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Abstract Around 1958, Hill described how to draw the complete graph Kn with

Z(n) := 1
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crossings, and conjectured that the crossing number cr(Kn) of Kn is exactly Z(n).
This is also known as Guy’s conjecture as he later popularized it. Towards the end of
the century, substantially different drawings of Kn with Z(n) crossings were found.
These drawings are 2-page book drawings, that is, drawings where all the vertices are
on a line � (the spine) and each edge is fully contained in one of the two half-planes
(pages) defined by �. The 2-page crossing number of Kn , denoted by ν2(Kn), is the
minimum number of crossings determined by a 2-page book drawing of Kn . Since
cr(Kn) ≤ ν2(Kn) and ν2(Kn) ≤ Z(n), a natural step towards Hill’s Conjecture is the

B. M. Ábrego · S. Fernández-Merchant (B)
Department of Mathematics, California State University, Northridge, CA, USA
e-mail: silvia.fernandez@csun.edu

B. M. Ábrego
e-mail: bernardo.abrego@csun.edu

O. Aichholzer
Institute for Software Technology, Graz University of Technology, Graz, Austria
e-mail: oaich@ist.tugraz.at

P. Ramos
Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Spain
e-mail: pedro.ramos@uah.es

G. Salazar
Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
e-mail: gsalazar@ifisica.uaslp.mx

123



748 Discrete Comput Geom (2013) 49:747–777

weaker conjecture ν2(Kn) = Z(n), popularized by Vrt’o. In this paper we develop
a new technique to investigate crossings in drawings of Kn , and use it to prove that
ν2(Kn) = Z(n). To this end, we extend the inherent geometric definition of k-edges for
finite sets of points in the plane to topological drawings of Kn . We also introduce the
concept of ≤≤k-edges as a useful generalization of ≤k-edges and extend a powerful
theorem that expresses the number of crossings in a rectilinear drawing of Kn in terms
of its number of ≤k-edges to the topological setting. Finally, we give a complete
characterization of crossing minimal 2-page book drawings of Kn and show that, up
to equivalence, they are unique for n even, but that there exist an exponential number
of non homeomorphic such drawings for n odd.

Keywords Crossing number · Topological drawing · Complete graph · Book
drawing · 2-Page drawing

Mathematics Subject Classification (2000) 05C10 · 68R10 · 52C10 · 57R15

1 Introduction

In a drawing of a graph in the plane, each vertex is represented by a point and each
edge is represented by a simple open arc (i.e., the image of an open interval in the
plane, say {(x, 0) : 0 < x < 1}, under a homeomorphism of the plane), such that
if uv is an edge, then the closure (in the plane) of the arc α representing uv consists
precisely of α and the points representing u and v. It is further required that no arc
representing an edge contains a point representing a vertex and that any two edges
intersect only finitely many times. A crossing in a drawing D of a graph G is a pair
(x, {α, β}), where α, β are arcs representing different edges and {x} ∈ α ∩β is a point
in the plane where α and β intersect transversally1. The crossing number cr(D) of D
is the number of crossings in D, and the crossing number cr(G) of G is the minimum
cr(D), taken over all drawings D of G.

A drawing is good if (i) no three distinct arcs representing edges meet at a common
point; (ii) if two edges are adjacent, then the arcs representing them do not intersect each
other; and (iii) an intersection point between two arcs representing edges is a crossing.
It is well-known (and easy to prove) that every graph has a crossing-minimal drawing
which is good (moreover, (ii) and (iii) hold in every crossing-minimal drawing). Thus,
when our aim (as in this paper) is to estimate the crossing number of a graph, we may
assume that all drawings under consideration are good. As usual, for simplicity we
often make no distinction between a vertex and the point representing it, or between
an edge and the arc representing it. No confusion should arise from this practice.

Around 1958, Hill conjectured that

cr(Kn) = Z(n) := 1
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. (1)

1 We say that α and β intersect transversally (or tangentially, respectively) at x if there exists a disk D
such that the two connected components of (D ∩β)\ {x} are in different (the same, respectively) connected
components of D \ α.
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This conjecture appeared in print a few years later in papers by Guy [17] and Harary
and Hill [19]. Hill described drawings of Kn with Z(n) crossings, which were later
corroborated by Blažek and Koman [8]. These drawings show that cr(Kn) ≤ Z(n).
The best known general lower bound is limn→∞ cr(Kn)/Z(n) ≥ 0.8594, due to de
Klerk et al. [15]. For more on the history of this problem we refer the reader to the
excellent survey by Beineke and Wilson [6].

One of the major motivations for investigating crossing numbers is their application
to VLSI design. With this motivation in mind, Chung, Leighton and Rosenberg [11]
analyzed embeddings of graphs in books. We recall that a book consists of a line (the
spine) and k ≥ 1 half-planes (the pages), such that the boundary of each page is the
spine. In a book embedding, every vertex lies on the spine, and each edge lies on a
single page. Book embeddings of graphs have been extensively studied [7,16]. Now
if the book has k pages, and crossings among edges are allowed, the result is a k-page
book drawing.

Here we concentrate on 2-page book drawings. The 2-page crossing number ν2(G)

of a graph G is the minimum of cr(D) taken over all 2-page book drawings D of G.
As in the general case, it can be proven that this minimum is achieved by good 2-page
book drawings. Alternative terminologies for the 2-page crossing number are circular
crossing number [20] and fixed linear crossing number [12]. We may regard the pages
as the closed half-planes defined by the spine, and so every 2-page book drawing can
be realized as a plane drawing; it follows that cr(G) ≤ ν2(G) for every graph G.

In 1964, Blažek and Koman [8] found 2-page book drawings of Kn with Z(n)

crossings, thus showing that ν2(Kn) ≤ Z(n) (see also Guy et al. [18], Damiani et al.
[13], Harborth [20], and Shahrokhi et al. [23]). Once these constructions were known,
the conjecture that ν2(Kn) = Z(n) is implicit in the conjecture given by Eq. (1) since
cr(Kn) ≤ ν2(Kn). However, the only explicit reference to this weaker conjecture is,
as far as we know, from Vrt’o [24].

Buchheim and Zhang [9] reformulated the problem of finding ν2(Kn) as a max-
imum cut problem on associated graphs, and then solved exactly this maximum cut
problem for all n ≤ 13, thus confirming Eq. (1) for 2-page book drawings for all
n ≤ 14 (the case n = 14 follows from the case n = 13 by an elementary counting
argument). Very recently, De Klerk and Pasechnik [14] used this max cut reformu-
lation to find the exact value of ν2(Kn) for all n ≤ 21 and n = 24, and more-
over, by using semidefinite programming techniques, to obtain the asymptotic bound
limn→∞ ν2(Kn)/Z(n) ≥ 0.9253. All the results reported in [9,14] are computer-
aided.

In this paper we prove that ν2(Kn) = Z(n). The main technique for the proof is
the extension of the concept of k-edge of a finite set of points to topological drawings
of the complete graph. We do this in a way such that the identities proved by Ábrego
and Fernández-Merchant [1] and Lovász et al. [22], that express the crossing number
of a rectilinear drawing of Kn in terms of the k-edges or the ≤k-edges of its set of
vertices, are also valid in the topological setting.

We recall that a drawing D is rectilinear if the edges of D are straight line segments,
and the rectilinear crossing number cr(G) of a graph G is the minimum of cr(D) taken
over all rectilinear drawings D of G. Although the exact value of cr(Kn) is known
only for n ≤ 27 and n = 30 [4,10], there are fairly good estimates of its asymptotic
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behavior (cf. [4,2]):

0.379972 <
277

729
≤ lim

n→∞
cr(Kn)(n

4

) ≤ 83 247 328

218 791 125
< 0.380488.

For a survey on the rectilinear crossing number of Kn , we refer the reader to [5].
The remarkable recent progress on the estimation of cr(Kn) has been prompted by

the close relationship between this parameter and the number of k-edges in a rectilinear
drawing of Kn . An edge pq of D is a k-edge if the line spanned by pq divides the
remaining set of vertices into two subsets of cardinality k and n −2−k. Thus a k-edge
is also an (n − 2 − k)-edge. Denote by Ek(D) the number of k-edges of D and let
E≤k(D) = ∑k

j=0 E j (D). The following identity [1,22] has been key to the recent
developments on the rectilinear crossing number of Kn .

cr(D) = 3
( n

4

)
−

�n/2	−1∑
k=0

k(n − 2 − k)Ek(D). (2)

In Sect. 2 we generalize the concept of k-edge to arbitrary (that is, not necessarily
rectilinear) good drawings of Kn , and Theorem 1 extends Eq. (2) to these drawings.
Although half-planes are not well defined for arbitrary good drawings of Kn , we can
use the orientation of the triangles defined by three points: the edge pq is a k-edge
of the topological drawing if the set of triangles adjacent to pq is divided, according
to their orientation, into two subsets with cardinality k and n − k − 2. It was proved
by Ábrego and Fernández-Merchant [1] and by Lovász et al. [22] that the inequality
E≤k(D) ≥ 3

(k+2
2

)
holds for every rectilinear drawing D of Kn . This inequality and

(2) imply that cr(Kn) ≥ Z(n) [1]. In contrast to the rectilinear case, the inequality
E≤k(D) ≥ 3

(k+2
2

)
does not hold in general for topological drawings D of Kn , not

even for 2-page book drawings, as can be seen in Fig. 4. This shows the relevance of
introducing the new parameter E≤≤k(D), which we bound from below in Theorem 2.
In Sect. 3 we use Theorems 2 and 1 to show that ν2(Kn) = Z(n).

Two drawings D and D′ are plane-homeomorphic if there is a homeomorphism of
the plane that sends D to D′. Typically, drawings on the plane are seen as drawings on
the sphere under the one-point compactification of the sphere. In this context, when the
drawings D and D′ on the plane correspond to the drawings DS and D′

S on the sphere,
we say that D and D′ are sphere-homeomorphic if there is a homeomorphism of the
sphere that sends DS to D′

S . For crossing number purposes, it is enough and natural to
consider sphere-homeomorphic drawings. However, it is impossible to define k-edges
for drawings of the complete graph on the sphere (the way we do it on the plane)
because it is impossible to orient simple closed curves on the sphere. Therefore, we
use plane-homeomorphic drawings in Sects. 2 and 3 to prove that ν2(Kn) = Z(n),
and sphere-homeomorphic drawings to analyze the crossing optimal 2-page drawings
of Kn in Sect. 4. We give a complete characterization of their structure, showing that,
up to sphere-homeomorphism, crossing optimal drawings are unique for n even. In
contrast, for n odd we provide a family of size 2(n−5)/2 of non sphere-homeomorphic
crossing optimal drawings. We conclude with some open questions and directions for
future research in Sect. 5. An extended abstract of this paper appeared in SoCG [3].
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2 Crossings and k-Edges

In this section we generalize the concept of k-edges and extend Eq. (2) to the topolog-
ical setting. So far this concept has only been used in the geometric setting of finite
sets of points in the plane. Here, we extend it to topological drawings of Kn . Let D
be a good drawing of Kn , let −→pq be a directed edge of D, and r a vertex of D other
than p or q. We denote by pqr the oriented, closed curve defined by concatenating
the (oriented) edges pq, qr and r p. Note that pqr is simple because the three edges
pq, qr , and r p do not self-intersect and do not intersect each other, since D is good.
An oriented, simple, and closed curve in the plane is oriented counterclockwise if the
bounded region it encloses is on the left-hand side of the curve. We say that r is on the
left (respectively, right) side of −→pq if pqr is oriented counterclockwise (respectively,
clockwise). We say that the edge pq is a k-edge of D if it has exactly k points of D
on one side (left or right), and thus n − 2 − k points on the other side. Hence, as in
the geometric setting, a k-edge is also an (n − 2 − k)-edge. Note that the direction of
the edge pq is no longer relevant and every edge of D is a k-edge for some unique k
such that 0 ≤ k ≤ �n/2	 − 1. Let Ek(D) be the number of k-edges of D.

First we show that there are essentially 3 topological good drawings of K4.

Lemma 1 Any good drawing of K4 in the plane is plane-homeomorphic to one of the
three drawings shown in Fig. 1.

Proof We first observe that in a good drawing of K4 there is at most one crossing. Let
p, q, r , and s be the vertices and assume that the edges pr and qs cross at x . The edge
rs cannot intersect the edge pq because pqx is a closed curve and the drawing is good.
Similarly, the edge qr does not intersect the edge ps, and the other possible pairs of
edges share a vertex and thus their corresponding arcs do not intersect because the
drawing is good. Thus, in a good drawing of K4 there is always a hamiltonian cycle of
non crossed edges: if we suppose that the only possible crossing is between the edges
pr and qs, then pq, qr , rs and sp form such a cycle, and if there are no crossings,
then these edges form the cycle as well. Finally, once this cycle is drawn, there are
only three possibilities to draw the edges pr and qs: both in the bounded face, both
in the unbounded face, or one in each face. These correspond to the three drawings in
Fig. 1. Clearly Drawing A is not plane-homeomorphic to the other two because it has
no crossings. To see that Drawings B and C are not plane-homeomorphic note that
a homeomorphism of the plane taking one drawing to the other would need to map

Fig. 1 The three non plane-homeomorphic good drawings of K4, with 3, 2, and 2 separations. The edge
of each separation is shown bold (Color figure online)
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the closure of the bounded face (a compact set) to the closure of the unbounded face,
which is impossible. However, we note that Drawings B and C are indeed sphere-
homeomorphic. ��

We now extend Eq. (2) to the topological case.

Theorem 1 For any good drawing D of Kn in the plane the following identity holds,

cr(D) = 3
( n

4

)
−

�n/2	−1∑
k=0

k(n − 2 − k)Ek(D).

Proof In a good drawing of Kn , we say that an edge pq separates the vertices r and s
if the orientations of the triangles pqr and pqs are opposite. In this case, we say that
the set {pq, r, s} is a separation.

We denote by TA, TB , and TC the number of induced subdrawings of D of type A,
B, and C , respectively. Then

TA + TB + TC =
( n

4

)
, (3)

and since the subdrawings of types B or C are in one-to-one correspondence with the
crossings of D, it follows that

cr(D) = TB + TC . (4)

We count the number of separations in D in two different ways: First, each sub-
drawing of type A has 3 separations (the edge in each separation is bold in Fig. 1),
and each subdrawing of types B or C has 2 separations. This gives a total of
3TA+2TB +2TC separations in D. Second, each k-edge belongs to exactly k(n−2−k)

separations. Summing over all k-edges for 0 ≤ k ≤ �n/2	 − 1 gives a total of∑�n/2	−1
k=0 k(n − 2 − k)Ek(D) separations in D. Therefore

3TA + 2TB + 2TC =
�n/2	−1∑

k=0

k(n − 2 − k)Ek(D). (5)

Finally, subtracting Eq. (5) from three times Eq. (3) we get

TB + TC = 3
( n

4

)
−

�n/2	−1∑
k=0

k(n − 2 − k)Ek(D),

and thus by Eq. (4) we obtain the claimed result. ��
In order to prove ν2(Kn) = Z(n), we need to rewrite the expression in the previous

theorem. For 0 ≤ k ≤ �n/2	 − 1 and D a good drawing of Kn , we define the set of
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≤k-edges of D as all j-edges in D for j = 0, . . . , k. The number of ≤k-edges of D
is denoted by

E≤k(D) :=
k∑

j=0

E j (D).

Similarly, we denote the number of ≤≤k-edges of D by

E≤≤k(D) :=
k∑

j=0

E≤ j (D) =
k∑

j=0

j∑
i=0

Ei (D) =
k∑

i=0

(k + 1 − i)Ei (D).

To avoid special cases we define E≤≤−1(D) = E≤≤−2(D) = 0.

The following result restates Theorem 1 in terms of the number of ≤≤k-edges. In
the next section, we bound E≤≤k(D) from below for 2-page book drawings D of Kn .

Proposition 1 Let D be a good drawing of Kn. Then

cr(D) = 2
�n/2	−2∑

k=0

E≤≤k(D) − 1
2

( n
2

)⌊n − 2

2

⌋
− 1

2 (1 + (−1)n)E≤≤�n/2	−2(D).

Proof First note that for 2 ≤ k ≤ �n/2	 − 1 we have that E≤≤k(D) − E≤≤k−1(D) =
E≤k(D) and E≤k(D) − E≤k−1(D) = Ek(D). Thus

Ek(D) = E≤≤k(D) − 2E≤≤k−1(D) + E≤≤k−2(D).

Note that this equation also holds for k = 0 and k = 1. We now rewrite the last term
in Theorem 1 as follows.

�n/2	−1∑
k=0

k(n − 2 − k)Ek(D)

=
�n/2	−1∑

k=0

k(n − 2 − k)[E≤≤k(D) − 2E≤≤k−1(D) + E≤≤k−2(D)]

=
�n/2	−3∑

k=0

(k(n − 2 − k) − 2(k + 1)(n − 3 − k) + (k + 2)(n − 4 − k))E≤≤k(D)

+(⌊n

2

⌋ − 1
)(

n − 1 − ⌊n

2

⌋)
E≤≤�n/2	−1(D) + (−2

(⌊n

2

⌋ − 1
)(

n − 1 −
⌊n

2

⌋ )

+( ⌊n

2

⌋
− 2

)(
n −

⌊n

2

⌋ )
)E≤≤�n/2	−2(D)

= −2
�n/2	−3∑

k=0

E≤≤k(D) + ( ⌊n

2

⌋
− 1

)(
n − 1 −

⌊n

2

⌋ )
E≤≤�n/2	−1(D)

+(−2
( ⌊n

2

⌋
− 1

)(
n − 1 −

⌊n

2

⌋ ) + ( ⌊n

2

⌋
− 2

)(
n −

⌊n

2

⌋ )
)E≤≤�n/2	−2(D).
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Since E≤≤�n/2	−1(D) = E≤≤�n/2	−2(D) + E≤�n/2	−1(D) = E≤≤�n/2	−2(D) + (n
2

)
,

it follows by Theorem 1 that

cr(D) = 3
( n

4

) −
�n/2	−1∑

k=0

k(n − 2 − k)Ek(D) = 3
( n

4

) + 2
�n/2	−3∑

k=0

E≤≤k(D)

+ (
n + 1 − 2

⌊ n
2

⌋)
E≤≤�n/2	−2(D) − (⌊ n

2

⌋ − 1
) (

n − 1 − ⌊ n
2

⌋) ( n
2

)

= 2
�n/2	−3∑

k=0

E≤≤k(D) − 1
2

( n
2

) ⌊ n−2
2

⌋ +
{ E≤≤�n/2	−2(D) if n is even,

2E≤≤�n/2	−2(D) if n odd,

which is equivalent to the claimed result. ��

3 The 2-Page Crossing Number

We are concerned with 2-page book drawings of Kn . Obviously any line can be chosen
as the spine, and for the rest of the paper we will assume that the spine is the x-axis.
Moreover, using a suitable homeomorphism of the plane, we will assume that the ver-
tices are precisely the points with coordinates (1, 0), (2, 0), . . . , (n, 0). Furthermore,
because each edge is completely contained in a page (the upper or lower half plane),
the crossings cannot happen on the spine. This means that the local redrawing rules
used to transform any drawing of a graph into a good drawing without increasing the
number of crossings preserve the property of being a 2-page book drawing. Therefore,
we only consider good 2-page book drawings of Kn .

Consider a good 2-page book drawing D of Kn , and label the vertices 1, 2, . . . , n
from left to right. Because D is a good drawing, it is readily seen that none of the
edges 12, 23, . . . , (n − 1)n, n1 is crossed. Thus we may choose to place each of these
edges in either the upper closed halfplane (page) or in the lower closed halfplane
(page). Moreover, we may choose to place each of the edges 12, 23, . . . , (n − 1)n
completely on the spine, and this is the convention we shall adopt for the rest of the
paper. The edge n1 may be placed indistinctly in the upper page or in the lower page,
and for the rest of the paper we adopt the convention that it is placed in the upper page.
Furthermore, because we are only concerned with good drawings, we assume without
loss of generality that the rest of the edges are semicircles.

Color the edges above or on the spine blue and below the spine red, respectively.
We construct an upper triangular matrix which corresponds to the coloring of these
edges, see Fig. 2. We call this the 2-page matrix of D and denote it by M(D). Label
the columns of the 2-page matrix with 2, . . . , n from left to right and the rows with
1, 2, . . . , n − 1 from top to bottom. For i < j an entry (i, j) (row,column) in the
2-page matrix M(D) is a point with the same color as the edge i j in the drawing D.

Remark 1 It follows from the convention laid out above that for every 2-page book
drawing D, the entries (1, 2), (2, 3), . . . , (n − 1, n) and (1, n) in M(D) are all blue.

We start by proving some basic properties of the 2-page matrix.
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Fig. 2 Two-colored diagram for a 2-page book drawing D of K8 and the corresponding 2-page matrix
M(D). Solid dots and lines represent blue edges. Open dots and dashed lines represent red edges. From
our convention to place the edges 12, 23, . . . , (n − 1)n on the spine and the edge 1n in the upper page, it
follows that all the entries in the main diagonal, as well as the upper right corner entry, are blue (Color
figure online)

Lemma 2 Let D be a 2-page book drawing of Kn and 1 ≤ i < j ≤ n. Let k denote
the number of points in M(D) with the same color as entry (i, j) that are located
above or to the right of entry (i, j). Then the edge i j is a k-edge. (It is possible to have
k > �n/2	 − 1.)

Proof Let 1 ≤ i < j ≤ n and assume that the edge i j is blue (red). We prove that the
number of points l in D to the left (right) of i j is exactly k. For l ∈ {i, j} the triangle
i jl is oriented counter-clockwise (clockwise) if and only if either l < i and the edge
l j is blue (red), or l > j and the edge il is blue (red). In the first case these edges
correspond to blue (red) points above the entry (i, j), and in the second case to blue
(red) points to the right of the entry (i, j), respectively. ��

In view of Lemma 2 we say that the point in the entry (i, j) of the 2-page matrix
of D represents a k-edge if i j is a k-edge (or an (n − 2 − k)-edge) in D.

Lemma 3 For k < n/2−1 and for 1 ≤ j ≤ k+1, in the 2-page matrix of a drawing D
of Kn there are at least 2(k +2− j) points in row j representing ≤k-edges. Similarly,
for n − k ≤ j ≤ n there are at least 2(k + 1 − n + j) points in column j representing
≤k-edges.

Proof For 1 ≤ j ≤ k + 1, in row j the rightmost k + 2 − j points of each color
represent ≤k-edges as they have at most k + 1 − j points of their color to the right
and at most j − 1 on top. So if each color appears at least k + 2 − j times in row
j , we have guaranteed 2(k + 2 − j) ≤k-edges in row j . If one of the colors appears
fewer than k + 2 − j times, so that there are k + 2 − j − e blue points in row j for
some 1 ≤ e ≤ k + 2 − j , then there are n − j − (k + 2 − j − e) = n − 2 − k + e
red points in this row. In this case we claim that also the leftmost e red points in this
row represent ≤k-edges. In fact, for 1 ≤ i ≤ e, the i th red point (from the left) in row
j , has exactly n − 2 − k + e − i red points to the right and perhaps more red points
above. Since e ≥ i implies n − 2 − k + e − i ≥ n − 2 − k, this i th red point also
represents a ≤k-edge. The equivalent result holds for the rightmost k + 1 columns. ��
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756 Discrete Comput Geom (2013) 49:747–777

Lemma 4 For 0 ≤ j < n/2 − 1, in the 2-page matrix of a drawing D of Kn there
are two points in column n which correspond to j-edges in D. For n even there exists
one point in column n corresponding to an (n/2 − 1)-edge in D.

Proof We follow the lines of the proof of Lemma 3. Consider the points in column
n in order from top to bottom. By Lemma 2 the i th vertex of a color corresponds to
an (i − 1)-edge. Thus, if there are at least j + 1 vertices for each color we are done.
Otherwise assume without loss of generality that there are j + 1 − e blue points in
column n for some 1 ≤ e ≤ j +1. Then there are n −1− ( j +1− e) = n − j + e −2
red points in this column. For 1 ≤ i ≤ �n/2	 the i th red point corresponds to an
(i − 1)-edge, and for �n/2	 + 1 ≤ i ≤ n − j + e − 2 the i th red point corresponds to
an (i − 1) = (n − i − 1)-edge. Thus we get two red points corresponding to j-edges
for i = j + 1 and i = n − j − 1. Finally, observe that these two points are different
for j < n/2 − 1. For n even we get only one such point for j = n/2 − 1. ��

The next theorem gives a lower bound on the number of ≤≤k-edges, which will
play a central role in deriving our main result. We need the following definitions. Let
D be a good drawing of Kn . Let l be a vertex of Kn , and let D′ be the (evidently,
also good) drawing of Kn−1 obtained by deleting from D the vertex l and its adjacent
edges. Note that a k-edge i j in D′ is a k-edge or a (k + 1)-edge in D. Indeed, if i j
has exactly k points to its right in D′ (an equivalent argument holds if the k points
are on its left), then there are k or k + 1 points to the right of i j in D depending
on whether l is to the left or to the right, respectively, of i j . We say that a k-edge in
D is (D, D′)-invariant if it is also a k-edge in D′. Whenever it is clear what D and
D′ are, we simply say that an edge is invariant. A (D, D′)-invariant ≤ k-edge is a
(D, D′)-invariant j-edge for some 0 ≤ j ≤ k ≤ n/2 − 1. Denote by E≤k(D, D′) the
number of (D, D′)-invariant ≤ k-edges.

Theorem 2 Let n ≥ 3. For every 2-page book drawing D of Kn and 0 ≤ k < n/2−1,
we have

E≤≤k(D) ≥ 3
( k + 3

3

)
. (6)

Proof We proceed by induction on n. The induction base n = 3 holds trivially. For
n ≥ 4, consider a 2-page book drawing D of Kn with horizontal spine and label the
vertices from left to right with 1, 2, . . . , n. Remove the point n and all incident edges
to obtain a 2-page book drawing D′ of Kn−1. To bound E≤≤k(D), recall that

E≤≤k(D) =
k∑

j=0

(k + 1 − j)E j (D). (7)

All edges incident to n are in D but are not in D′. In fact, by Lemma 4, there are
two j-edges adjacent to the vertex n for each 0 ≤ j ≤ k ≤ �n/2	 − 2. These edges
contribute with 2

∑k
j=0(k + 1 − j) = 2

(k+2
2

)
to Eq. (7). We next compare Eq. (7) to
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E≤≤k−1(D′) =
k−1∑
j=0

(k − j)E j (D′). (8)

Any edge contributing to Eq. (8) also contributes to Eq. (7), but possibly with a different
value. As observed before, a j-edge in D′ is a j-edge or a ( j +1)-edge in D. A j-edge
in D′ contributes to Eq. (8) with k − j . A j-edge and a ( j +1)-edge in D contribute to
Eq. (7) with k + 1 − j and k − j , respectively. This is a gain of +1 or 0, respectively,
towards E≤≤k(D) when compared to E≤≤k−1(D′). Finally, a k-edge in both D and
D′ does not contribute to Eq. (8) and contributes to Eq. (7) with +1. Therefore

E≤≤k(D) = E≤≤k−1(D′) + 2
( k + 2

2

)
+ E≤k(D, D′).

By induction hypothesis, E≤≤k−1(D′) ≥ 3
(k+2

3

)
and thus

E≤≤k(D) ≥ 3
( k + 2

3

)
+ 2

( k + 2
2

)
+ E≤k(D, D′)

= 3
( k + 3

3

)
−

( k + 2
2

)
+ E≤k(D, D′).

We finally prove that

E≤k(D, D′) ≥
( k + 2

2

)
. (9)

In fact, we prove that for each 1 ≤ j ≤ k + 1 there are at least k + 2 − j points in
row j of M(D) that represent (D, D′)-invariant ≤ k-edges. Suppose that the edge jn
is blue (the equivalent argument holds when jn is red). Then any red point in row j
with i ≤ k red points above or to its right in M(D) represents a (D, D′)-invariant
i-edge; and any blue point in row j with i ≥ n − 2 − k blue points above or to its
right represents a (D, D′)-invariant (n − 2 − i)-edge. Thus, the first k + 2 − j red
points from the right in row j (if they exist) represent (D, D′)-invariant ≤ k-edges as
they have at most k + 2 − j − 1 red points to the right and at most j − 1 red points
above in both M(D) and M(D′). If there are fewer than k + 2 − j red points in row
j of M(D), say k + 2 − j − e for some 1 ≤ e ≤ k + 2 − j , then the first e blue
points in row j of M(D) from the left represent ≤k-edges, because they have at least
n − j −e ≥ n − j −k −2+ j = n −k −2 blue points to their right. Hence there are at
least k + 2 − j − e red points and at least e blue points (for a total of at least k + 2 − j
points) that represent (D, D′)-invariant ≤ k-edges in row j of M(D). Summing over
all 1 ≤ j ≤ k + 1, we get that

E≤k(D, D′) ≥
k+1∑
j=1

(k + 2 − j) =
( k + 2

2

)
. ��
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We now summarize the conditions that guarantee that equality is achieved in The-
orem 2. This remark is used in the next section to understand the structure of the
crossing optimal drawings.

Remark 2 Let D be a 2-page book drawing of Kn and 0 ≤ k < n/2 − 1. Moreover
D′ is defined as in the proof of Theorem 2. Then E≤≤k(D) = 3

(k+3
3

)
if and only if

1. E≤≤k−1(D′) = 3
(k+2

3

)
and

2. E≤k(D, D′) = (k+2
2

)
, which is equivalent to simultaneously satisfying that

(a) For each 1 ≤ j ≤ k + 1 there are exactly k + 2 − j entries in row j of M(D)

that represent (D, D′)-invariant ≤ k-edges and
(b) For each k+2 ≤ j ≤ n−1 there are no entries in row j of M(D) that represent

(D, D′)-invariant ≤ k-edges.

We are now ready to prove our main result, namely that the 2-page crossing number
of Kn is Z(n).

Theorem 3 For every positive integer n, ν2(Kn) = Z(n).

Proof The cases n = 1 and n = 2 are trivial. Let n ≥ 3. As we mentioned above,
2-page book drawings with Z(n) crossings were constructed by Blažek and Koman [8]
(see also Guy et al. [18], Damiani et al. [13], Harborth [20], and Shahrokhi et al. [23].)
These drawings show that ν2(Kn) ≤ Z(n). For the lower bound, let D be a 2-page
book drawing of Kn . Using Proposition 1 and Theorem 2, we obtain

cr(D) ≥ 2
�n/2	−2∑

k=0

3
( k + 3

3

)
− 1

2

( n
2

)⌊
n − 2

2

⌋
− 3

2
(1 + (−1)n)

(⌊ n
2

⌋ + 1
3

)

= 6
(⌊ n

2

⌋ + 2
4

)
− 1

2

( n
2

) ⌊
n − 2

2

⌋
− 3

2
(1 + (−1)n)

(⌊ n
2

⌋ + 1
3

)

=
{ 1

64 (n − 1)2(n − 3)2 if n odd,

1
64 n(n − 2)2(n − 4) if n is even,

= Z(n). ��

4 Crossing Optimal Configurations

In all this section, D denotes a good 2-page book drawing of Kn (satisfying the
conditions laid out at the beginning of Sect. 3) and M(D) its 2-page matrix. We say
that D is crossing optimal if ν2(D) = Z(n). Theorem 4 in Sect. 4.3 describes the
general structure of the crossing optimal 2-page book drawings of Kn . We use it to
prove that, up to sphere homeomorphism, there is a unique crossing optimal 2-page
book drawing of Kn when n is even and, in contrast, there exists an exponential number
of non sphere-homeomorphic crossing optimal 2-page book drawings of Kn when n
is odd.
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Fig. 3 A 2-page drawing of K8 and its strip diagram (Color figure online)

4.1 Equivalent Drawings

Let D be a 2-page book drawing of Kn . Recall that we are assuming that the vertices
of D are the points {(i, 0) : 1 ≤ i ≤ n}. Consider the following transformation f that
results in the 2-page book drawing f (D) of Kn : move the vertex (1, 0) to the point
(n, 0), and for every 2 ≤ k ≤ n move the vertex (k, 0) to the vertex (k −1, 0). That is,
if an edge 1 j was drawn above (below) the spine in D, then the edge ( j −1)n is drawn
above (below) the spine in f (D); for all other edges i j with 1 < i < j ≤ n, if i j
was drawn above (below) the spine in D, then the edge (i − 1)( j − 1) is drawn above
(below) the spine in f (D). Note that D and f (D) have the same number of crossings,
and f n(D) = D. There are two other natural crossing-preserving transformations
of a drawing D: A vertical reflection g(D) about the line with equation x = n/2
and a horizontal reflection h(D) about the spine (or x-axis). In g(D) an edge i j is
drawn above (below) the spine if the edge (n + 1 − j)(n + 1 − i) is drawn above
(below) the spine in D. In h(D) an edge i j is drawn above (below) the spine if the
edge i j is drawn below (above) the spine in D. Note that g2(D) = h2(D) = D.
Given a 2-page book drawing D, any drawing D′ obtained from D by compositions
of these transformations is said to be equivalent to D. Indistinctively, we say that
the matrices M(D) and M(D′) are equivalent. All drawings obtained this way are
sphere-homeomorphic and thus they all have the same number of crossings as D. The
group spanned by these transformations is isomorphic to the direct sum of the dihedral
group D2n and the group with 2 elements Z2. The set { f, g, h} is a set of generators
such that g2 = h2 = f n = 1, g ◦ f = f −1 ◦ g, h ◦ f = f ◦ h, and g ◦ h = h ◦ g.
Thus the 4n transformations in the group can be parametrized by ha ◦ gb ◦ f i with
i ∈ {0, 1, . . . , n − 1} and a, b ∈ {0, 1}.

Now we describe these transformations in the 2-page matrix diagram of D: To
obtain M( f (D)) from M(D), we simply rotate 90 degrees clockwise the first row of
M(D) and use it as the nth column of M( f (D)). The diagram M(g(D)) is obtained
from M(D) by reflecting with respect to the diagonal {(i, n +1− i) : 1 ≤ i ≤ �n/2	}.
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Fig. 4 A 2-page book drawing of K8 with four 0-edges (namely 17, 18, 27, and 28) and four 1-edges
(namely 15 16, 38, and 48). This shows that the inequality E≤k (D) ≥ 3

(k+2
2

)
, which holds for every

geometric drawing D of Kn , does not necessarily hold if D is a topological drawing (Color figure online)

Finally, M(h(D)) is obtained by switching the color of every point except those that
join consecutive vertices on the spine or the point (1, n). We can place M(D) and
M( f (D)) together so that the part they have in common overlaps. Doing this for
M( f m(D)) for all integers m we obtain a periodic double infinite strip with period n
and with a horizontal section that is n − 1 units wide. We call this the strip diagram
of D, or of f m(D) for any integer m. (See Fig. 3.) Any right triangular region with
the same dimensions as M(D) obtained from the strip diagram of D by a horizontal
and a vertical cut is the matrix diagram of a drawing equivalent to D and thus it has
the same number of crossings as D.

4.2 Properties of Crossing Optimal Drawings

In contrast to the rectilinear case, the inequality E≤k(D) ≥ 3
(k+2

2

)
does not hold in

general for topological drawings D of Kn , not even for general 2-page book drawings,
as can be seen in Fig. 4. However, the inequality E≤k(D) ≥ 3

(k+2
2

)
does hold for

crossing optimal drawings of Kn , where in fact the following stronger result is true.

Proposition 2 Let D be a 2-page book drawing of Kn and In = {k ∈ Z : 0 ≤ k ≤
�n/2	 − 2}. The following are equivalent: (i) cr(D) = Z(n), (ii) Ek(D) = 3(k + 1)

for all k ∈ In, (iii) E≤k(D) = 3
(k+2

2

)
for all k ∈ In, and (iv) E≤≤k(D) = 3

(k+3
3

)
for

all k ∈ In.

Proof Parts (i) and (iv) are equivalent as equality is achieved in Theorem 3 if and only
if equality is achieved in Theorem 2 for all k ∈ In . The implications (ii) ⇒ (iii) ⇒
(iv) follow directly from the definitions of E≤k(D) and E≤≤k(D), using the identity∑r

m=0

(m
s

) = (r+1
s+1

)
. It remains to show that (iv) implies (ii), which we do by applying

induction on k. For the induction base note that E≤≤0(D) = E≤0(D) = E0(D) = 3.

For 1 ≤ k ≤ �n/2	 − 2, the identities E j (D) = 3( j + 1) for all 0 ≤ j ≤ k − 1 and
E≤≤k(D) = 3

(k+3
3

)
imply that
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3
( k + 3

3

)
= E≤≤k(D) =

k∑
j=0

(k + 1 − j)E j (D)

= Ek(D) + 3
k−1∑
j=0

(k + 1 − j)( j + 1),

and thus

Ek(D) = 3
( k + 3

3

)
− 3

k−1∑
j=0

(k + 1 − j)( j + 1)

= 3
( k + 3

3

)
− 1

2 k(k + 1)(k + 5) = 3(k + 1). ��

We now give a more detailed analysis on the crossing optimal 2-page book drawings
of Kn . We start with a couple of definitions. Consider the entry (i, j) of M(D). We
order the entries in row i to the left of (i, j) as follows: first all entries, from right to
left, whose color differs to that of (i, j), followed by all other entries (those with the
same color as (i, j)) from left to right. This is called the order associated to (i, j).
Observe that this is the order in which the edges il (i < l < j) appear in the 2-page
drawing, ordered bottom to top if the edge i j is blue and top to bottom if the edge
i j is red. Let c be an integer such that 0 ≤ c ≤ n − 1. Denote by Dc the subgraph
of D obtained by deleting the c right-most vertices of D, or equivalently, M(Dc) is
obtained by deleting the last c columns of M(D).

Lemma 5 Suppose that l ≥ i + m + 1 for some integers 1 ≤ i < l < j ≤ n and
1 ≤ m < j − i . The entry (i, l) is one of the first m entries in the order associated to
(i, j) if and only if (i, l) and (i, j) have different colors.

Proof Note that if (i, l) and (i, j) have the same color, then all entries to the left of
(i, l) come before (i, l) in the order associated to (i, j). ��
Lemma 6 Let p be an integer, 0 ≤ p ≤ �n/2	−2. Suppose that E≤k(D, D1) = (k+2

2

)
for all 0 ≤ k ≤ p. Then M(D) satisfies that for 1 ≤ i ≤ p +1 in row i there is exactly
one (D, D1)-invariant k-edge for each i − 1 ≤ k ≤ p, and there are no (D, D1)-
invariant (≤ i −2)-edges. In all other rows there are no (D, D1)-invariant ≤ p-edges.

Proof In what follows all invariant edges are (D, D1)-invariant edges. We prove by
induction that for each 0 ≤ k ≤ p, row i of M(D) contains exactly one invariant
k-edge for 1 ≤ i ≤ k + 1 and no invariant k-edge for k + 2 ≤ i ≤ n − 1. For k = 0
there is a unique invariant 0-edge and it appears in row 1. This edge corresponds to
the first entry in the order associated to (1, n) in M(D). For k > 0, we use Remark 2,
E≤k(D, D1) = (k+2

2

)
, and E≤k−1(D, D1) = (k+1

2

)
. For k + 2 ≤ i ≤ n − 1, Remark

2.2b (for k) implies that there are no invariant k-edges in row i . For 1 ≤ i ≤ k, Remark
2.2a (first for k and then for k−1), implies that there is exactly (k+2−i)−(k+1−i) = 1
invariant k-edge in row i (invariant ≤ k-edges that are not (≤ k−1)-edges). Finally, for
i = k +1 Remarks 2.2a and 2.2b (for k) imply that there is exactly k +2− (k +1) = 1
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invariant ≤ k-edge and no invariant (≤ k−1)-edge in row i . Therefore, there is exactly
one invariant k-edge in row k + 1. ��

Lemma 7 Let p be an integer such that 0 ≤ p ≤ �n/2	 − 2.

(i) Suppose that for some 1 ≤ i ≤ p + 1 row i of M(D) has exactly one (D, D1)-
invariant k-edge for each i−1 ≤ k ≤ p and no (D, D1)-invariant ≤ (i−2)-edges.
If the entry (i, n) in M(D) is blue (red), then the mth entry in row i in the order
associated to (i, n) has at least min{p + 2 − m, i − 1} red (blue) entries above
for every 1 ≤ m ≤ min{p + 1, n − i − 1}.

(ii) Suppose that for some i ≥ p + 2 row i of M(D) does not have (D, D1)-invariant
≤ p-edges. If the entry (i, n) in M(D) is blue (red), then the mth entry in row i
in the order associated to (i, n) has at least p + 2 − m red (blue) entries above
for every 1 ≤ m ≤ min{p + 1, n − i − 1}.

Proof In what follows invariant edges refer to (D, D1)-invariant edges. Denote by
(i, em) the mth entry in the order associated to (i, n). Note that if (i, em) and (i, n)

have opposite colors and the number of points above plus the number of points to the
right of (i, em) with the same color as (i, em) is at most p, then (i, em) is an invariant
≤ p-edge. Similarly, if (i, em) and (i, n) have the same color and the number of points
above plus the number of points to the right of (i, em) with the same color as (i, em)

is more than n − 2 − p, then (i, em) is an invariant ≤ p-edge.
Suppose that the entry (i, n) of M(D) is blue (red).
(i) If (i, e1) is red (blue), then it does not have red entries to its right and it has at most

i − 1 red (blue) entries above. Since i − 1 ≤ p, then (i, e1) is an invariant (≤ i − 1)-
edge. Because there are no invariant (≤ i − 2)-edges in row i , it follows that (i, e1)

is the unique invariant (i − 1)-edge in row i and thus all i − 1 entries above it are red
(blue). Similarly, if the (i, e1) is blue (red), then all entries in row i are blue (red) and
(i, e1) = (i, i +1). Hence (i, e1) has n− i −1 blue (red) entries to its right and perhaps
some other blue (red) entries above. Since n−i −1 ≥ n−(p+1)−1 ≥ n−2− p, then
(i, e1) is an invariant (≤ i − 1)-edge. Because there are no invariant (≤ i − 2)-edges
in row i , it follows that (i, e1) is the unique invariant (i − 1)-edge in row i and thus
all i − 1 entries above it are red (blue).

For 2 ≤ m ≤ p+2−i assume that the entry (i, em′) is an invariant (i −2+m′)-edge
for every 1 ≤ m′ ≤ m − 1. Note that i − 1 ≤ i − 2 + m′ ≤ p − 1.

If (i, em) is red (blue), then (i, em′) is red (blue) for every 1 ≤ m′ ≤ m − 1. So
(i, em) has exactly m − 1 red (blue) entries to its right and at most i − 1 red (blue)
entries above, that is, (i, em) is an invariant ≤ (i − 2 + m)-edge. By hypothesis there
is a unique invariant k-edge for every i − 1 ≤ k ≤ p and among the first m − 1 entries
there is exactly one invariant k-edge for each i −1 ≤ k ≤ i −2+(m −1) = i −3+m.
So (i, em) is the unique invariant (i − 2 + m)-edge (note that 1 ≤ i − 2 + m ≤ p) and
thus all the entries above it are red (blue).

If (i, em) is blue (red), then there are exactly n − i + m blue (red) entries to its right
and perhaps some others above it. Since n − i +m ≥ n − i − (p +2− i) = n − p +2,
then (i, em) is an invariant ≤ (i − 2 + m)-edge. As before (i, em) must be an invariant
(i − 2 + m)-edge and thus it must have only red (blue) entries above.
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We have already determined the unique invariant k-edge for each 1 ≤ k ≤ p. So
there are no more invariant ≤ p-edges in row i . For p + 3 − i ≤ m ≤ min{p + 1,

n−i −1}, we prove that the entry (i, em) has at least p+2−m = min{p+2−m, i −1}
red (blue) entries above.

If (i, em) is red (blue), then it has m − 1 red (blue) entries to its right. If (i, em)

had less than p + 2 − m (note that p + 2 − m ≤ i − 1) red (blue) entries above, then
it would be an invariant ≤ p-edge (because (m − 1) + (p + 1 − m) = p) getting a
contradiction.

If (i, em) is blue (red), then it has n − i − m blue (red) entries to its right. If (i, em)

had less than p + 2 − m red (blue) entries above, then it would have a total of at least
n − i − m + (i − 1) − (p + 1 − m) = n − 2 − p blue (red) entries above or to its
right, and thus it would be an invariant ≤ p-edge getting a contradiction.

(ii) The proof is the same as for the case p + 3 − i ≤ m ≤ min{p + 1, n − i − 1} in
(i) as we only used that the mth entry in that range was not an invariant ≤ p-edge. ��
Lemma 8 If D is crossing optimal, then for 0 ≤ j ≤ �n/2	 − 2 we have

E≤≤k(D j ) = 3
( k + 3

3

)
for all 0 ≤ k ≤ �n/2	 − 2 − j.

Proof Since D is crossing optimal, equality must be achieved in the proof of
Theorem 3, that is, E≤≤k(D) = 3

(k+3
3

)
for all 0 ≤ k ≤ �n/2	 − 2. By Remark

2.1 we have that E≤≤k−1(D1) = 3
(k+2

3

)
for all 0 ≤ k ≤ �n/2	 − 2. In other words,

E≤≤k(D1) = 3
(k+3

3

)
for all 0 ≤ k ≤ �n/2	 − 3.

In general, for 0 ≤ j ≤ �n/2	 − 2, E≤≤k(D j ) = 3
(k+3

3

)
for all 1 ≤ k ≤

�n/2	 − 2 − j implies that E≤≤k−1(D j+1) = 3
(k+2

3

)
for all 1 ≤ k ≤ �n/2	 − 2 − j

by Remark 2.1. In other words, E≤≤k(D j+1) = 3
(k+3

3

)
for 1 ≤ k ≤ �n/2	− 3 − j . ��

Lemma 9 If D is crossing optimal, then in M(D) the mth entry in the order associated
to (i, j) has at least min{ j −�n/2�−m, i −1} entries above with different color than
(i, j) for all 1 ≤ m ≤ min{ j − �n/2	 − 1, j − i − 1}.
Proof Consider the entry (i, j) of M(D). Because D is crossing optimal, it follows
from Lemma 8 that

E≤≤k(Dn− j ) = 3
( k + 3

3

)
for all 0 ≤ k ≤ �n/2	 − 2 − (n − j) = j − 2 − �n/2�.

Consider row i of Dn− j . (Note that Dn− j has j −1 rows.) If 1 ≤ i ≤ j −1−�n/2�,
then by Lemma 6 for p = j − 2 − �n/2�, the 2-page matrix M(Dn− j ) satisfies that
in row i there is exactly one (Dn− j , Dn− j+1)-invariant k-edge for each i − 1 ≤ k ≤
j − 2 − �n/2� and there are no (Dn− j , Dn− j+1)-invariant (≤ j − 2 − �n/2�)-edges.
Then by Lemma 7(i) if the entry (i, j) in M(D) (actually in M(Dn− j ) but we look at
it as a submatrix of M(D)) is blue (red), then the mth entry in the order associated to
(i, j) has at least min{ j − �n/2� − m, i − 1} red (blue) entries above.

If j − �n/2� ≤ i ≤ j − 1, then by Lemma 6 for p = j − 2 − �n/2�, the
2-page matrix M(Dn− j ) satisfies that in row i there are no (Dn− j , Dn− j+1)-invariant
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(≤ j − 2 − �n/2�)-edges. Then by Lemma 7(ii) if the entry (i, j) in M(D) is blue
(red), then the mth entry in the order associated to (i, j) has at least j −�n/2�− m =
min{ j − �n/2� − m, i − 1} red (blue) entries above. ��
Corollary 1 If D is crossing optimal, then for 2 ≤ i ≤ �n/2� and �n/2�+2 ≤ j ≤ n,
each of the first j −�n/2�− 1 entries in the order associated to (i, j) has at least one
entry above with different color than (i, j).

Proof Let 1 ≤ m ≤ j − �n/2� − 1. Since �n/2	 and i are at most �n/2�, then
m ≤ min{ j − �n/2	 − 1, j − i − 1}. Also m ≤ j − �n/2� − 1 and i ≥ 2 imply that
max{ j −�n/2�−m, i −1} ≥ 1. Thus by Lemma 9, the mth entry in row i in the order
associated to (i, j) has at least one entry above with different color than (i, j). ��
Corollary 2 If D is crossing optimal, then for n ≥ 3, 2 ≤ i ≤ �n/2	 − 1, and
�n/2� + i ≤ j ≤ n, all entries above the first j − i + 1 − �n/2� entries in the order
associated to (i, j) have different color than (i, j).

Proof Let 1 ≤ m ≤ j − i + 1 − �n/2�. Since i ≥ 2 and n ≥ 3, then m ≤ min{ j −
�n/2	 − 1, j − i − 1}. Also m ≤ j − i + 1 − �n/2� implies that max{ j − �n/2� −
m, i − 1} ≥ i − 1. Thus by Lemma 9, the mth entry in row i in the order associated
to (i, j) has at least i − 1 entries above, (i.e., all entries above it) with different color
than (i, j) in M(D). ��
Lemma 10 Suppose that D is crossing optimal and 0 ≤ k ≤ �n/2	 − 2. Then all
≤ k-edges of D belong to the union of the first k + 1 rows and the last k + 1 columns
of M(D).

Proof Suppose by contradiction that the entry (i, j) of M(D) represents a k-edge and
is not in the first k + 1 rows (i ≥ k + 2) or in the last k + 1 columns ( j ≤ n − k − 1).
Since D is crossing optimal, by Remark 2.1 the entry (i, j) is not (D, D1)-invariant,
that is, i j is a (k − 1)-edge in D1. Also, E≤≤k−1(D1) = 3

(k+2
2

)
by Remark 2.1. In

general, assume that (i, j) represents a (k −l)-edge in Dl , not in the first k −l +1 rows
of M(Dl), and that E≤≤k−l(Dl) = 3

(k−l+3
2

)
. Then, by Remark 2.2b, we have that i j

is a (k − l − 1)-edge in Dl+1 and, by Remark 2.1, E≤≤k−l−1(Dl+1) = 3
(k−l+2

2

)
. In

particular, (i, j) is a 0-edge in M(Dk) that is not in the last column of M(Dk) (column
n − k of M(D)). Since by Lemma 3 there are at least three 0-edges in the first column
and row of M(Dk) and i ≥ 2, then E≤≤0(Dk) ≥ 4. But E≤≤0(Dk) must be 3, by
Lemma 8, getting a contradiction. ��

We extend the standard terminology from the geometrical setting, and call a
(�n/2	 − 1)-edge a halving edge.

Lemma 11 Suppose that D is crossing optimal, then the entries (�n/2	, �n/2� + 1),
(�n/2	, �n/2	 + 1), and (�n/2�, �n/2� + 1) of M(D) are halving edges.

Proof This follows from Lemma 10 as all ≤ (�n/2	 − 2)-edges of D belong to the
union of the first �n/2	−1 rows (top to bottom) and the last �n/2	−1 columns (left to
right) of D. The entries (�n/2	, �n/2�+1), (�n/2	, �n/2	+1), and (�n/2�, �n/2�+1)

are not in the first �n/2	 − 1 rows or in the last �n/2	 − 1 columns. ��
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Fig. 5 A halving line in a drawing equivalent to D seen in the matrix M(D) (Color figure online)

Lemma 11 guarantees that the entry (i, i + 1) in general, and the entry (i, i + 2)

when n is odd, are halving lines in some drawing equivalent to D. The next result
states what this means in D. We state it only for 1 ≤ i ≤ �n/2	 (but it can be stated
for �n/2� ≤ i ≤ n as well) as it is the only case we explicitly use later in the paper.

Lemma 12 Let 1 ≤ i ≤ �n/2	. If D is crossing optimal, then M(D) satisfies that the
number of blue entries in

{(r, i + 1) : 1 ≤ r ≤ i − 1} ∪ {(i, c) : i + 2 ≤ c ≤ i + �n/2�} (10)

∪{(i + 1, c) : i + �n/2� + 1 ≤ c ≤ n}

is either �n/2	 − 1 or �n/2� − 1. If n is odd, then the number of entries in

{(r, i + 2) : 1 ≤ r ≤ i − 1} ∪ {(i, c) : i + 3 ≤ c ≤ i + �n/2�} (11)

∪{(i + 2, c) : i + �n/2� + 1 ≤ c ≤ n}

with the same color as the entry (i, i + 2) is either �n/2	 − 1 or �n/2	.

Proof In the strip diagram of D, the entry (i, i + 1) of M(D) corresponds to the
entry (�n/2	, �n/2	 + 1) of M( f i−�n/2	(D)), see Fig. 5 (left). Applying Lemma 11
to M( f i−�n/2	(D)) and noticing that the entries of M(D) in (10) correspond to the
entries above plus the entries below the entry (�n/2	, �n/2	 + 1) of M( f i−�n/2	(D))

gives the result. The proof of the second part is similar, see Fig. 5 (right). ��

Lemma 13 If D is crossing optimal, then there exists a drawing D′ equivalent to D
such that in M(D′) the �n/2� entries (1, n), (2, n), . . . , and (�n/2�, n) are blue and
the �n/2	 − 1 entries (1, �n/2� + 1), (1, �n/2� + 2), . . ., (1, n − 1) are red.

Proof For each integer m, let em be the largest integer such that the last em entries in
row �n/2	 of M( f m(D)) have the same color. (These entries are (�n/2	, n − em +1),
. . ., (�n/2	, n).) Similarly, let e′

m be the largest integer such that the first e′
m entries in

column �n/2�+1 of M( f m(D)) have the same color. (These entries are (1, �n/2�+1),
. . ., (e′

m, �n/2� + 1).) Let E = max{em, e′
m : m ∈ Z}. We claim that E = �n/2�.

Indeed, suppose that E ≤ �n/2� − 1 and without loss of generality assume that

123



766 Discrete Comput Geom (2013) 49:747–777

Fig. 6 The even and odd cases in Theorem 4. The crosses in the odd case represent points whose color is
not fixed (Color figure online)

E = em0 for some integer m0. (If E = e′
m0

, start with g(D) instead of D.) Then
entry (�n/2	, n − em0) has a different color than the entries to its right, namely,
(�n/2	, n − em0 + 1), . . . , (�n/2	, n). By Lemma 9 (for i = �n/2	 and j = n) the
entry (�n/2	, n −em0) has at least min{n −�n/2�−1, �n/2	−1} = �n/2	−1 entries
above with the same color as (�n/2	, n−em0). But this means that e′

m0−1+�n/2	−em0
≥

em0 + 1 = E + 1, a contradiction.
Because E = em0 = �n/2�, all entries in row �n/2	 of M( f m0(D)) are blue. By

Lemma 11 all entries above the entry (�n/2	, �n/2	 + 1) in column �n/2	 + 1 of
M( f m0(D)) are red. This implies that D′ = f m0+�n/2	(D) satisfies the statement. ��

4.3 The Structure of Crossing Optimal Drawings

We are finally ready to investigate the structure of crossing optimal drawings. The
next result is the workhorse behind Theorems 5 and 7, the main results in this section.
To help comprehension, we refer the reader to Fig. 6.

Theorem 4 Let n ≥ 6, e = 0 for n even and e = 1 for n odd, and let D be a crossing
optimal 2-page book drawing of Kn. Then there exists a drawing D′ equivalent to D
such that M(D′) satisfies:

1. for 4 + e ≤ s ≤ �n/2	+ 1 and n + 2 + e ≤ s ≤ n +�n/2	+ 1 the entry (r, s − r)

is blue for all max{1, s − n} ≤ r ≤ (s − 5)/2;
2. for �n/2� + 2 + e ≤ s ≤ n and n + �n/2� + 2 + e ≤ s ≤ 2n − 2 − e the entry

(r, s − r) is red for all max{1, s − n} ≤ r ≤ (s − 5)/2 (except for (1, n), which
by convention is blue);

3. for n odd, the entries (1, �n/2� + 1) and (�n/2	, �n/2� + 1) are red, and the
entries (2, n) and (�n/2�, �n/2� + 2) are blue.
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Fig. 7 The regions TU (D), R(D), and TL (D) (Color figure online)

Proof Let

TU (D) = {(r, c) ∈ M(D) : 2 ≤ c ≤ �n/2�, 1 ≤ r ≤ c − 1},
R(D) = {(r, c) ∈ M(D) : �n/2� + 1 ≤ c ≤ n, 1 ≤ r ≤ �n/2�}, and

TL(D) = {(r, c) ∈ M(D) : �n/2� + 1 ≤ c ≤ n, �n/2� + 1 ≤ r ≤ c − 1}.

We shall prove the theorem first for those entries that lie on R(D), then for those
that lie on TU (D), and finally for those that lie on TL(D).

The entries in R(D)

We refer the reader to Fig. 7. By Lemma 13, we can assume that in M(D)

the entries (1, n), (2, n), . . . , (�n/2	, n) are blue (12)

(in fact (�n/2�, n) can also be assumed to be blue but we do not use this fact) and

the entries (1, �n/2� + 1), . . . , (1, n − 1) are red. (13)

Moreover, we can assume that

the entry (2, n − 1) is red. (14)

(If it is blue, then M(h ◦ g(D)) satisfies (12), (13), and (14)).
We now prove that for each r such that 2 ≤ r ≤ �n/2	,

the entries (r, �n/2� + 1), (r, �n/2� + 2), . . . , (r, 2�n/2	 − r + 1) are red (15)

and

the entries (r, 2�n/2� − r + 2), (r, 2�n/2� − r + 3), . . . , (r, n) are blue. (16)
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Observe that if r = 2 and n is even, then (16) only concerns the entry (2, n),
which is blue by (12). (For r = 2 and n odd, (16) is an empty claim.) Thus we
only need to take care of the base case r = 2 for (15). Since (by (14)) the entry
(2, n − 1) is red, by Corollary 1 the first �n/2	 − 2 entries in the order associated to
(2, n − 1) have a blue point above. By (13) the only candidates to have blue points
above them are the �n/2�−2 entries (2, 3), (2, 4), . . . , (2, �n/2�). (Note that the order
associated to the entry (i, j) only applies to entries in row j to the left of entry (i, j).)
Thus the �n/2� − 2 entries (1, 3), (1, 4), . . . , (1, �n/2�) are blue if n is even, and at
most one of them, say (1, c1), is red if n is odd. Moreover, by Lemma 5 the entries
(2, �n/2� + 1), (2, �n/2� + 2), . . . , (2, n − 2) are red.

For the inductive step, suppose that for some 3 ≤ t ≤ �n/2	, each row r with
2 ≤ r ≤ t−1 satisfies the result. We now prove (15) and (16) for r = t . Suppose that the
entry (t, 2�n/2�−t+2) is red. Then by Corollary 1 each of the first �n/2�−t+1 entries
in the order associated to (t, 2�n/2�−t +2) has at least one blue entry above. Since the
entries (t, �n/2�+1), . . . , (t, 2�n/2	−t+2) have all red above, the only candidates are
the �n/2�−t entries (t, t +1), (t, t +2), . . . , (t, �n/2�) and the entry 2�n/2	−t +3 =
2�n/2�− t + 1 for odd n. But, by Lemma 5, to be a candidate this last entry should be
blue, which is impossible because it would be the first entry in the order associated to
(t, 2�n/2� − t + 2) with at most one blue entry above, contradicting Lemma 9. Since
there are not enough candidates, then the entry (t, 2�n/2� − t + 2) is blue.

Now consider the blue entry (t, n). By Corollary 2 the first �n/2	 − t + 1 entries
in the order associated to (t, n) have all entries above them red. The only candidates
are (t, c1) if it exists, (t, �n/2� + 1), . . . , (t, 2�n/2� − t + 1). For n even, there are
�n/2� − t + 1 = �n/2	 − t + 1 candidates because (t, c1) does not exists, and thus
all of them are red by Lemma 5. For n odd, there are at most 2 more candidates than
we need. By Lemma 5 any blue entry (t, c) with c ≥ �n/2	 + 2 is not a candidate.
Thus at most two of the last �n/2� − t + 1 candidates are blue. Suppose that one of
the entries (t, �n/2� + 1), (t, �n/2� + 2), . . . , (t, 2�n/2	 − t + 1) is blue. Then there
exists �n/2� + 1 ≤ c ≤ 2�n/2� − t such that (t, c) is blue and (t, c + 1) is red. Then
(t, c) is the first entry in the order associated to (t, c + 1) and all entries above it are
red, contradicting Corollary 1. Thus (15) holds and, by Lemma 5 for (i, j) = (t, n),
the rest of (16) holds too.

Note that (15) is vacuous if r = �n/2	 and n is odd. On the other hand, we argue
that it is possible to assume that

for odd n, the entry (�n/2	, �n/2� + 1) is red. (17)

Indeed, suppose that it is blue. Then, by Lemma 11, (�n/2	, �n/2� + 1) is a blue
halving entry with �n/2	 − 1 red entries above and thus all �n/2	 − 1 entries to
its right are blue. Hence, by Lemma 11, (�n/2	, �n/2�) is halving with �n/2	 blue
entries to its right and thus all �n/2	−1 entries above are red. Note that M( f �n/2	(D))

satisfies (12), (13), and (14) and its entry (�n/2	, �n/2�+1) is red. Then we start with
f �n/2	(D) instead of D.

We now prove that the version of (16) for r = �n/2� also holds:

the entries (�n/2�, �n/2� + 2), (�n/2�, �n/2� + 3), . . . , (�n/2�, n) are blue. (18)
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Fig. 8 The upper triangle TU (D) for even and odd n in the proof of Theorem 4 (Color figure online)

Note that (18) only needs to be proved for odd n, since for even n this is the case r =
�n/2	 in (16). Using (12) and (15) it follows that all the entries above (�n/2�, �n/2�+
1) are red. By Lemma 11 (�n/2�, �n/2� + 1) is a halving entry, and so it follows that
all the entries to its right are blue. This proves (18).

We now prove that for 2 ≤ r ≤ �n/2	 − 1

for odd n, the entry (r, n − r + 1) is red. (19)

Note that (17) is a version of (19) for r = �n/2	. Observe that M( f �n/2�(D)) satis-
fies (12) and (13). If (2, n − 1) is red in M( f �n/2�(D)), then the diagonal (r, n − r)

with 1 ≤ r ≤ �n/2	 − 1 in M( f �n/2�(D)) is red by (15). This corresponds to the
diagonal (r, n − r + 1) with 2 ≤ r ≤ �n/2	 in M(D). So now assume that the entry
(2, n − 1) is blue in M( f �n/2�(D)), which corresponds to (�n/2	, �n/2� + 2) being
blue in M(D). In this case, we can assume that (1, �n/2�) is blue. (Otherwise start with
M(h ◦g ◦ f �n/2�(D)) instead of D, which satisfies (12), (13), (14), (�n/2	, �n/2�+1)

is red, and (1, �n/2�) is blue.) Now, by Lemma 11, (�n/2	, �n/2	 + 1) is a halv-
ing entry with �n/2	 of the entries in (10) blue, then all others must be red, i.e.,
(2, �n/2�), (3, �n/2�), . . . , (�n/2	− 1, �n/2�) are red. Assume by contradiction that
(r, n−r +1) is blue for some 2 ≤ r ≤ �n/2	−1. Then (r, n−r +2) is blue, otherwise
(r, n − r + 1) would be the first entry in the order associated to (r, n − r + 2) with
no blue entry above, contradicting Corollary 1. But now the red entry (r, �n/2�) is the
(�n/2� − r)th entry in the order associated to the blue entry (r, n) with a blue entry
above, contradicting Corollary 2 and proving (19).

We finally observe that (12), (13), (14), (15), (16), (17), (18), and (19) prove
Theorem 4 for the entries in R(D).
The entries in TU (D)

We refer the reader to Fig. 8. We prove by induction on c that for 1 ≤ c ≤ � 1
2�n/2�	,

the entries (c + e, �n/2� + 2 − c), . . . , (�n/2	 − c, �n/2� + 2 − c) are red, (20)
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and

the entries (1, �n/2� + 2 − c), . . . , (c − 1 − e, �n/2� + 2 − c) are blue. (21)

We have proved it for c = 1. Suppose that the result holds for all 1 ≤ c ≤ d − 1
and we now prove it for c = d. By Lemma 12 for i = �n/2� + 1 − d, and since by
(16) the �n/2	 − d entries {(i, b) | 2�n/2� − i + 2 ≤ b ≤ i + �n/2�} ∪ {(i + 1, b) |
i +�n/2�+1 ≤ b ≤ n} in (10) are blue, then (i, i +1) has at most d −1+e blue entries
above. Suppose by contradiction that (r, i +1) is blue for some d +e ≤ r ≤ �n/2	−d.
Then (r, i +1) is the first entry in the order associated to (r, n −r +1) and has at most
�n/2�−1−(�n/2	−d)−1 = d−2+e blue entries above. By Lemma 9, (r, i+1) has at
least min{�n/2	−r, r−1} blue entries above and thus min{�n/2	−r, r−1} ≤ d−2+e.
But r − 1 > d − 2 + e because r ≥ d + e, and �n/2	 − r ≥ d > d − 2 + e because
r ≤ �n/2	 − d. Thus (20) holds for c = d.

Look at (i, i + 1) again. The �n/2	 − 1 − 3e entries {(r, i + 1) | d + e ≤ r ≤
i − 1 − e} ∪ {(i, b) | i + 2 + e ≤ b ≤ n − i + 1} in (10) are red and thus, by Lemma
12, at most other 4e entries are red. For n even, 4e = 0 and thus (21) holds. For n
odd, suppose by contradiction that (d − e, i + 1) has a red entry above. We prove that
in this case the entries (d − e, i + 1), (d − e + 1, i + 1), and (i − 1, i + 1) are red.
Since (d − e, n + 1 − d + e) is red, then by Corollary 2 the first �n/2	 + 2 − 2d + 2e
entries in the order associated to (d − e, n + 1 − d + e) have only blue entries above.
If (d − e, i + 1) were blue, then it would be one of the first two entries in the order
associated to (d − e, n + 1 − d + e) with at least one red point above. This means
that 1 ≥ �n/2	 + 2 − 2d + 2e contradicting that d ≤ � 1

2�n/2�	. Thus (d − e, i + 1)

is red. Similarly, (d − e + 1, i + 1) cannot be blue as it would be the first entry in
the order associated to (d − e + 1, n − d + e), which by Lemma 9 should have at
most one red entry above, but (d − e + 1, i + 1) has now at least 2 red entries above.
Now (i − 1, i + 1) is the first entry for (i − 1, n + 2 − i) and, by (20), it has at least
�n/2�+1−2d + e red entries above, i.e., at most d −2− e blue entries above. But by
Lemma 9, the first entry in the order associated to the red entry (i − 1, n + 2 − i) has
at least min{d − 1, i − 2} blue entries above. Thus min{d − 1, i − 2} ≤ d − 2 − e, but
d−1 > d−2−e and i −2 > d−2−e because d ≤ � 1

2�n/2�	, getting a contradiction.
Hence (i − 1, i + 1) is red. By Lemma 12 at most �n/2	 of the entries in (11) are red,
yet we already have �n/2� red entries (namely, at least the �n/2� + 1 − 2d + e above
(i −1, i +1) mentioned before and the 2d−2 entries {(i −1, b) | i +2 ≤ b ≤ n−i +2}
to its right), getting a contradiction. Thus (21) holds for c = d.

Now we prove that for 2 ≤ c ≤ � 1
2�n/2�� + 1,

the entries (1, c), (2, c), . . . , (c − 2 − e, c) are blue. (22)

Since (c − 1, c) is one of the �n/2	 + 5 − 2c entries in the order associated to the red
entry (c − 1, n + 2 − c) (we have shown that the �n/2	 − 1 − e entries immediately
to the left of (n + 2 − c) are red), then (c − 1, c) has at most one red entry above by
Lemma 9. Suppose by contradiction that (r, c) is red for some 1 ≤ r ≤ c−2−e. Then
(r + 1, c) is blue. Since (r + 1, n − r) is red, then by Corollary 2 the first �n/2	 − 2r
entries in the order associated to (r + 1, n − r) have only blue entries above. But
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Fig. 9 The lower triangle TL (D) versus the upper triangle TU ( f �n/2�(D)) for even and odd n in the proof
of Theorem 4 (Color figure online)

(r + 1, c) is one of the first �n/2	 − 2r entries and has the red entry (r, c) above,
getting a contradiction.

We finally note that (20), (21), and (22) prove Theorem 4 for the entries in TU (D).
The entries in TL(D)

We refer the reader to Fig. 9. Consider f �n/2�(D). When n is even, see Fig. 9 (left),
R(D) and R( f �n/2�(D)) are identical and thus our previous arguments show that
TU (D) and TU ( f �n/2�(D)) = TL(D) are identical too, concluding the proof in this
case. When n is odd, see Fig. 9 (right), R(D) and R( f �n/2�(D)) are slightly different:
for 2 ≤ r ≤ �n/2	 the diagonal entries (r, n + 1 − r) are red in R(D) and unfixed
in R( f �n/2�(D)), and for 3 ≤ r ≤ �n/2	 the diagonal entries (r, n + 2 − r) are
unfixed in R(D) and blue in R( f �n/2�(D)). Also the last row of R(D) is blue and
the last row of R( f �n/2�(D)) is unfixed. However, the last column of TU ( f �n/2�(D))

is red and this is what allows us to mimic the arguments used for (20), (21), and
(22) to show that TL(D), which corresponds to TU ( f �n/2�(D)) minus its last column,
satisfies the statement. More precisely, it can be proved by induction on c that for
1 ≤ c ≤ � 1

2�n/2�	, in M( f �n/2�(D))

the entries (c + 1, �n/2� + 1 − c), . . . , (�n/2	 − c − 1, �n/2� + 1 − c) are red

(23)

and

the entries (1, �n/2� + 1 − c), . . . , (c − 2, �n/2� + 1 − c) are blue. (24)

We omit the proofs of (23) and (24), as they very closely resemble the proofs of
(20) and (21). Similarly, it can be proved by induction that for 2 ≤ c ≤ � 1

2�n/2��,
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in M( f �n/2�(D))

the entries (1, c), (2, c), . . . , (c − 3, c) are blue. (25)

The proof of (25) is also omitted, as it very closely resembles the proof of (22). We
finally note that (23), (24), and (25) prove Theorem 4 for the entries in TL(D). ��

4.4 The Number of Crossing Optimal Drawings

Theorem 4 completely determines M(D′) when n is even, which means that in this
case there is essentially only one crossing optimal drawing.

Theorem 5 For n even, up to sphere-homeomorphism, there is a unique crossing
optimal 2-page book drawing of Kn.

Proof The result is easily seen to hold for n = 2 and n = 4. For n ≥ 6 Theorem 4
completely determines M(D′). Note that this matrix corresponds to the drawings by
Blažek and Koman [8]. ��

In contrast to the even case, for n odd there is an exponential number of non sphere-
homeomorphic crossing optimal 2-page book drawings of Kn . For any odd integer
n ≥ 5, we construct 2(n−5)/2 non-equivalent crossing optimal drawings of Kn . In fact,
these 2(n−5)/2 drawings are pairwise non homeomorphic. To prove this, we need the
next two results.

Theorem 6 For every n ≥ 13 odd, every crossing optimal 2-page book drawing of
Kn has exactly one Hamiltonian cycle of non-crossed edges, namely the one obtained
from the edges on the spine and the 1n edge.

Proof Assume n ≥ 13 is odd. To show that 123 . . . n is the only non-crossed Hamil-
tonian cycle, we show that all other edges are crossed at least once. Assume that D
has the form described in Theorem 4. Let (r, c) be an entry of M(D) that does not
represent an edge on the spine or the 1n edge. Let

(r, c)+ =
{

(r + 1, c + 1) if c < n, or
(1, r + 1), if c = n,

and (r, c)− =
{

(r − 1, c − 1) if r > 1, or
(c − 1, n), if r = 1.

Note that the edges corresponding to (r, c)+ and (r, c)− cross the edge rc if they have
the same color as (r, c).

First assume that 3 ≤ c − r ≤ n − 3. Suppose that (r, c) is a blue entry specified
by Theorem 4. If 5 ≤ r + c ≤ �n/2	 − 1 or if n + 3 ≤ r + c ≤ n + �n/2	 − 1, then
note that the entry (r, c)+ is also blue according to Theorem 4, and thus the edges
corresponding to (r, c) and (r, c)+ cross each other.

Because n ≥ 13, if �n/2	 ≤ r+c ≤ �n/2	+1 or n+�n/2	 ≤ r+c ≤ n+�n/2	+1,
then 5 ≤ �n/2	−2 ≤ r +c −2 ≤ �n/2	+1 or n +3 ≤ n +�n/2	−2 ≤ r +c −2 ≤
n+�n/2	+1, respectively. Thus the entry (r, c)− is also blue according to Theorem 4,
and thus the edges corresponding to (r, c) and (r, c)− cross each other.
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A similar argument shows that for every red entry (r, c) specified by Theorem 4,
either (r, c)+ or (r, c)− is also a red edge.

Second, assume that c − r = n − 2, that is (r, c) ∈ {(1, n − 1), (2, n)}. If (r, c) =
(1, n−1), then (r, c) is red and because (2n−4) ≥ n+�n/2�+2 for n ≥ 13, it follows
that rc crosses the edge corresponding to (n − 3, n), which is red. If (r, c) = (2, n),
then (r, c) is blue and because �n/2	 ≥ 4 for n ≥ 13, it follows that rc crosses the
edge corresponding to (1, 4), which is blue.

Suppose now that the color of (r, c) is not determined by Theorem 4. First assume
that r +c ∈ {�n/2	+2, �n/2�+2, n+�n/2	+2, n+�n/2�+2}. Again, by Theorem 4
note that (r, c)− is blue and (r, c)+ is red. Similarly, if r + c = n + 2, then (r, c)− is
red and (r, c)+ is blue. Thus regardless of its color, the edge rc will cross one of the
two edges corresponding to these two entries.

Finally, assume c − r = 2. From Theorem 4, the number of red entries of the form
(t, r + 1) or (r + 1, d), with 1 ≤ t ≤ r and r + 3 ≤ d ≤ n is at least �n/2	 − 5 ≥ 1.
A similar statement holds for the number of blue entries of the same form. Thus there
is at least one blue edge (not on the spine) and at least one red edge incident to r + 1.
One of these two edges will necessarily cross the edge rc regardless of its color. ��

Note that for n ≤ 11 the above approach cannot guarantee that there are no addi-
tional non-crossed edges. For example for n = 11 the element (1, 10) cannot be
determined. However, these small cases can be handled by exhaustive enumeration,
which shows that for crossing optimal drawings there are no such edges for n = 11
and no alternative Hamiltonian cycles for n = 9. For n = 5, 7 there exist alternative
Hamiltonian cycles of non-crossed edges, but they do not lead to additional equiva-
lences between the crossing optimal drawings.

Corollary 3 If D and D′ are sphere-homeomorphic crossing optimal 2-page book
drawings of Kn, then M(D) and M(D′) are equivalent.

Proof If n is even the result is trivial by Theorem 5. If n is odd and n ≤ 11, then using
Theorem 4 we exhaustively found all equivalence classes of crossing optimal drawings.
There are 1, 4, 9, and 25 equivalence classes for n = 5, 7, 9, and 11, respectively.
We verified that all of these equivalence classes were non sphere-homeomorphic. If
n ≥ 13 and D and D′ are crossing optimal 2-page book drawings, then by the previous
theorem both D and D′ have only one non-crossed Hamiltonian cycle. Thus if H is a
homeomorphism of the sphere sending DS to D′

S , then H must send the Hamiltonian
cycle 123 . . . n to itself. It follows that H restricted to this cycle is the composition of
a rotation of the cycle with either the identity, or the function that reverses the order of
the cycle. Moreover, once the edges on the spine are fixed, the drawing is determined
by the colors of the remaining edges. Thus either H is determined by its action on
the cycle, or else H switches the blue edges not on the spine with the red edges. In
other words, M(D′) = M((ha ◦ gb ◦ f i )(D)) for some i ∈ {0, 1, 2, . . . , n − 1} and
a, b ∈ {0, 1}. Thus M(D) and M(D′) are equivalent. ��
Theorem 7 For n odd, there are at least 2(n−5)/2 pairwise non sphere-homeomorphic
crossing optimal 2-page book drawings of Kn.
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Fig. 10 The 28 crossing
optimal drawings (only 27

non-equivalent) for n = 19 in
Theorem 7. They are obtained
by assigning arbitrary colors to
the crosses in this matrix (Color
figure online)

Proof As usual let 1, 2, . . . , n be the vertices of Kn . Let rc be an edge of Kn that is
not on the Hamiltonian cycle H = 12 . . . n, we color rc red or blue according to the
following rule: if r + c ≡ s (mod n) for some integer 2 ≤ s ≤ (n + 1)/2, then we
color rc blue, if r + c ≡ s (mod n) for some integer (n + 5)/2 ≤ s ≤ n + 1, then
we color rc red. Finally, if r + c ≡ (n + 3)/2 (mod n), then we color rc either red or
blue. See (Fig. 10.)

We first argue that all of these colorings yield crossing optimal drawings of Kn

regardless of the color of the (n − 3)/2 edges rc for which r + c ≡ (n + 3)/2
(mod n).

For every 1 ≤ s ≤ n, let Is = {rc edge: rc /∈ H and r +c ≡ s (mod n)}. Note that
|Is | = (n −3)/2 for all s and

⋃n
s=1 Is is the complete set of edges not in H . Moreover

note that each Is is a matching of pairwise non-crossing edges.
Let rc be an edge such that r + c ≡ (n + 3)/2 (mod n). Assume without loss of

generality that r < c. If td is an edge that crosses rc, then t and d are cyclically
separated from r and c; that is, we may assume that r < t < c and d < r or d > c. To
facilitate the case analysis we may assume that the edges that could cross rc are the
edges td such that r < t < c < d < n + r , with the understanding that d represents
the point d − n when d > n. Let C = {td edge: r < t < c < d < n + r} and
consider the function T : C → C defined by T (td) = t ′d ′ where t ′ = r + c − t and
d ′ = r + c + n − d. Note that T is well defined because r < t ′ < c < d ′ < n + r
and T is one-to-one on C . Moreover, note that

t ′ + d ′ ≡ r + c + n + r + c − t − d (mod n)

≡ 2(r + c) − (t + d) (mod n)

≡ (n + 3) − (t + d) ≡ 3 − (t + d) (mod n),

so t + d ≡ s (mod n) with 2 ≤ s ≤ (n + 1)/2 if and only if t ′ + d ′ ≡ 3 − (t + d) ≡
n+3−s (mod n) and (n+5)/2 ≤ n+3−s ≤ n+1. Thus td and T (td) have different
colors, which means that C contains as many red edges as blue edges. Hence rc crosses
the same number of edges independently of its color. This shows that all the drawings
we have described have the same number of crossings. Finally, we note that the drawing
for which all the arbitrary edges have the same color corresponds to the construction
originally found by Blažek and Koman [8] having exactly Z(n) = 1

64 (n −1)2(n −3)2

crossings. Hence all the other drawings described are crossing optimal as well.
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Table 1 The number of non
sphere-homeomorphic crossing
optimal 2-page book drawings
of Kn for odd n, 5 ≤ n ≤ 37

n Drawings n Drawings n Drawings

5 1 17 324 29 38,944

7 4 19 748 31 84,064

9 9 21 1,672 33 180,288

11 25 23 3,736 35 385,216

13 58 25 8,208 37 819,328

15 142 27 17,968

We now argue that every drawing constructed here is equivalent to exactly one other
drawing. Let D and D′ be two of the crossing optimal drawings we just constructed
and suppose that M(D) and M(D′) are equivalent. Thus there exists a transformation
F : D → D′ such that F = ha ◦gb ◦ f i with i ∈ {0, 1, 2, . . . , n−1} and b, a ∈ {0, 1}.
First observe that under f , g, or h, the absolute value difference of the number of red
minus blue edges remains invariant. Thus the drawing D in which all of the edges in
I(n+3)/2 are red can only be equivalent to the drawing D′ in which all of those edges
are blue. These two are indeed equivalent under the function F = h ◦ g ◦ f (n+1)/2.
Now suppose that the edges I(n+3)/2 in D and in D′ are not all of the same color. Note
that f, g, and h send Im into another Im′ , and if Im is monochromatic (all edges of
Im have the same color) in D, then Im′ is monochromatic in f (D), g(D), and h(D).
Since Im is monochromatic in D if and only if m = (n + 3)/2, then F must send
I(n+3)/2 to itself. If b = 0, rc ∈ I(n+3)/2, and r ′c′ is the image of rc under F , then
r ′ + c′ ≡ r − i + c − i (mod n). Thus r ′ + c′ ≡ r + c (mod n) if and only if i = 0.
Because the edges I1 in D are blue and the edges I1 in h(D) are red, it follows that
a = 0 and thus F is the identity. Last, if b = 1, rc ∈ I(n+3)/2, and r ′c′ is the image of
rc under F , then r ′ + c′ ≡ (n + 1 − (c − i)) + (n + 1 − (r − i)) ≡ 2 + 2i − (r + c)
(mod n). Thus r ′ + c′ ≡ r + c (mod n) if and only if i = (n + 1)/2. Because
the edges I1 in both D and h( f (n+1)/2(D)) are blue, it follows that a = 1 and thus
F = h ◦ g ◦ f (n+1)/2. It can be verified that indeed F(D) is one of the drawings
we constructed here, and thus exactly half of the drawings we described are pairwise
non-equivalent. Therefore, by Corollary 3 we have constructed exactly 2(n−5)/2 non
sphere-homeomorphic drawings of Kn . ��

The above theorem gives a lower bound of 2(n−5)/2 for the number of non sphere-
homeomorphic crossing optimal drawings. As in the crossing optimal drawings of
Theorem 4 there are 5

2 (n − 5) entries with non-fixed colors, we get an upper bound
of 25(n−5)/2 non sphere-homeomorphic crossing optimal drawings. We were able to
determine the exact numbers of non sphere-homeomorphic crossing optimal drawings
for n ≤ 37 (see Table 1) by using exhaustive enumeration. The obtained results suggest
an asymptotic growth of roughly 20.54n , rather close to our lower bound.

5 Concluding Remarks

Our approach to determine k-edges in the topological setting is to define the orientation
of three vertices by the orientation of the corresponding triangle in a good drawing
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of the complete graph. It is natural to ask whether this defines an abstract order type.
To this end, the setting would have to satisfy the axiomatic system described by
Knuth [21]. But it is easy to construct an example which does not fulfill these axioms,
that is, our setting does not constitute an abstract order type as described by Knuth [21].
It is an interesting question for further research how this new concept compares to the
classic order type, both in terms of theory (realizability, etc.) and applications.

We believe that the developed techniques of generalized orientation, k-edge for
topological drawings, and ≤≤k-edges are of interest in their own. We will investigate
their usefulness for related problems in future work. For example, they might also
play a central role to approach the crossing number problem for general drawings of
complete and complete bipartite graphs.
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