
■ This article summarizes 16 agent strategies that
were designed for the 2002 Trading Agent Compe-
tition. Agent architects use numerous general-pur-
pose AI techniques, including machine learning,
planning, partially observable Markov decision
processes, Monte Carlo simulations, and multi-
agent systems. Ultimately, the most successful
agents were primarily heuristic based and domain
specific.

Suppose you want to buy a used Canon AE-
1 SLR camera at an online auction. It
would be quite a daunting task to manual-

ly monitor prices and make bidding decisions
at all web sites currently offering the cam-
era—especially if accessories such as a flash and
a tripod are sometimes bundled with the cam-
era and sometimes auctioned separately. How-
ever, for the next generation of trading agents,
autonomous bidding in simultaneous auctions
will be a routine task.

Simultaneous auctions, which characterize
internet sites such as eBay.com, are a challenge
to bidders, particularly when complementary
and substitutable goods are on offer. Comple-
mentary goods are items such as a flash and a tri-
pod that would complement a camera, but a
bidder wants the flash and tripod only if
he/she is certain to acquire the camera. Substi-
tutable goods are goods such as the Canon AE-1
and the Canon A-1—a bidder desires one or the
other but not both. In combinatorial auctions,
bidders bid on combinations of items, such as
“camera and flash for $295”; in these auctions,
the (NP-complete) problem of determining
how to allocate the goods to maximize revenue
falls in the hands of the auctioneer. In simulta-
neous auctions, however, the complexity bur-
den lies with the bidders.

The International Trading Agent Competi-
tion (TAC) annually challenges its entrants to
best design online agents capable of bidding in
simultaneous auctions for substitutable and
complementary goods. The original TAC was
designed and operated by a group at the Uni-
versity of Michigan AI Laboratory (Wellman et
al. 2001). In 2002, for the third rendition of
the competition, the TAC software platform
was redesigned by the Intelligent Systems Lab-
oratory at the Swedish Institute of Computer
Science (SICS).

Since the first International Trading Agent
Competition back in 2000, TAC agent design
has come a long way. In TAC-00, agent designs
were primarily centered around designing al-
gorithms to solve an NP-complete optimiza-
tion problem. However, by the second year, it
became common knowledge that this problem
was tractable for the TAC travel game parame-
ters. During the second year, agent designs fo-
cused on estimating clearing prices, and some
agents designed algorithms that made use of
distributional price estimates. Agent design in
TAC-02, however, cannot be described so suc-
cinctly. Agent architects used numerous gener-
al-purpose AI techniques, including machine
learning, planning, partially observable Mar-
kov decision processes, Monte Carlo simula-
tions, and multiagent systems. Ultimately,
however, the most successful agents were pri-
marily heuristically based and domain specific.

Rules
Eight agents participate in a TAC game in-
stance. Each TAC agent simulates a travel agent
with eight clients interested in traveling from
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ascending English auctions (auctions such as
those for antiques and art). These auctions
clear once a minute in an unspecified random
order. Entertainment tickets are traded in con-
tinuous double auctions (auctions like those on
the New York Stock Exchange).1

TAC Software
SICS hosted TAC in 2002 using a brand new
server (Fritschi and Doerr 2002), which has
been under development since November
2001. The purpose of this effort was to provide
an open-source system to TAC participants as
well as other researchers and educators in the
field. The SICS TAC server consists of three
main subsystems: (1) the market server, (2) the
game server, and (3) the information server.
The market server and the game server are writ-
ten in SICSTUS Prolog. These servers run the ac-
tual markets and games and communicate
with trading agents. The information server is
written in JAVA. This server manages partici-
pants and schedules games; it collects and dis-
tributes game information and statistics on the
web and is responsible for game monitoring
applets.

The SICS server has proven itself to be very
robust. It crashed on one occasion when one

TACtown to Tampa and home again over a
five-day period. Each client is characterized by
a random set of preferences for the possible ar-
rival and departure dates, hotels (The Tampa
Towers, AKA the good hotel, and Shoreline
Shanties, AKA the bad hotel), and entertain-
ment tickets (alligator wrestling, amusement
park, and museum).

A TAC agent’s score in a game instance is the
difference between the total utility it obtains
for its clients (based on its clients’ preferences)
and the agent’s expenditures. To obtain utility
for a client, an agent constructs a complete
travel package for this client by purchasing air-
line tickets to and from TACtown and securing
hotel reservations. It is also possible to obtain
additional utility by supplementing a travel
package with tickets to entertainment events.
Each item is sold separately at auction: In total,
there are 28 goods (4 flights in, 4 out, 4 good
hotels, 4 bad, and 4 of each type of entertain-
ment, for a total of 12). Thus, there are 28 si-
multaneous auctions; flights and hotels are
complementary, and entertainment events are
substitutable. 

Airline ticket prices follow a biased random
walk—prices are more likely to increase than
decrease. Hotel room reservations are sold in
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Agent AI Technology Institution

ATTAC Machine Learning ATT Labs, Research

CUHK Fuzzy Logic Chinese University, Hong Kong

KAVAYAH Neural Networks Oracle

LIVINGAGENTS Multiagent Systems Living Systems, AG

PACKATAC A Decision-Theoretic Agent North Carolina State University

ROXYBOT Online Heuristic Search Brown University

PAININNEC Genetic Algorithms NEC Research

SICS Optimization Swedish Institute of Computer
Science

SOUTHAMPTONTAC An Adaptive Agent University of Southampton

THALIS Risk Aversion University of Essex

TOMAHACK POMDPs University of Toronto

TNITAC Planning Politehnica University Bucharest

UMBCTAC Risk vs. Return University of Maryland at
Baltimore County

WALVERINE Competitive Equilibrium
Analysis

University of Michigan

WHITEBEAR Offline Heuristic Search Cornell University

ZEPP Multiagent Systems Politehnica University Bucharest

Table 1. AI Technologies in TAC Agents.



team (accidentally) created thousands of
agents, all of which requested simultaneous
connections, a classic denial-of-service attack.
Otherwise, the SICSTUS Prolog system proved
extremely reliable, allowing code to be upgrad-
ed during continuous operation. The (non-
critical) JAVA systems halted occasionally be-
cause of software errors; by design, these
components can be stopped and restarted at
any time without interfering with ongoing
games. Nonetheless, future versions of the SICS
TAC server will be implemented entirely in JAVA

to facilitate community development.
A new addition to the game-monitoring ap-

plet, the chat room, led to unprecedented com-
munication between participants. It was also
an efficient channel for bug reports and public
communication with the server developers.

Finally, SICS also developed new TAC AGENT-
WARE in the form of a JAVA software tool kit for
TAC agents. Most of the new TAC entrants
based their agents on SICS’ TAC AGENTWARE.

Agent Strategies
This section describes 16 TAC agent strategies.2

Fifteen of these 16 agents participated in the
semifinals. A list of the 16 agents appears in
table 1, along with the primary AI technology
that characterizes each one.

ATTAC: A Machine Learning Agent
The core of ATTAC’S approach is a learning al-
gorithm that builds a model of price dynamics
based on empirical data and utilizes this model
to compute bids. ATTAC-02 is essentially the
same agent as ATTAC-01 (Stone et al. 2002),
but because ATTAC uses a learning approach
and because the training data in TAC-02 dif-
fered from that of TAC-01, the agent’s behavior
differed from one year to the next.

Given posted prices for goods, one can com-
pute a set of sales, purchases, and an allocation
of goods to clients that maximizes profits. Sim-
ilarly, if auction clearing prices are known, op-
timal bids can be computed: Bid high to buy,
bid low to sell. Thus, one could predict precise
clearing prices, or point estimates, for each
open auction. However, the utility of this ap-
proach is very sensitive to the accuracy of pre-
dictions.

An alternative approach to price prediction
is to construct a model of the probability distri-
bution over clearing prices, stochastically sam-
ple price, and compute profit predictions, as
defined earlier, for each sampled set of prices.
This form of profit prediction models uncer-
tainty. Moreover, it can be used to reduce un-
certainty when used in conjunction with a

scheme that estimates the value of delaying de-
cisions for the purpose of gaining additional
information.

ATTAC uses a distribution-based approach,
relying on a general boosting-based algorithm
for conditional density-estimation problems of
this kind, that is, supervised learning problems
in which the goal is to estimate the conditional
distribution of a real-valued label (Schapire et
al. 2002). As well as using this price prediction
method successfully in competitions (ATTAC
was a top finisher in the TAC-01 finals and the
top scorer in the TAC-02 seeding round), its
creators have validated this approach in con-
trolled empirical experiments (Schapire et al.
2002).

ROXYBOT: A Retrospective
ROXYBOT-02 generalizes ROXYBOT-00 and ROXY-
BOT-01. At the heart of ROXYBOT-00 was a two-
phase bidding policy: (1) solve the completion
problem, that is, determine the set of goods on
which to bid (Boyan and Greenwald 2001),
and (2) associate numeric valuations with the
goods in that set. Step 1 was accomplished us-
ing an optimization routine based on heuristic
search (Greenwald and Boyan 2001); step 2 was
accomplished using a marginal utility calcula-
tor. (The marginal utility of good x is defined as
the utility of all goods, including good x, less
the utility of all goods, excluding good x.) Pol-
icy determination in ROXYBOT-00 relied on a set
of price point estimates.

ROXYBOT-01 generalized ROXYBOT-00 by
computing policies not simply from price
point estimates but rather from estimated
price distributions. In particular, ROXYBOT-01
accom- plished step 1 by determining a set of
goods that was likely to be of value under
many samples of the estimated price distribu-
tions. (This algorithm proceeded by determin-
ing an initial set of goods that is desired under
many samples, adding that set to the set of
current goods and repeating. A larger and larg-
er set of goods was built up by conditioning on
those goods that were desired in earlier itera-
tions.) Step 2 was accomplished by averaging
marginal utilities across many samples of the
estimated price distributions.

ROXYBOT-02, an agent based on Monte Carlo
simulations, generalizes both earlier versions
of ROXYBOT. Specifically, this agent (1) gener-
ates a bidding policy either according to ROXY-
BOT-01, using estimated price distributions, or
according to ROXYBOT-00, obtaining a set of
price point estimates by sampling from esti-
mated price distributions, and (2) evaluates
this bidding policy by averaging its score across
many samples of estimated price distributions.
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participating agents. KAVAYAH’s price predic-
tions are based on the demand for hotel rooms,
as measured by the number of bids submitted
in an auction; it is assumed that this parameter
is less dependent on the participating agents.
KAVAYAH predicts prices using a back-propaga-
tion neural network.

More specifically, demand for a day is de-
fined as the average number of serious bids
placed in both hotel auctions on the day. A bid
is considered serious only if it exceeds the pre-
vious price by a certain threshold value. There
are 12 input to the neural network, namely, the
differences in starting flight prices. This setup
is based on the observation that if such a price
difference is significant, then demand tends to
shift toward lower-priced days and away from
higher-priced days. The output is classified into
five classes: (1) very low, (2) low, (3) normal, (4)
high, and (5) very high.

LIVINGAGENTS: Top Scorer in TAC-01
The LIVINGAGENTS team is based on the LIVING-
AGENTS run-time system (LARS) of Living Sys-
tems AG. LARS agents operate in various re-
search domains, such as TAC and RoboCup, as
well as business platforms. LIVINGAGENTS used
the same strategy and agents in TAC-02 as
TAC-01. This strategy involved the following
six agent types (the number in brackets is the
number of running copies of each agent type):
(1) TACMANAGER [1] is responsible for starting
and stopping the other agents. (2) TACCLIENT

[8] is responsible for the calculation of the best
combination of tickets for the client it repre-
sents. (3) TACDATAGRABBER [5] is responsible for
providing current auction information. (4)
TACAUCTIONEER [4] is responsible for bidding
according to the suggestion of the TACCLIENTS.
(5) TACENTERTAINMENTAUCTIONEER [1] is respon-
sible for bidding in entertainment ticket auc-
tions and regularly observing the current auc-
tion prices for opportunities to buy or sell
tickets. This agent was as an extension of the
simple TACAUCTIONEER type. (6) TACRESULT-
GRABBER [1] is responsible for grabbing informa-
tion of previous auction rounds and generating
statistics to be used in later auctions.

LIVINGAGENTS makes most of its decisions at
the very beginning of a TAC game instance.
Only decisions to buy or sell entertainment
tickets can occur later in the game. This strate-
gy ensures considerable savings in the cost of
flights. By using the average hotel prices from
earlier games as forecasts and calculating the
potential benefits of all permutations of pack-
ages, each LIVINGAGENTS client finds an approx-
imately optimal allocation of tickets.

This search through the space of bidding poli-
cies continues until time expires (in TAC-02,
time expires every minute on the minute), at
which point ROXYBOT-02 bids according to the
best bidding policy.

CUHK: The Minority Agent
Agent CUHK’s architecture is reminiscent of
early TAC designs (Stone and Greenwald
2003). It consists of three major components:
(1) a cost estimator, (2) an allocation and ac-
quisition solver (AAS), and (3) bidders. The AAS
allocates items using a greedy, heuristic search:
Packages are allocated client by client without
replacement. This approach is motivated by
the fact that beam search was shown to output
near-optimal solutions in TAC-00 (Greenwald
and Boyan 2001), and by design, it is scalable
to larger problems.

The input to the AAS are cost estimates. Like
ROXYBOT-00 (Greenwald and Boyan 2001),
CUHK assumes sunken costs for goods that are
already owned, opportunity costs for goods
that could otherwise be sold, and inflated
prices for duplicate copies of goods. Otherwise,
the estimated cost of items with higher average
prices in past games is greater than that of
items with lower average past prices. This ap-
proach is intended to steer CUHK away from
high-cost items and toward low-cost items so
that CUHK’s demands will be like those agents
in the minority of the population. Ultimately,
CUHK bids on (1) few goods, (2) few expensive
goods, and (3) not too many low-cost goods.

CUHK’s bidders rely on different strategies.
Flight bidders vie for tickets twice an in-
stance—in the beginning and at the end of the
game. Initial flight-bidding decisions depend
only on historical hotel clearing prices; later
flight-bidding decisions depend on game dy-
namics. The hotel bidders bid low prices on all
hotel rooms in the first few minutes, hoping to
stimulate competitors to actively participate.
After the first hotel auction closes, CUHK bids
aggressively. The entertainment bidders bid on
tickets using a strategy based on fuzzy reason-
ing. They place bids even if they do not reach,
but are at least close to, their target prices.

KAVAYAH: Learning Market Demands
Three key features make up KAVAYAH: (1) a hotel
demand and clearing price predictor, (2) a val-
ue assessor, and (3) bid submitters. We focus on
its predictor because KAVAYAH is one of the few
agents that only relies on machine learning.

Hotel price prediction is arguably one of the
most important aspects of TAC. However, gen-
eral price trends cannot be captured complete-
ly because they depend on the identity of the
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PACKATAC: A Hybrid Agent
The PACKATAC agent is a hybrid open-loop,
closed-loop agent that commits to some as-
pects of packages at the beginning of the game
and later completes packages by optimizing
over current and predicted states of the game.

At the beginning of the game, the agent
buys both flights for easy trips (that is, those
that rely on goods that are not expected to be
in great demand) and one anchor flight for
trips of greater difficulty. Once two hotels have
closed, the agent again selects flights to pur-
chase by optimizing over predicted hotel clear-
ing prices. The optimization formulation in-
cludes constraints to “level the demand” by
limiting the number of clients in town on any
given night as well as the distribution of those
clients over the good and bad hotels.

Hotel prices are predicted using historical in-
formation. Like agents in TAC-01, PACKATAC
conditions price predictions on the set of ho-
tels that have already closed and the current
ask price of each auction. The agent computes
and bids the marginal value of each hotel
room, given the predicted prices of the other
hotel rooms. PACKATAC also places low-valued
bids on some rooms early in the game to hedge
against the possibility of prices skyrocketing
later on. PACKATAC offers to buy or sell enter-
tainment tickets based on its needs at prices de-
termined by a hard-coded linear schedule.

PAININNEC: Genetic Algorithms
PAININNEC’s strategy incorporates a combina-
tion of heuristics, including a genetic algo-
rithm–based optimization technique. This opti-
mization routine takes as input the auctions’
expected clearing prices, as well as the clients’
preferences, and outputs a set of goods to buy
and sell.

In the genetic algorithm, each client’s pack-
age is represented by a six-digit string
the1e2e3e4. The first string element t ranges from
0–9 and encodes the travel dates of the package
(for example, t = 0 represents arrival on day 1
and departure on day 2). The second element h
is either 0 or 1, depending on the hotel type.
The remaining elements of the string represent
the entertainment package, with one enter-
tainment ticket type per day. For example, if e1
= 0, then this package does not include any en-
tertainment on day 1, whereas if e1 = 1, then
this package includes an entertainment ticket
of type 1 on day 1. A string of length 48 repre-
sents the 8 clients’ travel packages.

The genetic algorithm optimizes the sum of
each client’s value for its assigned package less
the cost of the goods. Strings are selected for re-
production using the tournament method; that

is, two strings are selected at random, and with
high probability, the string with the greater ob-
jective value reproduces, although errors occur
with low probability. The genetic algorithm pa-
rameters used in the optimization routine dur-
ing the TAC tournament were as follows: The
population size was 200, the number of gener-
ations was 40, the crossover probability was
0.9, and the mutation probability was 0.05.
The average run time for the genetic algorithm
was about 20 seconds, and the genetic algo-
rithm steered clear of packages with very high
hotel costs.

SICS: Branch-and-Bound 
Optimization
SICS’s TAC-02 agent, SICS, explored a risk
averse strategy and a new optimization algo-
rithm.

The optimizer operates on price lines (Boyan
and Greenwald 2001), which are vectors of pre-
dicted clearing prices for different quantities of
each good, for example, 0 to 8 hotel rooms at
the good hotel on day 3 at prices: price(good-
hotel; 3; [0; 155; 387; 726; 1210; 1892; 2838;
4138; 5912]). One such vector is constructed
for each auction, trading-i (selling when possi-
ble) to 8-i (buying) items, where i is the num-
ber of items owned. The predictions were based
partly on seeding round data, using the public
TAC-02 game data tool kit, and partly on auc-
tion quotes and heuristics. The main heuristic
used was risk averseness; for example, fourth-
minute predictions were taken to be the nineti-
eth percentile of historic fourth-minute prices.

Given input of this form, the optimizer per-
forms branch-and-bound search in a separate
process, delivering a stream of gradually better
solutions. The process is interrupted after 20
seconds, and the best solution found thus far is
returned. Often, the best answer is found in the
allotted time, and occasionally, it is proven op-
timal by completing the search. All variables
are assigned in a general way by the optimizer,
but ordering heuristics—for example, best-first
assignment of possible hotel-flight combina-
tions to a client—are crucial for performance.

A simplified version of the optimizer was
used for calculating TAC-02 scores, usually
finding the optimal solutions in milliseconds,
but on some exceptional instances, it took
minutes. Both optimizers are part of the SICS
open-source TAC software.

The least developed part of the SICS agent is
the bidding strategy. There is no principled
mechanism for risk-consequence analysis. This
is an area for future research.
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the optimizer increases the estimated costs of
the relevant hotel auctions, forcing a subopti-
mal solution that does not violate either of
these constraints.

In terms of bidding, THALIS buys flights as
soon as possible. It delays buying flights only
in cases where the number of nights requested
by a client is above a threshold (say, three) or
when the selected package yields little revenue.
For hotels, THALIS bids after the start of the
fourth game minute and issues its initial bids at
relatively high prices (determined by the statis-
tics) to buy some learning time for the optimiz-
er. It then monitors any increase in prices to
dynamically configure later bid prices based on
its estimates of future clearing prices. Finally,
THALIS only sells entertainment tickets during
the first six minutes of the game; thereafter, it
only buys entertainment tickets.

TOMAHACK: A Partially Observable
Markov Decision Process Approach to
TAC
The TOMAHACK team’s goal was to model TAC
as a sequential decision process, specifically a
partially observable Markov decision process
(POMDP). Although TAC is a multiagent do-
main that might more accurately be modeled
as a partially observable Markov game, the
TOMAHACK team made the simplifying assump-
tion that the other agents are part of the envi-
ronment.

In the TOMAHACK formulation, the state of
the game encompassed elapsed time, client
preferences, current quotes, outstanding bids,
and the agent’s holdings. A key difficulty in
this choice of representation was how to best
determine the underlying state-transition
function. Each transition, from one state to the
next, requires simulation of all aspects of the
dynamics of a TAC game—including the ac-
tions of rival agents.

In an attempt to uncover the state-transition
function, the TOMAHACK team built models of
the bidding behavior of each of its opponents.
The models were constructed offline, using
game logs as the source of data because of in-
sufficient information about individual agents’
actions during the play of a game. Each oppo-
nent was modeled as a function from observed
state to active bids. Using neural network re-
gression to approximate this function, promis-
ing results were obtained.

Given the significant complexity and the
generative nature of the POMDP model, the
TOMAHACK team planned to use a model-free
approach inspired by Meuleau et al.’s (1999)
policy search algorithm to learn a reasonable fi-
nite-state controller using simulation. Unfor-

SOUTHAMPTONTAC: An Adaptive Agent
SOUTHAMPTONTAC is an adaptive agent that
varies its bidding strategy according to the pre-
vailing market conditions.

Building on SOUTHAMPTONTAC01 (He and
Jennings 2002), the agent classifies TAC game
instances into three types of environments: (1)
noncompetitive, in which there is very little
competition for hotels, and an agent can ob-
tain the rooms it wants at low prices; (2) semi-
competitive, where prices are in the middle; and
(3) competitive, where the prices of the hotels
are (possibly very) high. The agent makes this
classification based on the outcomes of the
most recent games and the current prices of
the hotels in the various auctions.

In games it deems noncompetitive,
SOUTHAMPTONTAC buys all its flight tickets at
the beginning of the game and never changes
the travel plan of its clients. In competitive
games, it buys flights according to its assess-
ment of the flight category (rapidly rising flight
prices cause the agent to buy near the begin-
ning, whereas stagnant flight prices cause it to
wait until near the end). In these games, it can
alter the customers’ travel plans to avoid stay-
ing in expensive hotels for long periods. More-
over, the agent continuously monitors the on-
going market situation and changes its
assessment of the game type—and accordingly
its strategy—depending on observed prices.

SOUTHAMPTONTAC uses fuzzy reasoning tech-
niques to predict hotel clearing prices. In an at-
tempt to capture the many different factors
that affect hotel clearing prices, three rule-bases
are used: (1) when both the good and bad hotel
auctions are open, (2) when the counterpart
hotel has just closed, and (3) when the counter-
part hotel has been closed for more than one
minute. The factors considered in the predic-
tion are the price of the hotel, the price of the
counterpart hotel, the price change in the pre-
vious minute, and the previous price change of
the counterpart hotel (when it closed).

THALIS: A Risk-Averse Agent
In its initial allocation, an optimizer decides on
the best package for each client based on its
preferences and statistics about average hotel
clearing prices. If any travel package involves
more than three nights, it only issues requests
for hotel auctions and reserves the flight re-
quests for a later time (at least the fourth
minute, or at most the fifth minute, depending
on flight prices). Once the initial allocation has
been completed, the optimizer checks if (1) the
number of hotel nights desired on any given
day exceeds a threshold or (2) the total number
of hotel nights exceeds a given threshold. If so,
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tunately, there was insufficient time to imple-
ment this POMDP-based agent. With only lim-
ited success using an agent based on one of
their opponent models, the TOMAHAC team en-
tered a simple high-bidding agent in the final
rounds of TAC-02.

TNITAC: A Planning Agent
TNITAC’s designers transformed TAC into a
planning problem. The agent is assigned an
initial state, it decides on a goal state, and it
creates a plan for reaching this goal state. A
state is defined by goods owned, active bids,
client preferences, and probabilities of winning
in open auctions. The agent associates a utility
value with each state, and the state with the
highest utility value is the goal state.

State values are determined by summing the
values of the goods the agent owns and the val-
ues of goods for which its bids are active. The
value of an owned good is computed in one of
two ways, depending on its relation to a travel
package: (1) When the good is associated with
a complete package, its direct value represents
the additional utility gained by using this good
with the complete package; (2) when the good
is associated with an incomplete package, its
collateral value represents a fraction of the
package’s utility, depending on how many oth-
er goods are necessary to complete that pack-
age and what the probabilities of winning
these other goods are. The value of a good in
an open auction, in which the agent has an
outstanding bid, is computed in the same man-
ner as the value of an owned good, except that
this value is multiplied by the probability of
winning the good.

Because TAC market conditions are continu-
ously changing, TNITAC’s main algorithm is
loop based: During each iteration, it adapts its
strategy to the current game situation. More
importantly, a new goal state is computed each
iteration. To find its new goal, TNITAC starts at
its old goal. It first eliminates all lost goods and
then explores a small neighborhood to find a
state of maximal value, which becomes the
new goal state.

UMBCTAC: A Balanced Bidder
UMBCTAC handles flight and hotel auctions
separately from entertainment ticket auctions.
Early in the game, UMBCTAC commits to a
travel plan and places all its flight and hotel
auction bids. Thereafter, it focuses on enter-
tainment bidding. UMBCTAC is a balanced
bidder: It never bids on too many rooms in any
one hotel auction, and it tries not to hold too
many entertainment tickets of any one type.

Because UMBCTAC commits to its travel

plan early in the game, it seeks a well-balanced,
robust plan. To find one, UMBCTAC uses a
model of risk versus return, which operates as
follows: (1) preprune highly supoptimal candi-
date plans, (2) select plan combinations with
minimal risk, and (3) select plan combinations
with maximal return. Hotel price predictions
are simple historical averages. However, aver-
age prices correspond to average demand; thus,
UMBCTAC adjusts its own demands to create
average demands across hotel auctions, in-
creasing the likelihood of accurate predictions.

Regarding entertainment auctions, UMBC-
TAC uses a probability-based model that han-
dles each auction separately. In particular, the
agent computes a range of buying and selling
prices and probabilities of buying and selling at
these prices. For example, if the agent holds
three tickets of a certain type on a given day, it
will sell one ticket at its lowest selling price if it
expects another agent to place a bid above the
price with high probability; however, if it holds
only one ticket, it will sell the ticket at its high-
est selling price, even it expects another agent
to bid above that price with only low probabil-
ity.

WALVERINE: Walras + Wolverine
The University of Michigan’s TAC entry,
WALVERINE, aims to bid optimally based on a
competitive equilibrium analysis of the TAC
travel economy.

Any package optimization routine must be
based on a forecast of hotel prices, the major
source of uncertainty in TAC. WALVERINE pre-
dicts hotel prices by calculating the Walrasian
competitive equilibrium for the game. It derives
the equilibrium using a tâtonnement approach,
a measure of expected demand derived from
the known distribution of client preferences.
This approach is designed to exploit informa-
tion provided by the initial flight prices, which
influence agents’ choices of preferred travel
days. Although the competitive assumption is
clearly false for individual agents, it might sup-
port an accurate model of aggregate behavior.

By sampling outlier values around the pre-
dicted prices, the prediction is used to compute
an “outlier hedged” set of optimal travel dates
(hence, flight purchases) and marginal values
for the available hotel rooms. During each ho-
tel-bidding round, WALVERINE constructs bids
that maximize expected value, taking into ac-
count its marginal value of each room unit, the
probability of winning for a given bid, the
probability that this bid will actually be the
sixteenth (and, thus, set the price), and the ex-
pected price if it does not bid. These probabili-
ties are derived from an expected distribution
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WHITEBEAR: Top Scorer in TAC-02
The WHITEBEAR approach is to generate domain-
specific heuristics (for example, strategies used
in TAC-01) and experiment with these heuris-
tics to determine which are the most effective.
Sometimes, the most effective heuristic is, in
fact, a combination of two or more heuristics.

In the hotel auctions, WHITEBEAR ultimately
combines two extreme heuristics: (1) strategy A
is “bid some small increment greater than cur-
rent prices,” and (2) strategy B is “bid marginal
utility.” WHITEBEAR combines these strategies to
form its actual bidding strategy, which lies in
the middle ground: “use strategy A, unless the
marginal utility is high, in which case use strat-
egy B.” In the flight auctions, heuristics are dis-
tinguished by their bidding behavior at the be-
ginning of a game instance. Two extremes are
“buy everything” and “buy only what is ab-
solutely necessary.” WHITEBEAR ultimately bids
on flights as follows: “Buy everything, except
any tickets that are dangerous.” Dangerous
tickets are those that restrict diversification
across hotel auctions.

WHITEBEAR does not necessarily bid on an
optimal set of goods for its clients, nor does it
use sophisticated machine learning techniques
to predict hotel clearing prices (its predictions
are simply historical averages). WHITEBEAR’s
performance suggests that domain-specific
heuristics, coupled with extensive experimen-
tation, are a recipe for success in the TAC travel
game (Vetsikas and Selman 2002). 

Results
The competition on 28 July 2002 consisted of
a morning with two simultaneous rounds of
semifinals, each involving eight agents, fol-
lowed by an afternoon of finals, involving the
four top-scoring agents in each semifinal
round. The top-scoring agents in the semi-fi-
nals rounds were Southamptontac and Whit
Bear.4 These agents were also the top-scoring
agents in the finals (table 2).

Conclusion
Participants in TAC-00 laid the foundations for
many TAC-02 agent architectures. The com-
pletion problem was formulated (Boyan and
Greenwald 2001), and solutions based on inte-
ger linear programming (Stone, Littman,
Singh, and Kearns 2001) and heuristic search
(Greenwald and Boyan 2001) were proposed,
enabling agents to determine at least a near-op-
timal quantity of each good to buy and sell,
given its inventory, its clients’ preferences, and
clearing prices. Some TAC-02 agents extend the

of other agents’ valuations as well as a compet-
itive analysis of the trading domain.

As described earlier, WALVERINE’s approach to
flight and hotel bidding is completely model
based: There are no empirically tuned parame-
ters. In contrast, WALVERINE’s approach to enter-
tainment bidding is completely model free.
Specifically, WALVERINE executes a policy de-
rived through Q-learning over thousands of
auction instances. Bid actions are described in
terms of offsets from marginal values, as calcu-
lated from the optimizations based on predict-
ed hotel prices described earlier.

ZEPP: A Multiagent System
ZEPP is a TAC agent whose core is a multiagent
system.3 Each of ZEPP’s clients is assigned a per-
sonal internal agent that is responsible for
meeting his/her demands. This design is in-
tended to mirror the principles of a live travel
agency, where the employees work on behalf of
their own clients but not on behalf of the
clients of other employees.

There is no competition inside ZEPP. On the
contrary, if one internal agent owns a good
that is not useful to its client, it can offer this
good to the other internal agents using the
central coordination system (CCS). The CCS is
transparent to the internal agents; in particu-
lar, a personal agent interacts with the CCS just
as it would with the TAC auction server (except
that flights and hotels can only be transferred
internally).

During a TAC game instance, each internal
agent creates a list of possible solutions for its
client and computes the utility of each possible
solution less estimated costs. At prespecified
times, each agent sends bids for its best possi-
ble solution. This design permits rapid changes
in bidding strategy, both in terms of what
goods are bid on and at what price.
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Order Agent Score Average
1 WHITEBEAR 3556.48 3412.78
2 SOUTHAMPTONTAC 3492.03 3385.46
3 THALIS 3351.23 3246.27
4 UMBCTAC 3320.65 3235.56
5 WALVERINE 3315.62 3209.52
6 LIVINGAGENTS 3309.83 3180.89
7 KAVAYAH 3249.86 3099.44
8 CUHK 3247.83 3068.77

Table 2. TAC-02 Final Results.
Each agent’s score is simply an average, but the lowest score is dropped.



earlier architectures with sophisticated AI tech-
niques, such as machine learning, Monte Carlo
simulations, and POMDPs. However, both
SOUTHAMPTONTAC and WHITEBEAR, the best-per-
forming TAC-02 agents, extend this
architecture with domain-specific heuristics.

What was most successful in the design of
TAC-02 agents (and likely to be of greatest as-
sistance in your camera purchase) is precisely
what is successful in most other branches of AI.
Championship chess programs, which rely on
the provably optimal αβ-pruning algorithm, al-
so incorporate elaborately hand-coded open-
ings and end games. Speech recognition,
which is built on the elegant machinery of hid-
den Markov models, became ubiquitous only
after painstaking engineering of language
models and acoustic features. As with other
complex domains, the best-performing inter-
net trading agents are likely to combine clever
algorithms with hand-tuned heuristics.
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Notes
1. Complete descriptions of the rules are available at
www.sics.se/tac and tac.eecs.umich.edu/.

2. All agent designers were invited to contribute to
this article. Those included are those who chose to be
included.

3. ZEPP is the only agent reported on in this article
that did not participate in the semifinals.

4. The organizers prefer to refrain from declaring any
winners because far too few games can be run in a
one-day workshop to achieve statistical significance.
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