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The 2 × 2 Table: A Discussion from a
Bayesian Viewpoint
J. V. Howard

Abstract. The 2 × 2 table is used as a vehicle for discussing different
approaches to statistical inference. Several of these approaches (both
classical and Bayesian) are compared, and difficulties with them are
highlighted. More frequent use of one-sided tests is advocated. Given
independent samples from two binomial distributions, and taking inde-
pendent Jeffreys priors, we note that the posterior probability that the
proportion of successes in the first population is larger than in the second
can be estimated from the standard (uncorrected) chi-square significance
level. An exact formula for this probability is derived. However, we argue
that usually it will be more appropriate to use dependent priors, and we
suggest a particular “standard prior” for the 2× 2 table. For small num-
bers of observations this is more conservative than Fisher’s exact test,
but it is less conservative for larger sample sizes. Several examples are
given.

Key words and phrases: Bayesian statistics, two by two contingency ta-
bles, Fisher’s exact test, Yates’s correction, chi-square tests, significance
tests, p-values, likelihood principles, conditioning, ancillarity, dependent
prior distributions, posterior probability.

1. INTRODUCTION

Suppose that independent random samples are
drawn from two large populations, and each mem-
ber classified as a “success” or a “failure.” The first
sample is of size n1 and yields a successes and b fail-
ures. The second, of size n2, yields c successes and d
failures. The data is displayed in the familiar 2× 2
table (see Table 1). It is required to give some idea
of the extent to which the data supports (or goes
against) the hypothesis that the success proportion
in the second population, p2, is greater than that in
the first population, p1:

This apparently simple problem has given rise
to a large literature, stretching back to Karl Pear-
son’s introduction of the chi-square goodness-of-fit
test (Pearson, 1900), which he applied to this situ-
ation with three degrees of freedom. This was in-
correct, because the “expected” values used for the
chi-square calculation are computed so as to have
the right row and column totals, and thus will fit
the “observed” values more closely than if they were
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simply constrained to the correct overall total. Pear-
son’s error was corrected by Fisher, and the result-
ing dispute led to a lifelong split between the two
men. An interesting survey of the problem (includ-
ing other variants) is given by Yates (1984). The
continuing high level of interest may perhaps be due
to the fact that this is one of the simplest natural
problems to demonstrate clear differences between
classical and Bayesian analyses, and also between
different types of classical analysis. It thus forms a
sort of “test-bed” for different approaches to statis-
tical inference.

Our general approach will be to imagine that we
have been asked to appear before a government
committee of nonstatisticians. They wish to be in-
formed whether the data favours H1x p2 < p1 or
H2x p1 < p2, and to be given a quantitative mea-
sure of the strength of the evidence in support of the
more likely hypothesis. Everyone is certain that p1
and p2 will not be exactly equal, and that neither
will be 0 or 1. For example, they might be inter-
ested in whether English or Scots cattle herds have
a higher proportion of cows infected with a certain
virus. They are sure that in each population some
(but not all) cows will have the virus; and from ex-
perience with other diseases they are sure that the
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Table 2
Classification of 2× 2 table variants

Number of Number of
Type populations Parameters Procedure margins fixed

Double dichotomy 1 p11; p12; p21; p22
Take random sample from the population; classify in

two ways
0

Two binomials 2 p1 and p2 Take a random sample from each population; classify 1

Comparative trial 1 p1 and p2
Take a random sample from the population; make a

random allocation of treatments
1

Tea tasting 1
p1 and p2 or
p=p1=p2

Take a random sample from the population; make a
random allocation of treatments 2

Table 1
Data in the 2× 2 table

Successes Failures Total

Sample 1 a b n1
Sample 2 c d n2

Totals m1 m2 N

two proportions will not be exactly equal. (So we
are given that p1 and p2 are neither 0 nor 1, and
that p1 6= p2.) Note that there is no natural null
hypothesis.

There are of course a number of variations on this
problem. Instead of two populations, we might have
two treatment groups (a comparative trial). Sup-
pose, for example, we wish to know which of two
treatments has a higher success rate. We are sure
that without any treatment the success rate is zero,
and that neither treatment has a 100% success rate,
although both sometimes succeed. Since the treat-
ments have different bases, we are sure there will
be a difference in the success rates, but we are not
sure in which direction. Neither treatment is estab-
lished as standard, so again there is no natural null
hypothesis. In this variant, instead of random sam-
ples from two populations, we take a single random
sample from a population of “experimental units,”
and then make a random allocation of treatments
among the units.

If one of the treatments was a placebo and the
other was (say) a homeopathic remedy, it might be
reasonable to test the point null hypothesis of no
treatment effect at all. Similarly, if we were testing
for extrasensory perception we might regard the hy-
pothesis of zero effect as being very possibly exactly
true. In this paper, we do not consider situations of
this type where a precise null hypothesis is to be
tested (but see Berger and Delampady, 1987, and
Berger, Boukai and Wang, 1997).

Two other alternative situations will not be con-
sidered in detail. First, we could have a single ran-
dom sample of size N from one population, each

member of the population being classified in two
different ways (a double dichotomy). The parame-
ters for this problem are the probabilities p11, p12,
p21, p22 of the four cells. Second, there is the “lady
tasting tea” discussed by Fisher in The Design of
Experiments (Fisher, 1935). Here, we again have a
random sample of experimental units (in this case,
cups of tea), and as before we make a random alloca-
tion of treatments (preparing the tea by pouring the
milk first or last). However, the taster is told how
many cups were given each treatment, so when she
classifies them she will definitely get the correct to-
tal numbers in each group. In this case the model
might involve two parameters: p1 and p2, where pi
is the probability of guessing correctly when pre-
sented with a single cup which was given treatment
i (or it might have just one parameter p if we as-
sumed p1 = p2). These variations differ from our
problem in the amount we know about the marginal
totals in the table (m1, m2, n1 and n2) before the
data is collected or the experiment performed. Ta-
ble 2 summarizes the four possibilities.

In order to prepare our evidence to the commit-
tee, we begin by reviewing briefly in Section 2 the
general ideas available from classical and Bayesian
statistics. Then in Section 3 we take a particular ta-
ble and ask what sort of statement different types of
statisticians might make to the committee. Our gen-
eral approach will be that, after the data has been
collected, a statistician can make various possible
hypothetical statements to indicate the strength of
the evidence in favor of one hypothesis as against
the other. Each hypothetical statement is intended
to be unarguably correct (given the model and all
the background assumptions). So a statistician of
any persuasion would accept all of the hypothet-
icals as true, but he might feel that some of them
were completely irrelevant to the question being ad-
dressed. A classical statement, for example, might
begin “if H1 were true, and if the experiment were
repeated many times : : : .” A Bayesian might start
“if the prior were f�p1; p2�, then the posterior would
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be : : : .” Of course the Bayesian should first make
the indicative statement “my prior was : : : , so my
posterior is : : : ,” but when she wanted to commu-
nicate her results to other statisticians (even other
Bayesian statisticians) she would be likely to use
some form of standard prior, or else give results for
a whole range of priors.

Sections 4 and 5 discuss some problems with the
classical approaches (including stopping rules and
two-sided tests). Then we attempt some sort of rec-
onciliation of the different calculations. It is obvi-
ously convenient if the same computation can have
both a classical and a Bayesian interpretation (i.e.,
can be used to give the numbers to be fed into both
classical and Bayesian hypothetical statements). We
observe in Section 6 that the usual uncorrected chi-
square test can be regarded as giving an approxima-
tion to a Bayesian posterior probability that p2 <
p1. However, we have to assume independent prior
beliefs about the two populations in order to get this
result, and we feel this will often not be a reason-
able approximation to the statistician’s prior. Conse-
quently we introduce in Section 7 a conjugate fam-
ily of priors which incorporate dependence between
beliefs about the two populations. It appears that
fairly mild beliefs about dependence can make our
posterior statements much more cautious for small
sample sizes. We compare various amounts of prior
dependence and suggest one particular prior as a
“standard” dependent prior. Although a Bayesian
should use her own prior, she may also need to ex-
hibit results from a range of priors for the benefit
of other statisticians, and the inclusion of one (or
more) standard priors in this set makes it easier for
others to judge the strength of evidence in a given
body of data.

2. INITIAL REVIEW

In the two binomials problem the unknown state
of the world can be represented by a point P =
�p1; p2� in the unit square (see Figure 1).

The data can be shown (Figure 2) as the point
D = �a; c� in the rectangle with dimensions �n1; n2�.
This rectangle could be rescaled to the unit square
and D would then become the point P̂ = �p̂1; p̂2�,
where p̂1 = a/n1 and p̂2 = c/n2 are the observed
success proportions in the two populations; P̂ is an
estimate of the unknown P.

Now our problem is this: given D (a specific point
in the upper triangle of Figure 2), how strong is the
evidence against P’s lying in the lower H1 trian-
gle of Figure 1? There are three main non-Bayesian
approaches to this problem.

Fig. 1. The unknown population parameters are shown by the
point P with coordinates �p1; p2� in the unit square �parameter
space�x p1 is larger than p2 in triangle H1, and smaller than p2
in H2.

Fig. 2. The sample space consists of all pairs �a; c�, where a
is the number of successes in population 1 and c the number in
population 2. The observed data can be shown as the point D in
this space.

2.1 A Likelihood Approach

A good starting point is to look at the likelihood
function, namely, the probability of getting the data
D as a function of the positions of P. This is

l�p1; p2� = pa1�1− p1�bpc2�1− p2�d:

We could, for example, look at the ratio of the max-
imum likelihood we can achieve when P is uncon-
strained to the maximum that can be achieved when
P is constrained to the H1 triangle. Contours of one
particular scaled likelihood function (for the numer-
ical example discussed in Section 3) are shown in
Figure 3. In this example a = 3, b = 15, c = 7
and d = 5, and the figure plots contours of 1:5 ×
108l�p1; p2�. (The diagram shows that a likelihood
ratio greater than 9 can be achieved in this case.)
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Fig. 3. The likelihood function l�p1; p2� achieves its maximum
at P̂ with coordinates �a/n1; c/n2�. Contours of 1:5×108l are plot-
ted. There is a likelihood ratio of at least 9 between points within
the smallest contour around P̂ and points outside the largest con-
tour.

This approach holds resolutely to the idea that
we should take into account the probability of what
was observed, but definitely not the probabilities
of things that were not observed. Edwards (1972)
based his approach to statistical inference on like-
lihood, but used on its own it can lead to prob-
lems (see Fraser, Monette and Ng, 1984, and the
discussion in Goldstein and Howard, 1991). How-
ever, the Bayesian approach would use the likeli-
hood function to weight the prior distribution over
the unit square in Figure 1, and then renormal-
ize to obtain a posterior distribution. In fact, with
a uniform prior Figure 3 would show contours of
the scaled posterior—the posterior would be propor-
tional to l�p1; p2�. Integrating the posterior over the
lower triangle gives the Bayesian posterior probabil-
ity that H1 is true, which is the sort of number we
are seeking. With a uniform prior, this probability is

∫ 1
p1=0

∫ p1
p2=0 l�p1; p2�dp2 dp1

∫ 1
p1=0

∫ 1
p2=0 l�p1; p2�dp2 dp1

:

Provided the prior is proper, the Bayesian approach
does not seem to lead to any paradoxes.

2.2 Frequentist Inference

Classical statisticians go in the opposite direction.
Instead of keeping D fixed and allowing P to vary,
they would tend to look first at a fixed P in the H1
triangle of Figure 1, and then calculate the probabil-
ity of observing a point in some “extreme region” of
the upper triangle of Figure 2 which just includes
D. This is a p-value calculation. (The idea is ba-

sically that either H1 is false or an event with a
surprisingly low probability has occurred.) For ex-
ample, we could take as a measure of the evidence
in favor of H2 �p2 > p1� over H1 �p2 < p1� the dif-
ference between the proportion of successes in the
two populations �p̂2 − p̂1�. Let this “test statistic”
be the random variable V:

V = p̂2 − p̂1 =
c

n2
− a

n1
:

Suppose the value of V at the data point D is
V�D� = v. We can now calculate the probability
that if the experiment were repeated (for some
fixed P� we would obtain a new value for p̂2 − p̂1
as large or larger than v. Figure 4 shows the line
V = v through D (parallel to the main diagonal
of the rectangle) and shades the “critical region”
where V ≥ v.

In fact p̂2− p̂1 is never used as a test statis-
tic in this simple form. Instead it is standardized
in some way. Very commonly it is rescaled by di-
viding by the standard deviation it would have if
p1 = p2 = m1/N = �a+ c�/�a+ b+ c+ d�, i.e., the
total number of successes in the two populations
divided by the total number of trials, the pooled es-
timate of a common success proportion. The point
P = �m1/N;m1/N� lies on the diagonal of param-
eter space (Figure 1), but when it is rescaled it can
be plotted in sample space as the point E in Fig-
ure 5, which is the point on the diagonal of the rect-
angle such that DE has slope −1. This estimation
of a common success proportion by pooling leads to
Yule’s test statistic

Z =
{
ad− bc

}
√

a+ b+ c+ d
�a+ b��c+ d��a+ c��b+ d� ;

which gives a critical region similar to that shown
in Figure 5. (The diagrams continue to be based

Fig. 4. One possible critical region �shaded� would consist of all
combinations of a and c for which V = p̂2 − p̂1 = c/n2 − a/n1 is
greater than or equal to V�D�; the value for p̂2− p̂1 found in the
experiment.
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Fig. 5. The shaded region shows the points in the upper triangle
of the sample space for which Pearson’s chi-square statistic is
greater than or equal to the observed chi-square value at D; E is
the point in sample space which has the same number of successes
in total �a+ c� as D but having equal proportions of successes in
the two populations.

on the numerical example discussed in Section 3.)
Yule’s statistic is in fact simply the signed square
root of Pearson’s (uncorrected) chi-square statistic
for the 2× 2 table.

Another possibility is to calculate a confidence in-
terval for p2 − p1 and see whether the interval in-
cludes zero. This means that we standardize p̂2−
p̂1 by dividing by the standard deviation it would
have if in fact p1 = p̂1 = a/n1 and p2 = p̂2 = c/n2
(i.e., if P was in fact P̂�. So we do not estimate a
common success proportion by pooling, but instead
make a separate estimate for each population. This
leads to the unpooled test statistic

W =
{
ad− bc

}
√

�a+ b��c+ d�
ab�c+ d�3 + cd�a+ b�3 :

Since we will be making exact calculations, all
that matters is the ordering of the points in the
sample space imposed by the test statistic. Suissa
and Shuster (1985) noted that when the two sam-
ple sizes are equal �n1 = n2� Z and W are increas-
ing functions of each other, and so give the same
ordering of the sample space. Hence in this case
pooling and not pooling are equivalent when an ex-
act calculation is made. (Robbins, 1977, had asked
which was more powerful.) However, when the sam-
ple sizes are unequal the orderings may differ: Fig-
ure 6 shows the two boundary lines for the critical
region in our example (the dashed line is the un-
pooled boundary). When the two orderings are dif-
ferent, it is easy to see that for some data points
one ordering will give a smaller p-value, while for
other data points the other ordering will give the
smaller number. Barnard (1947) discussed desirable
attributes for a logical ordering. In this paper we
will use the ordering induced by Yule’s statistic.

Fig. 6. Boundaries of the critical regions which just include D
for the two test statistics Z and W.

Even after deciding on the exact boundary of the
critical region, there is still the problem of which
point P in the H1 triangle to use to calculate the
probability that the extreme event will occur. We
will usually find the location for P which maxi-
mizes the probability of the critical event. This will
never be found in the interior of the H1 triangle,
but will always occur on the boundary of the trian-
gle, the diagonal line p2 = p1. Figure 7 shows some
contour lines along which P gives equal probability
to the critical region of Figure 5—the region where
Z ≥ Z�D�. So the location for P that we are seek-
ing will be found along the contour line of highest
probability which just touches p2 = p1 (this gives
the highest probability that can be achieved when
P is restricted to the H1 triangle, because contours

Fig. 7. The probability that Z ≥ Z�D� is a function ζ of p1 and
p2x ζ is 1 when �p1; p2� = �0;1� and 0 when p1 = 1 or p2 = 0.
Contour lines of ζ are plotted for ζ = 0:01; 0:2; 0:4; 0:6 and 0:8.
It is just possible for ζ to be larger than 0:01 for values of p1, p2
in the H1 triangle.
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of higher probability will lie entirely within the H2
triangle).

2.3 Conditional Inference

However, many classical statisticians follow
Fisher (1945) in thinking that the appropriate
probability should be conditional on the observed
marginal totals m1 and m2. This means that we
condition on D lying on the straight dashed line
with slope −1 shown in Figure 8. Two arguments
are given to support this conditional inference
approach.

First, we are invited to compare this problem to
one where we are interested in a single binomial pa-
rameter p, and we make m independent trials with
probability p of success. However, m is first sam-
pled from a distribution with unknown parameter
q. We know of no relationship between p and q. So
our data is the number of successes s and the sam-
ple size m, and the parameters are p (of interest)
and q (nuisance). The likelihood can be written as

L�s;m � p;q� = φ�s �m;p�ψ�m � q�:

Note that ψ has no dependence on p and q is not
involved in φ. In this situation—where the sample
size m is (partial) ancillary for p (does not depend
on p)—it is argued that we should make the same
inferences about p as when m is fixed and given
from the start (see Lehmann, 1986, and Cox and
Hinkley, 1974); m affects the informativeness of the
experiment, but gives no information about p.

It is next suggested that we look at the parame-
ters of our problem as (say) the odds ratio

r = p1�1− p2�
�1− p1�p2

Fig. 8. The line with slope −1 through D corresponds to data
having the same total number of successes �i.e.; corresponds to
a set of 2 × 2 tables with the same marginal totals as for the
observed data D�.

(of interest) and the odds product

t = p1p2

�1− p1��1− p2�
(nuisance), with data m1 (showing the informative-
ness of the experiment—values of m1 near 0 or N
being uninformative) and a (directly relevant); r is
of interest because it is a measure of the discrep-
ancy between p1 and p2, whereas t measures a sort
of average of p1 and p2 (

√
t is the geometric mean

of the odds of p1 and p2). We would now hope to be
able to write the likelihood in the form

L�a;m1 � r; t� = φ�a �m1; r�ψ�m1 � t�:
Unfortunately, however, no matter how we reparam-
eterize, m1 is not an ancillary statistic; φ—the con-
ditional distribution of a given the column totals
m1 and m2—is indeed a function of r alone, with
no dependence on t. Although ψ—the distribution
of m1—depends mainly on t, it also has some de-
pendence on r. The argument therefore has to be
made approximate: m1 contains very little informa-
tion about r, so we should treat it as if it were
ancillary.

Another consequence of this is that a Bayesian ap-
proach which put independent priors on r and t and
then calculated a posterior for r using just the con-
ditional likelihood φ would not be exactly correct.
(Cornfield, 1956, used the fact that φ depends only
on r to calculate exact and approximate confidence
limits for r corresponding to the use of Fisher’s con-
ditional test.)

The second argument for conditioning looks at
Figure 7 and notes that some points in the H1 tri-
angle give a higher probability to the critical re-
gion than other points in the H2 triangle. (See the
1% probability contour.) Assuming that this is un-
desirable, is it possible to alter the critical region
so as to make the diagonal a contour line? Tocher
(1950) showed that this can be done, provided that
the test does not depend only on the observed data
�a; c�, but also on the result of a separate indepen-
dent random draw from a uniform distribution on
�0;1�. (This gives the UMP unbiased test of p2 = p1
against p2 > p1.) This randomized test for a given
significance level, α, is in fact a conditional test with
the randomization used to achieve the exact α re-
quired — so we use the random number only when
the data point D is the first point outside the un-
randomized level-α conditional critical region as we
move along the line through D with constant m1.
This result strengthens the argument for a condi-
tional test, even though many would baulk at mak-
ing a separate randomization before declaring sig-
nificance.
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Table 3
Pearson’s example

Successes Failures Total

Sample 1 3 15 18
Sample 2 7 5 12

Totals 10 20 30

We will draw on these classical and Bayesian
ideas in order to construct various possible hypo-
thetical statements that we might make to our
committee members.

3. HYPOTHETICAL STATEMENTS

Supposing that the data has been collected, we
can now consider various possible statements which
could be made to indicate the strength of the ev-
idence in favor of one hypothesis and against the
other. If the general model of the situation is ac-
cepted, there is no argument about the accuracy of
these statements, only about which statement is
most appropriate. Let us illustrate with a particu-
lar example from Egon Pearson (1947). The data,
given in Table 3, would certainly seem to suggest
fairly strongly that there is a higher proportion
of successes in population 2 than in population 1.
But how strongly? Here are some statements that
could be made to the committee after collecting the
data.

The unconditionalist. If in fact H1 is true
�p2 < p1� and if the experiment were repeated
independently, once again sampling 18 subjects
randomly from population 1 and 12 randomly from
population 2, the probability that we would achieve
a result as extreme as or more extreme than this
(and in the same direction) would be at most 1.23%.

1. An alternative phrasing often used in textbooks
speaks of “repeating the experiment many times”
giving a proportion of times with an equally or
more extreme result of 1.23%. The second state-
ment simply results from applying the strong law
of large numbers and using the first statement.

2. We have taken the “extremity” of a result as be-
ing determined by the value of its uncorrected
chi-square statistic as discussed in Section 2,
giving the critical region shown in Figure 5. This
figure is somewhat misleading because the prob-
lem is discrete. Figure 9 shows the finite set
of extreme outcomes (marked with asterisks).
We can notice that although the data point D
(namely, the point �3;7� with m1 = 10) has a

Fig. 9. Points in the sample space for Pearson’s examplex points
in the critical region of Figure 5 are shown as asterisks.

Yule statistic of 2.37, the other boundary points
have higher values. For example, if m1 = 9, the
least extreme point is �2;7� with Yule statis-
tic 2.77, and if m1 = 8, it is �1;7� with Yule
statistic 3.20.

3. In practice the unconditionalist usually does not
bother to calculate the exact probability of ex-
treme results. Normally he takes the uncorrected
chi-square tail probability as a reasonable esti-
mate: in this case he would quote 0.89%.

4. The unconditionalist imagines repeating the ex-
periment with the same sample sizes, so he does
condition on the row totals, although not on the
column totals.

The statement made by the unconditionalist
should be compared to the following statement.

The conditionalist. If in fact H1 is true (p2 <
p1) and if the experiment were repeated indepen-
dently, once again sampling 18 subjects randomly
from population 1 and 12 randomly from population
2, the probability that we would achieve a result as
extreme as or more extreme than this (and in the
same direction) conditional on having the same col-
umn totals (10 and 20) would be at most 2.42%.

1. Again, we could think of repeating the experi-
ment many times and discarding all the results
except those having the correct column totals.
Then if H1 is true, the proportion of the retained
results which is as extreme as or more extreme
than the data would be at most 2.42%.

2. This time there is no doubt about the extrem-
ity of a result: all the results considered lie on
the line shown in Figure 10. Moreover, the condi-
tional probability distribution over these points
is the same whenever p2 = p1.

3. Some statisticians prefer to include only half
of the probability of the data point D actually
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Fig. 10. Critical points on the conditional line.

observed. This has the effect of making the ex-
pected p-value exactly 0.5 when p2 = p1 (see
Lancaster, 1961; Stone, 1969; Franck, 1986;
Haber, 1986; and Routledge, 1992). This would
make our hypothetical statement more compli-
cated, and reduce the quoted probability from
2.42% to 1.34%.

4. In practice the conditionalist might not calcu-
late the exact probability using the formula for
Fisher’s “exact” test, but instead use Yates’s cor-
rection to the standard chi-square statistic. In
this case he would then quote 2.41%.

5. The conditionalist calculates a larger probability
than the unconditionalist because the least ex-
treme points on the other diagonals have larger
test statistics than D (see note 2 for the uncon-
ditionalist statement).

Suppose the data came from a comparative trial.
Some classical statisticians prefer in this situation
to make a statement based on the random alloca-
tion of treatments over subjects. This is the Fisher
randomization test:

The Fisherian. Suppose there was in fact no
difference at all between the treatments (not just
that their success rates were equal, but so that any
individual would be cured by treatment 1 if and only
if he would be cured by treatment 2). Then if the ex-
periment were repeated with the same 30 subjects
(assuming this were possible), randomly allocating
18 to treatment 1 and 12 to treatment 2, the prob-
ability of obtaining a result as extreme as or more
extreme than the one obtained (and in the same di-
rection) would be exactly 2.42%.

1. The calculation here is the same as for the condi-
tionalist, but the interpretation is different. This
type of statement cannot be made unless we have
different experimental treatments. It is also dif-
ficult to see how this statement helps to make

any inference about the populations in general,
as it refers only to 30 particular individuals (who,
as far as this statement is concerned, might not
have been randomly sampled from the popula-
tion).

2. Even as hypotheticals go, this is far more hy-
pothetical than most. We could actually sample
a new set of 30 subjects and assign them treat-
ments at random, but in most cases it would not
be possible to reallocate the treatments already
given to the original 30 subjects.

A Bayesian hypothetical will take the form “if the
prior were this, the posterior would be : : : .” For def-
initeness, let us take a Jeffreys prior

f�p1; p2� ∝ p−1/2
1 �1− p1�−1/2p

−1/2
2 �1− p2�−1/2:

The posterior will then be proportional to

p
a−1/2
1 �1− p1�b−1/2p

c−1/2
2 �1− p2�d−1/2:

This can then be integrated over the H1 triangle,
either exactly (see the Appendix), or numerically.
We then have a Bayesian statement:

The Bayesian. Suppose p1 and p2 were sam-
pled from independent Jeffreys priors. After the
data was observed the posterior probability that
p2 < p1 would be 0.87%.

1. Bayesians might reasonably complain that their
statements are not hypothetical: the statistician
should say “my prior was : : : so my posterior
is : : : .” However, when the results are to be
communicated to others, whose priors may be
unknown to the author, the statements must be-
come hypothetical. Of course, it would be good
practice to exhibit several calculations to illus-
trate the effect of the data on different prior
beliefs.

2. We show in the Appendix how to calculate the
posterior probability (0.8723%) exactly when
starting with a Jeffreys prior. The fact that this
number is very close to the p-value obtained
from the standard Pearson chi-square statistic
(0.8853%—see the unconditionalist, note 3) is
not a coincidence. We show in Section 6 that
the uncorrected chi-square statistic gives an
approximation to the Bayesian posterior for ex-
actly the same reasons that the corrected (Yates)
chi-square statistic gives a good approxima-
tion to the Fisher exact probability (see the
conditionalist, note 4).

3. For comparison, if we used a Laplace (indepen-
dent uniform) prior, the posterior probability
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would be 1.07%. With a Haldane (independent
improper) prior

f�p1; p2� ∝ p−1
1 �1− p1�−1p−1

2 �1− p2�−1;

the posterior probability would be 0.69%. The
fact that these numbers are all much smaller
than the Fisher test value of 2.42% might lead
us to think that the exact test is far too conser-
vative (as has often been argued). We shall later
dispute this and claim that with more reasonable
priors the Fisher value is by no means too large.

4. Although the “half” prior is usually referred to
using Jeffreys’s name, he himself preferred the
uniform prior in the absence of information (see
Jeffreys, 1961, page 125).

4. DISCUSSION OF THE
CLASSICAL STATEMENTS

There is a strong analogy between the problems
arising in classical statistics and those occurring
in frequentist probability theory. Consider the un-
conditionalist. He envisages an infinite sequence of
experiments in which a definite proportion (1.23%)
give a particular result (namely, a result as ex-
treme as or more extreme than the one originally
observed). Compare this to the classical explana-
tion of an event having probability 1.23%—the
event must be regarded as a member of an infi-
nite sequence of trials in which the successful trials
occur with limiting frequency 1.23%. Such a se-
quence was called a collective by von Mises, who
required that the same limiting frequency should
occur in any subsequence of the original sequence
chosen by an arbitrary rule. Unfortunately, there
will always be some rule which selects precisely
the successful trials, so this cannot work. Church
(1940) made the definition precise by taking “rule”
to mean “computable algorithm” and showed that
with this definition collectives did indeed exist.

Suppose we do repeat the experiment many
times, as envisaged by the unconditionalist. Then
we have a case where the event (namely, a result as
extreme as or more extreme than the one originally
observed) belongs to a sequence with limiting fre-
quency 1.23% and to a subsequence (experiments
giving the same column totals) with limiting fre-
quency 2.42%. Which number should we quote?
There is a strong argument that when the condi-
tioning event (here having the given column totals
of 10 and 20) gives no information about the param-
eters of interest, we should condition. For example,
Cox and Hinkley (1974) state “there are serious dif-
ficulties in a sampling theory approach that does

not take account of a conditionality principle, : : : ”;
Lehmann (1986) says “: : : if repetitions : : : are po-
tential rather than actual, interest will focus on the
particular event at hand, and conditioning seems
more appropriate.” However, in the case of the 2×2
table the column totals do contain some informa-
tion about p2 −p1. To see this, consider a Bayesian
whose prior was symmetric about the line p2 = p1.
If m1 was ancillary, then informing her of the value
of m1 would not alter her probability that H1 was
true from its initial value of 1/2. However, if we
calculate the posterior probability that p1 < p2 for
the Pearson example with independent uniform pri-
ors, supposing that we have been informed of the
row and column totals (18;12 and 10;20) but not
knowing the values in the body of the table, we
find a conditional probability of 59%. This does not
seem to be a negligible increase from the original
50%. (Although a preliminary observation of one
failure in population 1 or one success in population
2 would have shifted the prior probability more—to
67%.) The problem is: when the conditioning event
contains some (but not a great deal of) information
about the parameters of interest, should we use the
conditional or unconditional probability in our hy-
pothetical statements? Barnard, who devised the
unconditional CSM test (Barnard, 1947) was con-
verted by Fisher to the conditional test, and in turn
has recently converted Upton (see Upton, 1992).
Nevertheless, the argument is by no means settled.
The discussion following Yates’s 1984 paper seemed
mostly in favor of conditioning, but since then Su-
issa and Shuster (1985) and D’Agostino, Chase and
Belanger (1988) have put the unconditional argu-
ment. Earlier advocacy comes from Grizzle (1967),
Conover (1974), and Berkson (1978). Little (1989)
puts the opposing view. (For testing a precise hy-
pothesis, Berger, Boukai and Wang, 1997, try to
relate conditional frequentist inference to Bayesian
methods.)

Further difficulties arise when an event can be
regarded as a member of several possible sequences
or subsequences. Imagine that coins are produced
by a mint and tossed repeatedly. The coins wear
over time and so does the mint’s mechanism. Con-
sider the 10th toss of the 10th coin produced by the
mint. We could regard this as a member of the se-
quence “tosses of the 10th coin,” or of the sequence
“10th tosses of any coin,” or indeed of the sequence
“n’th tosses of the n’th coin.” All these sequences
may have different limiting frequencies. We might
avoid this problem in the foundations of probability
theory by working with the idea of a model which
predicts a probability pij for the ith toss of the jth
coin. Whether the model is acceptable has then to
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be decided by statistical theory. So the problem is
relocated from the foundations of probability theory
to the foundations of statistical theory.

Unfortunately, however, the same sort of difficulty
reappears in statistical theory in the guise of the no-
torious stopping rule paradox. In our example, sup-
pose the data had arisen by sampling population
1 until three successes were observed and popula-
tion 2 until seven were seen. The same 2 × 2 table
is now regarded as a member of a different infinite
sequence, and in this sequence it may occur with
a different limiting frequency. In the example, if in
fact p1 = p2 = 1/3, the probability of getting our
table or a more extreme one (by the chi-square cri-
terion) with this sampling scheme is 0.90%, whereas
for the original sampling scheme it would be 1.23%.
We could even imagine two experimenters collab-
orating on the experiment. One believes that they
are in the fixed sample size (binomial) situation, the
other that they are sampling to get specified num-
bers of successes. They both agree to stop the ex-
periment at the same point, but then discover that
they are calculating different p-values!

If we do have this sampling scheme (two neg-
ative binomials instead of two binomials) we do
not just get a new unconditional statement. We
also get new conditional and Fisherian calcula-
tions. (The Bayesian hypothetical is unchanged
because the likelihood is the same.) The condition-
alist could argue that the total number of failures,
m2, is uninformative and condition on that. This
leads to calculating a hypergeometric tail proba-
bility, equivalent to applying the exact test to the
table �a − 1; by c; d�. For our example this gives a
p-value of 1.16%.

The Fisherian will arrive at different answers de-
pending on the randomization method used to allo-
cate treatments, and on the particular sequence of
successes and failures observed. Suppose, for exam-
ple, that we allocate treatments by drawing balls
from an urn. Initially the urn has 3 blue balls and
7 green. When a patient arrives we draw a ball and
allocate treatment 1 if the ball is blue, 2 if it is
green. If the treatment succeeds we do not replace
the ball, but if it fails we do. So we will eventually
get 3 successes for treatment 1 and 7 for treatment
2. Now suppose further that we observe 20 failures
(15 with blue and 5 with green) and then 10 suc-
cesses (3 with blue and 7 with green). Assuming
the treatments had no effect on the sequence of suc-
cesses and failures, the Fisherian would calculate
the probability of drawing a sequence of balls which
would give a result as or more extreme in favor of
H2. This is simply the probability of getting 15 or
more as a sample from Bin�20;0:3�. The tail prob-

ability is vanishingly small—0.004%. For a differ-
ent sequence, consider 8 successes, then 20 failures,
then 2 successes. We need to calculate the proba-
bility of getting either 7 greens and 1 blue in the
first 8 draws or 6 greens and 2 blues followed by 15
or more blues from the next 20 draws. This gives a
Fisherian p-value of 3.19%.

There are in fact a large number of possible sam-
pling schemes. We can sample with fixed n1 and
n2 (which we imagine is what actually occurred), or
until we get given values of a and c, or with a and
n2 given (a binomial–negative binomial situation),
or in the case of a double dichotomy until we get a
given value in one particular cell (the total sample
size then being random); and each sampling pro-
cedure can generate an unconditional, conditional
and Fisherian statement. The possible ramifications
seem extensive.

One experiment that was actually carried out
with a different stopping rule is described in
Bartlett et al. (1985) and discussed in Cornell,
Landenberger and Bartlett (1986), Wei (1988) and
Begg (1990). Patients were allocated one of two
treatments effectively according to the color of a
ball drawn (with replacement) from an urn. The
urn started with one ball of each color. If the se-
lected treatment was a success, another ball of
that color was added to the urn before the next
draw. If the treatment was a failure, a ball of the
other color was added. The experiment ended as
soon as 10 balls had been added of the same color.
This is a randomized play-the-winner rule (see Wei
and Durham, 1978). In the event, the outcome se-
quence was a success for treatment A, a failure
for B, then eight more successes for A. If we ar-
gued that we have simply observed nine trials of
A, all successes, and one of B, a failure, the exact
test on the table �9;0y0;1� would give a one-sided
p-value of 10%; but other tests are possible, taking
account of the stopping rule, and giving different
answers. Alternatively, we could use the Fisherian
argument: suppose that there was no difference
between A and B, and that whatever treatments
we applied we would have seen the same sequence
of successes and failures (S;F;S; : : : ; S) with any
sequence of colors. The observed sequence of treat-
ments (A;B;A; : : : ;A) is in fact the most extreme
possible in favor of A, given the success–failure se-
quence. Hence we calculate a one-sided p-value of

1
2
× 1

3
× 3

4
× 4

5
× · · · × 10

11
= 1

22
= 4:55%:

So this is another example where different argu-
ments give quite different p-values.
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For yet another example, suppose we had sampled
30 patients and given each a 60% chance of receiv-
ing treatment 1 and a 40% chance of treatment 2.
Our data could have arisen from this experimental
protocol (a rather poor one as it happens). The like-
lihood principle says that we should draw the same
inference from the data in all these situations. We
would agree. All these designs can be looked at as
trees, where a path through the tree is determined
by the outcome of some random event at each node.
When the experiment is repeated we can branch
from the original path to a completely different part
of the tree, with completely different chance nodes.
We would instead suggest thinking of repetitions in
which we simply retry each of the nodes visited in
the original experiment, ignoring the fact that with
the original protocol our results might cause us to
branch from the original path. So, just as the ac-
tual experiment determines the critical region for
the imagined repetitions, we would also allow it to
determine the sequence of trials made in those rep-
etitions, even when the imaginary results of these
trials would have caused a branching to different
nodes of the tree. This argument effectively means
that we would regard all these designs as equivalent
to one with two fixed sample sizes, the sizes realized
in the original experiment. (It is closely related to
Dawid’s prequential principle; see Dawid, 1984.) So
we can see no clear argument for introducing new
hypotheticals even when the data comes from one
of these more exotic designs.

5. ONE-SIDED OR TWO-SIDED TESTS

Another disputed matter is whether to make one-
sided or two-sided statements. We deliberately de-
scribed the situation as one in which neither H1 nor
H2 could be singled out as the null hypothesis. Nev-
ertheless we have calculated “significance levels” as
if H1 (the hypothesis not favored by the data) were
the null hypothesis, and as if we were making a
one-sided test against the alternative H2. It could
be argued that as we have no prior reason to prefer
either hypothesis we should always make two-sided
statements, talking about the “probability of obtain-
ing a more extreme result in either direction when
p1 = p2.” Why have we not done this?

The reason is mainly that we are excluding the
possibility that p1 is exactly equal to p2. We are
definitely assuming imprecise hypotheses (contrast
this with Berger and Delampady, 1987). Using an
idea advanced by Pratt (1965), we make the same
sort of argument for our one-sided statements as
that usually made for confidence intervals, in the
following way. Suppose the experiment were re-

peated many times (let us say, to be precise, in the
way envisaged by the unconditionalist) and after
each experiment we stated the following:

either �i� “H1 is true: p2 < p1”;
or �ii� “H2 is true: p1 < p2”;
or �iii� “there is not enough data to decide”.

We make statement (i) when the data favors H1
and when the chi-square value is at least 5.625 (the
value for our example). Similarly we make state-
ment (ii) when the data favors H2 and when the
chi-square value is at least 5.625. If the chi-square
value is less than 5.625, we make statement (iii).
Now, what is our maximum error rate?

If in fact H1 is true, we make a false statement
only when we state (ii), which will occur with a max-
imum probability of 1.23% when p1 = 35:3% and p2
is slightly less than this. Figure 7 shows the basis
of the calculation: along the diagonal p2 = p1, the
highest probability reached is 0.0123 when p1 =
p2 = 0:353. (This is the calculation made by the un-
conditionalist.) If in fact H2 is true, the maximum
error rate must be exactly the same (occurring when
p1 = 64:7% and p2 is slightly more than this). So
whatever the unknown state of Nature, this sys-
tem of making assertions has an error rate at most
1.23%. With our data, we can assertH2 with 98.77%
confidence.

The same reasoning could be used for the condi-
tionalist, with one modification. The maximum er-
ror rate is certainly 2.42% if H1 is true, but it may
differ from this if H2 is true. In our case the appro-
priate calculation shows that if H2 is true the max-
imum error rate is 2.09%. So our system of mak-
ing statements still has a maximum error rate of
2.42%.

The general conclusion we would draw from this
argument is that it is reasonable to make a one-
sided test in favor of the hypothesis supported by
the data, whenever the following hold:

�a� we are not sure of the direction of
an effect;

but �b� we are sure it will not be exactly zero;
and �c� we have no clear null (status quo)

hypothesis.

(Pratt comments that this “is utter heresy according
to orthodox dogma.”) Because of Pratt’s argument,
when we discuss Bayesian approaches which com-
pute the posterior probability of H1 after observing
the data, we shall always compare these to the one-
sided classical statements.
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6. DISCUSSION OF THE
BAYESIAN STATEMENTS

Suppose our prior density for p1; p2 is f�p1; p2�.
After observing the data, the posterior probability
that H1 is true �p2 < p1� is
∫ 1
p1=0

∫ p1
p2=0p

a
1�1−p1�bpc2�1−p2�df�p1; p2�dp2 dp1

∫ 1
p1=0

∫ 1
p2=0p

a
1�1−p1�bpc2�1−p2�df�p1; p2�dp2 dp1

:

If we take independent Haldane priors

f�p1; p2� ∝ p−1
1 �1− p1�−1p−1

2 �1− p2�−1;

the posterior probability becomes

1
B�a; b�B�c; d�

·
∫ 1

x=0

∫ x
y=0

xa−1�1− x�b−1yc−1�1− y�d−1 dydx

for a; b; c; d > 0, where B�a; b� is the beta function.
In the Appendix we call this probability P�a; b; c; d�
and derive some of its properties. One relation ob-
tained shows that

P�a; b; c; d�−P�a− 1; b+ 1; c+ 1; d− 1�
=H�a−1; a+ b−1; a+ c−1; a+ b+ c+d−2�;

where H�s;m;n;N� is (for consistent integer val-
ues of the parameters) the hypergeometric proba-
bility of obtaining s individuals having characteris-
tics X and Y when m out of a total population of N
are randomly assigned characteristic X and n out
of the same population are randomly and indepen-
dently assigned characteristic Y. Hence, for integer
values of the parameters, P can be evaluated ex-
actly as the tail of a hypergeometric distribution:

P�a; b; c; d�
=
∑
s<a

H�s; a+ b−1; a+ c−1; a+ b+ c+d−2�:

Consequently it is precisely the p-value calculated
by Fisher’s exact test for the table �a−1; by c; d−1�
when testing the null hypothesis p1 = p2 against
the one-sided alternative H2 �p1 < p2�. This is all
well known (see Altham, 1969). Altham also noted
that if we started with the prior

f�p1; p2� ∝ �1− p1�−1p−1
2 ;

our posterior for H1 would be P�a + 1; b; c; d + 1�.
This corresponds to Fisher’s test on the table
�a; by c; d� so Fisher’s test can be given a Bayesian
interpretation, but only if we start with an improper
and unsymmetrical prior which favors H1:

However, the exact test is well approximated
by making Yates’s correction when calculating the

standard chi-square statistic. Hence we can ap-
proximate the exact test probability for the table
�a; by c; d� by the lower tail of the standard normal
distribution below z, where

z =
{(
a+ 1

2

)(
d+ 1

2

)
−
(
b− 1

2

)(
c− 1

2

)}

·
√

N

m1m2n1n2
:

Combining these results, a good approximation to
P should be given by

P�a; b; c; d� ≈ 8�z�;
where

z =
{(
a− 1

2

)(
d− 1

2

)
−
(
b− 1

2

)(
c− 1

2

)}

·
√

a+ b+ c+ d− 2
�a+ b− 1��c+ d− 1��a+ c− 1��b+ d− 1� :

(Altham discusses two approximations to P, one
of which she describes as “the normal approxima-
tion to the hypergeometric distribution using Yates’s
half-correction,” but in fact Yates’s correction is not
exactly the same as the continuity correction to the
hypergeometric: there is a difference in the z-value
by a factor

√
N/�N− 1�.)

Starting with the Jeffreys prior,

f�p1; p2� ∝ p−1/2
1 �1− p1�−1/2p

−1/2
2 �1− p2�−1/2;

the posterior probability of H1 is given by P�a +
1/2; b+ 1/2; c+ 1/2; d+ 1/2�. This can therefore be
calculated approximately as 8�z�, where

z =
{
ad− bc

}
√

a+ b+ c+ d
�a+ b��c+ d��a+ c��b+ d� :

But this is just the p-value for Yule’s test of p1 =
p2 against H2 and corresponds to using the un-
corrected chi-square (one-sided) test. So we have a
Bayesian justification for the unconditional test!

The posterior probability can also be calculated
exactly as the infinite sum of “hypergeometric prob-
abilities”:

P�a; b; c; d� =
∑

−∞<s<a
H
(
s; a+ b− 1; a+ c− 1;

a+ b+ c+ d− 2
)
:

However, now that a; b; c; d are not integers, some
of the “probabilities” are negative. �H can be written
in terms of gamma functions, and so can be evalu-
ated for fractional arguments.) Alternatively, we can
use a second equation from the Appendix,

P�a+ 1; b; c; d� −P�a; b; c; d� = 1
a

B�a+ c; b+ d�
B�a; b�B�c; d� ;
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to calculate P as a finite sum (by starting from
a base like P�a; bya; b� which is clearly equal to
1/2). Hence, for example, Barnard’s 1947 example—
the table �0;3y3;0�—gives a posterior probability of
�1/2�−�5504/�1125 π2��, or 0.43%. This can be com-
pared to Yule’s or Pearson’s p-value of 0.72%. The
exact test p-value is 5.00%, and the corrected chi-
square statistic gives 5.12%.

For independent uniform priors we simply calcu-
late P�a+ 1; b+ 1; c+ 1; d+ 1� to find the posterior
probability of H1. Altham shows that, if the data
favors H2, this probability will be larger than that
obtained when we use independent Jeffreys priors,
which in turn will be larger than when independent
Haldane priors are used.

However, should independent priors be used at
all? We discuss this in the next section.

7. DEPENDENT PRIORS

Recall the example in the Introduction: do En-
glish or Scots cattle have a higher proportion of
cows infected with a certain virus? Suppose we were
informed (before collecting any data) that the pro-
portion of English cows infected was 0.8. With in-
dependent uniform priors we would now give H1
(p1 > p2) a probability of 0.8 (because the chance
that p2 > 0:8 is still 0:2). In very many cases this
would not be appropriate. Often we will believe (for
example) that if p1 is 80%, p2 will be near 80% as
well and will be almost equally likely to be larger
or smaller. (We are still assuming it will never be
exactly the same.)

To formalize this idea we need dependent priors.
Suppose that we think that when p is near zero, a
doubling of p is important even though the absolute
change in p is small, and similarly for changes in
1 − p when p is near 1. Then we can express this
by measuring p on a log-odds scale. Let

θ1 = ln
p1

1− p1
; θ2 = ln

p2

1− p2
:

If θ1 and θ2 have independent improper uniform dis-
tributions on �−∞;∞�, this corresponds to Haldane
improper priors. Suppose that, given θ1, θ2 has a
normal distribution with mean θ1 and standard de-
viation σ . This gives the sort of prior we require. It
implies that knowledge of p1 (or θ1) would alter our
probability distribution for θ2 so that our expected
value for θ2 would then become the known value
of θ1. This “regression” model is in fact symmetri-
cal between θ1 and θ2. The improper joint density
function is proportional to

exp
{
−1

2

(
θ1 − θ2

σ

)2}
:

In terms of p1, p2 this density is proportional to

e−�1/2�u
2
p−1

1 �1− p1�−1p−1
2 �1− p2�−1;

where

u = 1
σ

ln
(
p1�1− p2�
p2�1− p1�

)
:

(Kass and Raftery, 1995, Section 7.1, describe a sit-
uation where it was possible to estimate σ from 12
related datasets.)

A generalization of the above would allow densi-
ties of the form proportional to

e−�1/2�u
2
pα−1

1 �1− p1�β−1p
γ−1
2 �1− p2�δ−1

giving a large family of priors S�σ;α;β; γ; δ�. This
family includes augmented versions of Haldane, Jef-
freys and Laplace independent priors, the modifica-
tion being made by the first term (which gives a
sort of “closeness” factor and which creates the de-
pendence). The posteriors also belong to this family
(i.e., it is conjugate to the experiment), and it is
clear that the closeness factor modifies the indepen-
dent terms by shifting the bulk of the distribution
towards the line p2 = p1, so that the posterior prob-
abilities for H1 and H2 become less extreme. Fig-
ure 11 shows contour plots of augmented Jeffreys
probability densities as functions of p1 and p2 on
the unit square for σ = 1/2, 1 and 2, and the cor-
responding posterior densities after observing the
Pearson data. For comparison, the independent Jef-
freys prior density and its posterior are shown as
well. The independent Jeffreys prior has a density
which tends to infinity around the edges of the unit
square, while the dependent prior densities are high
along the diagonal p2 = p1 and tend to infinity at
�0;0� and �1;1�.

We recommend using a member of this family of
prior densities for a Bayesian analysis of the 2 × 2
table. The smaller the value of σ (i.e., the more
informative the prior), the more data is needed to
give a large posterior probability for H1 or H2. In
other words, in this problem the conservative thing
to do is to choose an informative prior. Of course,
a Bayesian should, as always, select a prior to re-
flect his own beliefs, but what should he use when
reporting his results to others? We think that for
this situation it is useful to have standard priors,
and specifically for this problem we would suggest
using the above dependent prior with σ = 1 and
α = β = γ = δ = 0 as a standard prior. This is in
fact improper, just as the Haldane prior itself is (see
Lane and Sudderth, 1983), but it can be regarded as
an approximation to the proper prior S�1; ε; ε; ε; ε�
for small ε > 0. Provided we observe at least one
success and one failure, the posterior will be proper
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Fig. 11. Probability densities on the unit square for independent
Jeffreys priors and for augmented Jeffreys priors with σ = 2; 1
and 1/2x the corresponding posteriors are also shown with the
diagonal p2 = p1. For the priors; the lowest density contour is
always 0:5; and the contours increase in steps of 0:5. For the
posteriors; the lowest contour is 1; and the contours increase in
steps of 3.

and will be close to the posterior from the ε-prior.
If we observed (say) no failures at all, we would
need to think more carefully about our prior and se-
lect values for the five parameters of S to reflect
our prior beliefs more precisely, because in this case
the data is less helpful to us, and so we have to
rely more heavily on these beliefs. In general, pos-
teriors calculated from the standard prior could be
reported as well as posteriors from the statistician’s
own prior. The next section gives some comparisons
of the results of using the prior S�σ;α; α; α; α� for
α = 0; 1/2 and 1 (augmented Haldane, Jeffreys and
Laplace priors) and for σ = 1/2; 1 and 2.

With the standard prior, if we were told for certain
that p1 was 80%, we would then be 95% sure that
p2 was in the range 36–97%. If we knew p1 was
50%, we would then be 95% sure that p2 was in
the range 12–88%. These do not seem very strong
beliefs. If someone felt that intervals of this type
were either far too wide or far too narrow, then the
standard prior would not be appropriate even as a
first approximation to his beliefs. He should then
adjust σ to reflect his own prior more accurately.

Other approaches to modelling prior belief have
been suggested in the literature. Antelman (1972)
suggests using the Dirichlet-beta as a conjugate
family of prior distributions. A hierarchical prior
can also be used: for example, suppose that (condi-
tional on µ; τ2) θ1 and θ2 are IND�µ; τ2� and that
µ is assigned a vague prior. In fact, if the vague
prior is taken as N�ν; κ2�, as κ→∞ we recover the
prior S�

√
2τ;0;0;0;0�. (However, if we also give τ a

vague prior, we will lose the desired dependence.) If
we wished to extend the ideas of this paper to more
general situations where log-linear models are nor-
mally used, a hierarchical Bayesian model would
be one natural way of doing this.

It is difficult to calculate these posterior probabil-
ities analytically, but nowadays there is no problem
in doing the integrations numerically. Our results
were obtained using the Mathematica package. (It
is perhaps worth noting that we will always obtain
the same posterior probability for a table and for its
transpose.) When we do this we get a final hypo-
thetical statement about Pearson’s data in Table 3.

The Bayesian with dependent prior. Suppose
p1 and p2 were sampled from the standard depen-
dent prior defined above. After the data was ob-
served the posterior probability that p2 < p1 would
be 2.99%.

Note that this statement is, in a sense, the most
cautious we have seen. Even the conditionalist was
quoting no more than 2.42%. Yet the prior did not
seem that strong, so perhaps a good measure of cau-
tion is justified here.

8. COMPARISONS

For comparison (see Table 4), we give the various
figures we have calculated for Pearson’s table and a
selection of others: �0;3y3;0� is a famous example
due to Barnard (1947); �5;30y11;24� is from Berk-
son (1978); �2;170y9;162� is a more recent example
from Little (1989). The final table (20, 80; 30, 70)
shows how the results converge with larger num-
bers in each cell.
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Table 5
Comparisons of different dependent priors

Table P F AL 1
2 AL1 AL2 AJ 1

2 AJ1 AJ2 AH 1
2 S AH2

�3;15y7;5� 0.9 2.4 10.3 3.4 1.6 10.2 3.2 1.4 10.2 3.0 1.2
�2;5y5;2� 5.4 14.3 25.2 14.6 9.1 25.0 13.9 8.0 24.7 13.1 6.8
�1;4y4;1� 2.9 10.3 24.7 13.1 6.8 24.4 12.3 5.6 24.1 11.4 4.3
�0;3y3;0� 0.7 5.0 24.1 11.4 4.3 23.8 10.4 3.1 23.5 9.5 1.9
�5;30y11;24� 4.4 7.7 13.4 7.3 5.4 13.1 6.9 5.0 12.8 6.5 4.5
�2;170y9;162� 1.6 3.0 9.2 3.7 2.2 8.9 3.3 1.8 8.5 2.9 1.4
�20;80y30;70� 5.1 7.1 8.7 6.2 5.5 8.6 6.0 5.3 8.5 5.9 5.2

Table 4
Comparisons of different calculations

Table U P F Y L J H S

�3;15y7;5� 1.2 0.9 2.4 2.4 1.1 0.9 0.7 3.0
�2;5y5;2� 9.0 5.4 14.3 14.3 6.6 5.3 4.0 13.1
�1;4y4;1� 5.5 2.9 10.3 10.3 4.0 2.7 1.4 11.4
�0;3y3;0� 1.6 0.7 5.0 5.1 1.4 0.4 — 9.5
�5;30y11;24� 5.8 4.4 7.7 7.7 4.7 4.3 3.9 6.5
�2;170y9;162� 1.6 1.6 3.0 3.2 1.7 1.3 1.0 2.9
�20;80y30;70� 5.3 5.1 7.1 7.1 5.2 5.1 5.0 5.9

We show the table as �a; by c; d�: U is the figure
calculated by the unconditionalist; P is the uncor-
rected Pearson chi-square one-sided probability; F
is from Fisher’s exact test; Y is Yates’s approxima-
tion to this; L, J and H are the Bayesian posteriors
with Laplace, Jeffreys’, and Haldane priors, respec-
tively; and S is the recommended dependent prior.

The recommended prior tends to give more con-
servative results than the exact test for tables with
very small entries, but is less conservative for more
typical tables.

Table 5 shows the results for a range of dependent
priors. It repeats the P and F columns from Table
4 and gives Bayesian posterior probabilities with
priors S�σ;α; α; α; α� for α = 0; 1/2 and 1 and for
σ = 1/2; 1 and 2; AL 1

2 , for example, is augmented
Laplace (α = 1) with σ = 1/2, and similarly for the
other columns (S is AH1). This table shows clearly
that altering the strength of the dependence be-
tween the priors (the value for σ) can make very sig-
nificant differences in the calculated posterior prob-
ability for H1, whereas the choice between Laplace,
Jeffreys, and Haldane in general makes only small
changes in the result.

9. CONCLUSIONS

The main recommendation for Bayesians is to
think carefully about using dependent priors. Even
in the 2× 2 table this can make a noticeable differ-
ence. Analyses of more general contingency tables
often look at hypotheses in a large dimensional
space (rather than the two dimensions we have

been working in). We suspect that in these cases
even a large amount of data will not always swamp
the prior, and it may be important to consider
whether independent priors are really justified.

The use of the uncorrected Pearson chi-square
test for the 2×2 table corresponds approximately to
a Bayesian analysis using independent Jeffreys pri-
ors. Because the priors are independent, we feel this
test is not sufficiently cautious (and so agree with
Fisher’s conclusion, although for a different reason).
The recommended alternative would be to use de-
pendent priors, as in Section 7, but for statisticians
who wish to use a classical approach, the best op-
tion would seem to be the exact test. Even that may
not be cautious enough for small sample sizes.

Finally we reiterate that we have always excluded
the case where p1 = p2 is a serious possibility. The
problem of testing precise hypotheses is well dis-
cussed in Berger and Delampady (1987). Our anal-
ysis applies only to the case of imprecise hypotheses.

APPENDIX

Suppose we have independent Haldane (im-
proper) priors. To calculate the posterior probability
that p1 < p2 or p2 < p1 we need to evaluate
integrals of the form

P�a; b; c; d�

= 1
B�a; b�B�c; d�

·
∫ 1

x=0

∫ x
y=0

xa−1�1− x�b−1yc−1�1− y�d−1 dydx

for a; b; c; d > 0, where B�a; b� is the beta function

B�a; b� =
∫ 1

x=0
xa−1�1− x�b−1 dx:

It is easy to see that

P�a; b; c; d� = P�a; c; b; d�
= P�d; c; b; a� = P�d; b; c; a�y
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1−P�a; b; c; d� = P�c; d; a; b�
= P�b; a;d; c�
= P�c; a; d; b� = P�b;d; a; c�:

Let Ix�a; b� be the incomplete beta function,

Ix�a; b� =
1

B�a; b�
∫ x
t=0
ta−1�1− t�b−1 dt; 0 ≤ x ≤ 1:

Then

P�a; b; c; d� = 1
B�a; b�

∫ 1

x=0
xa−1�1−x�b−1Ix�c; d�dx:

A recurrence equation can be derived by integrat-
ing by parts (see Abramowitz and Stegun, 1970):

Ix�c; d� =
0�c+ d�

0�c+ 1�0�d�x
c�1−x�d−1+Ix�c+1; d−1�:

Using this we obtain

P�a; b; c; d�

= 0�c+ d�
0�c+ 1�0�d�

B�a+ c; b+ d− 1�
B�a; b�

+P�a; b; c+ 1; d− 1�

= 0�a+ b�0�c+d�0�a+ c�0�b+d−1�
0�a�0�b�0�c+ 1�0�d�0�a+ b+ c+d−1�
+P�d− 1; c+ 1; b; a�:

Applying this result to P�d−1; c+1; b; a� we have

P�a; b; c; d�
=P�d− 1; c+ 1; b+ 1; a− 1�

+ 0�a+ b�0�c+ d�0�a+ c�0�b+ d− 1�
0�a�0�b�0�c+ 1�0�d�0�a+ b+ c+ d− 1�

+ 0�c+d�0�a+ b�0�b+d−1�0�a+ c�
0�d−1�0�c+1�0�b+1�0�a�0�a+ b+ c+d−1� :

Therefore

P�a; b; c; d� −P�a− 1; b+ 1; c+ 1; d− 1�

= 0�a+ b�0�c+d�0�a+ c�0�b+d−1��b+d−1�
0�a�0�b+1�0�c+1�0�d�0�a+ b+ c+d−1�

= 0�a+ b�0�c+ d�0�a+ c�0�b+ d�
0�a�0�b+ 1�0�c+ 1�0�d�0�a+ b+ c+ d− 1�

=

(
a+ b− 1

a− 1

)(
c+ d− 1

d− 1

)

(
a+ b+ c+ d− 2

a+ c− 1

)

=H�a−1; a+ b−1; a+ c−1; a+ b+ c+d−2�;

where H�s;m;n;N� is (for consistent integer val-
ues of the parameters) the hypergeometric proba-
bility defined in Section 6.

However, H is defined in terms of gamma func-
tions for nonintegral values of the parameters. So
we can express P as an infinite sum, as noted in
Section 6. This sum generally converges (for a; b; c;
d>0), which suggests the domain of definition of P
could be extended—perhaps to a; b; c and d having
positive row and column sums, or a positive total
sum. We shall not pursue this further here.

A second recurrence equation (substitute cos2�θ�
for x) is

Ix�c; d� =
0�c+ d�

0�c+ 1�0�d�x
c�1− x�d + Ix�c+ 1; d�:

We can use this to obtain

P�a; b; c; d� = 0�c+ d�
0�c+ 1�0�d�

B�a+ c; b+ d�
B�a; b�

+P�a; b; c+ 1; d�

P�c; d; a; b� = P�c+ 1; d; a; b�

− 0�c+ d�
0�c+ 1�0�d�

B�a+ c; b+ d�
B�a; b� :

Renaming variables we get

P�a+ 1; b; c; d� −P�a; b; c; d�

= 0�a+ b�
0�a+ 1�0�b�

B�a+ c; b+ d�
B�c; d�

= 1
a

B�a+ c; b+ d�
B�a; b�B�c; d�

= 1
a

0�a+ b�0�c+ d�0�a+ c�0�b+ d�
0�a�0�b�0�c�0�d�0�a+ b+ c+ d� :

Using this result we can calculate P for non-
integral parameters having the same fractional
part as a finite sum, by starting from a base like
P�a; b; a; b� which is clearly equal to 1/2. In detail,
define

g�a; b; c; d� = 0�a+ b�0�c+ d�0�a+ c�0�b+ d�
0�a�0�b�0�c�0�d�0�a+ b+ c+ d� :

Then we can calculate P�a + s; b + s; c + s; d + s�
for integer a; b; c; d ≥ 0 and fractional s (e.g.,
s = 1/2 for Jeffreys priors) by starting from
P�1/2;1/2;1/2;1/2� = 1/2 and adding a finite
number of terms:

P�a+ s; b+ s; c+ s; d+ s�

= 1
2
+
a−1∑
i=0

g�i+ s; s; s; s�
i+ s
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−
b−1∑
i=0

g�a+ s; i+ s; s; s�
i+ s

−
c−1∑
i=0

g�a+ s; b+ s; i+ s; s�
i+ s

+
d−1∑
i=0

g�a+ s; b+ s; c+ s; i+ s�
i+ s :

Finally, we note that for general a; b; c; d ≥ 0 we
could calculate P�a; b; c; d� by increasing the values
of the four variables by integer amounts until we
had a table for which P was approximately 1/2, or
which could be very well approximated by a normal
tail area.
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