l!
Dl({f, g})(x)

)1/(2l+1)

.

The analogous statement holds also for the case of the infimum.
Remark 1.4.2. Assume that M is closed. For every ε > 0, define a “function”

Hε : M → R ,

Hε = {f, g}+ 9
∞∑

l=1

ε
2l

2l+1

(
1
2l!
Dl({f, g})

)1/(2l+1)

.

Since this series of functions does not have to converge, we consider Hε as a “jet” in
the functional space C∞(M), i.e. an asymptotic series, depending on the parameter ε.
Then it is easy to see, that Theorem 1.4.1 is equivalent to

inf
F,G∈C∞(M), G∈Hb(M,ω), ‖F−f‖6ε, ‖G−g‖6ε

∥∥{F, G}∥∥ > ‖Hε‖ ,

as “jets”. By this we mean that for given L > 1, denoting the function

HL,ε = {f, g}+ 9
L∑

l=1

ε
2l

2l+1

(
1
2l!
Dl({f, g})

)1/(2l+1)

,

which is a truncation of the asymptotic series Hε, we have
inf

F,G∈C∞(M), G∈Hb(M,ω), ‖F−f‖6ε, ‖G−g‖6ε

∥∥{F, G}∥∥ > ‖HL,ε‖ − o
(
ε2L/(2L+1)

)
.

In this observation, or reformulation of Theorem 1.4.1, we were able to collect
all the cases of high multiplicities, and moreover to get rid of considering all the
critical points one by one, and instead, to obtain a global inequality, which does
not apply to the critical points. However, the asymptotic series Hε does not seem
natural, because of the possible non-smoothness of the functions, which enter in its
definition. It would be interesting to find similar, but correct, description of the
result of Theorem 1.4.1. Alternatively, it is possible that such a description requires
different framework and needs to be written in other terms.

2 Proofs of Theorems

Proof of Theorem 1.1.2. Let us first describe the main idea of the proof.
We will use the notation Xf , Xg, XF , XG for the Hamiltonian vector fields gener-

ated by the Hamiltonians f, g, F, G and by Φt
f , Φt

g,Φ
t
F , Φt

G the corresponding Hamil-
tonian flows.

We have {f, g} = df(Xg). Hence, roughly speaking, the value of the Poisson
bracket is the rate of change of values of the function f , computed through the
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Hamiltonian flow Φt
g generated by g. Assuming that, for some region U ⊂ M , we

have supM{F, G} < infU{f, g}, we will derive that for some small region W ⊂ U
and for some T > 0, the values of f(ΦT

g (W )) are essentially bigger than those of
F (ΦT

G(W )). If ‖F − f‖ is small enough, the values of f(ΦT
g (W )) will be still much

greater than those of f(ΦT
G(W )). Hence, as a conclusion, we will get that the images

ΦT
g (W ), ΦT

G(W ) do not intersect, hence the map Φ−T
g ◦ΦT

G displaces the set W . Using
the positivity of the symplectic energy of W , and the upper estimate

‖Φ−T
g ◦ ΦT

G‖Hof 6 2T‖g −G‖
on the Hofer norm, in the case when the norm ‖g−G‖ is small enough, we will come
to a contradiction with our assumption that supM{F, G} < infU{f, g}.

Let us turn now to the precise proof. Denote h = {f, g}. Take any x ∈ M and
denote K = h(x). Assume that, for some δ > 0, we have {F, G} < K − δ on M ,
while ‖f − F‖, ‖g − G‖ < ε. Here we will fix a specific δ, while ε will be taken
arbitrarily small. For some neighborhood U of x, we will have that h(y) > K − δ

2 ,
for any y ∈ U . Pick some V ⊂ U and a positive T > 0, such that for any y ∈ V , the
flow Φt

g(y) exists for 0 6 t 6 T and, moreover, Φt
g(y) ∈ U for every 0 6 t 6 T . Take

an arbitrary point y ∈ V and define a function K(t) = f(Φt
g(y)), t ∈ [0, T ]. Then

we have
K ′(t) = df

(
Xg(Φt

g(y))
)

= {f, g}(Φt
g(y)

)
> K − δ

2
,

for t ∈ [0, T ]. Therefore, f(ΦT
g (y))− f(y) = K(T )−K(0) > T

(
K − δ

2

)
.

On the other hand, given any y ∈ M , denote L(t) = F (Φt
G(y)), t > 0. Then we

have
L′(t) = dF

(
XG(Φt

G(y))
)

= {F, G}(Φt
G(y)

)
6 K − δ ,

for t > 0. Hence F (ΦT
G(y))− F (y) = L(T )− L(0) 6 T (K − δ). Since ‖F − f‖ 6 ε,

we conclude that f(ΦT
G(y))− f(y) 6 T (K − δ) + 2ε.

Choose a small enough open subset W ⊂ V such that we have |f(y) − f(z)| 6
δT/3, when y, z ∈ W . Then for any y, z ∈ W we have

f
(
ΦT

G(y)
)

> T

(
K − δ

2

)
+ f(y) > T

(
K − δ

2

)
− δT

3
+ f(z)

> T

(
K − δ

2

)
− δT

3
+ f

(
ΦT

G(z)
)− T (K − δ)− 2ε

= f
(
ΦT

G(z)
)

+
δT

6
− 2ε .

Assume that ε < δT/12. Then we will get that f(ΦT
G(y)) > f(ΦT

G(z)) for any
y, z ∈ W . Therefore, ΦT

G(W ) ∩ ΦT
g (W ) = ∅, hence the map Φ−T

g ◦ ΦT
G displaces the

set W . Then, on one hand, the displacement energy e(W ) > 0, on the other hand
we have an estimate for the Hofer norm:

‖Φ−T
g ◦ ΦT

G‖Hof 6 2T‖g −G‖ < 2Tε .

Therefore, we conclude that 2Tε > e(W ). Observe that the choice of W,T depends
only on f, g, x, δ.

As a conclusion, we get that, given f, g, δ, and some point x ∈ M , there exists an
open W ⊂ M , and T > 0, such that for any ε < min(δT/12, e(W )/2T ) we have that
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for any F, G satisfying ‖f − F‖, ‖g −G‖ < ε, we have supM{F, G} > {f, g}(x)− δ.
Clearly this implies the statement of Theorem 1.1.2. ¤

Proof of Theorem 1.1.4. The next definition describes the notation that will be
used in the proof.
Definition 2.0.3. Suppose we have a smooth manifold X endowed with a Rie-
mannian metric ρ and a smooth function h : X → R. Take an integer k > 1. For any
x ∈ X, v ∈ TxX with the unit norm ‖v‖ρ = 1, take a small ρ-geodesic γ : [0, ε) → X,
such that γ(0) = x, γ̇(0) = v. Then we denote

‖h‖x,v,k :=
∣∣∣∣
1
k!

dk

dtk

∣∣∣
t=0

h(γ(t))
∣∣∣∣.

Next, for x ∈ X denote

‖h‖x,k := max
v∈TxX, ‖v‖ρ=1

‖h‖x,v,k .

For a given subset Y ⊂ X with compact closure Y ⊂ X, we denote

‖h‖Y,k := sup
x∈Y

‖h‖x,k .

For a given subset Y ⊂ X with compact closure Y ⊂ X, we denote

‖h‖Y := sup
x∈Y

|h(x)| .

Given a vector field v on X, we denote by ‖v‖x = ‖v(x)‖ the norm of the vector
v(x) ∈ TxX, with respect to ρ. Then for a subset Y ⊂ X with compact closure, we
denote ‖v‖Y = supx∈Y ‖v‖x.

We use the notation distρ(x, y) for the ρ-distance between a pair of points
x, y ∈ X.

Note that for any Y ⊂ X, ‖ · ‖Y,k is not a norm, but rather a pseudo-norm on
the space of smooth functions.

We will use the notation Xf , Xg, XF , XG for the Hamiltonian vector fields gen-
erated by the Hamiltonians f, g, F, G, and Φt

f ,Φt
g, Φ

t
F ,Φt

G for the corresponding
Hamiltonian flows.

The proof of Theorem 1.1.4 is a generalization of the idea from the proof of
Theorem 1.1.2. The proof can be divided into the following parts. First, we consider
functions f, g, F, G : M → R, such that

‖f − F‖, ‖g −G‖ < ε ,

max{F, G} < max{f, g} − δ .

We take some neighborhood U of x in M , and a Riemannian metric ρ on U . We
define some region W ⊂ U , depending on parameters α, r, and estimate the value
range of the function f on the images Φt

g(W ), Φt
G(W ). We conclude that, under

certain assumptions on ε, δ, t and the parameters α, r, the images Φt
g(W ), Φt

G(W )
do not intersect. Therefore, under these assumptions, W is displaced by the map
Φ−t

g ◦ Φt
G, hence we obtain

2εt > 2‖g −G‖t ≥ ‖Φ−t
g ◦ Φt

G‖Hof > e(W ) .
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On the other hand, we find lower estimates for the displacement energy e(W ) in
terms of α, r. Hence, under the assumptions on ε, δ, t, α, r above, and that

‖f − F‖, ‖g −G‖ < ε ,

max{F, G} < max{f, g} − δ ,

we obtain an inequality concerning ε, δ, t, α, r.
In the next step we consider f, g, F, G, that satisfy

‖f − F‖, ‖g −G‖ < ε,

and we assume that we have such δ, t, α, r, so that the abovementioned assumption
is satisfied, but the inequality derived from the energy-capacity argument is not.
Then we will have to conclude that

max{F, G} > max{f, g} − δ .

The next step in the proof is to choose optimal t, α, r to minimize δ. The resulting
formula involves estimations of C2, C1 norms of {f, g}, f, g on U , with respect to the
metric ρ. Then we shrink the neighborhood U to the point x, arriving to the upper
estimate for δ, involving the norm of the Hessian of {f, g}, and norms of Xf , Xg at
the point x with respect to the metric ρ.

Finally, we choose the optimal metric ρ to obtain the statement of the Theo-
rem 1.1.4.

Let us turn to the proof. First of all, note that x is not a critical point for the
functions f, g, and therefore

df |x, dg|x, Xf (x), Xg(x) 6= 0 .

We start by choosing a Darboux neighborhood i : U ↪→ (M, ω) of x, where
0 ∈ U ⊂ (R2n, ωstd), and i(0) = x. Fix an arbitrary Riemannian metric ρ on i(U).
Replacing U by some smaller open subset, we can guarantee that every point in i(U)
can be joint to x by a ρ-geodesic, which lies in i(U).

Then there exists an open neighborhood V ⊂ U of 0, and a positive T > 0,
such that for any y ∈ i(V ), the flow Φt

g(y) exists when 0 6 t 6 T , and moreover,
Φt

g(y) ∈ i(U) for every 0 6 t 6 T . Take some 0 < r < distρ(x,M\i(V )) and some
real α > 0, and consider the set

W = Wr,α = Bx(r) ∩ {
y ∈ M | f(x) < f(y) < f(x) + α

} ⊂ M ,

where Bx(r) is a ball of radius r centered at x, with respect to the metric ρ.
For y ∈ W , denote K(t) = f(Φt

g(y)), t ∈ [0, T ]. Then

K ′(t) = df
(
Xg(Φt

g(y))
)

= {f, g}(Φt
g(y)

)
.

Denoting h = {f, g}, we obtain that

f
(
Φt

g(y)
)− f(y) = K(t)−K(0) =

∫ t

0
K ′(s)ds =

∫ t

0
h
(
Φs

g(y)
)
ds .

Let us estimate the value h(Φs
g(y)) from below. First of all, we have

distρ

(
x,Φs

g(y)
)

6 distρ(x, y) + distρ

(
y, Φs

g(y)
)
.

We have distρ(y, Φs
g(y)) 6 s‖Xg‖U , distρ(x, y) < r, for y ∈ W . Hence distρ(x,Φs

g(y))
< r + s‖Xg‖U .
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Lemma 2.0.4. For any z ∈ U we have

h(z) > h(x)− ‖h‖U,2 distρ(x, z)2.

Proof of Lemma 2.0.4. Take a ρ- geodesic γ : [0, a] → U , such that

γ(0) = x , γ(a) = z ,

where a = distρ(x, z). Define
φ : [0, a] → R

as ϕ(s) := h(γ(s)). Then, since the point x is a maximum point of h, we have
ϕ′(0) = 0. Therefore,

h(z)− h(x) = ϕ(a)− ϕ(0) =
∫ a

0
ϕ′(s)ds =

∫ a

0
(a− s)ϕ′′(s)ds .

On the other hand, |ϕ′′(s)| 6 2‖h‖U,2, so
∣∣h(z)− h(x)

∣∣ 6 2‖h‖U,2

∫ a

0
(a− s)ds = ‖h‖U,2a

2 = ‖h‖U,2 distρ(x, z)2,

what implies the lemma. ¤
Hence for t ∈ [0, T ] we have

f
(
Φt

g(y)
)− f(y) =

∫ t

0
h
(
Φs

g(y)
)
ds

>

∫ t

0
h(x)− ‖h‖U,2

(
r + s‖Xg‖U

)2
ds = h(x)t− 1

3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U

)3
,

so
f
(
Φt

G(y)
)− f(y) > h(x)t− 1

3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U

)3
. (1)

Assume that we have smooth F,G : M → R and positive ε, δ > 0, such that

‖ f − F ‖, ‖ g −G ‖< ε

and
sup
M
{F, G} < max{f, g} − δ = h(x)− δ .

Take some z ∈ M , and consider the function L(t) = F (Φt
G(z)), t > 0. We have

L′(t) = dF
(
XG(Φt

G(z))
)

= {F, G}(Φt
G(z)

)
< h(x)− δ ,

hence we get an estimate

L(t)− L(0) = F
(
Φt

G(z)
)− F (z) <

(
h(x)− δ

)
t ,

which holds for any z ∈ M , t > 0. Since we have ‖ F − f ‖< ε, we obtain

f
(
Φt

G(z)
)− f(z) <

(
h(x)− δ

)
t + 2ε . (2)

In addition, for any y, z ∈ W we have∣∣f(y)− f(z)
∣∣ < α . (3)

From the inequalities (1), (2), (3) we derive, that for any y, z ∈ W we have

f
(
Φt

g(y)
)

> f(y) + h(x)t− 1
3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U )3

> f(z)− α + h(x)t− 1
3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U

)3
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> f
(
Φt

G(z)
)− (

h(x)− δ
)
t− 2ε− α + h(x)t− 1

3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U

)3

= f
(
Φt

G(z)
)

+ δt− 1
3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U

)3 − 2ε− α .

If we assume that
δt > 1

3
‖h‖U,2

‖Xg‖U

(
r + t‖Xg‖U

)3 + 2ε + α (4)

holds, then for any y, z ∈ W we have
f
(
Φt

g(y)
)

> f
(
Φt

G(z)
)
,

therefore, the sets Φt
g(W ),Φt

G(W ) do not intersect. Hence the map Φ−t
g ◦ Φt

G

displaces W . We have the following estimate for the Hofer norm:
‖Φ−t

g ◦ Φt
G‖Hof 6 2t‖g −G‖ < 2εt .

As a conclusion, we have the following:
Lemma 2.0.5. Assume now that we have smooth F, G : M → R and positive
ε, δ > 0 such that

‖ f − F ‖, ‖ g −G ‖< ε

and
sup
M
{F, G} < max{f, g} − δ = h(x)− δ .

In addition, assume that (4) holds for some

0 < t 6 T , 0 < r < distρ(0, ∂V ) , 0 < α .

Then for the set

W = Wr,α = Bx(r) ∩ {
y ∈ M | f(x) < f(y) < f(x) + α

} ⊂ M ,

we have 2εt > e(W ).
Consider the case when we have smooth F, G : M → R, positive ε, δ > 0, and

0 < t 6 T , 0 < r < distρ(0, ∂V ), 0 < α, such that ‖ f − F ‖, ‖ g − G ‖< ε, the
inequalities (4) and 2εt 6 e(W ) hold. Then Lemma 2.0.5 will imply that

sup
M
{F,G} > max{f, g} − δ .

Assume that we have shown the existence of a positive constant C > 0, such
that if r, α > 0 are small enough, and in addition, α/r is small enough, then we
have e(Wr,α) > Crα. Then we will take α = 2tε/Cr, so that 2εt 6 e(W ). Then the
inequality (4) is equivalent to

δ > ‖h‖U,2

3
(r + t‖Xg‖U )3

t‖Xg‖U
+

2ε

t
+

α

t
=
‖h‖U,2

3
(r + t‖Xg‖U )3

t‖Xg‖U
+

2ε

t
+

2ε

Cr
. (5)

Our choice of t, r will be of the form t = Pε1/3/‖Xg‖U , r = Pε1/3, for some
P > 0. Then we have

‖h‖U,2

3
(r + t‖Xg‖U )3

t‖Xg‖U
+

2ε

t
+

2ε

Cr
=

(
8
3
‖h‖U,2P

2 + 2
(
‖Xg‖U +

1
C

)
1
P

)
ε

2
3 .

Consider first the case, when ‖h‖U,2 > 0. In this case, the value of P that
minimizes the expression

8
3
‖h‖U,2P

2 + 2
(
‖Xg‖U +

1
C

)
1
P

,
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equals

P =
(

3
8
‖Xg‖U + 1

C

‖h‖U,2

)1/3

.

Then, for this P ,

8
3
‖h‖U,2P

2 + 2
(
‖Xg‖U +

1
C

)
1
P

= 721/3

(
‖h‖U,2

(
‖Xg‖U +

1
C

)2 )1/3

.

In the case of ‖h‖U,2 = 0, we fix arbitrary P > 0.
Note, that the choice of P we have made, does not depend on ε. We have

t =
P

‖Xg‖U
ε

1
3 ,

r = Pε1/3,

α =
2tε

Cr
=

2
C‖Xg‖U

ε ,

α

r
=

2
PC‖Xg‖U

ε
2
3 .

Keeping the chosen value of P fixed, and taking ε → 0, we have

t, α, r,
α

r
→ 0 .

In particular, t 6 T , r < distρ(0, ∂V ), when ε is small enough. Moreover, for small
enough ε, the values of α, r, α/r are small, therefore we can apply Lemma 2.0.6 to
our situation.
Lemma 2.0.6. For any C < 1/‖Xf‖x, we have

e(Wr,α) > Crα ,

when α, r, α/r → 0.

Proof of Lemma 2.0.6. We have Wr,α ⊂ i(U), the Darboux neighborhood of x.
Take the pullback of Wr,α, the function f and the metric ρ to U ⊂ (R2n, ωstd), and
denote the pullbacks by the same notation Wr,α, f, ρ. Then in U we have

Wr,α = Bρ,0(r) ∩
{
y ∈ R2n | f(0) < f(y) < f(0) + α

} ⊂ R2n.

Denote b(ξ, η) := ρ|0(ξ, η) the bilinear form on R2n, which is the restriction of ρ to
the tangent space T0(R2n). Denote l = df |0 - the differential of f at the point 0.
Then define

W̃r,α =
{
y ∈ R2n | b(y, y) < r2

} ∩ {
y ∈ R2n | 0 < l(y) < α

} ⊂ R2n.

Then, for small r, α, we have (1 − o(1))W̃r,α ⊆ Wr,α ⊆ (1 + o(1))W̃r,α. Hence it is
enough to establish

e(i(W̃r,α))
rα

> 1
‖Xf (0)‖ρ

− o(1) ,

when r, α, α/r are small enough. Moreover, one can find a linear symplectic change
of coordinates in R2n, such that we will have l = df |0 = a · dx1, for some a ∈ R,
where (x1, y1, . . . , xn, yn) are coordinates in R2n, so it is enough to consider this case
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only. Denote b11 = b(∂/∂y1, ∂/∂y1). It is easy to see that for every 1 > τ > 0, there
exists some κ > 0, such that the set{

y ∈ R2n | b(y, y) < r2
}

contains
[−κr, κr]×

[
−τ

r√
b11

, τ
r√
b11

]
× [−κr, κr]2n−2 ⊂ R2n ,

for any r > 0. Hence the set W̃r,α contains

[−κr, κr]×
[
−τ

r√
b11

, τ
r√
b11

]
× [−κr, κr]2n−2 ∩

[
0,

α

a

]
× R2n−2

=
[
0,

α

a

]
×

[
−τ

r√
b11

, τ
r√
b11

]
× [−κr, κr]2n−2,

for small α/r. We have that

Area
([

0,
α

a

]
×

[
−τ

r√
b11

, τ
r√
b11

])
=

2τ

a
√

b11
αr ,

which is smaller than
Area

(
[−κr, κr]× [−κr, κr]

)
= 4κ2r2,

when α/r is small enough. Therefore, by Proposition 1.1.5 we have that the dis-
placement energy

e

(
i

([
0,

α

a

]
×

[
−τ

r√
b11

, τ
r√
b11

]
× [−κr, κr]2n−2

))

> 1
2

Area
([

0,
α

a

]
×

[
−τ

r√
b11

, τ
r√
b11

])
=

τ

a
√

b11
αr .

Hence

e
(
i(W̃r,α)

)
> e

([
0,

α

a

]
×

[
−τ

r√
b11

, τ
r√
b11

]
× [−κr, κr]2n−2

)
> τ

a
√

b11
αr .

We have
a2b11 = a2b

(
∂

∂y1
,

∂

∂y1

)
= b

(
a

∂

∂y1
, a

∂

∂y1

)
.

Since df |0 = a · dx1, then Xf (0) = a ∂
∂y1

, therefore

a2b11 = b

(
a

∂

∂y1
, a

∂

∂y1

)
= b

(
Xf (0), Xf (0)

)
=

∥∥Xf (0)
∥∥2

ρ
,

i.e. the square of the norm of the vector Xf (0) with respect to the metric ρ. There-
fore,

e
(
i(W̃r,α)

)
> τ

a
√

b11
αr =

τ

‖Xf (0)‖ρ
αr ,

and this holds for any fixed 0 < τ < 1, when we take α, r to be small enough. This
implies the lemma. ¤

Because of Lemma 2.0.6, we can take arbitrary C < 1/‖Xf‖x . Then in the case
of ‖h‖U,2 > 0, we can take

δ = 721/3

(
‖h‖U,2

(
‖Xg‖U +

1
C

)2 )1/3

ε2/3 .
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In the case of ‖h‖U,2 = 0, for any fixed P > 0, we can take

δ = 2
(
‖Xg‖U +

1
C

)
1
P

ε2/3 .

Summarizing the above considerations, we see that if ‖h‖U,2 > 0, then it follows
that for any Darboux neighborhood i : U ↪→ (M,ω) of x, and a Riemannian metric
ρ on i(U) we have

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 721/3

(
‖h‖U,2

(
‖Xg‖U +

1
C

)2 )1/3

.

Since this holds for any C < 1/‖Xf‖x, we obtain

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 721/3

(‖h‖U,2(‖Xg‖U + ‖Xf‖x)2
)1/3

.

This inequality is correct also in the case of ‖h‖U,2 = 0, since then, fixing some
specific C < 1/‖Xf‖x, we have

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 2

(
‖Xg‖U +

1
C

)
1
P

,

for any given P > 0, and hence

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
= 0

in this case.
Fixing the same metric ρ on U , but shrinking U to the point x, we obtain

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 721/3

(‖h‖x,2(‖Xg‖x + ‖Xf‖x)2
)1/3

. (6)

The last step in the proof of the Theorem 1.1.4 is to choose the optimal metric ρ
in the neighborhood of x in order to minimize the expression on the right-hand side
of the inequality (6). From the inequality (6) we see that it is only essential to
choose the metric on the tangent space TxM .

First consider the case when Xf (x), Xg(x) ∈ TxM are linearly independent. In
this case, the metric we choose will satisfy∥∥cos(θ)Xf + sin(θ)Xg

∥∥
ρ,x

= 1 , (7)

for all θ. It is easy to see that for any ς > 0 we can find a metric ρ satisfying (7), so
that we will have

‖h‖x,2 6 max
θ
‖h‖x,cos(θ)Xf+sin(θ)Xg ,2 + ς . (8)

To do this, take any metric ρ which satisfies (7), consider some linear complement
of the linear subspace Sp(Xf , Xg) ⊂ TxM , and then re-scale ρ by a sufficiently big
factor in the direction of this complement.

Assume now that we have a metric ρ that satisfies (7), (8). Suppose that for the
vector v0 = cos(θ0)Xf + sin(θ0)Xg we have

max
θ
‖h‖x,cos(θ)Xf+sin(θ)Xg ,2 = ‖h‖x,v0,2 .
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Then we have
‖h‖x,2

(‖Xg‖x + ‖Xf‖x

)2 6 4‖h‖x,v0,2 + 4ς .

We claim that
‖h‖x,v0,2 = −1

2

{{h, cos(θ0)f + sin(θ0)g}, cos(θ0)f + sin(θ0)g
}
(x) .

In order to compute ‖h‖x,v0,2, we have to choose a ρ-geodesic γ : [0, ε) → M , such
that γ(0) = x, γ̇(0) = v0, and then

‖h‖x,v0,2 =
∣∣∣∣
1
2

d2

dt2

∣∣∣
t=0

h(γ(t))
∣∣∣∣ .

However, since h has at least order 2 at the point x, we can only require from γ
that γ̇(0) = v0, without the assumption of being geodesic. In what follows, we can
take γ(t) = Φt

k(x), where Φt
k is the flow of the Hamiltonian k := cos(θ0)f +sin(θ0)g.

Then, denoting by Xk the Hamiltonian vector field of the Hamiltonian k, we have
d

dt
h
(
Φt

k(x)
)

= dh
(
Xk(Φt

k(x))
)

= {h, k}(Φt
k(x)

)
,

hence
d2

dt2
h
(
Φt

k(x)
)

=
d

dt
{h, k}(Φt

k(x)
)

= d{h, k}(Xk(Φt
k(x))

)

=
{{h, k}, k}(

Φt
k(x)

)
.

Therefore, we have

‖h‖x,v0,2 =
∣∣∣∣
(

1
2

d2

dt2

∣∣∣
t=0

h
(
γ(t)

))∣∣∣∣ =
∣∣∣∣
1
2
{{h, k}, k}

(x)
∣∣∣∣

= −1
2
{{h, cos(θ0)f + sin(θ0)g}, cos(θ0)f + sin(θ0)g

}
(x) ,

since x is the point of local maximum of h. Hence we conclude that, denoting
P (θ) = −{{h, cos(θ)f + sin(θ)g}, cos(θ)f + sin(θ)g}(x), we have

‖h‖x,2

(‖Xg‖x + ‖Xf‖x

)2 6 2max
θ

P (θ) + 4ς .

So we have

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 721/3

(
2max

θ
P (θ) + 4ς

)1/3

= 1441/3
(

max
θ

P (θ) + 2ς
)1/3

.

Since this holds for any ς > 0, we obtain

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 1441/3

(
max

θ
P (θ)

)1/3
.

It is easy to see that P (θ)+P
(
θ + π

2

)
= −{{h, f}, f}(x)−{{h, g}, g}(x) for every θ,

and since x is a local maximum point of h, we have P (θ) > 0 for every θ. This
implies maxθ P (θ) 6 −{{h, f}, f}(x)− {{h, g}, g}(x). Therefore,

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 1441/3

(− {{h, f}, f}(x)− {{h, g}, g}(x)
)1/3

.

It remains to check the case when Xf (x), Xg(x) ∈ TxM are linearly dependent.
Suppose for instance that Xg = qXf , when |q| 6 1 (the other case is similar). Take
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any metric ρ, such that ‖Xf‖ρ,x = 1, then take some ς > 0, and re-scale ρ along
some linear complement of Span(Xf ), so that we will have

‖h‖x,2 6 ‖h‖x,Xf ,2 + ς . (9)

We have
‖h‖x,Xf ,2 = −1

2

{{h, f}, f}
(x) ,

therefore
‖h‖x,2

(‖Xg‖x + ‖Xf‖x

)2 6 −2
{{h, f}, f}

(x) + 4ς .

Hence

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 721/3

(−2{{h, f}, f}(x) + 4ς
)1/3

= 1441/3
(−{{h, f}, f}(x) + 2ς

)1/3
.

Since this holds for any ς > 0, we obtain

lim sup
ε→0

Υ+
f,g(ε)

ε2/3
6 1441/3

(−{{h, f}, f}(x)
)1/3

6 1441/3
(−{{h, f}, f}(x)− {{h, g}, g}(x)

)1/3
.

Since 1441/3 < 6, we obtain the desired result. ¤

Proof of Theorem 1.1.6. Denote by Xf , Xg the Hamiltonian vector fields generated
by Hamiltonians f, g : M → R. Denote h = {f, g}. Since x is the local maximum
point of h, we have {{h, f}, f}

(x),
{{h, g}, g}

(x) 6 0 .

If {{h, f}, f}(x) = {{h, g}, g}(x) = 0, there is nothing to prove. Consider the com-
plementary case. Without loss of generality, we can assume that {{h, g}, g}(x) < 0,
{{h, g}, g}(x) 6 {{h, f}, f}(x) (in the opposite case, we can apply the Theorem 1.1.6
to the functions−g, f). Because of {{h, g}, g}(x) < 0, we have Xg(x) 6= 0. Hence, for
some small neighborhood W ⊂ U of x, there exists a coordinate x1 : W → R, such
that x1(x) = 0, Xg = ∂/∂x1 on V . Denote H = hx1 . Then Hx1 = {{h, g}, g} 6= 0,
therefore one can extend x1 to a coordinate system (x1, y1, x2, y2, . . . , xn, yn) on W ,
such that

Hy1(x) = Hx2(x) = Hy2(x) = · · · = Hxn(x) = Hyn(x) = 0 .

Note that this is not necessarily a Darboux coordinate system. Denote A =
−{{h, g}, g}(x) = −hx1x1(x) > 0. Take some b > 0 , such that the cube

K =
{
(x1, y1, x2, y2, . . . , xn, yn) | −b 6 x1, y1, x2, y2, . . . , xn, yn 6 b

}

is inside W . Denote also

K ′ =
{
y = (x1, y1, x2, y2, . . . , xn, yn) ∈ K | −b/3 6 x1 6 b/3

}
.

For small ε > 0, take a smooth ϕ : R → R, such that ϕ(t) = 1
2A1/3ε2/3t for

t ∈ [−A−1/3ε1/3, A−1/3ε1/3], that ϕ′(t) > 0 when t ∈ [−b/3, b/3], that

ϕ′(t) >
maxy∈K\K′ h(y)− h(x)

2
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for t ∈ [−2b/3, 2b/3], ϕ(t) = 0 for t ∈ [−b,−2b/3] ∪ [2b/3, b] , and |ϕ(t)| 6 ε for any
t ∈ R. Then take some bump function ψ : R2n−1 → R, such that ψ = 1 on 1

3K and
ψ = 0 outside 2

3K, and 0 6 ψ 6 1 on R2n. Then define F, G : M → R by F = f
on M \W , and F = f − ϕ(x1)ψ(y1, x2, y2, . . . , xn, yn) on W , and then take G = g
on M . Note that F = f on W \K.

First of all, for any y = (x1, y1, x2, y2, . . . , xn, yn) ∈ W , we have∣∣f(y)− F (y)
∣∣ =

∣∣ϕ(x1)ψ(y1, x2, y2, . . . , xn, yn)
∣∣ 6

∣∣ϕ(x1)
∣∣ 6 ε .

For y /∈ W we have f(y) − F (y) = 0. Therefore, ‖f − F‖ 6 ε. As G = g, we have
‖g −G‖ = 0 6 ε. On the other hand, for any function k : W → R, we have

{k, g} = dk(Xg) = dk

(
∂

∂x1

)
= kx1 .

Therefore, for y = (x1, y1, x2, y2, . . . , xn, yn) ∈ W

{F, G} = {f − ϕψ, g} = {f, g} − {ψϕ, g} = h− ϕ′(x1)ψ(y1, x2, y2, . . . , xn, yn) .

We wish to show that {F, G} 6 {f, g} − 1
2A1/3ε2/3 on W . This is equivalent to

ϕ′(x1)ψ(y1, x2, y2, . . . , xn, yn) > h(y)− h(x) + 1
2A1/3ε2/3.

Because of the condition
hx1x1(x) = −A ,

hx1y1(x) = hx1x2(x) = hx1y2(x) = · · · = hx1xn(x) = hx1yn(x) = 0 ,

and since x is a non-degenerate critical point of h, we have that the domain{
y ∈ W

∣∣ h(x)− h(y) 6 1
2A1/3ε2/3

}

lies inside the set
K ′′ =

{
y = (x1, y1, . . . , xn, yn) ∈ W , |x1| 6 A−1/3ε1/3

} ∩ 1
3K ,

when ε is small. For y ∈ K ′′,
ϕ′(x1)ψ(y1, x2, y2, . . . , xn, yn) = 1

2A1/3ε2/3 > h(y)− h(x) + 1
2A1/3ε2/3.

For y ∈ K ′ \K ′′,
ϕ′(x1)ψ(y1, x2, y2, . . . , xn, yn) > 0 > h(y)− h(x) + 1

2A1/3ε2/3.

For y ∈ K \K ′,

ϕ′(x1)ψ(y1, x2, y2, . . . , xn, yn) >
maxz∈K\K′ h(z)− h(x)

2
> h(y)− h(x) + 1

2A1/3ε2/3,

when ε is small. Since F = f, G = g on U \K, and
sup

y∈U\K
h(y) < h(x) ,

we have
{F, G}(y) = {f, g}(y) = h(y) > h(x)− 1

2A1/3ε2/3

for y ∈ U \K, when ε is small. Hence we have shown that for V := int(K) ⊂ U ,
for ε small enough, there exist smooth F, G : M → R, such that F = f, g = G on
M \ V , and

‖F − f‖ 6 ε , ‖G− g‖ 6 ε ,
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{F,G}(y) 6 {f, g}(x)− 1
2

(− {{h, g}, g}(x)
)1/3

ε2/3, ∀y ∈ U .

We have
1
2

(− {{h, g}, g}(x)
)1/3

ε2/3 > 1
2

(
1
2Φ(x)

)1/3
ε2/3 > 1

3Φ(x)1/3ε2/3,

so we obtain the statement of the theorem. ¤

Proof of Theorem 1.1.7. Note first that Theorems 1.1.4, 1.1.6 have analogous
statements for the infimum, instead of the supremum, which clearly can be derived
from these theorems.

We have ‖{f, g}‖ > 0, since otherwise every point in M is a degenerate critical
point of {f, g}. Then for any 1 6 k 6 N we have {f, g}(xk) 6= 0, therefore in
particular xk is not a critical point for each of the functions f, g. Therefore, we can
apply Theorem 1.1.4, together with the remark at the beginning of the proof, to
obtain the inequality

lim sup
ε→0

Υf,g(ε)
ε2/3

6 6
∣∣Φ(xk)

∣∣1/3
.

This is true for any 1 6 k 6 N , so we obtain the desired upper bound.
Let us prove the lower bound. For any 1 6 k 6 N , take a neighborhood

xk ∈ Uk ⊂ M , such that |{f, g}(y)| < |{f, g}(xk)|, for every y ∈ Uk \ {xk}. Then
Theorem 1.1.6 guarantees that there exist neighborhoods xk ∈ Vk ⊂ Uk, such that
for any ε small enough there exist functions Fk, Gk : M → R satisfying

‖Fk − f‖ 6 ε , ‖Gk − g‖ 6 ε ,

{Fk, Gk}(y) 6
∥∥{f, g}∥∥− 1

3

∣∣Φ(xk)
∣∣1/3

ε2/3, ∀y ∈ Uk ,

and such that Fk = f, G = gk on M \ Vk.
Define F, G : M → R as F = Fk, G = Gk on each of Uk and F = f , G = g

on M \ ⋃N
k=1 Uk. Then on the union

⋃N
k=1 Uk we clearly will have |{F, G}| 6

‖{f, g}‖ − 1
3Cε2/3, and for the set M \ ⋃N

k=1 Uk we have maxM\⋃N
k=1 Uk

|{F, G}| =
maxM\⋃N

k=1 Uk
|{f, g}| < ‖{f, g}‖, and does not depend on ε. Therefore, for small ε

we have ∥∥{F, G}∥∥ 6
∥∥{f, g}∥∥− 1

3Cε2/3.

This example of F,G shows that
1
3Cε2/3 6 Υf,g(ε) . ¤

Proof of Theorem 1.2.4. First of all, consider the case when

‖G1‖U,1 = ‖G2‖U,1 = 0 .

In this case, we clearly have dG1 = dG2 = 0 on U , hence

{F1, G1} = {F2, G2} = 0

on U , and then the desired inequality

inf
y,z∈U

∣∣{F1, G1}(y)− {F2, G2}(z)
∣∣ 6 Cεmax

(
1, ‖G1‖U,1, ‖G2‖U,1

)

is satisfied for any choice of C > 0.
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We are left with the case of
max

(‖G1‖U,1, ‖G2‖U,1

)
> 0 .

Denote by Φt
G1

,Φt
G2

the Hamiltonian flows corresponding to the Hamiltonians G1, G2.
Take some open subset V ⊂ U , such that the closure V ⊂ U . Clearly there exists a
constant c1 = c1(U, V ), such that for any

0 < t 6 T :=
c1

max(‖G1‖U,1, ‖G2‖U,1)
,

and for any y ∈ V , we have that Φt
G1

(y), Φt
G2

(y) ∈ U . Take some δ > 0, and assume
that we have

inf
y,z∈U

∣∣{F1, G1}(y)− {F2, G2}(z)
∣∣ > δ .

Then one of the following holds:
either
(a) infz∈U{F2, G2}(z)− supy∈U{F1, G1}(y) > δ,
or
(b) infy∈U{F1, G1}(y)− supz∈U{F2, G2}(z) > δ.
Assume for instance, that (a) holds. Denote K = supy∈U{F1, G1}. Fix any

y ∈ V , and denote K(t) := F1(Φt
G1

(y)), for t ∈ [0, T ]. Then for every t ∈ [0, T ] we
have K ′(t) = {F1, G1}(Φt

G1
(y)) 6 K, hence for every t ∈ [0, T ] we have K(t)−K(0)

= F1(Φt
G1

(y)) − F1(y) =
∫ t
0 K ′(s)ds 6 Kt. Analogously, for any z ∈ V , for any

t ∈ [0, T ] we have F2(Φt
G2

(z))− F2(z) > (K + δ)t. Then we have

f
(
Φt

G1
(y)

)− f(y) 6 Kt + 2ε , (10)
f
(
Φt

G2
(z)

)− f(z) > (K + δ)t− 2ε , (11)
for any y, z ∈ V . Consider any point x ∈ V and for r, α > 0 denote

W = Wr,α = Bx(r) ∩ {
y ∈ M | f(x) < f(y) < f(x) + α

} ⊂ M ,

where Bx(r) is a ball of radius r centered at x, with respect to the metric ρ. Then
for small r, α we have W ⊂ V . For any y, z ∈ Wr,α we have∣∣f(y)− f(z)

∣∣ < α . (12)
From the inequalities (10), (11), (12) we conclude that for any y, z ∈ V we have

f
(
Φt

G2
(z)

)
> f(z) + (K + δ)t− 2ε > f(y)− α + (K + δ)t− 2ε

> f
(
Φt

G1
(y)

)−Kt− 2ε− α + (K+δ)t− 2ε = f
(
Φt

G1
(y)

)
+ δt− 4ε− α .

Therefore, if we assume that
δt > 4ε + α , (13)

we get that f(Φt
G2

(z)) > f(Φt
G1

(y)) for any y, z ∈ W , therefore Φt
G1

(W ) ∩ Φt
G2

(W )
= ∅, hence the set W is displaced by the map Φ−t

G1
◦ Φt

G2
. We have the estimation

‖Φ−t
G1
◦ Φt

G2
‖Hof 6 2t‖G2 −G1‖ < 2εt

of the Hofer norm. On the other hand, as a conclusion from Lemma 2.0.6 (see
Definition 2.0.3 for the notation used in the lemma), there exists a constant c2 =
c2(ρ, f, x) > 0, such that for small r, α, α/r we have e(Wr,α) > c2rα. Therefore, we
conclude that for t ∈ [0, T ], and small r, α, α/r > 0, satisfying (13) we have

c2rα 6 e(Wr,α) 6 ‖Φ−t
G1
◦ Φt

G2
‖Hof < 2εt .
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Hence we conclude that given δ, t, r, α > 0, satisfying (a), (13), and t ∈ [0, T ], and if
r, α, α/r are small enough, then we have c2rα < 2εt. An analogous statement holds
also for the condition (b). Therefore, we have
Lemma 2.0.7. There exist constants c1, c2 > 0 such that for any δ > 0, 0 < t 6

c1
max(‖G1‖U,1,‖G2‖U,1) , and small r, α, α

r > 0, satisfying

inf
y,z∈U

∣∣{F1, G1}(y)− {F2, G2}(z)
∣∣ > δ ,

δt > 4ε + α ,

we have c2rα < 2εt.

Fix some small r = r0, take

t =
c1

max(‖G1‖U,1, ‖G2‖U,1) + 1
,

α = 2εt
c2r , and then take δ = 4ε+α

t . The value of r = r0 is already chosen to be small
and fixed, and since t 6 c1, we have α 6 2c1

c2r0
ε, α

r = α
r0

6 2c1
c2r2

0
ε, that are small if ε

is small.
Therefore, we can apply Lemma 2.0.7, and obtain

inf
y,z∈U

∣∣{F1, G1}(y)− {F2, G2}(z)
∣∣ 6 δ .

We have

δ =
4ε

t
+

α

t
=

4
c1

εmax
(‖G1‖U,1, ‖G2‖U,1

)
+

(
4
c1

+
2

c2r0

)
ε .

Therefore, denoting C = 8
c1

+ 4
c2r0

, we obtain the statement of Theorem 1.2.4. ¤

Proof of Theorem 1.2.5. Consider any open U ⊂ M , with compact closure U ⊂ M .
Take any n ∈ N and apply Theorem 1.2.4 to the functions F1 = fn, G1 = gn, F2 = f ,
G2 = g. We will get

inf
y,z∈U

∣∣{fn, gn}(y)− {f, g}(z)
∣∣

6 C ·max
(‖fn − f‖U , ‖gn − g‖U

) ·max
(
1, ‖g‖U,1, ‖gn‖U,1

)
.

Hence for some constant C ′ we have

inf
y,z∈U

∣∣{fn, gn}(y)− {f, g}(z)
∣∣

6 C ′max
(‖fn − f‖U , ‖gn − g‖U

)‖gn‖U,1 + C ′max
(‖fn − f‖U , ‖gn − g‖U

)
.

Because of the assumptions of the theorem, the right-hand side converges to 0, when
n →∞. On the other hand, the sequence of functions {fn, gn} uniformly converges
to the function h. Therefore, we conclude that

inf
y,z∈U

∣∣h(y)− {f, g}(z)
∣∣ = 0 .

This holds for any open U ⊂ M with compact closure U ⊂ M . Then, because
the functions h, {f, g} are continuous, we get that h(x) = {f, g}(x) for any point
x ∈ M . ¤



24 L. BUHOVSKY GAFA

Proof of Theorem 1.3.3. (a) Since λ : C∞(X) → C∞(X) is a differential operator
of the first order, there exists a vector field v ∈ TX such that λ(f) = df(v). There
exists a positive T = T (x,U), such that we have a well-defined flow Φt(x) of v, for
t 6 T , and moreover Φt(x) ∈ U , for 0 6 t 6 T . Assume that we are given ε > 0 and
a smooth function F : M → R, such that ‖f − F‖ 6 ε. Denote K(t) = f(Φt(x)),
L(t) = F (Φt(x)). Assume for a moment that we have some δ > 0 such that

λ(F ) 6 λ(f)(x)− δ = K ′(0)− δ

on U . Then L′(t) 6 (K ′(0)−δ), hence L(t) 6 L(0)+(K ′(0)−δ)t, for t 6 T . Because
of the assumption ‖f − F‖ 6 ε, we have

K(t) 6 L(t) + ε 6 L(0) +
(
K ′(0)− δ

)
t + ε 6

6 K(0) +
(
K ′(0)− δ

)
t + 2ε ,

hence
δt 6 K(0) + K ′(0)t−K(t) + 2ε .

We have
K(t) = K(0) + K ′(0)t +

1
2
K ′′(0)t2 +

1
6
K ′′′(0)t3 + O(t4) .

On the other hand, K ′′(0) = 0, since the function λ(f) attains its maximum at the
point x, and we see that

K ′(t) = df
(
v(Φt(x))

)
= λ(f)

(
Φt(x)

)
,

K ′′(t) = d(λ(f))
(
v(Φt(x))

)
= λ2(f)

(
Φt(x)

)
,

K ′′′(t) = d
(
λ2(f)

)(
v(Φt(x))

)
= λ3(f)

(
Φt(x)

)
.

Therefore, δt 6 −1
6λ3(f)(x)t3 + O(t4) + 2ε, hence

δ 6 −1
6
λ3(f)(x)t2 +

2ε

t
+ O(t3) ,

for every t 6 T . We substitute t = t0 = (−6ε/λ3(f)(x))1/3 and we get

δ 6 3
(
−1

6
λ3(f)(x)

)1/3

ε2/3 + O(ε) =
(

9
2

)1/3 (− λ3(f)
)1/3

ε2/3 + O(ε) .

Note that t0 < T , when ε is small. This observation leads to the desired result.
(b) Since B( · , · ) is not anti-symmetric, there exists some h ∈ C∞(X) such

that B(h, h) is a non-zero function. Take any smooth nondecreasing function ϕ :
R → R, such that ϕ(t) = 2n, ∀t ∈ [2n, 2n + 1], for every n ∈ Z. Define fn(x) =
1
nϕ(nh(x)), gn(x) = 1

nϕ(nh(x) + 1). It is easy to see, that fn, gn → h uniformly, but

B(fn, gn)(x) = B

(
1
n

ϕ(nh(x)),
1
n

ϕ
(
nh(x) + 1

))

= ϕ′(nh(x))ϕ′
(
nh(x) + 1

)
B(h, h) = 0 ,

since ϕ′(t)ϕ′(t + 1) = 0∀t ∈ R. ¤

Proof of Theorem 1.4.1. Denote h = {f, g}. The proof goes similarly to that of
Theorem 1.1.4. We will use the notation in the Definition 2.0.3, introduced in the
proof of Theorem 1.1.4.
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Instead of inequality (5) we will have

δ > ‖h‖U,2l

2l + 1
(r + t‖Xg‖U )2l+1

t‖Xg‖U
+

2ε

t
+

α

t

=
‖h‖U,2l

2l + 1
(r + t‖Xg‖U )2l+1

t‖Xg‖U
+

2ε

t
+

2ε

Cr
.

Our choice of t, r will be of the form t = Pε
1

2l+1 /‖Xg‖U , r = Pε
1

2l+1 , for some
P > 0. Then we have

‖h‖U,2l

2l + 1
(r + t‖Xg‖U )2l+1

t‖Xg‖U
+

2ε

t
+

2ε

Cr

=
(

22l+1

2l + 1
‖h‖U,2lP

2l + 2
(
‖Xg‖U +

1
C

)
1
P

)
ε

2l
2l+1 .

We fix P , that minimizes the expression
22l+1

2l + 1
‖h‖U,2lP

2l + 2
(
‖Xg‖U +

1
C

)
1
P

.

The corresponding value of P does not depend on ε. Then we take ε small enough,
such that the assumptions of Lemma 2.0.6 are satisfied, and we obtain

4l + 2
l

(
l

2l + 1

) 1
2l+1

(
‖h‖U,2l

(
‖Xg‖U +

1
C

)2l ) 1
2l+1

ε
2l

2l+1 .

Then, by the same arguments as in Theorem 1.1.4 we arrive at

lim sup
ε→0

Υ+
f,g(ε)

ε
2l

2l+1

6 8l + 4
l

(
l

4l + 2

) 1
2l+1

(
1
2l!

max
θ

P2l(θ)
) 1

2l+1

,

where P2l(θ) equals

−{
. . . {{h, cos(θ)f + sin(θ)g}, cos(θ)f + sin(θ)g}, . . . , cos(θ)f + sin(θ)g

}
(x) ,

when the Poisson bracket is taken 2l times. Note that P2l is a non-negative trigono-
metric polynomial of degree 6 2l.
Lemma 2.0.8. There exists a complex trigonometric polynomial Q(θ) of degree
6 l, such that

P2l(θ) = |Q(θ)|2.
Proof of Lemma 2.0.8. Let us remark, that along the proof we will only use the
fact that P2l(θ) is non-negative.

Denoting z = cos(θ)+i sin(θ), the trigonometric polynomial P2l(θ) can be written
as a polynomial of z, 1/z, and there exists a complex polynomial T ∈ C[z], such that

P2l(θ) =
1
zr

T (z),

and T (0) 6= 0. Since P2l(θ) is a real number for any θ ∈ R , then for any z ∈ C,
|z| = 1, we have that 1

zr T (z) ∈ R, hence

1
zr

T (z) =
1
zr

T (z).

Assume that T (z) = c
∏m

k=0(z−αk). Since T (0) 6= 0, we have that α1, α2, . . . , αm 6= 0.



26 L. BUHOVSKY GAFA

Then for any z ∈ C with |z| = 1, we have

1
zr

T (z) =
1
zr c

m∏

k=0

(z − αk) = zrc
m∏

k=0

(
1
z
− αk

)

=
(−1)mc∏m

k=0 αk
zr−m

m∏

k=0

(
z − 1

αk

)
.

Denote c′ = (−1)mc∏m
k=0 αk

. Then

1
zr

T (z) =
1
zr

T (z) = c′zr−m
m∏

k=0

(
z − 1

αk

)
,

and hence

zmT (z)− c′z2r
m∏

k=0

(
z − 1

αk

)
= 0 ,

for any z ∈ C with |z| = 1. Since a non-zero polynomial must have a finite number
of roots, we must have an identity

zmT (z) = czm
m∏

k=0

(z − αk) ≡ c′z2r
m∏

k=0

(
z − 1

αk

)
,

as polynomials. Hence the list
1
α1

,
1
α2

, . . . ,
1

αm

is a permutation of
α1, α2, . . . , αm .

Moreover, if some αj satisfies |αj | = 1, then its multiplicity as a root of the poly-
nomial T (z), is even. Indeed, write αj = eiθj , θj ∈ R, and consider the limit

lim
τ→0

P2l(θj + τ)
P2l(θj − τ)

= lim
τ→0

αr
je
−irτ

αr
je

irτ
lim
τ→0

T (αje
iτ )

T (αje−iτ )
= lim

τ→0

T (αje
iτ )

T (αje−iτ )

= lim
τ→0

c
∏m

k=0(αje
iτ − αk)

c
∏m

k=0(αje−iτ − αk)
=

m∏

k=0

lim
τ→0

eiτ − αkα
−1
j

e−iτ − αkα
−1
j

.

We have that each of the terms limτ→0
eiτ−αkα−1

j

e−iτ−αkα−1
j

equals 1 if αk 6= αj , and −1 if

αk = αj . Therefore, the limit equals 1 if the multiplicity of αk is even, and −1 if
the multiplicity of αk is odd. On the other hand, the limit limτ→0

P2l(θj+τ)
P2l(θj−τ) must

be non-negative, because the trigonometric polynomial P2l is non-negative. This
proves, that the multiplicity αj is even.

As a conclusion, we obtain that the list of roots

α1, α2, . . . , αm

splits into pairs βj , γj , j = 1, 2, . . . , s, such that γj = 1/βj , for every 1 6 j 6 s,
where 2s = m. Denote

q(z) :=
s∏

k=0

(z − βk) .



GAFA THE 2/3-CONVERGENCE RATE FOR THE POISSON BRACKET 27

Then for z = cos(θ) + i sin(θ), we have

q(z)q(z) =
s∏

k=0

(z − βk)
s∏

k=0

(z − βk)

=
s∏

k=0

(z − βk)
s∏

k=0

(
1
z
− βk

)
=

s∏

k=0

(z − βk)
s∏

k=0

(
1
z
− βk

)

=
(

(−1)s
s∏

k=0

βk

)
1
zs

s∏

k=0

(z − βk)
s∏

k=0

(z − γk)

=
(

(−1)s
s∏

k=0

βk

)
1
zs

m∏

k=0

(z − αk) =
(−1)s

∏s
k=0 βk

c

1
zs

T (z)

=
(−1)s

∏s
k=0 βk

c
zr−sP2l(θ) .

Denote c′′ := (−1)s
∏s

k=0 βk

c . Then since we have that q(z)q(z), P2l(θ) > 0 for any θ,
except, may be, a finite number of values, therefore c′′zr−s is a positive real number,
for any z ∈ C, |z| = 1, possibly except a finite number of values. As a consequence,
we have that r = s, and c′′ is a positive real number. Hence

q(z)q(z) = c′′P2l(θ) ,

and if we denote Q(θ) := 1√
c′′

q(cos(θ) + i sin(θ)), we obtain

|Q(θ)|2 = Q(θ)Q(θ) = P2l(θ) . ¤
Lemma 2.0.9.

max
θ

P2l(θ) 6 2l + 1
2π

∫ 2π

0
P2l(θ)dθ .

Proof of Lemma 2.0.9. Because of Lemma 2.0.8 there exists a complex trigono-
metric polynomial Q(θ) of degree 6 l, such that P2l(θ) = |Q(θ)|2. Denote by
a−l, a−l+1, . . . , al the Fourier coefficients of Q(θ). Then by Holder inequality, for
any φ we have

P2l(φ) = |Q(φ)|2 =
∣∣a−le

−ilφ + a−l+1e
−i(l−1)φ + · · ·+ ale

ilφ
∣∣2

6
(|a−l|2 + |a−l+1|2 + · · ·+ al|2

)
(2l + 1) =

2l + 1
2π

∫ 2π

0
|Q(θ)|2dθ

=
2l + 1

2π

∫ 2π

0
|Q(θ)|2dθ =

2l + 1
2π

∫ 2π

0
P2l(θ)dθ . ¤

Assume that P2l(θ) =
∑2l

k=0 ck cos(θ)2l−k sin(θ)k. We have∫ 2π

0
cos(θ)2l−k sin(θ)kdθ = 0 ,

when k is odd, and∫ 2π

0
cos(θ)2l−k sin(θ)kdθ = 2B

(
k

2
+

1
2
, l − k

2
+

1
2

)
,

for even k, where B(x, y) is the beta-function. It is easy to see that for any
0 6 k 6 2l, we have that ck equals the sum of terms of the form
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−{. . . {{h, f1}, f2}, . . . }, f2l}(x), when each of the functions fj is one of f, g, while
the function f occurs 2l − k times, and g occurs k times. Since h has multiplicity
at least 2l at the point x, all these terms are equal. Indeed, for any 1 6 m < 2l,
denoting

H =
{{. . . {{h, f1}, f2}, . . . }, fm−1

}
,

we have {{H, fm}, fm+1

}
=

{{H, fm+1}, fm

}
+

{
H, {fm, fm+1}

}
,

hence{
. . . {{{. . . {{h, f1}, f2}, . . . }, fm−1}, fm}, . . . , f2l

}

=
{

. . . {{{H, fm}, fm+1}, fm+2}, . . . , f2l

}

=
{

. . . {{H, fm+1}, fm}, . . . , f2l

}
+

{
. . . {{H, {fm, fm+1}}, fm+2} . . . , f2l

}

=
{

. . . {{{{{. . . {{h, f1}, f2}, . . . }, fm−1}, fm+1}, fm}, fm+2}, . . . , f2l

}

+
{

. . . {{{{. . . {{h, f1}, f2}, . . . }, fm−1}, {fm, fm+1}}, fm+2}, . . . , f2l

}
,

and{
. . . {{{{. . . {{h, f1}, f2}, . . .

}
, fm−1}, {fm, fm+1}}, fm+2}, . . . , f2l

}
(x) = 0 ,

since we have applied the Poisson bracket 2l− 1 times, starting with the function h,
and h has multiplicity 2l at x. Therefore, we have that

ck =
(

2l
k

)
Hk(x) =

1
B(k, 2l − k)

Hk(x) ,

where
Hk = −{

. . . {{h, f}, f}, . . . }, f}, g}, g}, . . . , g} ,

when f appears 2l−k times, and g appears k times. From all these observations we
have ∫ 2π

0
P2l(θ)dθ = 2

l∑

m=0

B
(
m + 1

2 , l −m + 1
2

)

B(2m, 2l − 2m)
H2m(x) .

Using the identities, concerning the B and Γ-functions, one can check that
B

(
m + 1

2 , l −m + 1
2

)

B(2m, 2l − 2m)
=

(
l
m

)
.

Again, because h has multiplicity 2l at x , we have
l∑

m=0

(
l
m

)
H2m(x) = −Dl

({f, g})(x) .

Summarizing the above considerations, we get that

lim sup
ε→0

Υ+
f,g(ε)

ε
2l

2l+1

6 −8l + 4
l

(
l

4l + 2

) 1
2l+1

(
2l + 1

π

) 1
2l+1

(
1
2l!
Dl

({f, g})(x)
) 1

2l+1

6 −9
(

1
2l!
Dl

({f, g})(x)
) 1

2l+1

. ¤
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3 Non-locality

On first sight it seems that the statement of Theorem 1.1.4 is local, in the sense that
if the Poisson bracket {f, g} attains its maximum at the point x ∈ M , then for any
two sequences

f1, f2, . . . , g1, g2, . . . ∈ C∞(M) ,

such that ‖fn − f‖ → 0, ‖gn − g‖ → 0, there exists a sequence xn → x, such that
lim inf
n→∞ {fn, gn}(xn) > max{f, g} .

In fact, we cannot conclude that, since the flow Φt
G can be very fast, and during a

small time can exit a neighborhood of x. Actually, the locality does not hold for
any dimension n > 2. For dimension 2 the locality was proved by Zapolsky [Z].

On the other hand, the condition of existence of the flow Φt
G for all time t is

essential, as we will see in the example below.
The examples that reflect both of the remarks above are based on the example

of Polterovich, mentioned in Example 1.2.2.
Example 3.0.10. Consider the manifold

M =
{
(x, y, z, u) ∈ R4 | 1 < z < 1

} ⊂ R4,

endowed with the standard symplectic form ω = dx ∧ dy + dz ∧ du. Let χ(t) :=√
2t + 2, t ∈ (−1, +∞). Then χ(t)χ′(t) = 1. Consider the functions

f(x, y, z, y) = x , g(x, y, z, u) = y ,

and define

fn(x, y, z, u) = x +
χ(z)√

n
cos(nu) , gn(x, y, z, u) = y − χ(z)√

n
sin(nu) ,

for n = 1, 2, 3, . . . . Then fn → f , gn → g uniformly on M . However, we have
{f, g} ≡ 1, but {fn, gn} ≡ 0 for every n, so rigidity does not hold in its weakest
sense.

The reason is that the flows Φt
gn

are not defined for arbitrary time t.
As a corollary of Example 3.0.10, we derive the non-locality of Theorem 1.1.4.

We already see the non-locality in Example 3.0.10, however, gn does not belong to
Hb(M, ω). One can fix this problem by the following truncation of the functions.
Example 3.0.11. Consider the manifold M and functions

f, g, fn, gn : M → R ,

n = 1, 2, . . ., as in the previous Example 3.0.10. Take a smooth function ψ : R→ R,
such that ψ(x) = 1 for |x| 6 1/4, ψ(x) = 0 for |x| > 1/3, and xψ′(x) 6 0 for all x.
Then define ϕ : R4 → R by ϕ(x, y, z, u) = ψ(x)ψ(y)ψ(z)ψ(u). Then xϕx, yϕy 6 0.
Denote

F (p) = f(p)ϕ(p) , G(p) = g(p)ϕ(p) ,

Fn(p) = fn(p)ϕ(p) , Gn(p) = gn(p)ϕ(p) ,

for n = 1, 2, 3, . . ., and p ∈ M . Then F,G, Fn, Gn are all compactly supported. We
have
{F, G} = {fϕ, gϕ} = ϕ2 + ϕy{x, ϕ}+ ϕx{ϕ, y} = ϕ2 + ϕyϕy + ϕxϕx 6 ϕ2 6 1
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at every point, and {F, G} = 1 in the cube K := {|x|, |y|, |z|, |u| < 1/4}. However,
for every p ∈ K, we have the equality Fn = fn, Gn = gn, hence {Fn, Gn} = 0 in K.
This reflects the non-locality. Note that

suppF, G, Fn, Gn ⊂
{|x|, |y|, |z|, |u| 6 1

3

}
.

Hence non-locality holds for any symplectic manifold of dimension 4, because of the
existence of a Darboux chart on M , and re-scaling of F, G, Fn, Gn, in order that
their supports be contained in this chart. Surely this is true in any dimension of M ,
since one can provide a similar example for any even dimension bigger than 4.
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