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THE 2-TWIST-SPUN TREFOIL
HAS THE TRIPLE POINT NUMBER FOUR

SHIN SATOH AND AKIKO SHIMA

Abstract. The triple point number of an embedded surface in 4-space is the
minimal number of the triple points on all the projection images into 3-space.
We show that the 2-twist-spun trefoil has the triple point number four.

1. Introduction

Throughout this paper, we work in the piecewise linear category. By a surface-
knot, we mean a connected or disconnected closed surface embedded in the 4-
dimensional Euclidean space R4 locally flatly. Two surface-knots are equivalent if
they are related by an ambient isotopy of R4. A projection π : R4 → R3 is generic
for a surface-knot F if the image π(F ) in R3 is locally homeomorphic to (i) a single
sheet, (ii) two transversely intersecting sheets, (iii) three transversely intersecting
sheets, or (iv) a cross-cap. The points corresponding to (ii), (iii) and (iv) are
called a double point, a triple point, and a branch point of the generic projection
respectively. See Figure 1. The set of those points is called the singularity set
of the generic projection. The (minimal) triple point number of a surface-knot F ,
denoted by t(F ), is the minimal number of triple points of generic projections for all
surface-knots which are equivalent to F . We remark that the minimal branch point
number of a surface-knot can be defined similarly and is completely determined in
terms of the normal Euler number of the surface-knot [1, 8].

a double point a triple point a branch point

Figure 1.

The notion of triple point numbers of surface-knots is an analogue to that of
crossing numbers of classical knots (‘classical’ means embedded circles in R3). For
classical knots, we have many examples whose crossing numbers are determined.
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On the other hand, for surface-knots, there are not so many examples whose triple
point numbers are determined. As examples of surface-knots whose triple point
numbers are determined, the first author constructed a 2-component surface-link
(a disconnected surface-knot) Fn = F 1

n ∪ F 2
n for any positive integer n such that

each connected component F in (i = 1, 2) is a non-orientable closed surface and
t(Fn) = 2n [30].

A surface-knot is called a 2-knot if it is an embedding of a 2-sphere. Two im-
portant families of 2-knots are ribbon 2-knots and twist-spins of classical knots. In
[34], Yajima proved that a 2-knot F is a ribbon 2-knot if and only if t(F ) = 0
(an alternative proof is found in [17]). On the other hand, the m-twist-spin of a
classical knot K, denoted by τmK (m ≥ 0), is a possibly non-ribbon 2-knot. More
precisely, τmK is a ribbon 2-knot if and only if m = 0, 1 or K is trivial [11]; in
particular, τ1K is a trivial 2-knot for any K [35] (see also [14, 22]). Hence, we have
t(τmK) ≥ 2 for any m ≥ 2 and non-trivial K; it is known that every surface-knot
F satisfies t(F ) 6= 1 [28].

However, till now, there have been no examples of non-ribbon twist-spins or 2-
knots in general whose triple point numbers are determined concretely. The aim of
this paper is to prove the following.

Theorem 1.1. The 2-twist-spun trefoil has the triple point number four.

In [32], the second author proves that if a generic projection of a 2-knot F has
two triple points and no branch points, then F is a ribbon 2-knot. However, this
does not imply that t(F ) ≥ 3 for any non-ribbon 2-knot F immediately; for, in our
definition of triple point numbers, generic projections are allowed to have finitely
many branch points in general.

A quandle [16, 23] is a generalization of a group (under conjugation, so a ∗ b =
b−1ab) which is defined to be a set Q with a binary operation ∗ : Q×Q→ Q such
that (i) a ∗ a = a for any a ∈ Q, (ii) for any a, b ∈ Q, there exists x ∈ Q uniquely
satisfying x ∗ a = b, and (iii) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for any a, b, c ∈ Q. The
quandle cohomology group H∗(Q;G) is defined for a quandle Q and an Abelian
group G in [3]. Then each third cohomology class [θ] ∈ H3(Q;G) gives an invariant
of oriented surface-knots valued in the group ring Z[G],

Φθ : {oriented surface-knots} → Z[G].

For an oriented surface-knot F , Φθ(F ) is called the cocycle invariant of F with
respect to the 3-cocycle θ [3]. Further studies are found in [2, 4, 5, 6, 7, 15, 21, 27, 31]
and [33], for example. The set {0, 1, . . . , n − 1} with the operation a ∗ b = 2b − a
(mod n) forms a quandle, which is called the dihedral quandle [12] of order n, and
is denoted by Rn. Then we have the following.

Theorem 1.2. Let θ be a 3-cocycle of the dihedral quandle R3 with a coefficient
group G. If the cocycle invariant Φθ(F ) ∈ Z[G] of an oriented surface-knot F
satisfies Φθ(F ) /∈ Z ⊂ Z[G], then we have t(F ) ≥ 4.

In the condition of Theorem 1.2, Z ⊂ Z[G] means the subring {n · 1G|n ∈ Z}
of Z[G], where 1G is the identity of G. By taking G as Zn = 〈t|tn = 1〉, we
identify Z[G] with Λn = Z[t, t−1]/(tn− 1). It is known that the 2-twist-spun trefoil
τ2(trefoil) has the cocycle invariant Φθ

(
τ2
(
trefoil)

)
= 3 + 6t2 ∈ Λ3 for a 3-cocycle

θ with [θ] ∈ H3(R3;Z3) [3, 7, 31]. Since Φθ
(
τ2(trefoil)

)
/∈ Z ⊂ Λ3, we have

t
(
τ2(trefoil)

)
≥ 4 by Theorem 1.2.
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In order to estimate the triple point number of a surface-knot (in particular,
a twist-spin) from above, we may give its generic projection explicitly. First of
all, we recall the definition of twist-spins [35]. We think of R4 as an open book
decomposition R3

+ × S1 with {x} × S1 identified with x for each x ∈ R2 = ∂R3
+;

that is, spinning R3
+ about R2 generates R4. We take a tangle T in R3

+ whose
knotting is a classical knot K. Then the m-twist-spin τmK of K is obtained by
spinning T ⊂ R3

+ about R2 as we simultaneously twist T m times. To get a
generic projection of τmK, we think of R3 as an open book decomposition R2

+×S1

with a similar identification for each x ∈ R1 = ∂R2
+. Let π : R4 → R3 be the

projection given by a projection R3
+ → R2

+ crossed with the identity on S1. Then
the image π(τmK) is described by a series of tangle diagrams in R2

+ ×{t} (t ∈ S1)
corresponding to embeddings in R3

+×{t}. Such a series of tangle diagrams is called
a motion picture in the sense of [4, 27, 31]. It is known that each Reidemeister
move III in a motion picture produces a triple point of the corresponding generic
projection. Hence, we may count the number of Reidemeister move III’s instead of
the number of triple points. For example, if K has a knot diagram with c crossings,
then we can describe a motion picture corresponding to one twist of T with 2(c−1)
Reidemeister move III’s. This implies that t(τmK) ≤ 2(c−1)m [31]. In this paper,
we improve this result under some conditions as follows.

Theorem 1.3. If a classical knot K has a knot diagram with c crossings in which
there is a pair of crossings as shown in Figure 2, then we have t(τmK) ≤ 2(c−2)m.

or

Figure 2.

Theorem 1.3 is proved by giving a motion picture corresponding to one twist of T
with 2(c−2) Reidemeister move III’s. Since the trefoil has a knot diagram with c = 3
satisfying the condition in Theorem 1.3, we have t

(
τ2(trefoil)

)
≤ 2 · (3− 2) · 2 = 4.

Thus, Theorem 1.1 follows from Theorems 1.2 and 1.3 immediately.
For a classical knot, we often use a knot diagram which is a regular projection

with crossing information at the double points. Similarly, a surface diagram of a
surface-knot is a generic projection with crossing information at the singularity set.
For a surface-knot, we will use surface diagrams instead of generic projections. In
Section 2, we review three fundamental properties on the singularity set of a surface
diagram (Lemmas 2.1–2.3). In Section 3, we introduce the notion of tricolorings for
a surface diagram as well as for a classical knot diagram [13]. When a tricolored
surface diagram is oriented, we define colors of double points and triple points
derived from the colors of the sheets around them. Such colors enable us to obtain
further properties on the singularity set of a tricolored surface diagram (Lemmas
3.2 and 3.4). In Section 4, we prove three key propositions for the proof of Theorem
1.2 (Propositions 4.1–4.3). Section 5 is devoted to proving Theorem 1.2. In Section
6, we review the motion picture of a twist-spin given in [31] and prove Theorem
1.3. In [24], Mochizuki proves that H3(Rp;Zp) ∼= Zp for any prime p > 2 and gives
an explicit presentation of its generator. Section 7 is devoted to demonstrating
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that the 2-twist-spun trefoil has the cocycle invariant 3 + 6t2 ∈ Λ3 with respect to
Mochizuki’s 3-cocycle for p = 3.

The second author is partially supported by Grant-in-Aid for Scientific Research
(No.12640090), Ministry of Education, Science and Culture, Japan.

2. Preliminaries

A surface-knot is a connected or disconnected closed surface embedded in R4

locally flatly. In particular, a surface-knot is oriented if each connected component
is an oriented closed surface. A projection π : R4 → R3 is generic for a surface-knot
F if the singularity set of π(F ) consists of double points, isolated triple points, and
isolated branch points. A surface diagram of F is the image π(F ) with additional
crossing information at the singularity set. See [10] or the beginning of Section 3
for more details. The singularity set of a surface diagram is regarded as a disjoint
union of

(i) a graph with 1- and 6-valent vertices which correspond to branch points
and triple points respectively, and

(ii) circles without self-intersections.
The above graph and circles may be linked in R3. An edge of the surface diagram
is an edge of the graph in (i) or a circle in (ii). Figure 3 shows an example of a
singularity set. Note that the number of branch points in each connected component
of a singularity set is always even.

Figure 3.

In the following Lemmas 2.1–2.3, we do not assume that surface-knots and surface
diagrams are oriented.

Lemma 2.1. If a surface diagram has an odd number of triple points, then there
are at least two edges such that the endpoints of each edge are a branch point and
a triple point.

Proof. There is a connected component of the singularity set, say G0, in which the
number of triple points is odd. We denote by B0 and T0 the numbers of branch
points and triple points in G0, respectively. Since G0 has at least one triple point,
it is sufficient to prove that B0 ≥ 2. Assume that B0 = 0. We recall that any
singularity set admits an orientation, called a BW orientation [29], such that the
six edges at each triple point are oriented as shown in Figure 4(i) or (ii). For a
fixed BW orientation of G0, we denote by T1 and T2 the numbers of triple points
in G0 as in (i) and (ii) respectively. By counting the initials and terminals of the
oriented edges, we have 2T1 + 4T2 = 4T1 + 2T2, and hence T0 = T1 + T2 ≡ 0 (mod
2). This contradicts the assumption. Hence, we have B0 ≥ 1. Since B0 is even, we
have B0 ≥ 2. �
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or

(i) (ii)

Figure 4.

Let τ be a triple point of a surface diagram. There are three sheets around τ
labeled top, middle and bottom with respect to the projection direction of π : R4 →
R3. Let e be an edge which connects to τ . The edge e is called a b/m-, b/t- or
m/t-edge at τ if e is the intersection of bottom and middle, bottom and top, or
middle and top sheets around τ , respectively.

As well as Reidemeister moves on knot diagrams, we have fundamental defor-
mations, called Roseman moves [25], on surface diagrams such that two surface
diagrams present equivalent surface-knots if and only if they are related by a finite
sequence of Roseman moves.

Lemma 2.2 (cf. [28, 29]). Let e be an edge of a surface diagram whose endpoints
are a branch point and a triple point τ . If e is a b/m- or m/t-edge at τ , then we
can remove τ by some Roseman moves in a neighborhood of e.

Proof. Let H be the sheet at τ which is transverse to e. By assumption, H is a
top or bottom sheet at τ . Hence, we can perform a deformation on H as shown in
Figure 5, where H is indicated by the shaded sheet. We see that this deformation
is a combination of some Roseman moves. �

Figure 5.

Let e1, . . . , en and τ1, . . . , τn be edges and triple points of a surface diagram
respectively such that the endpoints of ei are τi and τi+1 and that ei and ei+1 are
in opposition to each other at τi+1 (i = 1, . . . , n), where we take en+1 = e1 and
τn+1 = τ1. Then the union L = e1∪· · ·∪en is called a cycle of the surface diagram.
Recall that a circle without triple points is also called an edge of a surface diagram.
We may include such circles in the set of cycles. Then we have the following.

Lemma 2.3 ([29]). The number of triple points on each cycle is even.

Proof. Let L = e1 ∪ · · · ∪ en be a cycle of a surface diagram as above. We give
a BW orientation to the singularity set. By the definition of a BW orientation as
shown in Figure 4, we see that ei and ei+1 have opposite orientations on both sides
of τi+1 (i = 1, . . . , n). Hence, n is even. See Figure 6. �
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Figure 6.

3. Tricolorings for surface diagrams

Recall that a surface diagram of a surface-knot F is an image π(F ) under a
generic projection π : R4 → R3 with crossing information at the singularity set.
There are two intersecting sheets along each edge, one of which is higher than the
other with respect to π. They are called an over-sheet and an under-sheet along the
edge, respectively. In order to indicate crossing information, we break the under-
sheet into two pieces missing the over-sheet. This modification is extended to a
triple point such that the top sheet is not broken and the middle (or bottom) sheet
is broken into two (or four) pieces. Then the surface diagram is presented by a
disjoint union of compact surfaces which are called broken sheets. Refer to [10].

In the consecutive sections, all the surface-knots are assumed to be oriented, and
their surface diagrams are also oriented coherently. For a surface diagram D, let
B(D) denote the set of the broken sheets of D. Along each edge of the singularity
set, there exist broken sheets H1, H2, H

′
1 ∈ B(D) uniquely (some of which possibly

coincide) such that
• H2 is the over-sheet, and
• H1 (or H ′1) is the under-sheet such that it is in back (or front) of H2 with

respect to the orientation of H2.
See the left of Figure 7. In the figure, we indicate the orientations of sheets by
arrows.

Figure 7.

We denote by R3 the dihedral quandle of order 3, which is the set {0, 1, 2} with
the binary operation a ∗ b = 2b− a (mod 3). A tricoloring for a surface diagram D
is a map C : B(D)→ R3 such that

C(H1) ∗ C(H2) = C(H ′1)

along every edge of D.

Definition 3.1. In the notation above, the color of each edge is the pair(
C(H1), C(H2)

)
∈ R3 ×R3.
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An edge is called degenerate if C(H1) = C(H2), and otherwise nondegenerate.

We remark that the definition of a tricoloring is equivalent to

C(H1) = C(H2) = C(H ′1) or
{
C(H1), C(H2), C(H ′1)

}
= {0, 1, 2}.

Hence, tricolorings for a surface diagram can be defined even if the diagram is not
oriented. The orientation of a surface diagram (in particular, that of an over-sheet)
is used for the definition of the color of an edge. If we reverse the orientation of a
tricolored surface diagram, then the color of each edge changes into

(
C(H ′1), C(H2)

)
but the degeneracy does not change.

Lemma 3.2. Let e be an edge of a tricolored surface diagram. If one of the end-
points of e is a branch point, then e is degenerate.

Proof. Since e connects to a branch point, all the three sheets H1, H ′1, and H2

along e coincide. Hence, e is degenerate. �

At a triple point of a surface diagram D, there exist broken sheets J1, J2, J3 ∈
B(D) uniquely (some of which possibly coincide) such that

• J3 is the top sheet,
• J2 is the middle sheet such that it is in back of J3 with respect to the

orientation of J3, and
• J1 is the bottom sheet such that it is in back of both J2 and J3 with respect

to their orientations.
See the right of Figure 7. Note that we do not use the orientation of a bottom sheet
for the definition of J1, J2 and J3.

Definition 3.3. In the notation above, the color of each triple point is the triplet(
C(J1), C(J2), C(J3)

)
∈ R3×R3×R3. A triple point is of type (n) for n = 1, . . . , 5

if the color satisfies the condition (n) as listed in the following:
(1) C(J1) = C(J2) = C(J3).
(2) C(J1) = C(J2) 6= C(J3).
(3) C(J1) 6= C(J2) = C(J3).
(4) C(J1) = C(J3) 6= C(J2).
(5)

{
C(J1), C(J2), C(J3)

}
= {0, 1, 2}.

A triple point of type (1)–(3) is called degenerate, and the others are called nonde-
generate.

If we reverse the orientation of a tricolored surface diagram, then the type of
each triple point changes such as (n) ↔ (n) for n = 1, 2, 3 and (4) ↔ (5). Hence,
the degeneracy does not change.

Let τ be a triple point of a tricolored surface diagram. If the color of τ is
(x, y, z) ∈ R3 × R3 × R3, then the broken sheets at τ are colored as shown in the
left of Figure 8. Hence, the colors of the b/m-edges are (x, y) and (x∗z, y∗z), those
of the b/t-edges are (x, z) and (x∗ y, z), and those of the m/t-edges are (y, z) both.
See the right of Figure 8, where the thin solid line, thick solid line, and dotted line
show the b/m-, b/t-, and m/t-edges at τ respectively.

We denote by d(τ) the number of degenerate edges among six edges at τ . Table 1
shows the colors of six edges at τ and d(τ) with respect to the color of τ , where
{a, b, c} = {0, 1, 2}. For example, if (x, y, z) = (a, b, a), then (x, y) = (a, b) and
(x ∗ z, y ∗ z) = (a, c) for the b/m-edges, (x, z) = (a, a) and (x ∗ y, z) = (c, a) for the
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zx y* *( )
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zy ,( )

zy ,( )

zx,( )

Figure 8.

b/t-edges, and (y, z) = (b, a) for the m/t-edges both. Hence, we have d(τ) = 1 in
this case. By Table 1, we see that τ is nondegenerate if and only if d(τ) = 1.

Table 1.

type color colors of edges at τ
d(τ)of τ of τ b/m-edges b/t-edges m/t-edges

(1) (a, a, a) (a, a), (a, a) (a, a), (a, a) (a, a), (a, a) 6
(2) (a, a, b) (a, a), (c, c) (a, b), (a, b) (a, b), (a, b) 2
(3) (a, b, b) (a, b), (c, b) (a, b), (c, b) (b, b), (b, b) 2

(4) (a, b, a) (a, b), (a, c) (a, a), (c, a) (b, a), (b, a) 1
(5) (a, b, c) (a, b), (b, a) (a, c), (c, c) (b, c), (b, c) 1

At a triple point τ of an oriented surface diagram, let ~n1, ~n2, and ~n3 be the
normal vectors to the bottom, middle, and top sheets respectively. The sign of τ
is positive if the ordered triplet (~n1, ~n2, ~n3) is right-handed, and otherwise negative
[9]. We denote by ε(τ) ∈ {±1} the sign of τ . Let τ and τ ′ be two triple points of
a tricolored surface diagram. The pair {τ, τ ′} is called a canceling pair if τ and τ ′

have the same color and opposite signs.

Lemma 3.4. Let τ and τ ′ be two triple points of a tricolored surface diagram which
are nondegenerate with the same color. Assume that there is an edge e such that

(i) the endpoints of e are τ and τ ′, and
(ii) e is the nondegenerate b/t-edge at both τ and τ ′.

Then we have ε(τ) = −ε(τ ′), and hence, {τ, τ ′} is a canceling pair.

Proof. By reversing the orientation of the surface diagram if necessary, we may
assume that both τ and τ ′ are of type (4) with the same color (a, b, a), and that the
edge e satisfies the conditions (i) and (ii) in the lemma. Consider a neighborhood of
the edge e. Since the color of e is (c, a) by Table 1, the three broken sheets around e
are tricolored as in Figure 9(i), where {a, b, c} = {0, 1, 2}. Since the other b/t-edges
at τ and τ ′ have the color (a, a), all the sheets around τ and τ ′ must be tricolored
as in Figure 9(ii). Since the color of τ and τ ′ is (a, b, a), the orientations of the
middle sheets are opposite as in Figure 9(iii). Hence, we have ε(τ) = −ε(τ ′). �
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a

b

c

a

aa

aa

b

b bc

c c

(ii) (iii)(i)

Figure 9.

4. Nondegenerate triple points

The following Propositions 4.1–4.3 concerning nondegenerate triple points are
essential for the proof of Theorem 1.2.

Proposition 4.1. In any tricolored surface diagram, the number of nondegenerate
triple points is even.

Proof. Let B and E0 be the numbers of branch points and degenerate edges of a
tricolored surface diagram respectively, and {τ1, . . . , τs} the set of triple points of
the diagram. By counting the degenerate edges around branch points and triple
points, we have

2E0 = B +
s∑
i=1

d(τi)

by Lemma 3.2. Since B is even, we see that
∑s

i=1 d(τi) is even from the above
equation. On the other hand, since d(τ) = 1, 2, 6 by Table 1,

∑s
i=1 d(τi) has the

same parity as the number of triple points with d(τi) = 1. Since d(τi) = 1 if and
only if τi is nondegenerate, we have the conclusion. �
Proposition 4.2. Assume that a tricolored surface diagram has exactly two triple
points τ and τ ′. If both τ and τ ′ are nondegenerate, then {τ, τ ′} is a canceling pair.

Proof. We consider the following three cases with respect to the types of τ and τ ′.
Case 1. Assume that τ is of type (4) with the color (a, b, a) and that τ ′ is of

type (5) with the color (a′, b′, c′), where {a, b, c} = {a′, b′, c′} = {0, 1, 2}. Let e1

and e2 be the m/t-edges at τ , whose colors are (b, a) by Table 1. By Lemmas 2.3
and 3.2, another endpoint of each ei is τ ′. [This can be seen as follows. Since e1 is
nondegenerate, another endpoint of e1 is not a branch point by Lemma 3.2. If both
endpoints of e1 are τ , then e1 and e2 coincide because there are no edges at τ with
the color (b, a) except e1 and e2. Hence, we have the cycle e1 = e2 with the single
triple point τ on it. This contradicts Lemma 2.3.] On the other hand, there is no
pair of edges at τ ′ with the same color, except the m/t-edges, whose color is (b′, c′).
Hence, we have (b, a) = (b′, c′), and the color of τ ′ is (c, b, a). In Table 2, we list
the colors of edges at τ and τ ′. Let e3 be the b/m-edge at τ with the color (a, b).
By observing Table 2 and using Lemma 3.2, we conclude that another endpoint of
e3 is neither τ , τ ′ nor a branch point. Hence, this case cannot happen.

Case 2. Assume that both τ and τ ′ are of type (4) with the colors (a, b, a) and
(a′, b′, a′) respectively, where {a, b, c} = {a′, b′, c′} = {0, 1, 2}. It follows from an
argument similar to Case 1 that (a, b, c) = (a′, b′, c′) and that each nondegenerate
edge connects τ and τ ′. Since the edge with the color (c, a) satisfies the condition
in Lemma 3.4, {τ, τ ′} is a canceling pair.
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Table 2.

color b/m-edges b/t-edges m/t-edges

τ (a, b, a) (a, b), (a, c) (a, a), (c, a) (b, a), (b, a)
τ ′ (c, b, a) (c, b), (b, c) (c, a), (a, a) (b, a), (b, a)

Case 3. Assume that both τ and τ ′ are of type (5). Consider the tricolored surface
diagram obtained by reversing the orientation of the original one, in which τ and
τ ′ are of type (4). By Case 2, {τ, τ ′} is a canceling pair in the orientation-reversed
diagram, and hence, it is also a canceling pair of the original one. �

Proposition 4.3. Assume that a tricolored surface diagram has exactly three triple
points τ , τ ′, and τ ′′. If τ and τ ′ are nondegenerate and τ ′′ is degenerate, then {τ, τ ′}
is a canceling pair.

Proof. We consider the following three cases with respect to the type of τ ′′.
Case 1. Assume that τ ′′ is of type (1). Since all six edges at τ ′′ are degenerate,

this case can be proved in a similar way to Proposition 4.2.
Case 2. Assume that τ ′′ is of type (2). Among six edges at τ ′′, there are two

degenerate edges, say e1 and e2, which are b/m-edges at τ ′′. See Table 1. First,
consider the case that at least one of e1 and e2 connects to a branch point. Since
the edge is a b/m-edge at τ ′′, we can reduce this case to Proposition 4.2 by using
Lemma 2.2 so that {τ, τ ′} is a canceling pair. Next, consider the case that another
endpoint of each ei (i = 1, 2) is a triple point. However, this case cannot happen;
since e1 and e2 are distinct by Lemma 2.3, another endpoint of each ei is τ or τ ′. On
the other hand, since τ and τ ′ are nondegenerate, they have exactly one degenerate
edge each. Hence, we may assume that e1 connects τ ′′ and τ , and that e2 connects
τ ′′ and τ ′. It follows from Lemma 3.2 that there is no edge of the surface diagram
whose endpoints are a branch point and a triple point. This contradicts Lemma
2.1.

Case 3. Assume that τ ′′ is of type (3). Consider the tricolored surface diagram
obtained by reversing the orientation of the original one, in which τ ′′ is of type
(2). By Case 2, {τ, τ ′} is a canceling pair of the orientation-reversed diagram, and
hence, it is also a canceling pair of the original one. �

5. Cocycle invariants of surface-knots

Let D be a surface diagram of an oriented surface-knot F whose triple points
are τ1, . . . , τs with the signs εi = ε(τi). For a tricoloring C for D, let (ai, bi, ci) ∈
R3×R3×R3 be the color of τi (i = 1, . . . , s). For an Abelian group G in which the
sum is written multiplicatively, we consider a map θ : R3 × R3 × R3 → G. Then
we put

Wθ(τi;C) = θ(ai, bi, ci)εi ∈ G
for each triple point τi, and

Wθ(C) =
s∏
i=1

Wθ(τi;C) ∈ G
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for the tricoloring C. Since the set of broken sheets of D is finite, so is the set of
tricolorings for D. Let C1, . . . , Cn be the tricolorings for D. Then we put

Φθ(D) =
n∑
j=1

Wθ(Cj) ∈ Z[G].

Note that if Φθ(D) /∈ Z ⊂ Z[G], then there is a tricoloring C with Wθ(C) 6= 1G ∈ G
by definition. The following theorem is proved in [3], where Φθ(D) is defined not
only for R3 but for any finite quandle.

Theorem 5.1 ([3]). In the notation above, if a map θ : R3×R3×R3 → G satisfies
(i) θ(x, y, z) = 1G for x = y or y = z, and
(ii) for any x, y, z, w ∈ R3,

θ(x, z, w) · θ(x, y, w)−1 · θ(x, y, z)

= θ(x ∗ y, z, w) · θ(x ∗ z, y ∗ z, w)−1 · θ(x ∗ w, y ∗ w, z ∗ w),

then Φθ(D) is independent of the choice of a surface diagram D of F . �
When a map θ satisfies the conditions (i) and (ii) in Theorem 5.1, Φθ(D) is

called a cocycle invariant of F with respect to the 3-cocycle θ, and denoted by
Φθ(F ). Refer to [2, 4] also.

Example 5.2. In [24], Mochizuki finds an explicit presentation of a 3-cocycle
θ : R3 ×R3 ×R3 → Z3 = 〈t|t3 = 1〉 such that

θ(x, y, z) = t(x−y)(y−z)z(x+z) ∈ Z3.

The reader can check that this map θ satisfies the conditions (i) and (ii) in Theorem
5.1 by hand.

Proof of Theorem 1.2. From the definition of Φθ(F ), it is sufficient to prove that if
a surface diagram D of F has at most three triple points, then we have Wθ(C) =
1G ∈ G for any 3-cocycle θ and any tricoloring C for D. By Proposition 4.1, the
number of nondegenerate triple points is zero or two. So there are three cases to
consider.

Case 1. Assume that all the triple points of D are degenerate. By condition (i)
in Theorem 5.1, we have Wθ(τ ;C) = 1G for any triple point τ of D, and hence,
Wθ(C) =

∏
τ Wθ(τ ;C) = 1G.

Case 2. Assume that the surface diagram D has exactly two triple points, say τ
and τ ′, such that they are nondegenerate. By Proposition 4.2, we have Wθ(τ ;C) =
Wθ(τ ′;C)−1, and hence, Wθ(C) = Wθ(τ ;C) ·Wθ(τ ′;C) = 1G.

Case 3. Assume that the surface diagram D has exactly three triple points, say
τ , τ ′, and τ ′′, such that τ and τ ′ are nondegenerate and τ ′′ is degenerate. By
Proposition 4.3, we have Wθ(τ ;C) = Wθ(τ ′;C)−1 and Wθ(τ ′′;C) = 1G, and hence,
Wθ(C) = Wθ(τ ;C) ·Wθ(τ ′;C) ·Wθ(τ ′′;C) = 1G. �

6. Motion pictures

A motion of a tangle T ⊂ R3
+ is a continuous series of tangles M = {Tt}t∈I such

that T0 = T1 = T and ∂Tt = ∂T for any t ∈ I = [0, 1]. We associate M with a
2-disk ∆M embedded in R3

+ × I as follows:

∆M =
⋃
t∈I

Tt × {t} ⊂ R3
+ × I.
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Two motions M and M ′ are equivalent if there is an ambient isotopy {hs}s∈I of
R3

+ × I which maps ∆M onto ∆M ′ such that hs is the identity on ∂R3
+ × I and

hs|R3
+ × {0} agrees with hs|R3

+ × {1} for any s ∈ I.
Let π′ : R3

+ → R2
+ be a projection. Under the projection π′ × idI : R3

+ × I →
R2

+ × I, the image of ∆M is assumed to be a generic 2-disk in R2
+ × I. We denote

by ∆∗M the projection image with crossing information which is a surface diagram
of ∆M . Then ∆∗M is regarded as a continuous series of tangle diagrams {T ∗t }t∈I ,
where T ∗t is a tangle diagram π′(Tt) with crossing information:

∆∗M =
⋃
t∈I

T ∗t × {t} ⊂ R2
+ × I.

The series {T ∗t }t∈I of tangle diagrams is called the motion picture of a motion
M , and is denoted by PM . Such a motion picture contains a finite number of
Reidemeister moves on tangle diagrams. Then we have the following. See Figure
10.

Lemma 6.1 (cf. [3, 31]). A Reidemeister move I or III in a motion picture
PM = {T ∗t }t∈I corresponds to a branch point or a triple point of the surface diagram
∆∗M ⊂ R2

+ × I respectively. �

IIII

Figure 10.

We remark that a Reidemeister move II in a motion picture PM corresponds to
a maximal or minimal point of the singularity set of ∆∗M with respect to the height
function R2

+ × I → I.

Example 6.2 ([31]). Consider a motion M of a tangle T as shown in Figure 11a→f.
The deformations from one to the next are indicated by the arrows, and the boxed
sub-tangle does not deformed during the moves. ThenM is equivalent to the motion
corresponding to one twist of T . As depicted in the figure, we take a motion picture
PM by the projection π′ : R3

+ → R2
+ whose direction is normal to the paper. In

the process of a→b (or c→d), the boxed diagram goes over (or under) a root-arc
of the tangle. If the box contains c crossings, then there are c Reidemeister move
III’s and some II’s in each process. Moreover, the process b→c (or e→f) is made by
a Reidemeister move I, and d→e is by a move II. Hence, PM has 2c Reidemeister
move III’s, and the corresponding surface diagram ∆∗M ⊂ R2

+ × I has also 2c triple
points by Lemma 6.1.

To obtain R4 from R3
+ × I, we consider the identification on R3

+ × I such that

• (x, t) = (x, t′) for any x ∈ ∂R3
+ and t, t′ ∈ I, and

• (x, 0) = (x, 1) for any x ∈ R3
+.
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a b c d e f

Figure 11.

Let q : R3
+ × I → R4 denote this quotient map. The deform-spin associated with

a motion M is a 2-knot q(∆M ) ⊂ R4, and is denoted by FM [20]. We remark that
if two motions M and M ′ are equivalent, then the deform-spins FM and FM ′ are
also equivalent.

Similarly, let q′ : R2
+ × I → R3 be the quotient map with the identification of

∂R2
+×I with ∂R2

+ and R2
+×{0} with R2

+×{1}. Since the projection π′× idI : R3
+×

I → R2
+ × I induces a projection π : R4 → R3 naturally, we see that q′(∆∗M ) ⊂ R3

is a surface diagram of FM denoted by DM :

∆M ⊂ R3
+ × I

π′×idI→ R2
+ × I ⊃ ∆∗M

↓q ↓ q′
FM ⊂ R4 →

π
R3 ⊃ DM .

For a motion M , we denote by Mm the motion obtained by repeating M m
times (m ≥ 0; in case of m = 0, put Tt = T0 for any t ∈ I). Let T be a tangle in R3

+

whose knotting is a classical knot K. Let MT be a motion which presents one twist
of T . Then the deform-spin associated with the motion (MT )m is called the m-
twist-spin of K and denoted by τmK [35]. Assume that K has a knot diagram with
c crossings. Then there is a tangle diagram of T having c crossings. By Example
6.2, the m-twist-spin of K, τmK = F(MT )m , has a surface diagram D(MT )m with
2c ·m triple points; that is, t(τmK) ≤ 2cm. In [31], we improve this estimation so
that we have t(τmK) ≤ 2(c− 1)m for c > 0.

Proof of Theorem 1.3. Let T be a tangle whose knotting is K. Note that T has a
tangle diagram as in the top row of Figure 12 by assumption. Consider two motions
M and M ′ of T as shown in columns (i) and (iii) of the figure respectively. Then
there is a 3-ball B3 in R3

+ × I such that

• the closure of (∆M ∪∆M ′) \ (∆M ∩∆M ′) is the boundary ∂B3,
• ∆M ∩B3 = ∆M ∩ ∂B3 is a 2-disk, and
• ∆M ′ ∩B3 = ∆M ′ ∩ ∂B3 is also a 2-disk.

In column (ii) of Figure 12, we describe each slice B3∩R3
+×{t} by a shaded 2-disk.

By the cellular move lemma in [18, p. 84, Proposition 1.7] or [26, p. 55], there is an
ambient isotopy of R3

+×I mapping ∆M onto ∆M ′ and keeping R3
+×I\N(B3) fixed,

where N(B3) is a regular neighborhood of B3 in R3
+×I. Hence, M ′ is equivalent to

M . Since the motion M is the same as that given in Example 6.2, M ′ is equivalent
to the motion MT presenting one twist of T .

As depicted in the figure, we take a motion picture PM ′ of M ′ by the projection
π′ : R3

+ → R2
+ whose direction is normal to the paper. By the assumption of the

theorem, we may assume that the boxed subdiagram in PM ′ has c − 2 crossings.
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In the process of a→b (or c→d), only the boxed part goes over (or under) a root-
arc without passing two crossings adjacent to the box. Hence, there are c − 2
Reidemeister move III’s in each of the processes a→b and c→d. Moreover, the
process b→c is made by a Reidemeister move II and a move I, d→e is by two
move II’s, and e→f by a move I. Thus we see that PM ′ has 2(c− 2) Reidemeister
move III’s, so that the surface diagram ∆∗M ′ ⊂ R2

+ × I has 2(c − 2) triple points.
Hence, the m-twist-spin τmK has a surface diagram D(M ′)m with 2(c− 2)m triple
points. �

7. Demonstration for the 2-twist-spun trefoil

In this section, we demonstrate that the 2-twist-spun trefoil τ2(trefoil) has the
cocycle invariant Φθ

(
τ2(trefoil)

)
= 3 + 6t2 ∈ Λ3 = Z[t, t−1]/(t3 − 1) with respect

to Mochizuki’s 3-cocycle θ given in Example 5.2. The calculation is divided into
several steps in which we use the notation of the previous sections.

1. Surface diagram. Let T be a tangle whose knotting is the trefoi, and T ∗

a tangle diagram of T as shown in the top (or bottom) right of Figure 13, where
we label the crossings by X,Y and Z (or X ′, Y ′ and Z ′). Consider the motion
M ′ and its motion picture PM ′ = {T ∗t }t∈I given in the proof of Theorem 1.3 (see
column (iii) of Figure 12) with T ∗0 = T ∗1 = T ∗. Then a regular neighborhood of
the singularity set of the surface diagram ∆∗M ′ in R2

+ × I is as shown in the left
of Figure 13. We denote it by Γ. More precisely, we take a neighborhood Γt of
crossings of T ∗t in R2

+ × {t} so that we obtain Γ =
⋃
t∈I Γt × {t}. In particular,

the crossings X,Y, Z of T ∗0 (or X ′, Y ′, Z ′ of T ∗1 ) correspond to the top (or bottom)
end-parts of Γ with the same labels.

Take two copies Γ1 and Γ2 of Γ. Then the singularity set of the surface diagram
D(M ′)2 of F(M ′)2 = τ2(trefoil) has a regular neighborhood Γ1 ∪ Γ2 by connecting
X ′, Y ′, Z ′ of Γ1 with X,Y, Z of Γ2 respectively and vice versa like a closure of a
braid. It is not difficult to see that D(M ′)2 \ (Γ1∪Γ2) is a disjoint union of fourteen
open 2-disks. Hence, the surface diagram D(M ′)2 is constructed from Γ1 ∪ Γ2 by
gluing a 2-disk along each component of the boundary of Γ1 ∪ Γ2 without making
any singularities.

2. Signs of triple points. The motion picture PM ′ has two Reidemeister
move III’s and two I’s. Hence, there are two triple points and two branch points in
Γ ⊂ ∆∗M ′ by Lemma 6.1. We denote by τ1 and τ2 (or τ3 and τ4) the corresponding
triple points of Γ1 (or Γ2) as shown in Figure 13. We fix an orientation of Γ (and
hence, Γ1 and Γ2) as indicated by the arrows in the figure. Then the signs of the
τi’s are ε(τ1) = ε(τ3) = +1 and ε(τ2) = ε(τ4) = −1. Note that the orientation of Γ
extends to that of the surface diagram D(M ′)2 naturally.

3. Tricolorings. The surface diagram D(M ′)2 admits three trivial tricolorings,
that is, a single color is used for the coloring. We denote by Ca the trivial tricoloring
with a color a ∈ {0, 1, 2}. Consider nontrivial tricolorings for D(M ′)2 . We see that
the tangle diagram T ∗0 of the trefoil admits six nontrivial tricolorings, denoted
by Cabc, as shown in the top right of Figure 13, where {a, b, c} = {0, 1, 2}. The
tricoloring Cabc for T ∗0 determines that for the top parts X,Y and Z of Γ, which
extend to all of Γ uniquely as shown in the left of the figure. Observe that the
colors of the bottom end-parts X ′, Y ′, Z ′ of Γ coincide with the top ones with
b and c interchanged. Hence, by giving Cabc to Γ1 and Cacb to Γ2, we have a
tricoloring for Γ1 ∪ Γ2. This tricoloring for Γ1 ∪ Γ2 is extended to the fourteen
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a

b

c

d

e

f

(i) (ii) (iii)

Figure 12.

disks of D(M ′)2 \ (Γ1 ∪ Γ2) so that we obtain a tricoloring for D(M ′)2 . We denote
this tricoloring for D(M ′)2 by Cabc also. Conversely, any nontrivial tricolorings for
D(M ′)2 are obtained as above.

4. Colors of triple points. For a trivial tricoloring Ca for D(M ′)2 , all the
colors of τi’s are (a, a, a). On the other hand, for a nontrivial tricoloring Cabc for
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Figure 13.

D(M ′)2 , the triple points τ1 and τ2 have the colors (b, a, b) and (a, b, a), respectively,
as shown in the right middle of Figure 13. By interchanging b and c, we see that
the colors of τ3 and τ4 are (c, a, c) and (a, c, a) respectively. We summarize the data
for the calculation of a cocycle invariant as shown in Table 3.

5. Cocycle invariant. Let θ : R3 ×R3 ×R3 → Z3 = 〈t|t3 = 1〉 be Mochizuki’s
3-cocycle given in Example 5.2. First, we have Wθ(Ca) = 1 for each a ∈ {0, 1, 2}
by definition. On the other hand, since

θ(x, y, x) = t(x−y)(y−x)x(x+x) = tx
2
∈ Z3
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Table 3.

τi τ1 τ2 τ3 τ4

ε(τi) + − + −
Ca (a, a, a) (a, a, a) (a, a, a) (a, a, a)
Cabc (b, a, b) (a, b, a) (c, a, c) (a, c, a)

for any x, y ∈ R3 with x 6= y, we have

Wθ(Cabc) =
4∏
i=1

Wθ(τi;Cabc) = tb
2−a2+c2−a2

= ta
2+b2+c2 = t2 ∈ Z3

for each tricoloring Cabc with {a, b, c} = {0, 1, 2}. Hence, the cocycle invariant of
the 2-twist-spun trefoil with respect to Mochizuki’s 3-cocycle θ is

Φθ
(
τ2(trefoil)

)
=

∑
a∈{0,1,2}

Wθ(Ca) +
∑

{a,b,c}={0,1,2}
Wθ(Cabc)

= 3 + 6t2 ∈ Λ3 = Z[t, t−1]/(t3 − 1).
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