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Abstract. We investigate the relationship between the 2-class groups of cubic fields
and the Mordell-Weil groups of elliptic curves defined over Q. There is an exact sequence
which connects those two groups together for a certain kind of cyclic cubic fields. Using
the twists of elliptic curves, we give a more precise result for the simplest cubic fields.

Introduction. In [8], Washington proved a theorem giving a relationship between
the 2-class groups (i.e. the 2-Sylow subgroups of the ideal class groups) of cyclic cubic
fields and the Mordell-Weil groups of elliptic curves defined over Q. The fields that he
treated are called the simplest cubic fields which have been studied in detail by Shanks
[5], and besides him, Cohn [2], Uchida [7] and Nakano [4]. In fact, these fields and
the associated elliptic curves are defined by cubic polynomials in a special form (see
§2), and Washington's proof depends on properties peculiar to that form.

In the present paper, we first discuss the relationship between 2-class groups and
elliptic curves from a general viewpoint, and try to extend Washington's result to some
other kinds of cubic polynomials. We then regard the cubic fields as the 2-division fields
of elliptic curves defined over Q with no rational point of order two. One cubic field
may be attached to several elliptic curves which are not isomorphic to one another over
β, as twisted curves. In the last section, we deal simultaneously with the elliptic curve
and its twist which are related to one simplest cubic field, and utilize this technique to
improve the result of Washington.

The authors wish to thank Professors Shόkichi lyanaga and Norio Adachi for their
valuable suggestion and warm encouragement.

NATATION. For an abelian group A and its element a, let [a] denote the coset
represented by a of the factor group A/2 A (or A/A2 if the group law is written
multiplicatively). If V is a vector space over Z/2Z, we denote its dimension by rk2(K).
For any elliptic curve, we always denote the identity of the group law by O. Let E be
an elliptic curve defined over a number field k. The Mordell-Weil group, denoted by

E(k), is the group of fc-rational points of E. We denote its rank over Z by rank^fc).
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1. Preliminaries. Let A: be a cubic field and C2(K) the 2-torsion subgroup of
the ideal class group of K. We denote by H2(K) the subgroup of K* /K*2 consisting
of those cosets represented by α in K* for which the principal ideal (α) is the square

of an ideal of K and 7Vα>0, where TV is the norm map from K to Q. Let αe K* with
[α] 6 H2(K) and α the ideal of K satisfying α2 = (α). Then the ideal class of α is in C2(K)
and depends only on the coset [α]. Hence we have a homomorphism H2(K)-+C2(K)
defined by [α] ι-»"the class of α". We denote its kernel by V2(K) and obtain an exact

sequence

(1) \^V2(K)-+H2(K)-*C2(K)^\.

The kernel V2(K) is the subgroup of KX/K*2 whose elements can be represented by
units with norm 1 .

We now consider cubic fields related to elliptic curves. For the following argument,
refer to [1] or [6, Chaps. 8, 10]. Let E be an elliptic curve defined over Q. Assume
that E has no rational point of order two. Then E is given in the form y2 = f(χ\ where
f(x) is an irreducible monic polynomial in Z[jc] of degree three. Let pί9 p2 and p3 be
the roots of f(x). The non-trivial 2-torsion points on E are (pl9 0), (p2, 0) and (p3, 0).
Letting p represent any one of these roots, we suppose that K= Q(p). Then there is a
homomorphism

λ:E(Q)-+Kx/Kx2

defined by (x, y)ι-+[x — p] and 0ι— >1, which induces an injective homomorphism

In the following we will identify K with the β-algebra Q[T]/(f(T)) by the cor-
respondence p<-» Γmod/(Γ).

Next we shall define the local homomorphisms in a similar way. Let p be a finite
or infinite prime of Q and Qp the completion of Q at /?, that is, the field of p-adic or
real numbers. We consider the βp-algebra

instead of K in the global case. This is isomorphic to the direct sum of the completions
Kγ of K at the primes p lying above /?; Kp~ 0pιp ̂ p, and the group of the invertible

elements in Kp is written as K* ~ 0p,p K* . If p is finite, we define a subgroup Up of
Kp as t/p=φp | pt/p, where t/p is the unit group of Kp. Note that Σp|p[A:p: βj = 3,
therefore Kp is three-dimensional over Qp. As in the global case, one may define a
homomorphism

and an injection
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by 0h-> 1 and (x, y)\-+ [jc- Γmod/(Γ)] whenever x-T mod/(Γ) is invertible in Kp.

The embedding ιp: Q^>QP, for each/?, induces natural maps

and so on, which we will also denote by ιp. One can verify the commutativity of the

following diagram:

E(Q) — K*/KX2 — Q X / Q X 2

E(QP) — > κ;ικ;2 — Q IQ;*.
λP NP

Here N and Np are induced by the norm maps N=NK/Q and Np = NKp/Qp, respectively.

Particularly, Np is defined as follows: Choose a basis {el9 e2, e3} of Kp over Qp. For

any zeKp, let r0 (z)egp be such that eiz = ̂ =ίrij(z)ej (ι=l,2, 3), and set

= det(r0 (z)). We remark that N(lmλ)= I and ΛΓp(Im^)= 1, which are useful later.

LEMMA 1. Let p be a finite prime which satisfies at least one of the following:

(a) E has good reduction at p;

(b) p does not split in K.

PROOF. For (a), refer to [1, 3.3, 3.4 and 3.6]. Suppose (b) holds. Then Kp is the

cubic extension over Qp and Up is the unit group of Kp. Let α be an element of K*

satisfying [α] e Im λp. Then, as Np(Im λp)=l, we have Npa, eQp

2. Thus the order of Npa,

at p is even. Since the residue degree for KpjQp is 1 or 3, the order of α at the prime

of K above p must be even, consequently α 6 UpKp

 2. Π

Now S2(E) denotes the Selmer group of E/Q for 2-descent. In our case, we can

identify this with the subgroup of K* /K*2 given as follows:

S2(E) = { ξ ε K * / K * 2 \ ι p ( ξ ) ε I m λ p f o r a l l p < a o } .

Since ιp(lmλ)^lmλp for any prime p, we have lmλ^S2(E). So λ induces an injective

homomorphism E(Q)/2E(Q)^S2(E). The cokernel of this map is called the 2-torsion

subgroup of the Shafarevich-Tate group of E/Q. Denoting it by IΠ2(£
I), we obtain the

fundamental exact sequence

(2) 1 -> E(Q)/2E(Q) -> S2(E) -> IΠ2(£) -> 1 .

We will discuss the relationship between C2(K) and E(Q)I2E(Q) which are arranged

in the exact sequences (1) and (2) separately. The following lemma links the two sequences

together, via H2(K) and S2(E).
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LEMMA 2. Suppose every finite prime p satisfies either Condition (a) or (b) of

Lemma 1. Then S2(E}^H2(K).

PROOF. Let ueK* with [ai]ES2(E). Then zp([α]) e Im λp for all primes p< oo. In
particular, the condition at/? =00 implies that z^(Λfa)eβ^2 = /?x 2. This means that Λfa

is positive. On the other hand, for any finite prime p, it follows from Lemma 1 that
ιp(tt) E UpKp 2, which shows that the order of α at any prime of K above p is even. Hence
the principal ideal (α) is a square. Π

2. 2-class groups and elliptic curves. In this section, we deal with cyclic cubic fields,

and relate their 2-class groups to the Mordell-Weil groups of the associated elliptic
curves. For an elliptic curve E defined over Q, we put

£°(β) = Keι([ ] o Ϊ G O : E(Q)^E(R)/2E(R)).

In other words, E°(Q) is the subgroup of E(Q) consisting of those points in the connected
component of the identity for the real curve E(R\ Clearly 2E(Q)^E°(Q).

PROPOSITION. Let f(x) be an irreducible monίc polynomial in Z\_x] of degree three,
and K the cubic field determined by f(x). Assume that K/Q is cyclic. Let E be the elliptic
curve defined over Q given by y2 = f(χ), and assume that E has a rational point in the
form (a, \)eE(Q) — E0(Q) with aEZ. Moreover assume that for every prime number p,
either Condition (a) or (b) of Lemma 1 holds. Then

rk2(C2(K)) > τk2(E°(Q)/2E(Q)) = rank E(Q) - 1 .

In fact, there is an exact sequence

1 - E°(Q)/2E(Q) -> C'2 -»IΠ2(£) -> 1 ,

where C'2 is a subgroup of C2(K).

PROOF. Put P = (a, 1). First, we note that rk2(lmλao)= 1 ([1, 3.7]) and then
E(R)/2E(R) is generated by the coset [̂ (P)], for ιao(P)φ2E(R). Thus, by the definition

of E°(Q), we obtain the decomposition

E(Q)/2E(Q) = (E°(Q)/2E(Q)) ® <[P]> .

Consequently, rankE(Q) = rk2(E°(Q)/2E(Q)) +1, since E has no rational point of order
two. Next we see that S2(E}^H2(K) by Lemma 2. Restricting the last map

H2(K)^>C2(K) in (1) to S2(E\ we have an exact sequence

1 -> V2 -> S2(E) -* C2 -> 1 ,

where V2 and C2 are subgroups of V2(K) and C2(K), respectively. We now compute
the kernel V2. Let ε be a unit of K such that [ε] e S2(E). Then Zoo([ε]) e Im λ^. Since Im λ^

is generated by Aαo(ι00(P)) = ι00(^P)) = ϊ00([α-p]), we find that ϊω([ε])=l or iJCα-p]).
Thus ε is a totally positive unit, or else so is ε(a — p). Note that neither a — p nor —(a — p)
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is totally positive, and the existence of such a unit implies that every totally positive
unit of AT is a square, for K/Q is cyclic. So either ε or ε(a — p) is a square. This means

that [ε] = l or {a — p], and hence V'2 = (\_a — p]> = <Λ,(P)>. Therefore, combining the
sequence (2), we obtain a commutative diagram with exact rows

> S2(E) > C'2 > 1

1 - > E(Q)/2E(Q) - > S2(E) - » W2(E) - > 1 ,

where σ is the inclusion while τ is the induced natural surjection. Finally, by the snake
lemma, we have

Ker τ ~ Coker σ = (3(β)/2E(β))/<[P]> ̂  E°(Q)/2E(Q) .

D

In [8], Washington treated the irreducible polynomials for weZin the form

(3) /(x) = x3 + mx2-(m + 3)x+l.

The discriminant of /(X) is (w2 + 3w + 9)2. So the cubic fields K defined by f(x) are
cyclic over Q. They are called the simplest cubic fields (cf. [5], [8]). As /(0)=1 and
/(!) = - 1 <0, the point (0, 1) in the elliptic curve E: y2 = f(x) fulfills the condition of
the proposition. His proof is partly carried out by concrete calculations dependent on
the form of f(x) itself. In fact, it can be shown that if ra2 + 3m + 9 is square-free then
the restricted map S2(E)-*C2(K) in the above proof is surjective, hence C'2 = C2(K).

We remark that the condition "any prime number p satisfies (a) or (b) of Lemma
1" is just a sufficient condition to make the conclusion of Proposition to hold, and the
proof of the theorem is done by the property for any finite prime p, Im λp ̂  UpK* 2/K* 2.
So, if we adopt this instead of (a) or (b), then the result of Proposition may apply for
more general polynomials.

3. The simplest cubic fields. From now on, let K be one of the simplest cubic
fields, that is, the cyclic cubic field defined by a polynomial f(x) in the form (3). Let
E be the elliptic curve defined over Q given by y2 = f(x). Its conductor divides
16(w2 + 3ra + 9)2. We also study the polynomial g(x)= —f( — x) and the elliptic curve
F: y2 = g(χ\ on which Washington have touched ([8, p. 382]). In view of the real locus

of F, we find that the point (—1,1) lies in F(Q)-F°(Q), so Proposition may be also
applied to g(x). In the same way as we define the homomorphism λ for E(Q) using p

the root of /(x), we define

by (*', y') i— > [X -I- p] and O ι-> 1 . Note that g( — ρ) = 0. The Selmer and Shafarevich-Tate
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groups S2(F) and IH2(F) of the curve F/Q will be also treated.
Consider the following two properties:
(A 1 ) m 2 + 3m + 9 is square-free.
(A2) Any prime number dividing m2 + 3m + 9 does not split in K.

First we note that (Al) implies (A2), because if ra2 + 3ra + 9 is square-free then any
prime factor of m2 + 3m + 9 is totally ramified for KjQ. Next, if p is a prime number
such that E has bad reduction at p, then p is a factor of the conductor of E, thus p
divides 2(ra2 + 3ra + 9). Therefore, since the prime 2 is inert in K, we see that, under
(A2), the condition (a) or (b) of Lemma 1 holds for any finite prime p. Further, as
mentioned in the previous section, we have C'2 = C2(K) in Propositon under (Al).
Indeed, one may prove this from (A2), because the surjectivity of the map S2(E}-+C2(K)
in the proof of Proposition follows from the fact that Im λp ̂  UpK* 2/K* 2 for any finite
prime p, which is a consequence of (A2) and Lemma 1 . The above arguments of this

paragraph hold for g(x) and F as well, since g(x) has the same discriminant as that of
f(x). So we have deduced the following:

THEOREM 1 (Washington). Assume (Al) or (A2). Then there are exact sequences

1 -> E°(Q)/2E(Q) -> C2(K) - IΠ2(F) -> 1 ,

1 -> F°«2)/2F(0 - C2(K) - ΠI2(F) -» 1 ,

and we have rk2(C2(^))>max{rank£(β), rank F(Q)} - 1 .

Now it should be noted that F is the twist of E which becomes isomorphic to E
over the quadratic field k=Q(ί), where i2 = — 1. The isomorphism φ : E^F is given by

(x,y)*-*( — x9 — 0>) Let ψ be the inverse of 0, that is, ψ: F-*E, (x1, >>')ι->( — x', iy')'.

Φ

For a point P = (x9 y) in E(k) or F(k), let P = (x, y) be the complex conjugate of P. It

is easy to verify the identities φ(P)= —φ(P\ ψ(Q)= — *K0 We need the norm map

Λ :E(k)^E(Q)

defined by JfP = P + P for PεE(k), and the norm group

For F, define also Jf :F(fc)->F(β) and JfF(k) similarly. Furthermore, we introduce the
diagonal norm group, that is, the subgroup of E(Q) 0 F(Q) defined to be

, F) = {(Λ-P, JTφ(P)) I P e E(k)} = {(W(Q), JTQ) \ Q e F(k)} .

homomorphism

We join the maps E(Q) -̂  K* / K* 2 and F(β)^>Λ:x/Λ:x2 together, and define the
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by X(P, β) = λ(P)λ'(Q) for P E E(Q) and Q e

LEMMA 3. The following relations hold:

(a)
(b)
(c)

PROOF. Let L = k(p) = K(i) and define A λ : E(k)^>L* /L*2by(x, y)\-+[x-p]9O\-+ 1

in our usual way. It is known that the kernel of λk is exactly 2E(k). Define the

homomorphism μ: E(Q)®F(Q)^E(k) by (P, Q)^>P + ψ(Q). If (P,β)eKerμ, i.e.,
P + Ψ(Q) = O, then, taking the complex conjugate, we have P-ψ(Q) = O thus
(P, β) = (0, 0). Hence μ is injective. Next, let v : Kx //T2->LX /L*2 be the natural
mapping. By the Kummer theory, Kerv is generated by [— 1]. Note, however, that
[-l]<£Ker(W: Kx /K*2^Q* /Qx2). Thus Imln Kerv- {!}, for Imlg KerjV. Straight-

forward calculations show that the diagram

E(k)

I-
E(Q)®F(Q)

is commutative. We are now ready to prove (a), (b) and (c) as follows:

(a) Since 2P = JfP + \l/(^φ(P)) = μ(JΓP, JTφ(P)) for any point P e E(k\ it follows

that Λ^k(E, F)~2E(k) with the injection μ. The desired result follows from the relations
Keτλk = 2E(k) and ImInKerv = {l}.

(b) Let P = (x,y)eE(k) and put ot = NL/κ(x-ρ), that is, (x-ρ)(x-p). Then,

by the above commutative diagram, v(λ(ΛfP)) = λk(P)λk(P) = v([oί]). As NK/QOL =
NkiQNL,k(x-p) = NklQy2EQx2, we have [α]eKerjV, thus ;ί(ΛΛP) = [α]. Since α is

totally positive, we see that Λ^PeE°(Q), which gives the relation we want.

(c) is an immediate consequence of (b) and the definiton of ^Vk(E9 F). Π

Let S2(E, F) = S2(E)S2(F), which is a subgroup of KX/K*2. By (a) of the above

lemma, I induces an injection (E(Q)(&F(Q))/^Vk(E9 F)-»S2(£, F) Denote the cokernel
of this by IΠ2(£, F), and we have an exact sequence

(4) 1 -> (E(Q) Θ FmiJrtf, F) -+ S2(E, F) -> IΠ2(£, F) -, 1 .

We remark that, if (Al) or (A2) holds, then the map H2(K)-*C2(K) induces a surjective

homomorphism S2(E, F}-+C2(K). We are now ready to prove a theorem giving a more

precise estimate than Theorem 1 .
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THEOREM 2. Under the assumption (Al) or (A2), there is an exact sequence

1 -> (E°(Q) © F°(Q))/^k(E, F) -> C2(K) -» ffl2(£, F) -> 1 ,

= rank £(β) + τk2(F°(Q)/^F(k)) - 1

= rank F(Q) + rk2(£°(0/^£(fc)) - 1 .

PROOF. For the exact sequence, we may use a method similar to that for

Proposition. Let P = (Q, 1) and g = (— 1, 1). Denote by X the subgroup of

(E(Q) 0 F(Qi)IJTk(E, F) generated by the cosets (P, O) and (0, Q) mod ̂ Vk(E, F). Then
A^~<[ — p], [—1 +p]>^A:x/^x2. Since none of the units — p, — 1 +p and their product

p(l-p) are totally positive, we see that X has rank two. So there exists a natural
isomorphism

jr ~ (E(R)J2E(R)) Θ (F(R)I2F[R)) ,

which gives a decomposition

, F ) ) ) φ X .

Next, the induced homomorphism S2(E, F)^>C2(K) is surjective, as remarked above.
Its kernel is isomorphic to X by the same method as in the proof of Proposition. So

there is an exact sequence

1 -» X -> S2(E, F) -> C2(K) -> 1 .

'Connect this with (4), and we obtain the desired exact sequence by the snake lemma

and the above decomposition.
We now show the latter part. Consider a commutative diagram

1 - > E(Q) - » E(Q)®F(Q) - > F(Q) - > 1

1 - > 2E(Q) - . ΛΆE,F) -

where the top row is generated by the canonical injection and projection, the maps in
the bottom row are their restrictions, and the vertical maps are the inclusions. Clearly
the top row is exact. It is not difficult to see that the bottom row is also exact.
Consequently, this diagram yields an exact sequence

1 -> E(Q)/2E(Q) -> (E(Q) ® F(Q))/^k(E9 F)

Similarly, we obtain an exact sequence

1 -> E°(Q)/2E(Q) -, (E°(Q) © F°(Q))/^E9 F) -> F°(Q)/^F(k) ^ 1 .
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Therefore

rk2(C2CK)) > τk2((E°(Q) ® F°(Q))/^k(E, F))

= τk2(E°(Q)/2E(Q)) + τk2(F°(Q)/^F(k))

= rank E(Q) -1 + rk2(F°(Q)/^F(k)).

By symmetry one may choose the formula for which the roles of E and F are changed.

D

COROLLARY. Under the assumption (Al) or (A2), we have

τk2(C2(K)) > {rank E(k) + τk2(E°(Q)/^E(k)) + rk2(F°(β)/^^))} - 1 .

PROOF. Use the formula rank E(k) = rank E(Q) + rank F(Q). (cf. [3] .) Q

Finally, we remark that, from the proof of Lemma 3, there are isomorphisms

(E°(Q) + ψ(F°(Q)))/2E(k) ~ (£°(β) 0 F°(β))/ f̂c(£, F) - (

The groups on the left and right hand sides are subgroups of E(k)/2E(k) and F(k)/2F(k),
respectively. Then, using the 2-descent on E(k) or F(k), we may be able to compute the
group (E°(Q)®F°(Q))/^k(E, F).
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