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The (2n}1-2)-ray algoríthm: a new simplicial algorithm to compute eco-

nomic equilibria~

by

T.M. Uoup, G. van der Laan and A.J.J. Talman

Abstract

A new variable dimension simplicial restart algorithm is intro-

duced to compute economic equilibria. The number of rays along which the

algorithm can leave the starting point differs from the thusfar known

algorithms. More precisely, the new algorithm has one ray to each of the
Zntl-2 faces of the n-dímensional price simplex, whereas the existing

algorithms have ntl rays either to each facet or to each vertex of the

unit simplex. The path of points followed by the algorithm can be inter-
pre[ed as a price adjustment process. Since this process converges for
any continuous excess demand function it is a good alternative for the

well-known Walras' tatonnement process. Computational results will show
that the number of function evaluations is in general less than for the
(n-~1)-ray algorithms. The examples concern the computation of equilibria

in pure exchange economies.

Keywords: excess demand, equilíbria, triangulation, vector labelling

~` This research is part of the VF-program "Equilibrium and dis-
equtlíbrium in demand and supply"
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1. Introdtiction

To find a zero point of a continuous excess demand function

z: Sn i R~1 where Sn -{x E R~1 I Ejxj - 1} and z satisfies zi(x) ~ 0
when xi - 0 and Walras' law xT z(x) ~ 0 for all x, several simplicial

algorithms have been developed [Scarf (1967, 1973), Kuhn (1968, 1969),
Kuhn and MacKinnon (1975), and van der Laan and Talman (1979)]. In a

simplícial subdivision or triangulation of Sn such algorithms search
for a simplex which yields an approximate equilibrium by generating a
path of adjacent simplices. The simplex with which the algorithm termi-

nates is found within a finite number of steps. The so-called variable

dimension algorithm developed in van der Laan and Talman (1979) can be
started in an arbitrarily chosen grid point of the subdivision and
generates a path of adjacent simplices of varying dimension. When the

end simplex does not provide an approximate zero with sufficient accura-

cy, the subdivision is refined and the algorithm is restarted in or
close to the last found approximation. In general, the accuracy of an
approximate zero improves when the subdívision is refined.
By generating a sequence of simplices a piecewise linear path is traced

on whicli the piecewise linear approximation z to z with respect to the

underlying triangulation satisfies certain conditions. For any proper

subset T of Iml -{1,..., n-H1}, let the IT I-dimensional convex subset

A(T) with IT~ the cardinality of T be defined by

A(T) -{x E Sn I x- v f EjE,I, ajq(j), aj 3 0, j E T}, (1.1)

where v is the arbitrarily chosen starting grid point of the algorithm

and where q(j) - e(j) - e(j-1), j- 1,...,nfl (j-1 - n-F1 íf j~ 1), with

e(j) the j-th unit vector in R~1, j E Intl' Cleariy A(T) is a ITI-

dimensional cone in Sn with vertex v. In particular there are nfl one-

dimensional cones A({i}), i- 1,..., nfl, which are called the rays of

the algorithm. On each ITI-dimensional cone A(T), the so-called Q-trian-

gulatíon of Sn induces a triangulation in ITI-dimensional simplices of

A(T). A detailed description can be found in van der Laan and Talman

(1979). Now the path traced by the variable dimension algorithm is as

follows. At the starting point x~ v, let i be the (unique) index for
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which zi(v) - maxh zh(v). Then the algoríthm increases ai away from

zero, i.e. the starting point v is left along the ray A({i}). Doing so,

the i-th component of v is increased and the (i-1)-th component of v is
decreased with the same amount until a point x in A({i}) is reached for

which zj(x) - zi(x), j~ i. Then the algorithm traces a piecewise linear

path of points x in A({i,j}) by increasing a; away from zero and keeping

zj(x) ~ zi(x) ~ maxh zh(x). In general the algorithm follows for varying
T C In~l, a piecewise linear path in A(T) such that a point x on the

path satisfies

zi(x) - maxh zh(x) if i E T

and

zi(x) G maxh zh(x) if i~ T.

So, a point x on this path in A(T) satifies the complementarity property

ai(x) ~ 0, maxh zh(x) - zi(x) ~ 0

and ai(x) (maxh zh(x) - zi(x)) - 0 for i- 1,..., nfl with the nonnega-

tive ai(x)'s vniquely given by

x- v} EiE,f ~i(x) q(i) and ai(x) - 0, i~ T.

When for k~ T an inequality in (1.2) becomes an equality the index k

enters T and the algoríthm follows a path in A(T U{k}) by increasing
ak away from zero. On the other hand, when for some j E T, aj becomes
zero for a point x on the path in A(T), then the index j i s deleted from

T and the algorithm continues in A(T`{j}) by decreasing zj(x) away from

maxh zh(x). As soon as T becomes I~1 we have zi(x) - maxh zh(x) for all

i E I~1. Aecause xT z(x) - 0 it follows that an approximate zero of z

is found. The algorithm can be restarted in or close to this point with

a finer grid in order to improve the accuracy.

An increase of the i-th componen[ for w}iich zi(x) - maxh zh(x)

is ubvious, but the decrease of the (i-1)-th component in order to keep

the sum of the xi~s equal to one seems to be rather arbitrarily. A more

appropríate choice of the cones A(T) seems to be
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A'(T) s{x E Sn ~ x- v-~ EjETaj(e(J)-v). aj~U. j E T}. (1.3)

So, the region A'(T) is the convex hull of the starting poínt v and the

vertíces e(j), j E T, of Sn. Recently, Doup and Talman (1984) gave a

triangulation of Sn, the so-called V-triangulation, which inducea a

triangulation of each region A'(T) in IT~-dimensional simplices. Taking

this triangulation instead of the Q-triangulation, again a piecewise

linear path is traced such that for varying T a point on the path in

A'(T) satisfies the conditions (1.2). Also this path leads from the

starting point v to an approximate solution, but differs from the path

induced by the Q-triangulation because the cones differ. For a point x

in A'(T) we have

xj -(1-b) vj f aj , with a~ ~ 0 , if j E T
and (1.4)

xj 3(1-b) vj , if j~ T

where 0 c b- Ej~ aj c 1. So, when v is left along the ray A'({i}) for

which zi(v) - maxh zh(v), vi is increased with ~1(1-vi), and all other

components are decreased with ai vh, h t i, in order to keep the sum of

the components equal to one. So, whereas for the Q-triangulation only

vi-í is decreased, in case of the V-triangulation all components vh,

h~ i, are decreased proportionally. In particular when the algorithm is

applíed to find an equilibrium price vector in an economic model, this

seems to be much more attractive and appealing.

The variable dimension algorithms described above have the pro-

perty that the starting point v is left along one of ntl rays, depending

on wtiich component has the largest excess demand value. For the two

given alternatives only the underlying triangulations differ. A third

alternative is to utilíze the so-called U-triangulation [see van der

Laan and Talman (198U)]. In this case, the point v is left along a ray

on which agaín one component is increased, say with an amount a, and all

nther components are decreased with a~n [see also Zangwill and Garcia

(t98t)1.
For problems on Rn simplicial algorithms with more than nfl rays

have been shown to be more efficient in the sense that less function
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evaluations are needed to reach an approximate solution [see e.g. Kojima

and Yamamoto (1984) and van der Laan and Seelen (1983)). An algorithm on

Rn with 2n rays was developed in van der Laan and Talman (1981), with 2n

rays in Wright (1981), and with 3n - 1 rays in Kojima and Yamamoto

(1984).
In this paper a simplicial variable dimension algorithm on Sn is

presented with more than rrfl rays, namely one to each proper face of Sn.

Since a t-dímensional face of Sn is the convex hull of t f 1 vertices

e(1) of Sn, 0 c t c n- 1, the number of proper faces of Sn is equal to

2m1 - 2. The starting point v will be left along a ray on which the

componentsi of v, having zi(v) - zm(v) positive, where zm(x) -

E~i zi(x)~(n-E1), are increased and the components j of v, having zj(v)

- zm(v) negative, are decreased. This ray points to the face on which

the latter components are equal to zero. The algorithm moves along this

ray until a point x is reached for which one of the components of

z(x), say zh(x), is equal to zm(x). Then the algorithm traces a piece-

wise linear path in a two-dimensional subset of Sn keeping zh(x) equal

to zm(x). In general, for varying t, a piecewise linear path in a t-

dimensional subset of Sn is traced, on which t-1 components of z(x) are

equal to zm(x). More precisely, for any x on the path the following

holds

xj -(1-bfa)vj , with a~ b , if zj(x) ~ z(x)

and
xj -(1-bfuj)vj, with 0 c uj c a, i f zj(x) ~ zm(x)

xj - (1-b)vj , if zj(x) ~ z(x),

j- 1,..., n-1-1 and where 0 ~ b c 1. So, ~-hen comparing x with the star-
ting point v, all components j of x for which the relative excess demand
z,(x) - zm(x) is positive are a factor 1- b-I- a larger than vj, all
J

components j of x for which the relative excess demand zj(x) - zm(x)
is negative are a factor 1- b smaller than v;, whereas all other
components vary between ( 1-b)vj and ( 1-bfa)v,. Agaín we have a comple-

J
mentarity condition i n the sense that for each j either z.(x) - zm(x)

J
or u: is on one of its bounds. An approximation x is reached as

soon as all components z.(x~) are equal to zm(x~). When applied to com-
J



pute a Walrasian price equilibrlum in an economic model, at the starting
price vector the prices of the commodities with relative excess demand
are proportionally increased and the prices of the commodities with
relative excess supply are proportionally decreased. This is rather
similar to the classical Walras tatonnement process but then convergence
is assured only under strong conditions on z such as Gross-Substituta-

bility or Revealed Preferences. The process described above, however
always finds an approximate solution. By taking the grid of the under-
lying triangulation fine enough, the excess demands and supplies at the
approximate solution can be made as close to zero as wanted.

The paper i s organized as follows. In section 2 we introduce the
subdivision of Sn in cones of varying dimension which underlies the al-
gorithm and discuss how each cone is triangulated by the V-triangula-
tion. In section 3 we formulate the zero point problem and describe the
piecewise linear path followed by the algorithm in detail. We also show
how z(x~) differs from zero at an approximate solution point x~. Final-
ly, in section 4 we give some numerical results. These confirm the sup-
position that a variable dimension algorithm with more than n~l rays
might improve the efficiency of these algorithms.
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2. The subdivision of Sn

To describe the subsets of Sn in which the new simplícial vari-
able dimension algoríthm operates,let s be an arbitrary sign vector in
R~1 such that at least one component of s is equal to fl and at least
one component of s is equal to -1. Observe that there are 2~1-2 of such
sign vectors containing no zeroes at all. Furthermore letting

I-(s) ~{i E Iml I si --1}

I~(s) ~{i E I~1 I si - 0}

I}(s) -{i E I~1 I si - tl},

then both II}(s)I and lI-(s)I are at least equal to one. Each such sign
vector s will induce a t-dimensional subset A(s) of Sn with t- II~(s)I
-i 1. Observe that t lies between 1 and n. Finally, let v be the starting
point of the algorithm. We assume that v lies in the interior of Sn.

Definition 2.1. Let s be a sign vector with ~}(s)I and ~Z-(s)Ipositive.
The set A(s) is given by

A(s) -{x E Snlxi z(1-bta)vi, i E I}(s), xi 3(1-b-tui)vi

with 0 c Ui c a, i E I~(s), and xi -(1-b)vi, i E I-(s),

i- 1,...,nfl, where a~ b and 0 t b c 1}.

Further, let Y(s) be some permutation of the t-l elements of I~(s), say

Y(s) -(kl,~--, kt-1), and let p(K), K C I~1, K~ ~1, be the (n-~1)-vec-
tur given by

~i(EkEK~k)-1' i E K

pi(K) - ~ 0 r i~ K .
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Definition 2.2. Let s be a sign vector with II}(s)I and I I-(s)I posi-
tive. The set A(s,y(s)) is given by

A(s, y(s)) -{x E Sn I x- v f b q(0) t E 0 a(k)q(k),
kEI (s) (2.1)

with 0 c a(kt-1) c... c a(kl) c b c 1},

where the (ntl)-vector q(0) is given by

q(0) - P(I}(s)) - v,

and where for i- 1,..., t-1 the (ntl)-vector q(ki) is given by

9(ki) ~ p(I}(s) u{kl,...,ki}) - p(I}(s) U{kí,...~ki-1})'

Letting Q(s,y(s)) be the (nfl) x t matrix with first column q(0) and

(ifl)-th column q(ki), i- 1,..., t-1, it easily follows that the rank

of this matrix is equal to t so that the set A(s, y(s)) is a t-dimen-

sional convex subset of A(s). A(s) is the union of A(s, y(s)) over all

permutations y(s). Some sets are illustrated in figure 1 for n- 3.
The boundary of A(s), which plays an essential role in the algorithm,

consists of the (t-1)-dimensional subsets A(s), with si - t 1 for exact-
ly one i in IO(s) and sh - sh, h~ i, and of a subset of the boundary of

Sn, viz. the intersection of A(s) and n Sk, where Sk -
n kEI-(s)

{xES Ixk - 0}, k E Iml. The boundary of A(s, y(s)) which plays an

impurtant role in the triangulation, is a collection of (t-1)-dimen-

sional subsets of Sn, each of them obtained by setting exactly one

inequality in (2.1) to an equality. In the case b is set equal to one we

obtain a subset in the boundary of Sn, more precisely in n Sk. The
uther subsets in the boundary of A(s, y(s)) are obtained whén(á~kl) - b,
a(ki) - a(ki-1) for some i E{2,..., t- 1}, or a(kt-1) - 0. When the

sign vector s does not contain zeroes, then A(s) is a one-dimensional

líne segment having v and the point p(If(s)) in n Sk, as end-
kEI-(s)

points. Observe that there are 2~1 - 2 one-dímensíonal sets A(s), the



s

e(4)

P(i 1 }) - e(1) ~- - - - - ~- ~ - -` - - - - ~ e(3)-p({3})

A(2,(3~1))

e(2) - p({2})

Pigure l. Illustration of A(s), s-(0, tl, 0, -1)T,
which is subdivided into A(2, (1,3)) and
A(2, (3,1)); dim A(s) - II~(s)~ t 1- 3.
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so-called rays of the algorithm. Along one of these rays, leading from v
[o one of the 2m1-2 faces of Sn, the algorithm will leave the starting
poin[.

We are now ready to describe the collection of simplices in
which the region A(s) is triangulated by the V-triangulation [see Doup
and Talman (1984)]. In fact, each subset A(s, y(s)) of A(s) is triangu-
lated in t-simplices and the union of these simplices over all permuta-
tions y(s) yields a triangulation of A(s). So let Sn be triangulated
according to the V-triangulation with gridsize m1, where m is some
positive integer. More specific, we take the V-triangulation with rela-
tive projection [see Doup and Talman (1984, section 4)J.

Definition 2.3. Let s be a sign vector with lI}(s)I and II-(s)Ipositive.
The set G(s, y(s)) is the collection of t-simplices Q(yl, n(s)) with
vertices yl~~.~~ ytfl such that

(i) yl - v f bm lq(0) f E ~ a(k)m lq(k) for nonnegative
kEI (s)

integers b and a(k), k E I~(s) such that
0 G a(kt-1) G...t a(kl) G b t m-1

(ii) a(s) -(nl,..., nt) is a permutation of t elements consisting of
0 and the t-1 elements of I~(s) such that the following holds:
if a(kl) - b this implies p~ p' wíth p and p' such that ~rp - kl
and np,- 0; if a(ki) - a(ki-1) for some index i in
{2,..., t-1} this implies p~ p' with a- k and n,- k,

p 1 p i-1

(iii) yi~-1 ~ yi f m 14(ni). i- 1,...,t,

where q(0) and q(ki), 1- 1,..., t-1, are defined as before.

It is easy to verify that G(s, y(s)) is a triangulation of A(s, Y(s)),
that the union G(s) of G(s, y(s)) over all y(s) triangulates A(s), and

that the union G of G(s) over all s, with II}(s)I and II-(s)I posi[ive,

induces the V-triangulation of Sn with relative projection and gridsize

m-1.
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Since forvar-ying sign vectors s the 1lgorithm will generate a
path of adjacent t-simplices in A(s), we have to know how the parameters
yl and n(s) of a t-simplex a(yl, n(s)) can be obtained from the parame-
ters yl and n(s) of an adjacent simplex a(yl, n(s)). If a facet r of a
simplex o(yl, n(s)) in G(s) lies not in bd A(s), then t is a facet of
just one other t-simplex Q(yl, n(s)) of G(s). However, this simplex
could lie in another subset A(s, y(s)) than o(yl, n(s)) does, in which
case we also have to describe how Y(s) changes to get a(yl, n(s)). If a
facet T of a t-simplex a(yl, n(s)) lies in bd A(s) it is not a facet of
another t-simplex in G(s). In this case we will show that T either lies
in A(s) n( n Sk) or that T~ a(yl, n(s)) is a(t-1)-simplex in

kEI-(s)
G(s) wiih si - t 1 for exactly one i in IG(s) andlsh ~ sh, h t i. So,
let a(y , n(s)) be a t-simplex in G(s) and let o(y , n(s)) be a t-sim-
plex sharing with o(yl, n(s)) the facet t opposite the vertex yp of
a(yl, a(s)). Further,suppose that both a(yl, n(s)) and a(yl, n(s))
lie in the same subset A(s, y(s)) of A(s). Then yl, n(s) and a are
obtained from yl, n(s) and a as shown in table 1, where the (nfl)-vector
a is given by ah - b, h E I}(s), ak - a(ki), i- 1, ..., t-1, and ah -
0, h E I-(s), and where e(0) is thel(nfl)-vector given by ei(0) - 1, if
í E I}(s) and zero elsewhere.

-1
Y

p - 1 y1~-19(nl)

p - tt 1

yl

yl-m 19(nt)

(n2,...,nt,n1)

(n ,...,n ,a ,..., n )1 p p-1 t

(at,nl,...,nt-1)

Table 1. p is the index of the vertex to be replaced

a

a f e(nl)

a

a - e(nt)

We will now consider the case that the face[ T opposite a vertex yp~

1 c p c tfl, of o(yl, n(s)) in G(s, y(s)) is not a facet of another sim-
plex in G(s, Y(s)) but lies in bd A(s, Y(s)).
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Lemma 2.4. Let a(yl, n(s)) be a t-simplex in G(s, y(s)) and let r be the

facet opposíte vertex yp, 1 ~ p ~ ttl. Then T lies in bd A(s, y(s))

iff either one of the following casea occur

(a) p- 1 . nl - 0 and b~ m- 1

(b) 1 ~ p ~ t f 1: n a k , n - 0 and a(n ) z b
p 1 p-1 p
or

np a ki for some 1 E{2,...,t-1}, np-1 L ki-1
and a(n ) ~ a(n )

p p-1

(c) p~ t f 1 . nt ~ kt-1 and a(nt) a 0.

The Lemma follows immediately from the definitions 2.2 and 2.3. Suppose

that the facet i opposite vertex yl lies on the boundary of A(s, y(s))

so that n 1 ~ 0 and b- m- 1.

Lemma 2.5. r is a ( t-1)-simplex in bd Sn. More precisely T lies in

n Sk.
kEI-(s)

Proof. Since yl - v t b m lq(0) f E a(k)m 1 q(k), b- m- 1 and
qk(kí) - 0 for all k E I- ~I~rs)(s), i- 1,...,`[ 1, we have

yk - m 1 vk , k E I-(s).

Since nl - 0 and yifl - yi t m lq(ni), i~ 1,..., t, and again since

qk(ni) - 0, i- 2,..., t, for all k E I-(s), we have

yk - 0, k E I-(s)

for all 1-2 tfl. Therefore r(y2,.,,~ tfl n,..., y ) líes in n Sk.
kEI-(s)

O

Suppose now that the facet T opposite vertex yp, for some 1 ( p~ ttl,

lies on the boundary of A(s, Y( s)) so that either
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or
n ~ k , n - 0 and a(n )- b
p 1 p-1 p

n- ki for some i in {2,..., t-1}, np-1 ~ ki-1 and
P

a(a ) - a(n ).p p-1

Lemma 2.6. In the case np - kl, np-1 - 0 and a(np) ~ b, the facet i
opposite vertex yp lies in bd A(s). Then z is a(t-1)-simplex
á(yl, n(s)) in G(s) with IIG(s)I z IIG(s)I-i. More precisely,
a(yl, n(s)) is an element of G(s, y(s)) where

sh - sh , h~ kl, and sk s 1,
1

Y(s) 3 (k2,.... kt-1)

and where

-1 1 -Y- Y. n(s) -(nl,.... np-2' np-1' n~l,..., nt).
and a - a.

As the following lemma's, the proof of this lemma follows immediately

from the definition of G(s, y(s)).

Lemma 2.7. In the case ap - ki for some i in {2,..., t-1}, np-1 - ki-1
and a(n )- a(a ), the facet r is a facet of exactly one other t-sim-

- P1 - P-1 - -1
plex a(y , n(s)) in G(s). More precisely a(y , n(s)) lies in G(s, y(s))

where

Y(s) -(kl,...' ki-2' ki' ki-1' kitl'...' kt-1)
and

-1 1 -Y- Y. n(s) -( nl,.... np-2' ap, np-1, n~l,..., nt) and

a.

Suppose now that for t~ 1 the facet T opposi[e vertex yt}1 lies on the
boundary of A(s, y(s)) so that nt - kt-1 and a(nt) - p.
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Lemma 2.8. t is a(t-1) simplex o(yI, n(s)) in G(s), with ~IG(s)I ~

IIG(s)I - 1. More precisely, a(yl, n(s)) lies in G(s, Y(s)) where

sh ~ sh, h~ kt-I and sk ~-1,
t-1

Y(s) ~ (kl,..., kt-2)

and where

-1 1 n(s) ~(nl,.... nt-1) and a a a.y ~ y ,

The lemma's above give a complete description of how the parameters of
I n(s)) in G(s)a facet r or an adjacent simplex a of a t-simplex a(y ,

can be obtained from yl, n(s) and a.
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3. The descrip[ion of the algorithm

Let z be an excess demand function, i.e. z is a continuous func-
tion from Sn into R~1 such that

Eki xk zk(x) ~ 0 for all x in Sn

zi(x) ~ 0 if xi ~ 0, 1- 1,...,nfl

holds. The problem is to find an x~` in Sn such that z(x~) 3 0. In a

model for an exchan e econom such a ~g y point x yields a vector of prices
for which demands equal supplies.

To solve the problem, we could transform z into a contínuous
function g from Sn into Pn, where Pn ~{x E R~1 I E~i xi - 0}, such
that z(x~) - 0 if and only if g(x~) - 0. A well-known transformation ís
the function g defined by

xi f max(O,zi(x))
gi(x) - ~1 - xi i- 1,..., ntl.

1 t Ej-1 max(O,zj(x))

In many text books the existence of equílibrium prices is proved by
using the Brouwer fixed point theorem, which garantees that the function
h: Sn ~ Sn with hi(x) - gi(x) t xi, i- 1,..., n f 1, has a fixed point.
Another function, proposed by Todd to be used in simplicíal algorithms,
is

xi f a zi(x)
gi(x) - ~1 - xi i ~ 1,..., cttl,

1 ~- a
Ej-1 zj(x)

with .1 some positive scalar, small enough to guarantee that gi(x) ~ 0 if
xi - 0. Deleting the denominator we may take a s 1 and

tion becomes

gi(x) - zi(x) - xi E~ i zj(x)

the transforma-

i - 1, . . . , n-F 1

which is just zi(x) itself minus the sum over all components z with
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weight xi. Clearly, since E~i xi 3 1, we have that E~i gi(x) 3 0.
In the following we use a slightly different transformation, which will
be motívated later on. In our transformation we replace xi by (nfl)-1
for all i. So, the sum of the components z is equally weighted and we
obtain

gi(x) - zi(x) - zm(x) i ~ 1,..., rrtl

with zm(x) z Ej i z~(x)~(nfl). Observe that for this transformation it
is not guaranteed that gi(x) ~ 0 if xi ~ 0. Clearly g(x) a 0 iff

m - -T izi(x) ~ z(x) for all i. Since x z(x) 3 0 this implies z(x) s 0.
To find an approximate zero of g, we wíll propose an algorithm

which utilizes the sets A(s) of Sn described in the previous section.
Unlike other variable dimension algorithms on Sn [see e.g. van der Laan
and Talman (1979) and Doup and Talman (1984)J, there are 2~1-2 rays
leaving the starting point. To give the algorithm, we first introduce
the concept of an s-complete simplex, where s is a sign vector in R~1,
with si ~ 0 for at least one index i. The vector 0 denotes the (ntl)-
vector with all components equal to zero.

Definition 3.1. For s a sign vector, with I I}(s)I and I I-(s)I positive,
1 ttla t-simplex a(y ,..., y ) with t- 1 t IIU(s)I is s-complete íf the

system of linear equations

iEtfl ~ (g(Y )) f E V (-she(h)) ~ (u)1-1 1 1 h~IU(s) h 0 1
~ ~has a nonnegative solution ai, i- 1,..., tfl, and uh, h~ IU(s).

A solution ai, i- 1,..., tfl, and uh, h~ IC(s) will be denoted by~

(3.1)

~
(a , u). Observe that the system (3.1) has IID(s)I -F2t(nfl-~ID(s)I) -
nf3 columns, so that in general the solution is not unique, if a solu-~ ~tion exists. In the following we call a solution (a , u) a basic solu-~tion if at least one of [he variables ai, i- 1,..., t-E1
p~, h~ ID(s), is equal to zero. We now make the following assumption.
h

Nondegeneracy assumption. For each basic solution [o the system (3.1) we
have that either at most one of the variables 7i~ i 3 1i, ,..., tfl,
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yh, h~ I~(s),is equal to zero or that all variables uh, h~ I~(s), are
equal to zero.

~
In the case that uh ~ 0 for all h~ I~(s) we say that the basic

~ ~
solution (a , u) is complete and that the simplex a is a complete
simplex. We will show that a complete simplex induces an approximate
zero of z. For s with II}(s)I and II-(s)I positive, by the nondegeneracy
assumption, an s-complete simplex a yields a linesegment of solutions.
Each of the two endpoints of such a linesegment is a basic solution

~ ~of o. To each solution (a , u) of an s-complete simplex
~

o(y ,..., yt} ), there correaponds a point x~ Ei}1 ~1 yi~
~Since, according to the last equation of system (3.1) Ei}i ~i - 1,

we have that x lies in o. In particular, if at a basic solution of a t-
~ -

simplex ai ~ 0, for some 1, then the point x lies in the facet of a
opposite the vertex yi. Such a facet corresponding to a basic solution~
is called a basic facet of a. If at a basic solution uh ~ 0, for some
h~ I~(s), we show that if v is not complete it is a facet of an
s- complete simplex a with sk - sk, k~ h, and sh 3 0. Since h~ I~(s),
we have that II~(s)I~ II~(s)Itl.

So, each linesegment of solutions to (3.1) induces a linesegment
of points x in a with two corresponding endpoints, say xl and x2. The
three possible cases which can occur are

a) the two endpoints xl and x2 lie in two different basic facets of a
b) one endpoint, say xl, lies in a basíc facet of a and the other end-

point, x2, in the interíor of a
c) both endpoints xl and x2 lie in the interior of a.

The algorithm will follow linesegments of points in a sequence of adja-
cent s-complete simplices for varying s by going from basic solution to
basic solution. Therefore we will show that a basic solution which is
not complete, is a basic solution of exactly one other simplex. Each
linesegmerit of points in an s-complete simplex a can be followed by
making a linear programming pivot step in the system (3.1). The algo-
rithm starts in the point v and terminates as soon as a basic solution
is complete. The next lemma describes us when a basic solution ís com-
plete.
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Lemma 3.2. Let s be a sign vector with I It(s)I and I I-(s)Ipositive. If
~ ~o(yl~...~ ytfl) i s an s-complete simplex with a basic solution (a , u)

~ f ,~ ~such that uh - 0 for all h E I(s), then ( a , u) is a complete solu-
~ ~ ~

tion. Símilarly, a basic solution ( a , u) of a is complete if ~h - 0
for all h E- I-(s).

~
Proof. First we consider the case yh ~ 0 for h E I}(s). So, ( 3.1) has a

~ ~solution (a , u ) such that

i 0
Ei}i ai (g(i )) f E - uh (e~h)) -(1)

hEI (s)
because sh -- 1 for all h E Í(s). Since E~i g~(x) - 0 for all x E Sn,
we obtain, by summing up the first nfl equations, that

~
E uh s 0.
hEI-( s)

~
This implies that uh - 0 for all h E I(s) and hence for all h~ I~(s).

~ ~ ~
So, (a , u) is complete. In the same way, if uh - 0 for h E Í(s), we

obtain

E
~

-~ uh - ~'
hEi (s)

~
and again uh - 0 for all h~ I~(s).

O

We will show that under the nondegeneracy assumption a complete simplex
1 tf 1is found in a finite number of steps. If a(y ,..., y ) is complete,

~
then there is a solution ai, i- 1,...,tfl, such that

1 0
Ei}i ai (g(1 )) - (1) .

~witti Eí}1 ~i - 1. tíence g(x) - 0, with g(x) the piecewise linear appro-
ximation to g with respect to the underlying triangulation, and with

~
x-~i}1 ~i y - So, X is a zero of g and hence an approximate zero of g.

However, since we are interested in a zero of z we will give bounds for
the accuracy of X as an approxímate zero of z.
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Theorem 3.3. Let e~ 0 and let Sn be triangulated (e.g. by the V-trian-
gulation) with grid size such that for all x and y

max Izk(x) - zk(Y)I ~ e
kEinf 1

if x and y lie in the same simplex. Let o(yl
~.~.~ yt-1.1)

be a complete
~

simplex with solution ai, i~ 1,...,t-F1. Then

zm(x) - e~ zk(x) ~ i(x) f e k~ 1,...,n~-1
with

- E C ~(X) ~ E,

~
where x - Ei}1 ~iy '

Proof. Since a is complete we have that g(x) - z(x) - z(x)e ~ 0, with
z the piecewise linear approximation to z and e-(1,..., 1)T. Hence

zk(x) - z"~(x) k 3 1,...,ntl. (3.2)

Sínce xTe - 1 and xTz(x) - 0, we get

Iz (x)I - IxTe i(x)~ - ~xTz(x)~ - ~xT(z(x) - z(x))~

~
' IxT Ei}1 ai(z(Yi) - z(x))I ~(xTe)e ~ e.

~
Furthermore Izk(x) - z(x)I - Izk(x) - zk(x)I - ~Ei}1 ~i(zk(x)-zk(yi))I
C e. This proves the theorem.

O

Observe that (3.2) states tha[ all components of z(x) are equal to
zm(x) - E~1 z(x)~(nfl). Therefore, the accuracy of an approximate zero~-1 j
agrees with the accuracy of an approximate zero of the (nfl)-ray algo-

rithm of Doup and Talman (1984). Notice that a complete simplex as

defined above coincides with a complete simplex of this (nfl)-ray algo-

rithm.
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It will be shown that for varying s the s-complete simplices in
A(s) determine paths of adjacent simplices. One of these paths has the
zero-dimensional simplex a(v) as an endpoint and a complete simplex as
its other endpoint. For fixed sign vectors s, the s-complete simplices
in A(s) determine paths of adjacent simplices, since a basic facet is
facet of at most two adjacent simplices. Such a path of adjacent simpli-
ces either is a loop in A(s) or has two endpoints. An endpoint either ís
an s-complete simplex a having a basic facet in the boundary of A(s), or
is complete, or is an s-complete simplex o having a basic solution with
~

uk- 0 for exactly one k~ IC(s). We will show that when o has a basic
facet in the boundary of A(s), under some boundary-condition on z, this
facet is an endpoint of a path of s-complete simplices in A(s), with

~
sk ~ 0 for some k E IC(s), and sh - sh, h~ k. If yk - 0 for exactly one

k~ IC(s), the simplex a is a basic facet of an endpoint of a path of

s-complete simplices in A(s), with sk - 0, and sh - sh, h~ k. Therefore

the paths of s-complete simplices in A(s) for varyíng s can be linked

together to paths of adjacent simplices of varying dimension, each of

them being either a loop or a path with two endpoints. Exactly one end-

point is the starting point v whereas all other endpoints are complete

simplíces. We will show that v is the endpoint of exactly one path. This

path will be followed by the algorithm leading from v to its other end-

point which then must be a complete simplex.

We will now state the boundary-condition mentioned above.

Condition 3.4. The piecewise linear approximation z satisfies that for
any x E bd Sn, there is an index h with xh ~ 0 such that

zh(x) ~ max {zi(x) ~ xi - 0}.

Since zi(x) ~ 0 if xi - 0 and xTz(x) - 0 there is an index h with
xh ~ 0 and zh(x) ~ 0. Therefore the condition will be satisfied if the
grid size is taken small enough. In general, the condition will hold for
any grid size if z ís derived from a pure exchange economy.

Now, suppose that zh(v) ~ 0, h- 1,...,ntl, which is in line
with the nondegeneracy assumption, and let s~ be defined by sh - sign
zh(v), h- 1,...,cr~l. Furthermore, let a~ be the one-dimensional simplex
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in A(s0) having v as one of its vertices, i.e. 00 3 o(yl, a(s0)) with yl
- v and n(s0) -(0). Clearly, a0 is s0-complete and a(v) is a basic

facet of o~~. Since {v} lies in bd A(s0), we have that a0 is an endpoint
of a pa[h of adjacent s0-complete simplices in A(s~). Now, let us consi-
der an endpoint o(yl~~~~~ ytf-1) of a path of s-complete t-simplices in
A(s) with common basic facets, such that a has a basic facet r in bd
A(s) (unequal to {v}). Observe that for some y(s), a lies in A(s,y(s))
and is represented by a leading vertex yl and a permutation n(s) . We
fírst prove that t does not lie in bd Sn.

Lemma 3.5. Let r be a basic facet of an s-comple[e simplex a in A(s)
~ ~

with a solution (a ,u ). Then i does not lie in bd Sn if condition 3.4
is satisfied.

Proof. Suppose t lies in bd Sn and condition 3.4 is satisfied. Then, by
definition of A(s) we have that T C Sk iff k E I-(s). So, if for some
x E T, xh ~ 0, then h E IO(s) V I}(s). Now let xl,..., xt be the verti-

ces of T. Then we have

~t ~~(g(xi)) } ~ u~(-e(h)) } ~ u~(e(h)) ~ (~).
i-1 i 1 hEI}(s) h 0 hEI-(s) h 0 1

~
So, with x- E1-1~`ix we get

gh(x) - zh(x) - z(x) - uh - 0

Kh(x) - zh(x) - z...(x) - 0

Rh(x) - zh(x) - ~(x) f uh z 0

if h E I}(s)

if h E IO(s)

if h E I-(s).

Hence zh(x) ~ zm(x) for h E I}(s) U IO(s), and zh(x) t z(x) for
h E I-(s). Since h E I}(s) U IO(s) for all h with xh ~ 0 and h E I-(s)
if xh - 0 this contradicts condition 3.4.

O

The lemma proves that a basic facet T of an s-complete simplex
a does not lie in bd Sn. Hence either there is an other s-complete sim-
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plex a in A(s) having the facet T as a basic facet, or r is a simplex in
bd A(s), not ín bd Sn. From the lemma's 2.4, 2.6 and 2.8 we immediately
obtain the next corollary, where (kl,..., kt-1) is [he permutation
y(s) of the elements of I~(s).

1 p-1 pfl tflCorollary 3.6. Let T be a basic facet r(y ,..., y , y ,..., y )
of an s-complete simplex a(yl,..., ytfl) in A(s, y(s)) which lies in bd
A(s). Then we have

or

2 t p~ tfl, and r i s an s-complete ( t-1)-simplex in A(s)
with sh - sh, h ~ kl, and sk - 1

1
p- tfl, and T is an s-complete (t-1)-simplex in A(s) with
sh - sh, h~ kt-1, and sk --1.

t-1

The corollary implies that T is an endpoint of a path of adja-
cent s-complete simplices in A(s) with sh - sh, h~ k and sk ~ 0
for some k in I~(s).

Finally we consider the case that a(yl, a(s)) is an s-complete
símplex in A(s) having a basic solution (a~, u~) with uk - 0 for some

~
k~ IC(s). If uh - 0 for all h~ ID(s) then by definítion a is complete.
IE a is not comple[e either k E I}(s) and II.}(s)I ~ 2 or k E I-(s) and
~I-(s)I ~ 2. In both cases a lies in the boundary of A(s) with sh - sh,
h~ k, and sk - 0, and is a facet of a unique simplex a in A(s). This
simplex a is s-complete and has a as a basic facet in the boundary of
A(s). So a is an endpoint of a path of s-complete simplices in A(s). It
remains to characterize a. Suppose tha[ a~ a(yl, a(s)) and lies in
A(s, Y(s)) with y(s) -(kl,..., kt-1) a permutation of the elements of
I~(s). Then, from definition 2.3 we obtaín the following corollary.

Corollary 3.7. If the basic solution ( a~, u~) with uk ~ 0 for some
k~ IC(s) corresponding to the s-complete simplex a is not complete,
then a is a basic facet of the s-complete simplex a(yl, n(s)) in
A(s, Y(s)) wíth

sh - sh for h~ k and sk - 0,
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and

f (k, kl,..., kt-1) if k E I}(s)
Y(s) - 1(kl,...~ kt-1' k) if k E I-(s).

-1 1 - 1,~~~,np'k,nptl,...,nt) with np~0 if kEI (s)~ }
Y- Y. n(s) -(nl,..., nt, k) if kEI-(s),

anda-a.

All of this together implies that each s-complete t-simplex ín A(s) lies
on exactly one path. Since the total number of simplices o(yl, n(s)) in
G(s) is f.inite for each s, all paths are finite and there is exactly one

~
path from a(v) to a complete simplex a which can be followed within a

finite number of steps. Moreover, the solutions to (3.1) on this path
~

determine a piecewise linear path from v to x~, with x~ in a. This path

can be followed by performing alternating linear programming pivot steps

1n system (3.1) and replacement steps according to table 1. If for some

s, an s-complete facet i in A(s), sh - sh, hT~ k, and sk - t 1 for some

k in ID(s) ís generated, then (-sk ~eT(k), 0) is reintroduced in system

(3.1) with respect to T. On the other hand, when an s-complete t-simplex

o in A(s), sh - sh, h~ k and sk - 0, for some k~ IC(s) is generated

and o is not complete, a linear programming pivot step in the system

(3.1) with respect to a is made with (gT(yp),1)T with yp the unique ver-

tex of the (tfl)-simplex in A(s) having a as facet opposite this vertex.

The Steps of the algorithm which generates the path from v to an appro-

ximate solution x~ are described as follows where p is the index of the

vertex of a whose label is to be calculated.

Step 0. [Initialization]. Let s be given by si ~ 1 if gi(v) ~ 0 and

si --1 if gi(v) ~ 0, i E I~1. Set t- 1, yl - v, n(s) -(0),

a- a(Yl.n(s)). P- Z. a- ~~ al - 1~ vh - gh(v)~ h E I{(s) and yh -

-gh(~). h E I-(s)-

Step 1. Calculate g(yp), Perform a linear programming step by bringing

(gT(yp)~1)T in the linear system
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tfl g(yi)
-sh e(h) 0

Ei-1 ~i( 1 ) } ~ o vh( o ) - (1) .hfEi ( s )
i~p

If for some h~ ID(s), u becomes equal to zero, then go to step 3.
Otherwise the facet r lh p-1 ptl tfl(y ,..., y , y ,..., y ) is s-complete for
some p~ p, i.e. ap becomes equal to zero.

SteP 2. If 1 ~ p ~ tfl, and if n ~ k , n - 0, and a(n )- b, thenp 1 p-1 p
the dimension is decreased. Set t- t-1, and adapt s, Y(s), o and a ac-
cording to lemma 2.6. Go to step 4 with r- kl.
If 1~ p ~ ttl, and if for some i~ 2, np - ki' np-1 - ki-1' and
a(n )~ a(n ) , then y(s) and o are adapted according to lemma 2.7.

P P-1 -Return to step 1 with p the index of the new vertex of a.
If p- ttl, nt - kt-1, and a(nt) - 0, then the dimension is decreased.
Set t- t-1, and adapt s, y(s), o and a according to lemma 2.8.
Go to step 4 with r- kt-1'
In all other cases a and a are adapted according to table 1. Return to
step 1 wíth p the index of the new vertex of a.

Step 3. [Increase dimension]. If uh - 0 for all h~ ID(s), then a is
complete and the algorithm terminates. Otherwise s, Y(s), o and a are
adapted according to corollary 3.7. Set t- tfl, and return to step 1
with p the index of the new vertex of a.

Step 4. (Decrease dimension]. Perform a linear programming step by brin-

ging (-sr eT(r), 0)T in the linear system

i -s e(h) 0
Ei}1 ai(g(i )) f E o uhí h G )-(1) .

h~I (s)
h~r

If for some h~ ID(s), uh becomes equal to zero, go to step 3. Otherwise
return to step 2 with p the index of the vertex for which a becomes

P
zero.

The algorithm starts in v by increasíng proportional.ly the com-
ponents of v with positive g-value and decreasing proportionaily the
components of v with negative g-value, until for some h, gh(x) becomes
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equal tu zero. Then xh is not further increased proportionally if gh was
positive and xh is not further decreased proportionally if gh was nega-
tive. In general the algorithm generates points in t-dimensional regions
of Sn such that for some ~~ b~ 0 and for j s 1,...,ntl

xj -(1-bfa) v~ if gj(x) ~ 0

xj ~(1-bfyj) vj with 0 c uj c a if gj(x) ~ 0

xj - (1-b)vj if gj(x) ~ 0,

where t-1- is the number of indices j with gj(x) - 0. So, the xj's with
positive gj(x) are a factor 1-b-a larger than vj, and the xj's with
negative gj(x) are a factor 1-b smaller than vj, whereas the xj's with
gj(x) equal to zero, vary between (l-b)vj and (1-bfa)v,.

J
When applied to a pure exchange model the path of points genera-

ted by the algorithm yields a price adjustment process similar to Wal-
ras' tatonnement process in the sense that prices of goods with positive
excess demand are increased and those of goods with negative excess
demand are decreased. The increase and decrease, however is not propor-
tional to the excess demand as in the tatonnement process but proportio-
nal to the starting prices.

We remark that it is also possible [o take z(x) instead of g(x)
- z(x)-zm(x). However, there is a reason why we liave chosen g(x) instead
of z(x). Taking z, the system of linear equations becomes

i -s e(h) 0
Ei}i ai(Z(i )) -F E ~ uh ( h 0 )~(1) .

h~I (s)

Now, since Ejxjzj(x) - 0 and not Ej zj(x) - 0, we do not have that
~ ~

ph - 0 for all h~ I~(s) as soon as uh - 0 for all h E I}(s) or for all
~

h E I-(s). So, in general a complete simplex, in the sense that uh - 0
for all h~ I~(s), does no[ exist. Therefore taking z instead of g we

~
have to stop the algorithm as soon as ph - 0 for either all h E I}(s)
or for all h E I-(s). Su ose that ~pp uh ~ 0 for all h E I-(s). Then the

system becomes
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and
zh(x) - 0

~
zh(x) - ~h ~ 0 for all h E It(s).

for all h ~ I}(s)

This does not guarantee that x ís a good approximate zero of z. As a

matter of fact, examples can be constructed that x approximates a point

x such that zh(x) ~ 0 for all h~ I}(s) and xh - 0 for all h E I}(s).
Although it can be proved that the sequence of approximate zeroes xl,

x2,..., with xk the approximate zero after the k-th cycle of the algo-
rithm, has a subsequence converging to a zero of z, this difficulty
motivates the choice of g instead of z. In case of the computation of
economic equilibria the just mentioned problem will not arise if mono-
tonicity of the preferences is assumed.
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4. Computational results.

The algorithm presented in section 3 has been applied to the
three pure exchange economies given in Scarf (1967), and a pure exchange
economy with fifteen commodities and five consumers presented in the
appendix. The algorithm is compared with the algorithm described in Doup
and Talman (1984). Note that in both algorithms Sn is triangulated by
the V-triangulation and that the latter algorithm only has n-F1 rays,
whereas the new algorithm has 2m1-2 rays. Both algorithms are started
in the barycenter of Sn with an initial gríd size of m 1- 1. When a
complete simplex is found the grid is refined and the algorithm is re-
started in the approximate solution. The grid is refined with different
factors of incrementation. The grid refinement is stopped when the
excess demands at the approximate solution are less than lÓ9 in case of
the three Scarf economies, and lÓ8 in case of the economy presented in
this section. Both algorithms are run with the labelling on z and the
new algorithm is also run with the labelling on g.

Throughout this section we will use the following notatíons.

FE1: the number of function evaluations in the (n~-1)-ray algorithm

FF,2: the number of function evaluations in the (2~1-2)-ray algorithm
with the labelling on z

FE3: the number of function evaluations in the (2~1-2)-ray algorithm
with the labelling on g.

The data of the three Scarf economies is given in Scarf (1967) and the
data of the fourth economy i s given in the appendix.
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Economy 1: 5 commodities and 3 consumers, i.e. n~ 4.

factor FE1 FE2 FE3

2 50 49 50
3 52 49 7~í

4 50 47 ~~ s.

5 45 51 5~~

6 41 50 h4
7 56 61 55
8 67 73 7n
9 66 74 78
10 64 70 75

Table 2. The number of function evaluations for the two algorithms with
different grid refinement factors.

Economy 2: 8 commodities and 5 consumers, i.e. n- 7.

factor FE1 FE2 FE3

2 96 80 94
3 81 64 80
4 71 72 69
5 79 74 82
6 101 96 86
7 91 86 78
8 79 79 81
9 95 82 84
10 107 103 98

Table 3. The number of function evaluations for the two algorithms with
different grid refínement factors.



2a

Economy 3: 10 commodities and 5 consumers, i .e. n- 9.

factor FE1 FE2 FE3

2 135 103 102
3 133 90 105
4 126 80 95
5 133 72 92
6 137 71 88
7 149 73 100
8 152 78 115
9 154 82 91
10 143 71 98

Table 4. The number of function evaluations for the two algorithms with
different grid refinement factors.

Economy 4: 15 commodities and 5 consumers, i.e. n- 14.

factor FEl FE2 FE3

2 238 189 169
3 209 148 163
4 198 187 155
5 217 190 1R4
6 217 212 184
7 178 242 181

Table 5. The number oE fnnction evalutions for the two algorithms with

dtfferent grld refinement factors.
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Concluding the computational results suggest that the number of function
evaluations for the new algorithm is lower than for the algorithm des-
cribed in Doup and Talman (1984), especially when n becomes larger.
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Appendix

The excess demand function z: Sn -~ R`~1 is given by

ntl

zj~P) ~ Ehal {ahbi ~k:l wh~k P1-b - wh,jJ , j s 1,..., ni.l,
h n-F 1 h

Pj Ek31 ah,k Pk

where H is the number of consumers. The elements ah~j, wh~j, h~ 1,...,
5, j 3 1,..., 10, and bh, h- 1,..., 5 for economy 4 are the same as for
economy 3, and the remainíng elements ah~j and wh~j, h a 1,..., 5, j~
11,..., 15 are given in table 6 and table 7.

11 12 13 14 15

2.5 0.8 1.4 4.0 3.6
1.0 1.0 1.0 1.0 1.0
2.3 4.5 3.0 0.9 7.9

11.0 12.0 13.0 14.0 15.0
3.0 6.0 0.8 7.0 12.0

Table 6. The elements ah j, h~ 1,..., 5, j- 11,..., 15, for economy 4.,

11 12 13 14 15

7.9 3.1 5.3 4.0 2.0
8.0 7.0 6.0 5.0 4.0

10.0 3.0 7.0 5.0 1.5
6.0 4.6 2.0 11.0 0.4
4.8 6.1 3.2 9.4 0.9

Table 7. The elements wh~j, h s 1,..., 5, j z 11,..., 15, for economy 4.
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