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Preface

These are the preliminary proceedings of the fourth international workshop
on Bounded Model Checking (BMC’06) that was held on Aug 15th, 2006
in Seattle, Washington, USA as a CAV’06 affiliated workshop (also part
of FLOC’06). The final proceedings will be published in Electronic Notes
in Theoretical Computer Science (ENTCS), together with other Computer
Aided Verification (CAV’06) workshops. All the 5 submissions were chosen to
be included in these proceedings and workshop, although some of them will
go through another round of reviews before publishing them in the official
proceedings. Each of these papers was reviewed by three program committee
members. The workshop had two invited talks: one by Ilkka Niemela about
‘Bounded Model Checking, Answer Set Programming, and Fixed Points’ and
one by Fabio Somenzi about ‘Techniques for proving properties with SAT-
based MC’. The first session of the workshop was a joint session with SAT’06
(not listed in the following program).

We thank the program committee for their effort in evaluating the articles
and giving helpful comments to the authors. We also thank the organizers
of the hosting conference, CAV’06, Thomas Ball and Robert Jones.
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Invited Talk

Bounded Model Checking, Answer Set Programming, and Fixed
Points

Ilkka Niemela

Helsinki University of Technology Dept. of Computer Science and

Engineering Laboratory for Theoretical Computer Science, Helsinki,

Finland

Ilkka.Niemela@tkk.fi

Abstract

Abstract: Answer set programming (ASP) is a novel declarative paradigm for
solving search problems. The basic idea of ASP is similar to, for example, SAT-
based planning or constraint satisfaction problems but ASP has its roots in logic
programming and the stable model semantics. ASP offers a powerful knowledge
representation language for effective problem encoding supporting, for example,
logical variables, recursive definitions, and a variety of aggregates. A number
of successful ASP systems have already been developed and applied in areas
such as planning, decision support for the flight controllers of space shuttles,
web-based product configuration, configuration of a Linux distribution, VLSI
routing, and linguistics.

The talk explains the theoretical underpinnings of ASP, outlines computa-
tional techniques used in current ASP solvers, and then discusses bounded model
checking (BMC) as a potential application area for ASP techniques. BMC can
be seen as a search problem where the task is to find an execution of the sys-
tem violating a given (temporal) property. ASP fit well such an application
and offers promising techniques to encoding and solving BMC problems. In
particular, ASP supports directly recursive fixed point computation needed to
evaluate temporal operators and we discuss how this can be used in bounded
model checking of linear temporal logic (LTL).
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BMC 2006

Towards an Efficient Path-Oriented Tool for
Bounded Reachability Analysis of Linear

Hybrid Systems using Linear Programming

Xuandong Li a,b,1, Sumit Jha Aanand b,2 and Lei Bu a,3

a State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology, Nanjing University

Nanjing, Jiangsu, P.R.China 210092
b Computer Science Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA15213, USA

Abstract

The existing techniques for reachability analysis of linear hybrid automata do not
scale well to problem sizes of practical interest. Instead of developing a tool to
perform reachability check on all the paths of a linear hybrid automaton, a comple-
mentary approach is to develop an efficient path-oriented tool to check one path at
a time where the length of the path being checked can be made very large and the
size of the automaton can be made large enough to handle problems of practical
interest. This approach of symbolic execution of paths can be used by design engi-
neers to check important paths and thereby, increase the faith in the correctness of
the system. Unlike simple testing, each path in our framework represents a dense
set of possible trajectories of the system being analyzed. In this paper, we develop
the linear programming based techniques towards an efficient path-oriented tool for
the bounded reachability analysis of linear hybrid systems.

Key words: Linear hybrid automata, bounded model checking,
reachability analysis, linear programming.

1 Introduction

The model checking problem for hybrid systems is very difficult. Even for a
relatively simple class of hybrid systems - the class of linear hybrid automata
[1] - the most common problem of reachability is still undecidable [1-3].

1 Email: lxd@nju.edu.cn
2 Email: jha+@cs.cmu.edu
3 Email: bl@seg.nju.edu.cn

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Several model checking tools have been developed for linear hybrid au-
tomata, but they do not scale well to the size of practical problems. The
state-of-the-art tool HYTECH [8] and its improvement PHAVer [9] need to
perform expensive polyhedra computation, and their algorithm complexity
is exponential in number of variables in the automata. In recent years, the
bounded model checking has been presented as a complementary technique
for BDD-based symbolic model checking, whose basic idea is to search for a
counterexample in the model executions whose length is bounded by some in-
teger k [5]. Several works [6,7] have been given to check linear hybrid systems
using the bounded model checking technique. In these techniques, the model
checking problems are reduced into the satisfiability problem of a boolean com-
bination of propositional variables and mathematical constraints, but their
experiment results show that the length of the checked model executions is
still far from the practical problem size.

As the existing techniques cannot check all the paths for reachability anal-
ysis when attempting analysis of problem sizes that are of practical signifi-
cance, a complementary approach is to develop an efficient path-oriented tool
to check one path at a time where the length of the path being checked can
be made very large and the size of the automaton can be made large enough
to handle problems of practical interest. This approach of symbolic execution
of paths can be used by the design engineers to check important paths and
thereby, increase the faith in the correctness of the system. Unlike simple test-
ing, each path in our framework represents a dense set of possible trajectories
of the system being analyzed. In this paper, we present the linear program-
ming based techniques towards development of an efficient path-oriented tool
for the bounded reachability analysis of linear hybrid systems.

The paper is organized as follows. In next section, we define the class of
linear hybrid automata considered in this paper. In section 3, we use linear
programming to present our solution for the path-oriented bounded reacha-
bility analysis of linear hybrid automata. Section 4 presents some techniques
to reduce the size of the linear programs corresponding to the paths that we
are checking. The tool prototype and the case studies are described in section
5 . We give the conclusion in the last section.

2 Linear Hybrid Automata

The linear hybrid automata considered in this paper are a variation of the
definition given in [1], in which the change rates of variables may be given a
range of possible values. For simplicity, we suppose that in any linear hybrid
automaton, considered in this paper, there is just one initial location with
no initial conditions and no transitions to the initial location (we assume that
each variable with an initial value is reset to the initial value by the transitions
from the initial location).

Definition 2.1 A linear hybrid automaton is a tuple H = (X,V,E, vI , α, β),
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where

• X is a finite set of real-valued variables. V is a finite set of locations.

• E is transition relation whose elements are of the form (v, φ, ψ, v′) where
v, v′ are in V , φ is a set of variable constraints of the form a ≤

∑m

i=0 cixi ≤ b,
and ψ is a set of reset actions of the form x := c where xi ∈ X (0 ≤ i ≤ m),
x ∈ X, a, b, c and ci (0 ≤ i ≤ m) are real numbers, and a and b may be ∞.

• vI is an initial location.

• α is a labelling function which maps each location in V − {vI} to a state

invariant which is a set of variable constraints of the form a ≤
∑m

i=0 cixi ≤ b
where xi ∈ X (0 ≤ i ≤ m), a, b, and ci (0 ≤ i ≤ m) are real numbers, a and
b may be ∞.

• β is a labelling function which maps each location in V − {vI} to a set of
change rates which are of the form

.
x= [a, b] where x ∈ X, and a, b are real

numbers (a ≤ b). For any location v, for any x ∈ X, there is one and only
one change rate definition

.
x= [a, b] ∈ β(v). ✷

Notice that the class of linear hybrid automata we consider here can be used
to approximate any general hybrid automata to any desired level of accuracy
because they are sufficiently expressive to allow asymptotically completeness
of the abstraction process for a general hybrid automata [4].

We use the sequences of locations to represent the evolution of a linear
hybrid automaton from location to location. For a linear hybrid automaton
H = (X,V,E, vI , α, β) , a path segment is a sequence of locations of the form

v1
(φ1,ψ1)
−→ v2

(φ2,ψ2)
−→ . . .

(φn−1,ψn−1)
−→ vn

which satisfies (vi, φi, ψi, vi+1) ∈ E for each i (1 ≤ i ≤ n− 1). A path in H is
a path segment starting at vI .

The behavior of linear hybrid automata can be represented by timed se-

quences. Any timed sequence is of the form (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) where
vi (1 ≤ i ≤ n) is a location and ti (1 ≤ i ≤ n) is a nonnegative real number.
It represents a behavior of an automaton, that is, the system starts at the
initial location and changes to the location v1, stays there for t1 time units,
then changes to the location v2 and stays at v2 for t2 time units, and so on.

Definition 2.2 For a linear hybrid automaton H = (X,V,E, vI , α, β), a
timed sequence (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) represents a behavior of H if and
only if the following condition is satisfied:

• there is a path in H of the form v0
(φ0,ψ0)
−→ v1

(φ1,ψ1)
−→ . . .

(φn−1,ψn−1)
−→ vn;

• t1, t2, . . . , tn satisfy all the variable constraints in φi (1 ≤ i ≤ n− 1), i.e. for
each variable constraint a ≤ c0x0 + c1x1 + . . .+ cmxm ≤ b in φi,

δk ≤ γi(xk) ≤ δ′k for any k (0 ≤ k ≤ m), and

a ≤ c0γi(x0) + c1γi(x1) + . . .+ cmγi(xm) ≤ b

13



where γi(xk) (0 ≤ k ≤ m) represents the value of the variable xk when the
automaton stays at vi with the delay ti, and for any k (0 ≤ k ≤ m),

δk = dk + ujk+1tjk+1 + ujk+2tjk+2 + . . .+ uiti,

δ′k = dk + u′jk+1tjk+1 + u′jk+2tjk+2 + . . .+ u′iti,

xk := dk ∈ ψjk (0 ≤ jk < i), xk := d 6∈ ψl for any l (jk < l < i), and
.
xl = [ul, u

′
l] ∈ β(vl) for any l (jk < l ≤ i); and

• t1, t2, . . . , tm satisfy the state invariant for each location vi (1 ≤ i ≤ n), i.e.
· for each variable constraint a ≤ c0x0 + c1x1 + . . .+ cmxm ≤ b in α(vi),

δk ≤ γi(xk) ≤ δ′k for any k (0 ≤ k ≤ m), and

a ≤ c0γi(x0) + c1γi(x1) + . . .+ cmγi(xm) ≤ b

where γi(xk) (0 ≤ k ≤ m) represents the value of the variable xk when
the automaton stays at vi with the delay ti, and for any k (0 ≤ k ≤ m),

δk = dk + ujk+1tjk+1 + ujk+2tjk+2 + . . .+ uiti,

δ′k = dk + u′jk+1tjk+1 + u′jk+2tjk+2 + . . .+ u′iti,

xk := dk ∈ ψjk (0 ≤ jk < i), xk := d 6∈ ψl for any l (jk < l < i), and
.
xl = [ul, u

′
l] ∈ β(vl) for any l (jk < l ≤ i); and

· for each variable constraint a ≤ c0x0 + c1x1 + . . .+ cmxm ≤ b in α(vi+1),

δk ≤ γi(xk) ≤ δ′k for any k (0 ≤ k ≤ m), and

a ≤ c0λi(x0) + c1λi(x1) + . . .+ cmλi(xm) ≤ b

where γi(xk) (0 ≤ k ≤ m) represents the value of the variable xk when
the automaton stays at vi with the delay ti, if xk := eik ∈ ψi (0 ≤ k ≤ m)
then λi(xk) = eik else λi(xk) = γi(xk), and for any k (0 ≤ k ≤ m),

δk = dk + ujk+1tjk+1 + ujk+2tjk+2 + . . .+ uiti,

δ′k = dk + u′jk+1tjk+1 + u′jk+2tjk+2 + . . .+ u′iti,

xk := dk ∈ ψjk (0 ≤ jk < i), xk := d 6∈ ψl for any l (jk < l < i), and
.
xl = [ul, u

′
l] ∈ β(vl) for any l (jk < l ≤ i). ✷

3 Path-Oriented Bounded Reachability Analysis using

Linear Programming

In this section we use linear programming to present a solution for the path-
oriented bounded reachability analysis of linear hybrid automata.

3.1 Path-Oriented Bounded Reachability

For a linear hybrid automaton H, a reachability specification consists of a
location v in H and a set ϕ of variable constraints, denoted by R(v, ϕ). We
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are concerned with the problem of checking whether a path in H satisfies a
given reachability specification. The formal definition is presented below.

Definition 3.1 Let H = (X,V,E, vI , α, β) be a linear hybrid automaton, and
R(v, ϕ) be a reachability specification. A path ρ in H of the form

v0
(φ0,ψ0)
−→ v1

(φ1,ψ1)
−→ . . .

(φn−1,ψn−1)
−→ vn

satisfies R(v, ϕ) if and only if the following condition holds:

• vn = v, and

• there is a behavior of H of the form (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) such that
any variable constraint in ϕ is satisfied when the automaton stays at vn with
the delay tn, i.e. for each variable constraint a ≤ c0x0+c1x1+. . .+cmxm ≤ b
in ϕ,

δk ≤ γn(xk) ≤ δ′k for any k (0 ≤ k ≤ m), and

a ≤ c0γn(x0) + c1γn(x1) + . . .+ cmγn(xm) ≤ b

where γn(xk) (0 ≤ k ≤ m) represents the value of the variable xk when the
automaton stays at vn with the delay tn, and for any k (0 ≤ k ≤ m),

δk = dk + uik+1tik+1 + uik+2tik+2 + . . .+ untn ,

δ′k = dk + u′ik+1tik+1 + u′ik+2tik+2 + . . .+ u′ntn ,

xk := dk ∈ ψik (0 ≤ ik < n), xk := d 6∈ ψj for any j (ik < j < n), and
.
xj = [uj, u

′
j] ∈ β(vj) for any j (ik < j ≤ n). ✷

3.2 Representation of a long path

Since our tool is designed to check a path which is as long as desired and
can handle linear hybrid automata of practical problem size, we first need to
represent such a long path.

For a linear hybrid automaton H = (X,V,E, vI , α, β), we can represent a
path segment ρ in H of the form

v0
(φ0,ψ0)
−→ v1

(φ1,ψ1)
−→ . . .

(φn−1,ψn−1)
−→ vn

by a simple form v0ˆv1ˆ . . . ˆvn, which is called simple regular expression. A
simple regular expression (SRE) R and the path segment L(R) it represents
are defined recursively as follows:

• if v ∈ V , then v is a SRE, and L(v) = v;

• if R1 and R2 are SREs and there is a transition in E from the last location
in L(R1) to the first location in L(R2) , then R1ˆR2 is a SRE, and

L(R1ˆR2) = L(R1)
(φ,ψ)
−→ L(R2) ;

• if R is a SRE and there is a transition in E from the last location in L(R)
to the first location in L(R), then Rk is a SRE where k ≥ 2 is an integer,
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and

L(Rk) = L(R)
(φ,ψ)
−→ L(R)

(φ,ψ)
−→ . . .

(φ,ψ)
−→ L(R)

︸ ︷︷ ︸

k

.

Using the above definition, we can represent a long path to be checked as
a SRE, and the SREs can be used as a text language for the input of the tool.

3.3 Reducing the Bounded Reachability Problems into Linear Programs

Now we show how the problem of checking a path for a given reachability
specification can be reduced to a linear program.

Let H = (X,V,E, vI , α, β) be a linear hybrid automaton, R(v, ϕ) be a
reachability specification, and ρ be a path in H of the form

v0
(φ0,ψ0)
−→ v1

(φ1,ψ1)
−→ . . .

(φn−1,ψn−1)
−→ vn

where vn = v. For any timed sequence of the form (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn),
if it is such that ρ satisfies R(v, ϕ), then the following condition must hold:

• t1, t2, . . . , tn satisfy all the variable constraints in φi(0 ≤ i ≤ n),

• t1, t2, . . . , tn satisfy all the variable constraints in α(vi) (1 ≤ i ≤ n), and

• t1, t2, . . . , tn satisfy all the variable constraints in ϕ,

which form a group of linear inequalities on t1, t2, . . . , tn (see Definition 2.2
and 3.1), denoted by Θ(ρ,R(v, ϕ)). It follows that we can check if ρ satisfies
R(v, ϕ) by checking if the group Θ(ρ,R(v, ϕ)) of linear inequalities has a
solution, which can be solved by linear programming.

In addition to t1, t2, . . . , tn, each γi(xk) in Definition 2.2 and 3.1 also be-
comes a variable in the linear program corresponding to checking of a path.
Notice that if the change rate of xk is a constant (

.
xk = [a, a]), then δk = δ′k

in Definition 2.2 and 3.1 such that we can replace γi(xk) with δk. Thus, for a
path checking, the numbers of the variables and the constraints in the corre-
sponding linear program can be calculated as follows:

• we have one variable in the linear program for each location in the path,

• we have at most one variable in the linear program for each variable occur-
rence in a variable constraint labelled on a transition, in a location invariant,
and in the reachability specification,

• for each variable occurrence in a variable constraint labelled on a transition,
in a location invariant, and in the reachability specification, we have at most
one constraint in the linear program,

• for each variable constraint labelled on a transition, we have one constraint
in the linear program,

• for each variable constraint in a location invariant, we have two constraints
in the linear program, and

• for each variable constraint in the reachability specification, we have one

16



constraint in the linear program.

Thanks to the advances in computing during the past decade, linear pro-
grams in a few thousand variables and constraints are nowadays viewed as“small”.
Problems having tens or hundreds of thousands of continuous variables are
regularly solved. Indeed, many software packages have been developed to effi-
ciently find solutions for linear programs. Leveraging the research in efficient
solution of linear programs, we can develop an efficient tool to check a path
in a linear hybrid automaton, where the length of the path and the size of the
linear hybrid automaton are both closer to the practical problem sizes.

4 Reducing Size of Linear Programs Corresponding to

Path Checking

We have reduced the bounded reachability analysis for a given path into a
linear programming problem. In this section, we present several techniques
for reducing the size of the resulting linear programming problem so that our
tool can be used to solve problems of size as large as possible.

4.1 Decomposing Linear Programs Corresponding to Path Checking

In some cases, we can decompose the linear program corresponding to the
path being checked into several smaller linear programs so that the tool can
check longer paths.

Let H = (X,V,E, vI , α, β) be a linear hybrid automaton, R(v, ϕ) be a
reachability specification, and ρ be a path in H of the form

v0
(φ0,ψ0)
−→ v1

(φ1,ψ1)
−→ . . .

(φi−1,ψi−1)
−→ vi

(φi,ψi)
−→ vi+1

(φi+1,ψi+1)
−→ . . .

(φn−1,ψn−1)
−→ vn

where vn = v. If there is i (0 < i < n) such that

• for any variable x occurring in a variable constraint in φj (i < j < n), x is
reset on a transition (vk, φk, ψk, vk+1) (i ≤ k < j), i.e. x := a ∈ ψk,

• for any variable x occurring in a variable constraint in α(vj) (i < j ≤ n), x
is reset on a transition (vk, φk, ψk, vk+1) (i ≤ k < j), i.e. x := a ∈ ψk, and

• for any variable x occurring in a variable constraint in ϕ, x is reset on a
transition (vk, φk, ψk, vk+1) (i ≤ k < n), i.e. x := a ∈ ψk,

then the linear program corresponding to checking ρ for R(v, ϕ) can be de-
composed. In this case, there is a timed sequence of the form

(v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vi, ti)ˆ(vi+1, ti+1)ˆ(vi+2, ti+2)ˆ . . . (vn, tn)

such that ρ satisfies R(v, ϕ) if and only if the following condition holds:

• t1, t2, . . . , ti satisfy all variable constraints in φk (1 ≤ k ≤ i), and all variable
constraints in α(vk) (1 ≤ k ≤ i), and
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• ti+1, ti+2, . . . , tn satisfy all variable constraints in φk (i < k ≤ n), all variable
constraints in α(vk) (i < k ≤ n), and all variable constraints in ϕ,

which correspond to two separate linear programs according to Definition 2.2
and 3.1. Thus, in this case we can decompose the linear program correspond-
ing to a path checking into two smaller linear programs. The resulting linear
programs can be recursively decomposed by the same technique until the tech-
nique can no longer be applied.

4.2 Shortening Paths

For a path segment ρ in a linear hybrid automaton, its length |ρ| is the number
of the locations in ρ. Since the size of the linear program corresponding to the
path being checked is proportional to the length of the path, shortening the
path will improve the complexity of the overall method. By shortening a path,
we mean to find a shorter path in lieu of the path being checked such that
both of them are equivalent with respect to the given reachability specification
- if one of them satisfies the reachability specification, so does the other.

For a linear hybrid automaton H = (X,V,E, vI , α, β), a long path ρ in H,
which we want to check, usually includes repetitions of path segments, which
can be represented as the following form:

ρ = v0
(φ0,ψ0)
−→ . . .

(φi−1,ψi−1)
−→ vi

(φi,ψi)
−→ ρk1

(φ,ψ)
−→ vi+1

(φi+1,ψi+1)
−→ . . .

(φn−1,ψn−1)
−→ vn

where ρ1 is a path segment in H, k ≥ 2 is an integer, and ρk1 represents the
path segment

ρ1
(φ′,ψ′)
−→ ρ1

(φ′,ψ′)
−→ . . .

(φ′,ψ′)
−→ ρ1

︸ ︷︷ ︸

k

.

In the following, we show that in some cases we can find k′ < k such that ρ sat-
isfies a given reachability specification if and only if ρ′ satisfies the reachability
specification where ρ′ is of the form

ρ′ = v0
(φ0,ψ0)
−→ . . .

(φi−1,ψi−1)
−→ vi

(φi,ψi)
−→ ρk

′

1

(φ,ψ)
−→ vi+1

(φi+1,ψi+1)
−→ . . .

(φn−1,ψn−1)
−→ vn .

Let H = (X,V,E, vI , α, β) be a linear hybrid automaton, R(v, ϕ) be a
reachability specification, and ρ be a path in H of the form

v0
(φ0,ψ0)
−→ v1

(φ1,ψ1)
−→ . . .

(φn−1,ψn−1)
−→ vn

where vn = v. We say that a variable constraint is related to a location vi
(0 ≤ i ≤ n) if it is in φi, α(vi), or in ϕ when i = n. We define the reference

point for a variable in a variable constraint related to a location in ρ as follows:

• for a variable x in a variable constraint related to a location vi (0 ≤ i ≤
n), a location vj (0 ≤ j < i) is the reference point if x is reset on the
transition (vj, φj, ψj, vj+1) (x := a ∈ ψj), and is not reset on any transition
(vk, φk, ψk, vk+1) (j < k < i) (x := b 6∈ ψk) (in this case, we say that a is the
reference value of x on vi).
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Let H = (X,V,E, vI , α, β) be a linear hybrid automaton, R(v, ϕ) be a

reachability specification, and ρ be a path in H of the form ρ = ρ1
(φ,ψ)
−→

ρk2
(φ′,ψ′)
−→ ρ′1 where k > 3, ρ1 is a path, and ρ′1, ρ2 are path segments. We say

that ρk2 is closed in ρ if the following condition holds:

• ρk2 = ρ21
(φ′′,ψ′′)
−→ ρk−2

3

(φ′′,ψ′′)
−→ ρ′21 where ρ2

2 = ρ21
(φ′′,ψ′′)
−→ ρ′21 and |ρ21| ≤ |ρ′21|,

and

• ρ3 = v1
(φ1,ψ1)
−→ v2

(φ2,ψ2)
−→ . . .

(φn−1,ψn−1)
−→ vn, and for any x occurring in a

variable constraints in φi or α(ui) (1 ≤ i ≤ n), x := a ∈ ψ′′ or x := a ∈ ψj
(1 ≤ j < i).

Theorem 4.1 Let H = (X,V,E, vI , α, β) be a linear hybrid automaton,

R(v, ϕ) be a reachability specification, and ρ = ρ1
(φ,ψ)
−→ ρk2

(φ′,ψ′)
−→ ρ′1 be a path

in H where ρk2 (k > 3) is closed in ρ. If any location in ρ1 is not the reference
point for any variable in a variable constraint related to a location in ρ′1, then ρ

satisfies R(v, ϕ) if and only if ρ′ satisfies R(v, ϕ) where ρ′ = ρ1
(φ,ψ)
−→ ρ3

2

(φ′,ψ′)
−→ ρ′1.

Proof. Suppose that ρk2 = ρ21
(φ′′,ψ′′)
−→ ρk−2

3

(φ′′,ψ′′)
−→ ρ′21, and

ρ3 = v1
(φ1,ψ1)
−→ v2

(φ2,ψ2)
−→ . . .

(φn−1,ψn−1)
−→ vn .

It follows that ρ = ρ′′1
(φ′′,ψ′′)
−→ ρk−2

3

(φ′′,ψ′′)
−→ ρ′′′1 , and ρ′ = ρ′′1

(φ′′,ψ′′)
−→ ρ3

(φ′′,ψ′′)
−→ ρ′′′1 .

The half of the claim, if ρ satisfies R(v, ϕ) then ρ′ satisfies R(v, ϕ), can be
proved as follows. Since ρ satisfies R(v, ϕ), suppose that the corresponding
timed sequence σ = σ′′

1ˆσrˆσ
′′′
1 satisfies the condition given in Definition 3.1

where σr corresponds to ρk−2
3 . It follows that σr = σr1ˆσr2ˆ . . . ˆσrk−2, and

that each σri (1 ≤ i ≤ k − 2) is of the form (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) such
that t1, t2, . . . , tn satisfies the condition in Definition 2.2. Since ρk2 is closed
in ρ and any location in ρ1 is not the reference point for any variable in a
variable constraint related to a location in ρ′1, by removing σr2ˆσr3ˆ . . . ˆσrk−2

from σ we get a timed sequence σ′ which satisfies the condition in Definition
3.1 and corresponds ρ′. It follows that ρ′ satisfies R(v, ϕ). The other half of
the claim can be proved as follows. Since ρ′ satisfies R(v, ϕ), suppose that
the corresponding timed sequence σ′ = σ′′

1ˆσ3ˆσ
′′′
1 satisfies the condition given

in Definition 3.1 where σ3 corresponds to ρ3. Since ρk2 is closed in ρ and
any location in ρ1 is not the reference point for any variable in a variable
constraint related to a location in ρ′1, by replacing σ3 with σ3ˆσ3ˆ . . . ˆσ3

︸ ︷︷ ︸

k−2

in σ′

we get a timed sequence σ which satisfies the condition in Definition 3.1 and
corresponds ρ. It follows that ρ satisfies R(v, ϕ). ✷

Let H = (X,V,E, vI , α, β), and ρ be a path in H of the form

v0
(φ0,ψ0)
−→ . . .

(φi−1,ψi−1)
−→ vi

(φi,ψi)
−→ . . .

(φj−1,ψj−1)
−→ vj

(φj ,ψj)
−→ . . .

(φn−1,ψn−1)
−→ vn .

A variable constraint a ≤
∑m

k=0 ckxk ≤ b related to vj (1 ≤ j ≤ n) is positive
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in ρ if the following condition holds:

• ck ≥ 0 for any k (0 ≤ k ≤ m), and

• for any xk (0 ≤ x ≤ m), if the reference point is vi, then any vl (i < l ≤ j)
is such that if

.
xk= [a, b] ∈ β(vl) then a ≥ 0,

and we say that b −
∑k

i=0 ckdk is the bound of the variable constraint where
dk (0 ≤ k ≤ m) is the reference value of xk on vj.

Let H = (X,V,E, vI , α, β) be a linear hybrid automaton, R(v, ϕ) be a

reachability specification, and ρ = ρ1
(φ,ψ)
−→ ρk2

(φ′,ψ′)
−→ ρ′1 be a path in H where

ρk2 = ρ21
(φ′′,ψ′′)
−→ ρk−2

3

(φ′′,ψ′′)
−→ ρ′21 (k > 3) is closed in ρ, and

ρ3 = v1
(φ1,ψ1)
−→ v2

(φ2,ψ2)
−→ . . .

(φn−1,ψn−1)
−→ vn .

If there is a positive variable constraint a ≤
∑m

i=0 cixi ≤ b related to a location
in ρ′1 such that

• there is a variable set ω ⊆ {x0, x1, . . . , xm} (ω 6= ∅) such that for any x ∈ ω,
its reference point is in ρ1, and

• ξ > 0 where ξ is the infimum of the set






m∑

i=0

c′iδi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

if xi ∈ ω then c′i = ci else c′i = 0 for any i (0 ≤ i ≤ m);

for any i (0 ≤ i ≤ m), δi = ui1t1 + ui2t2 + . . .+ uintn

where
.
xi= [uij, u

′
ij] ∈ β(vj) for any j (1 ≤ j ≤ n); and

(v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) is a timed sequence such that

t1, t2, . . . , tn satisfy the condition in Definition 2.







(notice that ξ can be calculated by linear programming),

then we say that pk2 is constrained by ⌊ζ/ξ⌋ + 3 where ζ is the bound of the
variable constraint a ≤

∑m

i=0 cixi ≤ b.

Theorem 4.2 Let H = (X,V,E, vI , α, β) be a linear hybrid automaton,

R(v, ϕ) be a reachability specification, and ρ = ρ1
(φ,ψ)
−→ ρk2

(φ′,ψ′)
−→ ρ′1 be a

path in H where ρk2 (k > 3) is closed in ρ, and constrained by k′. If k > k′

then ρ does not satisfy R(v, ϕ).

Proof. Suppose that ρk2 = ρ21
(φ′′,ψ′′)
−→ ρk−2

3

(φ′′,ψ′′)
−→ ρ′21, and

ρ3 = v1
(φ1,ψ1)
−→ v2

(φ2,ψ2)
−→ . . .

(φn−1,ψn−1)
−→ vn .

It follows that ρ = ρ′′1
(φ′′,ψ′′)
−→ ρk−2

3

(φ′′,ψ′′)
−→ ρ′′′1 . Suppose that ρ satisfies R(v, ϕ),

and the corresponding timed sequence σ = σ′′
1ˆσrˆσ

′′′
1 satisfies the condition

given in Definition 3.1 where σr corresponds to ρk−2
3 . It follows that

σr = σr1ˆσr2ˆ . . . ˆσrk−2

where each σri (1 ≤ i ≤ k − 2) is of the form (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn)
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such that t1, t2, . . . , tn satisfies the condition in Definition 2.2. Since ρk2 is
closed in ρ and constrained by k′, if k > k′ then there is a positive variable
constraint related to a location in ρ′1 which is not satisfied, which results in a
contradiction and hence, the claim holds. ✷

This theorem tells us that in some cases we just need to focus a shorter
path since extending the path by repeating a path segment in it will result in
that the given reachability specification is not satisfied.
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✛

❄

✻
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ẋ = 1
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θ = 15
x1 ≥ 6

e2 θ = 3
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θ = 15
x2 ≥ 6

θ = 3
x2 := 0

e3 e4 e5

θ = 15
x1 < 6 ∧ x2 < 6

x1 := 6
x2 := 6

e0
v0

v1
θ̇ = 6
ẋ1 = 1
ẋ2 = 1
θ ≤ 15

v2
θ̇ = −4
ẋ1 = 1
ẋ2 = 1
θ ≥ 3

v4

shutdown

v3
θ̇ = −3
ẋ1 = 1
ẋ2 = 1
θ ≥ 3

(2)

Fig. 1. The automata modelling water-level monitor and temperature control sys-
tem

5 Tool Prototype and Case Studies

Based on the techniques presented in this paper, we have implemented a tool
prototype for the bounded reachability analysis of linear hybrid automata.
The tool is implemented in Java, and its graphical interface allows the users
to construct, edit, and analyze linear hybrid automata interactively. The
linear programming software package which is integrated in the tool is from
OR-Objects of DRA Systems [11] which is a free collection of Java classes
for developing operations research, scientific and engineering applications. On
a HP workstation (Intel Xeon CPU 2.8GHz×2/3.78GB), we evaluated the
potential of the techniques presented in this paper by several case studies.

One example depicted in Figure 1(1) is the water-level monitor in [2].
Along the path v0ˆ(v1ˆv2ˆv3ˆv4)

k, we check if the location v4 is reachable,
and get the positive answers from the tool with

k = 100, 200, 230, 400, 450, 500, 10000

respectively. Table 1 shows the tool performance when using the original tech-
nique (without any optimization), the optimization technique of decomposing
linear programs, and the optimization techniques of shortening paths respec-
tively. When k ≥ 500, without one of the optimization techniques the tool
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cannot give a result because of the “Java.lang.out of memory” error occur-
ring in the linear programming package integrated in the tool. Actually, with
the optimization technique of shortening paths (see Theorem 4.1), for this
example the tool can give a result for any k.

Another example depicted in Figure 1(2) is the temperature control system
in [2]. Along the paths

v0ˆ(v1ˆv2ˆv1ˆv3)
kˆv1ˆv4 and v0ˆ(v1ˆv2)

k1ˆ(v1ˆv3)
k2ˆv1ˆv4 ,

we check if a complete shutdown is required (the location 4 is reachable), and
get the negative answers with the various values of k, k1, and k2. The tool
performance is shown in Table 2. For the path v0ˆ(v1ˆv2ˆv1ˆv3)

kˆv1ˆv4, no op-
timization technique works, and the tool cannot give a result when k ≥ 450 be-
cause of the “Java.lang.out of memory” error occurring in the linear program-
ming package integrated in the tool. For the path v0ˆ(v1ˆv2)

k1ˆ(v1ˆv3)
k2ˆv1ˆv4,

the condition of Theorem 4.2 holds so that the optimization technique of short-
ening paths works.

We also compare our technique with PHAVer [9] which is the improvement
of the state-of-the-art tool HYTECH [8]. Because of performing expensive
polyhedra computation, the capacity of PHAVer is restricted by the variable
number in the automata. We simply construct an experimental automaton
depicted in Figure 2 in which there are seven locations and variables. Along
the path v0ˆ(v1ˆv2ˆv3ˆv4)

kˆv5ˆv6, we check if the location v6 is reachable by
PHAVer and our tool respectively. Because PHAVer does not provide any
timer, we manually record its execution time. The experimental result is
shown in Table 3. When k is set to 20 and 30, PHAVer spends about 0.66 and
4 hours respectively for checking, which are much longer than the execution
time of our tool with the original technique. PHAVer can not give any result
when k = 40 after running for 20 hours, but even when k = 150 our tool can
give the result in a tolerable duration. Notice that for fairness, we use the un-
folded path as the input of PHAVer for avoiding it doing the full reachability
analysis. Because of performing expensive polyhedra computation, the algo-
rithm complexity of PHAVer is exponential in the number of variables of an
automaton, which gives an intuitional explanation for the experiment result.

The above experiments are preliminary and use freely available linear pro-
gramming packages, but they indicate a clear potential of the techniques
presented in this paper with the support of an advanced commercial linear
programming package.

6 Conclusion

In this paper, based on linear programming we develop the techniques towards
an efficient path-oriented tool for the bounded reachability analysis of linear
hybrid automata, which checks one path at a time where the length of the path
being checked can be made very large and the size of the automaton can be
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Path: v0ˆ(v1ˆv2ˆv3ˆv4)k

Original technique Decomposing LPs Shortening paths
k

constraints variables memory time time time

100 3191 997 512M 61.172s 1.031s 0.031s

200 6391 1997 512M 466.140s 1.562s 0.031s

230 7351 2297 512M 702.766s 1.750s 0.031s

400 12791 3997 1470M 3969.421s 3.187s 0.031s

450 14391 4497 1470M 4485.328s 3.469s 0.031s

500 Java.lang.out of memory error 4.109s 0.031s

10000 Java.lang.out of memory error 38.047s 0.031s

Table 1
Experimental results on the water-level monitor

Path: v0ˆ(v1ˆv2ˆv1ˆv3)kˆv1ˆv4

Original technique Decomposing LPs Shortening paths
k

constraints variables memory time time time

100 4415 1004 512M 90.218s 90.218s 90.218s

200 8815 2004 512M 686.938s 686.938s 686.938s

230 10315 2304 512M 1180.297s 1180.297s 1180.297s

400 17591 3998 1470M 5574.312s 5574.312s 5574.312s

450 Java.lang.out of memory error Java.lang.out of memory error

Path: v0ˆ(v1ˆv2)k1ˆ(v1ˆv3)k2ˆv1ˆv4

Original Decomposing LPs Shortening paths
k1 k2

constraints variables memory time time time

50 50 2215 504 512M 10.532s 10.532s 0.016s

100 100 4415 1004 512M 76.703s 76.703s 0.016s

200 200 8791 1998 1004M 496.609s 496.609s 0.016s

Table 2
Experimental results on the temperature control system

Path: v0ˆ(v1ˆv2ˆv1ˆv3)kˆv5ˆv6

PHAVer Our tool (original technique)
k

time time

20 ≈ 2400s 12.359s

30 ≈ 4h 36.688s

40 no result after 20 hours 82.891s

80 616.671s

100 1143.344s

150 4067.391s

Table 3
Experimental results on the experimental automaton
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ẋ5 = [0, 4]
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ẋ7 = [−10, 0], x1 ≥ 15

x4 − x5 ≥ 0
x5 − x2 ≥ 0

x4 + x6 − x5 + 0.1x7 ≥ 0
x6 + 0.1x7 − x2 − x3 ≥ 0

x6 + x5 − x4 ≤ 0
0.1x7 + x5 ≥ 0

✬

✫

✩

✪

v4
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ẋ4 = [0, 12]
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ẋ7 = [−20, 0]

x1 ≥ 3

4x5 − x4 ≤ 4
x7 + 10x6 − 10x5 ≥ 0

✬

✫

✩

✪

v3
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Fig. 2. An experimental automaton

made large enough to handle problems of practical interest. Since the existing
techniques have not resulted in an efficient tool for checking all the paths in
a linear hybrid automaton for problems with sizes of practical interest, the
tool derived from the techniques presented in this paper will become a design
engineer’s assistant for the reachability analysis of linear hybrid automata.
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Abstract

Symbolic model checking is PSPACE complete. Since QBF is the standard PSPACE
complete problem, it is most natural to encode symbolic model checking problems
as QBF formulas and then use QBF decision procedures to solve them. We dis-
cuss alternative encodings for unbounded and bounded safety checking into SAT
and QBF. One contribution is a linear encoding of simple path constraints, which
usually are necessary to make k-induction complete. Our experimental results show
that indeed a large reduction in the size of the generated formulas can be obtained.
However, current QBF solvers seem not to be able to take advantage of these com-
pact formulations. Despite these mostly negative results the availability of these
benchmarks will help to improve the state-of-the-art of QBF solvers and make QBF
based symbolic model checking a viable alternative.

Key words: Bounded Model Checking, Encoding, QBF, SAT.

1 Introduction

Bounded Model Checking (BMC) [3] has the motivation to improve on BDD
based symbolic model checking by using SAT procedures. Already in the
original paper the use of QBF decisions procedures was suggested as a tool
to make BMC complete without using BDDs. Completeness means that an
LTL property can also be shown to hold as opposed to just being able to
find counter examples. In this paper we focus on simple safety properties,
for which we want to prove that a bad state is not reachable. More general
properties can be handled for instance through techniques from [14].

The completeness result of [3] uses the fact that the diameter of the system,
which is the length of the longest shortest path between two states, is an upper
bound on the length of potential counter examples. The question is how the
diameter can be calculated. In [3] a QBF formula is presented parameterized
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by d, which is satisfiable resp. true, iff d is an upper bound on the diameter.
Nevertheless this formulation was not used in the experiments, since efficient
QBF solvers did not exist at that time.

In graph theory the notion of diameter is also known as eccentricity. To
determine the eccentricity of the state transition graph of sequential circuits
has been investigated in [10]. The authors used a dedicated QBF solver for
quantifier elimination. However, the examples that could be handled are tiny.
An argument why DPLL style QBF solvers can not handle this kind of prob-
lems well is given in [17]: in essence DPLL style QBF solvers need to perform
an explicit state space search to determine the diameter.

However, it is possible to generate a purely propositional SAT formula
without quantifiers for almost the same problem [3]. If it is unsatisfiable, it
constitutes an upper bound on the diameter. This formula is parameterized
by r and is unsatisfiable iff there is no cycle free path of length r. In graph ter-
minology a cycle free path is also called simple path, while in [3] the maximal
length of a simple path is called reoccurrence diameter.

These concepts can be refined in two ways [15]: first the diameter and the
reoccurrence diameter can be initialized. The paths, both in the QBF and in
the SAT case, can be forced to fulfill the additional constraint that exactly
the first state is an initial state. Furthermore, instead of looking for maximal
simple paths starting from an initial state in a forward manner, one can work
backward from a bad state. In particular the maximal length of a simple path
for which exactly its last state is a bad state is also an upper bound on the
maximal length of counter examples that need to be searched. We call such
paths terminal.

In the special case k = 1 this technique amounts to check that the good

states are an inductive invariant of the transition relation. Therefore the tech-
nique is also known as k-induction [15]. It seems to be much more successful
in practice than forward checking, since it can utilize locality of properties,
even if it is just implicitly through the SAT solver, while a forward formulation
will need to take all state bits into account.

However, simple paths can be exponentially larger than their corresponding
diameters, both in forward and backward reasonings. Therefore the question
still remains, whether an approach using QBF reasoning would not allow to
terminate the search for counter examples much earlier. Also the state-of-the-
art in QBF solver technology improved considerably in recent years [11].

To our knowledge, there are no published results on using QBF for back-
ward reasoning yet. Unfortunately our experimental results for backward
reasoning provide a strong indication that similar to the forward reasoning
results of [10,17] QBF based fixpoint algorithms can not yet really compete
with BDD based or other complete model checking algorithms using SAT as
discussed for instance in [1]. Not a single instance was solved that could not
be solved with k-induction as well.

On the positive side we provide new compact formulations of bounded
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model checking problems and also show that in certain cases QBF based rea-
soning can outperform SAT based reasoning. Our benchmarks will be made
publicly available. They will help to improve the state-of-the-art of QBF
solvers and hopefully lead to efficient QBF based model checking algorithms.

Finally, we experimented with functional and relational unrollings of the
next state logic. The experiments clearly show, that a functional unrolling is
much more compact. The generated CNF is much smaller when using syntac-
tic substitution for next state functions instead of conjoining the transition
relations. The run times of the SAT solver also decreases considerably.

2 Background

Quantified boolean formulas (QBF) form a propositional logic with quanti-
fiers over boolean variables. The QBF solvers we use only accept QBF in
conjunctive normal form (CNF) in prenex form. The standard algorithm [18]
for producing CNF for SAT can also be used for QBF after pulling out the
quantifiers. The additional variables will be existentially quantified in the
innermost scope. In the rest of the paper we do not require prenex CNF.

Our system model is the standard relational model used in symbolic model
checking. It is a flat boolean encoded Kripke structure K with initial state
constraint I(s), transition relation T (s, s′), bad state constraint B(s) and
good state constraints G(s) with G(s) ≡ ¬B(s). Evaluations σ ∈ 2n of state
variable vectors s, s′, . . . act as states. A state variable vector, in the following
just short state variable, is made up of n individual state bits, which are just
boolean variables. Individual state bits and equalities over state variables
serve as atomic propositions.

A valid path of length k in K is an evaluation of state variables s0, . . . sk

that satisfies the path constraint T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk). An
initialized path constraint requires in addition that I(s0) holds, while a ter-

minal path constraint requires that B(sk) holds. A bad state is reachable iff
there is a satisfiable path constraint for some k, which at the same time is
initial and terminal. In this paper we only consider the problem of checking,
whether a bad state is reachable.

3 Fixpoints

The algorithm of Fig. 1 is the standard BFS algorithm for checking simple
safety properties with BDDs. The sets C and N as well as the relations I,
T , and B are represented symbolically. The algorithm implements a fixpoint
computation starting from the initial states, adding the next states N reach-
able in one step, with Img(C)(s′) ≡ ∃s[T (s, s′)∧C(s)], from the current states
reached so far C until either a bad state B is found or the loop terminates.
The focus of BMC is the former while in this paper we concentrate on checking
the loop condition.

29



model-checkµ
forward

(I, T , B)

C = false; N = I;

while N 6⇒ C do

if B ∧ N satisfiable then

return “bad state reachable”;

C = N ;

N = C ∨ Img(C);

done;

return “no bad state reachable”;

Fig. 1. On-the-fly forward model checking algorithm for safety properties.

The loop condition is invalid initially, and the loop is not even entered,
iff I = false, or equivalently if I(s) is unsatisfiable. This can be checked by
a SAT solver. The validity of the loop condition, after the first iteration can
also be checked by a SAT solver, since it is equivalent to the satisfiability of
∃s, s′[I(s) ∧ T (s, s′) ∧ ¬I(s′)]. If this formula is unsatisfiable then I actually
turns out to be an inductive invariant of the transition relation.

However, after the second iteration the loop condition is equivalent to the
satisfiability of

∃s0, s1, s2[ I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧

∀t0, t1[I(t0) ∧ T (t0, t1) → (s2 6= t0 ∧ s2 6= t1)]]

which is a proper QBF formula with one alternation. 3 In general, the loop
condition is fulfilled after k iterations iff the following formula is satisfiable:

∃s0, s1, . . . , sk[ I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧

∀t0, t1, . . . , tk−1[ I(t0) ∧ T (t0, t1) ∧ . . . ∧ T (tk−2, tk−1) →

(sk 6= t0 ∧ . . . ∧ sk 6= tk−1)]]

Variations of this formulation, were also used in [10,17]. Their practical usage
is rather restricted. There was not a single instance in our experiments, where
initialized diameter checking, was doable this way, if it involved any alternation
of quantifiers. Clearly much stronger QBF solvers are required.

Initial experiments in using the reoccurrence diameter were also unsuc-
cessful. The instances are solvable for small k, but the reoccurrence diameter
turns out to be too large for these examples and the SAT instances also be-
come intractable very soon. This is in contrast to the experience with simple
path constraints in k-induction. Therefore we suggest to represent the ter-
mination check for symbolic backward fixpoint computation as QBF decision

3 Here we need the common assumption that the transition relation T is total, which we
will assume for the rest of the paper.
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problem as well:

∃s0, s1, . . . , sk[ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ B(sk) ∧

∀t0, t1, . . . , tk−1[ T (t0, t1) ∧ . . . ∧ T (tk−2, tk−1) ∧ B(tk−1) →

(s0 6= t0 ∧ . . . ∧ s0 6= tk−1)]]

In our experiments it turns out that in this case two instances for k = 2 could
be solved, for which also k-induction determined termination easily. Never-
theless, this negative result still shows, that even when using QBF, backward
computation may be superior to forward computation as it is the case with
checking reoccurrence diameters versus k-induction.

For backward fixpoint calculations we actually used a slightly different
formulation, as also used in SAT based k-induction [15], where T is replaced
by TG with TG(s, s′) ≡ G(s)∧T (s, s′). If the formula is unsatisfiable then k is
a bound on the maximum length of paths that have to be searched in order
find a path to a bad state, which only traverses good states except for the
last state. This optimization may reduce the bounds that have to be checked
considerably.

4 Non-Copying Iterative Squaring

Following the classical proof of PSPACE hardness of QBF [13,16] we can use
non-copying iterative squaring to compute symbolically the transitive closure
of the transition relation as follows:

T 2·i(s, s′) ≡ ∀c [ ∃ l,m, r [ (c → ( l = s ∧ r = m)) ∧

(c → ( l = m ∧ r = s′)) ∧ T i(l, r)]]

The universal “choice variable” c just instantiates the formal parameters (l, r)
of T i(l, r) with either the actual parameters (s, m) in the positive case or
(m, s′) in the negative case. This is simply a compact QBF reformulation of
copying iterative squaring

T 2·i(s, s′) ≡ ∃ m [ T i(s, m) ∧ T i(m, s′)]

which doubles the size of the formula with every application, while the non-
copying formulation just adds some state variable equalities each time.

A similar formulation was discussed in [12] and has also been used in [2] to
perform bounded model checking of very simple counter circuits. In the latter
paper it has been observed that current state-of-the-art QBF solvers can barely
keep up with SAT based bounded model checking on these examples. However,
the QBF formula is linear in the model and logarithmic in the number of steps,
which gives an at most quadratic formula in the number of state bits. The
worst case only occurs if the sequential depth, e.g. the initialized diameter,
really turns out to be 2n.
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5 Simple Path Constraints

In [3,15] the concept of simple path constraints was introduced
∧

0≤i<j≤k

si 6= sj(1)

Note that the size of this formula is quadratic in k and each si 6= sj involves
the comparison of n state bits. By sorting the si symbolically as in [9] an
O(k · log(k)) size bound can be obtained. In practice, due to large constants,
simpler sorting networks with size O(k ·(log(k))2) are preferred, such as bitonic

sort or odd-even mergesort. In our experiments we used the latter, since it
requires slightly less comparisons than the bitonic sorting network used in [9].

If these constraints are conjoined with path constraints, they allow to
obtain a complete model checking procedure. If the path constraints are ini-
tialized and the result becomes unsatisfiable, then k is a bound on the reoc-
currence diameter [3]. If no counter example up to this length exists, no bad
state is reachable. Similarly, if the simple path constraints are conjoined with
a terminal path constraint, as in k-induction [15], then the unsatisfiability of
the result, again shows that k is an upper bound on the maximal length of
counter examples that need to be considered. The formula that is checked in
k-induction is the following:

k−1∧

i=0

T (si, si+1) ∧
k−1∧

i=0

G(si) ∧ B(sk) ∧
∧

0≤i<j<k

si 6= sj(2)

Note, that the last state sk as a “good state” can never be equal to one of the
previous “bad states”. Therefore, from Eqn. 1 we can remove comparisons
with the last state in k-induction. A similar argument could be used for
computing the reoccurrence diameter.

5.1 Compact Simple Path Constraints in QBF

One of our contribution of this paper is a reformulation of the simple path
constraints of Eqn. 1 in QBF as follows:

∀l0, . . . , lk [ ∃s [ |
k∑

i=0

li| = 1 →

k∧

i=0

(li ↔ (s = si))](3)

The resulting formula needs one alternation of quantifiers and is linear in
k as opposed to quadratic complexity of the original formula. Note that
the state variables of the corresponding path constraints are free variables of
this formula and are quantified existentially in the outermost scope for our
applications.

In order to obtain linear complexity the cardinality constraint |Σk
i=0li|,

which simply states that exactly one of the li is true, has to be encoded with
a linear sized circuit. This is easily possible, since for instance the ROBDD
for this cardinality constraint for any variable order has linear size in k.
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The additional “bits” l0, . . . , lk provide a one-hot encoding of the index of
a reference vector, which is saved in s and is enforced to be different from all
the other state vectors, e.g. li saves si as s and forces s to be different from
all other sj with i 6= j. A binary encoding of the index of the reference vector
is also possible and requires only ⌈log2k⌉ additional universal variables.

This example already shows some of the modelling power of QBF, which,
we believe, is hardly used in practice yet. But we can go one step further
by sharing the transition relation across time frames as in [6]. Our QBF
reformulation following [6] of path constraints is as follows:

∀l0, . . . , lk−1 [ ∃s, s′ [T (s, s′) ∧
k−1∧

i=0

(li → (s = si ∧ s′ = si+1))](4)

Putting both together we obtain a compact reformulation of simple path con-
straints in QBF with transition relation sharing:

∀l0, . . . , lk [ ∃s, s′ [ T (s, s′) ∧
∧k−1

i=0
(li → (s = si ∧ s′ = si+1)) ∧

(|
∑k

i=0
li| = 1 →

∧k

i=0
(li ↔ (s = si)))]

(5)

Initial respectively terminal constraints can be added as needed. In the context
of k-induction practical experience shows that adding good state constraints to
the current state of the transition relation, as in Eqn. 2, improves performance
and particularly decreases the bound k considerably. We can achieve the same
effect in the QBF formulation by just adding G(s) to the innermost existential
scope, thus, actually sharing G across time frames as well. In the experiments
we used the latter version.

6 Transition Functions and Relations

SMV [5] allows two ways to specify the transitions that a system can make. We
refer to these as functional and relational part. In the functional part (inside
an ASSIGN section of the SMV file) the value of a variable in the next state
is defined as a boolean function of the variable values in the current state.
The relational part is simply a boolean formula where the atomic formulas
are current and next state variables and this formula (given in the TRANS

section of the SMV file) has to hold between any two states. An SMV file
can contain both a relational and functional part to describe the system’s
transition relation.

A functional transition relation allows an optimization in the translation
to SAT/QBF when the transition relation (or the simple path constraint) is
unrolled. Namely, for a functional state variable, it is possible to substitute
its next state function in any state after the initial state. Thereafter, the
representation can be simplified by propagating information from the initial
state to subsequent states. Consider for instance variables x0 and x1 and let
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the SMV file contain the definitions init(x0) := 0 and next(x1) := !x0.
Then it is obviously possible to infer that the value of x1 after the transition
relation is unrolled once is 1 etc. We refer to this optimization as functional

substitution. Notice that this substitution is not possible if QBFs are used to
share the transition relation and the simple state constraint. In our experi-
ments, we compare this optimized translation to a translation where functional
substitution is disabled (considering the model be purely relational). Our ex-
perimental results show that in some cases the optimization that functionality
allows plays an important role.

7 Experiments

We have implemented our approach in a tool called smv2qbf. It reads flat
SMV specifications with simple safety properties as input and translates them
to QBFs. The tool has several switches corresponding to different model
checking problems. It is possible to perform standard BMC, compute diameter
and reoccurrence diameter, compute fixpoint, and do k-induction proofs [8].
For most of these switches, there are two or more encodings, the standard
propositional one and one using more compact QBFs.

We present two sets of results, first of problems where it is possible to prove
that the safety property holds using k-induction (the induction step eventually
becomes unsatisfiable). Second, we have examples where a counterexample is
found using standard BMC.

For the experiments we used a cluster of Pentium IV 3.0 GHz PCs with
2GB of main memory running Debian Sarge Linux. The time limit was set to
1000 seconds and the memory limit to 1GB of main memory. The examples
that we use are from the TIP tool by Eén and Sörensson [8]. We use quan-

tor (version 2.13) [2] as the QBF solver. quantor uses a SAT solver as a
back end and for this purpose we use picosat (version 1.251). We also com-
pare quantor to another state-of-the-art QBF solver, qube (version 1.3) [7].
For every instance we tried, quantor performed better.

The results for the examples where the property is proven are shown in
Tables 1 and 2. The columns of the tables are as follows. In both tables, the
two leftmost columns give the name of the example and the bound needed to
prove the property. Thereafter are 6 columns of the form s(x) (Table 1) and
t(x) (Table 2), where x is the type of encoding, s(x) stands for size and t(x)
for time. We use the following encodings for k-induction step:

(i) i is the standard fully propositional encoding (Eqn. 2),

(ii) ir is i without functional substitution (see Sect. 6),

(iii) is implements simple state constraints with sorting networks,

(iv) isr is is without functional substitution,

(v) l is an encoding where the transition relation is unrolled but the simple
path constraints are encoded as given in Eqn. 3,
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(vi) lr is l without functional substitution,

(vii) L is an encoding using Eqn. 5 using a one-hot index encoding, and

(viii) B is a modification of Eqn. 5 with binary index encoding.

A column of the form s(x) gives the size in kilobytes of the (SAT/QBF)
formula for encoding x and the bound given in column k. The running time
given in column t(x) is the time required to solve the single instance of en-
coding x corresponding to the depth given in the column k. If the entry is of
the form N/A then the memory limit was exceeded (we experienced no time
outs).

Tables 3 and 4 follow the same conventions as Tables 1 and 2, however, this
time k is the smallest depth needed to find a counterexample. The encodings
are as follows:

(i) b, the standard propositional BMC encoding,

(ii) br is b without functional substitution,

(iii) C, a compact BMC encoding with a single copy of the transition relation
(see Eqn. 4), and

(iv) S, a BMC encoding with noncopying iterative squaring (see Sect. 4).

Tables 1–4 seem to warrant the following conclusions. Applying QBF
representations yields in many cases smaller formulas and the difference seems
to grow with larger bounds. This is especially so when the model is fully
relational. This conclusion is rather obvious, though, since the QBF grows
linearly and in the propositional case a new copy of the transition relation is
needed when the bound is incremented.

A perhaps more interesting observation is that the running times of the
optimized version of the propositional encodings (columns t(i) and t(b)) are
always lower than the encodings using more compact formulas. We identify
two reasons for this. First, propositional encoding allows one to perform opti-
mizations (preprocessing steps), like functional substitution (see Sect. 6) but
also bounded cone of influence [4] in an efficient manner. 4 Indeed, it should
be noted that for some test cases (like the examples vis.prodcell.*), when the
SMV model is made fully relational and thus no functional substitutions are
possible, QBF encodings sharing the transition relation (columns t(L) and
t(B)) perform better than the SAT encoding (column t(ir)).

Second, the research community has invested much more effort to imple-
ment efficient SAT solvers than is the case for QBFs. We expect more efficient
QBF solvers in the future.

4 Notice that we always reduce the model by cone of influence reduction in every encoding,
particularly for the transition relation and comparing state variables. In addition, we only
compare state variables that occur in both current and next states [8].
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name k s(i) s(ir) s(is) s(isr) s(l) s(lr) s(L) s(B)

cmu.periodic.N 96 41372 41416 27996 28096 9832 9844 2100 2112

eijk.S208.S 258 146728 170828 49772 72808 3232 26864 3656 3696

eijk.S208c.S 258 148840 186168 51332 82716 3212 33792 3884 3924

eijk.S208o.S 258 129788 164740 44240 77480 3048 37516 2920 2956

eijk.S298.S 58 13868 19752 10740 16584 1136 6812 1668 1672

eijk.S510.S 10 656 2504 1268 3068 372 2404 632 636

eijk.S820.S 11 844 3468 1300 3904 584 3500 664 664

eijk.S832.S 11 900 3592 1400 4072 628 3704 700 700

eijk.S953.S 7 448 2612 748 2912 360 2748 776 776

ken.oop1.C 29 3204 4204 3536 4504 1116 2184 608 608

nusmv.guid*1.C 10 1360 2564 2192 3320 1112 2224 752 752

nusmv.guid*7.C 27 8208 11996 9520 13316 2712 6172 1728 1732

nusmv.tcas2.B 6 1176 3936 1820 4584 1016 4364 1284 1288

nusmv.tcas3.B 5 892 2964 1420 3704 836 3640 1172 1172

texas.par*2.E 2 36 480 44 488 44 548 356 356

vis.prodc*12.E 29 10612 65488 11352 66272 6008 68328 3320 3320

vis.prodc*13.E 8 1556 16112 1884 16488 1472 18792 2444 2444

vis.prodc*14.E 16 4112 33700 4776 34440 3164 37312 2776 2776

vis.prodc*15.E 23 7260 49808 8496 51024 4664 53496 3068 3068

vis.prodc*16.E 5 800 9752 1004 9980 824 11740 2320 2320

vis.prodc*17.E 27 9444 60076 10392 61092 5528 59872 3236 3236

vis.prodc*18.E 13 3036 26284 3708 27044 2500 28616 2652 2652

vis.prodc*19.E 22 6772 47484 8012 48712 4468 51204 3028 3028

vis.prodc*24.E 37 15832 87760 16888 88900 7924 89092 3652 3656

Table 1
k-induction sizes

8 Conclusion

This paper on one hand again provides negative results on using QBF for
unbounded model checking and less negative for bounded model checking.
On the other hand we were able to show that in practice QBF formulations
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name k t(i) t(ir) t(is) t(isr) t(l) t(lr) t(L) t(B)

cmu.periodic.N 96 144.7 144.6 178.4 173.3 162.5 162.3 345.1 153.5

eijk.S208.S 258 N/A N/A N/A N/A N/A N/A N/A N/A

eijk.S208c.S 258 N/A N/A N/A N/A N/A N/A N/A N/A

eijk.S208o.S 258 N/A N/A N/A N/A N/A N/A N/A N/A

eijk.S298.S 58 66.0 61.5 N/A N/A N/A 207.7 195.1 132.2

eijk.S510.S 10 1.9 2.4 163.7 174.8 N/A 5.4 5.7 5.9

eijk.S820.S 11 2.2 3.4 93.8 82.1 N/A 5.3 3.6 3.4

eijk.S832.S 11 2.3 3.5 95.5 84.9 N/A 6.0 3.9 3.6

eijk.S953.S 7 0.8 1.7 8.6 8.3 38.4 2.8 3.1 2.8

ken.oop1.C 29 23.0 18.3 N/A N/A 30.4 30.9 50.3 37.8

nusmv.guid*1.C 10 1.4 2.0 1.5 2.1 6.3 6.2 7.6 6.2

nusmv.guid*7.C 27 61.7 60.2 173.7 85.8 87.5 92.6 116.5 116.7

nusmv.tcas2.B 6 1.2 2.5 1.3 2.6 3.9 4.9 11.1 6.4

nusmv.tcas3.B 5 0.5 1.4 1.0 2.0 3.2 3.4 6.5 4.9

texas.par*2.E 2 0.0 0.2 0.0 0.2 0.1 0.2 0.4 0.2

vis.prodc*12.E 29 30.3 197.9 25.0 173.1 N/A 245.8 74.3 57.0

vis.prodc*13.E 8 1.4 13.3 1.6 12.6 5.0 16.8 8.6 8.1

vis.prodc*14.E 16 5.6 46.6 4.6 44.4 23.7 64.6 20.2 17.6

vis.prodc*15.E 23 15.3 113.5 17.3 100.5 85.0 146.2 43.8 34.4

vis.prodc*16.E 5 0.8 6.2 0.9 6.2 2.1 8.6 7.4 6.9

vis.prodc*17.E 27 32.1 163.7 25.2 145.6 N/A 200.2 64.6 52.1

vis.prodc*18.E 13 3.6 28.7 3.7 29.6 13.9 37.9 14.5 12.7

vis.prodc*19.E 22 12.6 97.6 12.3 94.4 70.6 130.1 36.7 32.0

vis.prodc*24.E 37 59.8 N/A 49.4 N/A N/A N/A 125.0 103.9

Table 2
k-induction running times

can be much more compact than SAT instances and sometimes solved faster
for relational encodings. Our results clearly show that much more research
in QBF is needed to be able to use QBF as alternative to SAT based model
checking, even in the bounded case.

The tool smv2qbf and the benchmarks in DIMACS format are available at
http://fmv.jku.at/smv2qbf. We are currently working on producing structural
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name k s(b) s(br) s(C) s(S)

nusmv.tcas1.B 10 960 5580 4512 1524

nusmv.tcas4.B 14 1604 9256 6496 1516

nusmv.tcas5.B 23 2688 13104 9796 1668

nusmv.tcas6.B 16 2816 14900 10188 1668

texas.parsesys1.E 9 140 2392 2140 568

texas.parsesys3.E 8 100 2088 1812 516

texas.twoproc2.E 15 48 13832 9676 1636

texas.twoproc4.E 19 224 19004 12408 1676

vis.eisenberg.E 19 632 19644 12172 1580

Table 3
BMC sizes

name k t(b) t(br) t(C) t(S)

nusmv.tcas1.B 10 0.9 42.3 364.6 56.7

nusmv.tcas4.B 14 1.6 46.8 558.0 56.7

nusmv.tcas5.B 23 3.3 51.4 N/A 81.9

nusmv.tcas6.B 16 3.2 46.9 N/A 76.1

texas.parsesys1.E 9 0.1 10.2 86.4 10.8

texas.parsesys3.E 8 0.1 9.1 69.0 8.8

texas.twoproc2.E 15 0.0 133.4 N/A 141.8

texas.twoproc4.E 19 0.3 147.4 N/A 213.3

vis.eisenberg.E 19 1.1 80.9 N/A 117.5

Table 4
BMC running times

benchmarks as well, in the form of and-inverter-graphs (AIGs).
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Erika Ábrahám Marc Herbstritt Bernd Becker

Albert-Ludwigs-University, Freiburg im Breisgau, Germany

Martin Steffen

Christian-Albrechts-University, Kiel, Germany

Abstract

Bounded Model Checking (BMC) is a successful refutation method to detect errors in not

only circuits and other binary systems but also in systems with more complex domains like

timed automata or linear hybrid automata. Counterexamples of a fixed length are described

by formulas in a decidable logic, and checked for satisfiability by a suitable solver.

In an earlier paper we analyzed how BMC of linear hybrid automata can be accelerated

already by appropriate encoding of counterexamples as formulas and by selective conflict

learning. In this paper we introduce parametric datatypes for the internal solver structure

that, taking advantage of the symmetry of BMC problems, remarkably reduce the memory

requirements of the solver.

Key words: BMC, Hybrid Automata, Parametric Data Structures, SAT.

1 Introduction

Bounded model checking (BMC) [10] is a successful, relatively young refutation

method which was studied and applied very intensively in the last years, see for

example [12,13] for some industrial applications. Starting with the initial states of

a system, the BMC algorithm considers computations with increasing length k =
0, 1, . . .. For each k, the algorithm checks whether there exists a counterexample of

the given length, i.e., if there is a computation that starts in an initial state and that

leads to a state violating the system specifi cation in k steps.
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(SFB/TR 14 AVACS). See www.avacs.org for more information.
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Basically, BMC can be applied to all kinds of systems for which reachability

within a bounded number of steps can be expressed in a decidable logic. For ex-

ample, for discrete systems fi rst-order predicate logic is used, whereas the analysis

of linear hybrid automata [4,24] requires fi rst-order logic formulas over (R, +, <
, 0, 1) [18]. Timed automata are dealt with, e.g., in [29,32,6,35].

Also the kind of specifi cation considered can have different logical domains.

We deal with safety properties: The violation of a safety property is expressed

by stating that the last state of the computation does not fulfi ll the specifi cation.

Additional loop-determining techniques extend the method to verify properties for

some problem classes (see e.g. [11,17]).

Once the existence of a counterexample of a fi xed length is expressed by some

formula, we need to check that formula for satisfi ability: The formula is satisfi able

if and only if the specifi cation can be violated by a computation of that length. In

the discrete case the check is carried out by a SAT-solver, i.e., a Boolean satisfi a-

bility checker, whereas in the mixed discrete-continuous case of hybrid and timed

automata the check is usually done by combining a SAT- and an LP-solver (Linear

Programming, see Section 5.2). Some popular solver are, e.g., ZChaff [28], Berk-

Min [23], MiniSAT [20], HySat [21],MathSAT [5], CVC Lite [8], and ICS [16].

Our approach, as introduced in the following sections, is not restricted to any fi xed

application domain. We illustrate its advantage by checking safety properties of

some discrete systems (circuits) and of some linear hybrid automata.

One of our research goals within the AVACS project [7] is to improve the appli-

cability of BMC to large hybrid automata. In an earlier paper [3] we concentrated

on how BMC of linear hybrid automata can be accelerated by appropriate encoding

of counterexamples as formulas, and by selective conflict learning. Those tech-

niques were introduced in order to improve the CPU running times. We observed,

however, that for some examples the real times needed were much longer than the

CPU times. For long counterexamples the corresponding formulas are getting very

large, as stated e.g. in [22]. Additionally, learning in the style of Shtrichman [30]

considerably increases the memory consumption. When the memory requirements

reach the computer’s memory size, the computer starts to swap, thereby slowing

down the computations by several orders of magnitude.

In this paper we discuss how the memory size necessary for solving a BMC

problem can be reduced without increasing the running times of the solver. The

main idea is to take advantage of the symmetry of BMC problems, and to store

symmetric parts of the formulas in a parametric form. We introduce parametric data

types for the internal solver structure and show that the usage of those parametric

structures remarkably reduces the memory requirements of the solver. Experimen-

tal results show that the CPU times are not increased, and furthermore, due to lower

demands on memory, swapping occurs much later resulting in shorter system times.

The paper is organized as follows: In Section 2 we review the BMC approach

before introducing parametric datatypes in Section 3. Experimental results for cir-

cuits are presented in Section 4. Section 5 extends the results to linear hybrid

automata. Finally, in Section 6 we discuss related work and draw conclusions.
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2 Bounded Model Checking

Before presenting our work, we fi rst give a short review of discrete transition sys-

tems and of the encoding of their fi nite runs as fi rst-order predicate logic formulas,

as introduced in BMC [10]. Furthermore, we describe relevant details of state-of-

the-art solver for checking satisfi ability of such formulas.

2.1 Encoding Discrete Transition Systems

Below we formalize discrete transition systems. This kind of defi nition allows to

deal with transition systems specifi ed by standard sequential circuits. On the other

hand it can be extended to model linear hybrid systems.

Definition 2.1 [Discrete Transition System] A discrete transition system (DTS) is a

tuple (V, L, I, T ) with V a fi nite set of Boolean variables and L a fi nite set of nodes.

We use V to denote the set of valuations ν : V → {0, 1} and Σ = (L×V) to denote

the set of states. The set I ⊆ Σ defi nes the initial states, and T ⊆ (L × 2V×V × L)
specifi es the transition relation as a fi nite set of transitions with typical element t.
We write ((l, ν), (l′, ν ′)) ∈ t iff t = (l, µ, l′) with (ν, ν ′) ∈ µ. A run is a fi nite

sequence σ0, σ1, . . . , σn of states such that σ0 ∈ I and (σi, σi+1) ∈ ti for some

ti ∈ T for all i = 0, . . ., n−1. A state is reachable if there is a run leading to it.

Since we deal with fi nite systems, the initial condition and the transitions of a

DTS can be described by fi rst-order logic formulas Init(s) and Transt(s, s
′) for all

t ∈ T , where s and s′ explicitly denote the free variables occurring in the given

formulas: s = (v0, . . . , vm) is the sequence of all variables and s′ = (v′
0, . . . , v

′
m)

copies of them in order to describe the target valuation after a transition. Let fur-

thermore Safe(s) be a fi rst-order logic formula describing a safety property of the

system. Counterexamples of a fi xed length k, i.e., runs of length k violating the

property Safe, can be described by the following formula:

ϕk(s0, . . . , sk) = Init(s0) ∧
(

∧

i=0,...,k−1

∨

t∈T Trans t(si, si+1)
)

∧ ¬Safe(sk) .

Starting with k = 0 and iteratively increasing k ∈ N, BMC checks whether ϕk

is satisfi able. The algorithm terminates if ϕk is satisfi able, i.e., an unsafe state is

reachable from an initial state in k steps.

2.2 Satisfiability Checking

The formulas ϕk describing counterexamples of length k are checked by a state-of-

the-art DPLL (Davis-Putnam-Logemann-Loveland [15,14]) SAT-solver.

Before the satisfi ability check can start, the Boolean formula is transformed into

a conjunctive normal form (CNF). In order to keep the formula as small as possible,

auxiliary Boolean variables are used to build the CNF [34]. A formula in CNF-

form is a conjunction of clauses, while each clause is the disjunction of literals.
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We distinguish between positive and negative literals, being Boolean variables or

their negations.

In order to satisfy the formula, each of the clauses must be satisfi ed, i.e., at least

one of their literals must be true. The SAT-solver assigns values to the variables

in an iterative manner. After each decision, i.e., free choice of an assignment, the

solver propagates the assignment by searching for unit-clauses in that all literals

but one are already false and thus the last unassigned literal is implied to be true.

If two unit-clauses imply different values for the same variable, a conflict oc-

curs. In this case a conflict analysis takes place which results in non-chronological

backtracking and conflict learning [9,27]. Intuitively, the solver applies resolution

to some unit-clauses, using the implication tree, and inserts a new clause strength-

ening the problem constraints and restricting the state space for further search.

An important point for this paper is the usage of watch-literals for the detection

of unit-clauses [28]. The basic idea is the following: If in a clause there are two

unassigned (or already true) variables, then this clause cannot be a unit-clause. So

it is enough to watch only two unassigned or true variables in each clause, which

we call the watch-literals. If one of the watch-literals becomes false, we search for

another literal in the clause, being unassigned or already true, and being different

from the other watch-literal. Only if we cannot fi nd any new watch-literal, the

clause is indeed a unit-clause. With this method, the number of clauses that we have

to look at to determine the unit-clauses after a decision can be reduced remarkably.

3 Symmetries and Parametric Data Structures

In this main section we present how we make use of the inherent symmetries of

BMC problems by parameterizing the solver-internal data structures.

3.1 Symmetries of BMC Problems

The formulas of BMC problems have a special structure: They describe compu-

tations, starting from an initial state, executing k transition steps, and leading to

a state violating the specifi cation. Accordingly, the set of clauses generated by

the SAT-solver can be grouped into clauses describing (1) the initial condition (I-

clauses), (2) one of the transitions (T-clauses), and (3) the violation of the specifi -

cation (S-clauses). The T-clauses can be further grouped into k sets describing the

k computation steps. Those k T-clause sets describe the same transition relation,

but at different time points. That means, they are actually the same up to renaming

the variables. E.g., the 3rd iteration of a BMC problem could be represented by a
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clause set like this:

I-clauses T-clauses S-clauses

(x0 ∨ y0), . . . (x0 ∨ y1 ∨ z0), . . . , (x1 ∨ y1 ∨ z0) (y3 ∨ z3), . . .

(x1 ∨ y2 ∨ z1), . . . , (x2 ∨ y2 ∨ z1)

(x2 ∨ y3 ∨ z2), . . . , (x3 ∨ y3 ∨ z2)

The T-clauses representing the 2nd transition step are the same as the T-clauses

of the 1st step but vi replaced by vi+1 for all variables v and indices i; we write

[vi+1/vi] for that substitution.

3.2 Parametric Data Structures

Since the T-clauses of different steps are the same up to variable renaming, it is

enough to store a parametric version of a transition step, actually the transition

relation, and remember the renaming in order to compute the information about the

k different computation steps. If we need a clause of a certain transition step, for

example to determine unit-clauses or for resolution, we just rename the variables

in the parametric T-clauses accordingly. For the above example, we can store the

parametric T-clause set (x0 ∨ y1 ∨ z0), . . . , (x1 ∨ y1 ∨ z0). The fi rst computation

step is described by that clause set. Applying the substitution [vi+1/vi] ([vi+2/vi])
gives the clause set describing the second (third) computation step.

In order to keep the solver structure simple, it is very important to use a fast and

uncomplicated renaming mechanism. Look-up tables would be a possible solution,

however, we expect that they would lead to increased computation times. Instead,

we apply a more natural and easy naming convention, consisting of three stages:

• Variables are represented inside the solver not by an integer, but by a pair (a, i) of

integers: the abstract id a identifi es a variable, and the instance id i the instance

of the variable, i.e., the time instance at that the variable’s value is considered.

E.g., if x has the abstract id 5, then x in the initial state, i.e., x0, is represented by

(5, 0), x after the fi rst transition step, i.e., x1, by (5, 1) and after the kth step for

xk we have (5, k). Negation of a variable is expressed by the abstract id being

negative. E.g., x3 is stored as (−5, 3). Constants, being independent from the

state they are evaluated in, have the instance id −1. In the following we treat

constants as variables; if we say that we increase the instance id of a variable,

then we mean that its instance id gets increased if it is non-negative, only.

• The contents of a clause, i.e., its literals, are now represented by a list of integer

pairs. For example, the literals (x0, x1) are stored as ((5, 0), (−5, 1)).

• Finally, each clause is referred to by a pair (a, i) of non-negative integers, where

the abstract id a identifi es the parametric clause, usually by its index in the clause

list, and the instance id i its instance. The ith instance of a parametric clause

contains the literals of that clause with each (non-negative) instance id increased
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Fig. 1. Non-parametric and parametric data structures

by i. E.g., if the 7th parametric clause has literals ((5, 0), (−5, 1)), then (7, 0)
refers to the clause with literals ((5, 0), (−5, 1)), whereas (7, 1) stands for the

clause with the literals ((5, 1), (−5, 2)), and (7, k) for ((5, k), (−5, k + 1)).

In this way, dealing with parametric clauses becomes very simple: We store the

literals of the T-clauses describing the fi rst computation step as parametric clauses.

To compute the concrete literals of the T-clauses describing the ith computation

step, we just increase the instance ids of all T-clause literals by i − 1.

Above we described the encoding of the Boolean variables occurring in the

formula. The representation of the auxiliary Boolean variables used to build the

CNF effi ciently needs some more explanation: An auxiliary Boolean variable gets

as instance id the smallest instance id occurring in the formula it encodes. The

abstraction of the same formula at different time points use the same abstract id.

Note that parametric storage is possible only for the literals of the clauses. We

still have to store the assignments for each variable instance on its own. Also

the watch-literals of different instances of a parametric clause have to be stored

separately. Thus, each parametric clause consists of a list of its (parametric) literals,

and additionally a list of watch-pairs, determining the current watch-literals for

each possible instance of the clause, as illustrated in Figure 1. The number of

instances of a parametric clause is implicitly given by the length of the watch-pair

list, and thus does not need to be stored explicitly. E.g., the parametric clauses of

Figure 1 have k instances 1, . . . , k, since they have k watch-pairs attached.

For conflict analysis, the solver stores the information, which unit-clause im-

plied which assignment, in form of an implication tree. In the parametric approach,

the implicating unit-clauses are identifi ed by an integer pair, as explained above.

Now, let us see how BMC works with the parametric structures. Initially, we

check whether there are computations of length 0 or 1. At that point, the solver

contains all I-clauses stating that the fi rst state is initial, all T-clauses describing the

fi rst computation step, and all S-clauses stating that the last state in the run violates

the specifi cation. For each subsequent BMC iteration we have to increment the

computation length as follows:

• we add a new instance to each parametric T-clause by extending the watch-literal

list by a new pair, and
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• we increase the literals’ instance ids in the S-clauses by 1.

The I-clauses remain untouched. Note that we do not need to insert any new clauses

or literals for increasing the computation length! This is done simply by adding a

new instance to the already existing transition clauses in the form of a new watch-

pair. The number of clauses and the number of literals remain unchanged.

3.3 Conflict Learning

Besides clauses describing counterexamples we also have to pay attention to a sec-

ond clause type: the conflict clauses. The conflict clauses learned during a SAT-

check assure that the search does not enter the same search path (or similar search

paths) again.

Usually, the conflict clauses learned during the SAT-check of a BMC instance

get removed before checking the next BMC instance. However, they can also be

partially re-used in the style of Shtrichman [31], thereby excluding search paths

from the SAT-search already before the search starts: If a conflict clause is the result

of a resolution applied to clauses that are present also in the next iteration, then

the same resolution could be made in the new setting, too, and thus we can keep

those conflict clauses. Furthermore, if all clauses used for resolution to generate a

conflict clause are present in the next SAT iteration with an increased instance, then

the same resolution could be made using the increased instances. Thus each such

conflict clause can be added with an increased instance in the next BMC iteration.

Accordingly, we distinguish between the following conflict clause types:

• I-conflict clauses result from resolution of I- and possibly T-(conflict-)clauses;

they can be re-used in the next iterations, as those clauses are also present in all

the following iterations, i.e., the same resolution could be made.

• S-conflict clauses result from resolution of S- and possibly T-(conflict-)clauses;

they can be re-used with an increased instance only, as the instance of S-clauses

gets increased in the next iteration.

• T-conflict clauses result from resolution of T-(conflict-)clauses, only; they can

be re-used like I-conflict clauses and additionally inserted with an increased in-

stance like S-conflict clauses, as all T-clauses are present in the next iteration

both with the same and with an increased instance.

Note that conflict clauses stemming from both I- and S-clauses (IS-conflict clauses)

cannot be re-used. Note furthermore that it is possible to learn even more than 2
instances of T-conflict clauses, if we record during the resolution not only which

kind of clauses are involved (I, T, or S) but also which instances of T-clauses.

However, our experiments show that learning all possible conflict clause instances

leads to a large number of new clauses (or clause instances in the parametric case),

each of which must be considered in the propagation of new decisions. That is

the reason why learning too much rather slows down the SAT-check instead of

accelerating it. We follow the policy of re-using conflict clauses when possible, and

inserting T-conflict clauses additionally with one increased instance. This policy
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turned out to be successful within our experimental BMC framework.

We store conflict clauses in a parametric manner, too, analogously to the I-, T-,

and S-clauses. After each iteration, additionally to the updates of the I-, T-, and

S-clauses, the following updates take place:

• insert a new watch-pair for each T-conflict clause,

• increase the instance ids (if non-negative) of all literals in each S-conflict clause

by 1, and

• delete all IS-conflict clauses.

Again, I-conflict clauses are untouched.

3.4 Variable Ordering

Our solver prototype uses a static variable order for selecting decision variables.

As suggested in [31], the order is determined by the instance ids of the variables,

and thus follows the natural temporal order of computation.

Nevertheless, our parametric data structures enable more variable-focused scor-

ing heuristics like VSIDS [28], which do not handle the variables independently as

pure CNF-SAT solver do, but group information belonging to several instances of

one variable over the unfolded time-frames, allowing problem-oriented dynamic

assignments.

4 Experimental Results

We implemented a SAT-solver, working mainly as described in Section 2.2, but

with parametric internal data structures. To see the difference to the case without

parametric structures, we created also a modifi ed solver, working exactly the same

way but without parametric clauses. When a new BMC problem instance gets

created, for the T-clauses and the T-conflict clauses the parametric solver adds a

new clause instance by appending a new watch pair to the clause’s watch list, while

the solver without the parametric structure creates a new clause.

For the experiments we used a computer with an Intel Pentium 2, 8 GHz CPU

and 1 GB of memory. Note, that the required memory is independent of the speed

and memory size of the computer. However, if the memory size is below the re-

quirements, swapping takes place which slows down the computation.

We applied BMC to check invariants of three benchmarks taken from the VIS

benchmark suite [33] covering different application domains: Am2910 (micro-

controller), Tcp (communication protocol), and UsbPhy (Universal Serial Bus).

Figure 2 shows the memory requirements: the heap peak during the iterations both

for the non-parametric and for the parametric data structure is depicted.

Generally, using parametric clauses in the kth BMC iteration, the number of T-

clauses can be reduced by the factor of k. T-conflict clauses learned in the iteration i
get shifted in each iteration from i+1 to k by learning; instead of k−i+1 clauses we

have to store only 1 parametric instance. The number of I- and S-clauses remains
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Fig. 2. Results for discrete VIS benchmarks

unchanged in both approaches; the same holds for I- and S-conflict clauses. It is

worth to mention that the learned conflicts form a large part of the clauses.

The memory requirements cannot be reduced with the same factor as the num-

ber of clauses, since, e.g., the watch-literals must be stored for all clause instances.

However, the memory requirements are still remarkably reduced. The degree of the

reduction depends also on the size of the clauses.

The CPU times needed for the satisfi ability checks are approximately the same

for the non-parametric and for the parametric solver (see Figure 6 for some exper-

imental data). This is due to the natural data structures used to represent variables,

literals, and clauses. Computing a certain concrete instance of a parametric clause

is done by a few arithmetic additions.

agr

5 Extension to Linear Hybrid Automata

The previously presented approach can be naturally extended to BMC of linear hy-

brid automata which is our primary goal as already mentioned in the introduction.

5.1 Linear Hybrid Automata

Hybrid automata [4,24] are a formal model to describe systems with combined dis-

crete and continuous behavior. They are often illustrated graphically, like the one

shown in Figure 3. This automaton models a thermostat, which senses the temper-

ature x of a room and turns a heater on and off. When control stays in a location

and time elapses, flow conditions in form of differential equations determine the
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continuous change of the real-valued variables. For example, in location off the

temperature decreases according to the flow condition − 3

10
≤ ẋ ≤ − 1

10
. Control

may enter a location or stay in a location only as long as the location’s invariant is

satisfi ed. The invariant x ≥ 18 of location off ensures that the heater turns on at

latest when the temperature reaches 18 degrees. Control may move along a discrete

jump from one location to another if the transition’s condition is satisfi ed; addition-

ally, the jump may cause discrete changes to the system state which is called the

jump’s effect. E.g., the transition from location off to on is enabled when the tem-

perature is below 19 degrees; the temperature x does not change during the jump.

Finally, an initial condition describes the starting point of the system’s computa-

tions. For our example, initially the heater is off and the temperature is 20 degrees.

We consider the class of linear hybrid automata [4,24]. Applying BMC, coun-

terexamples of a linear hybrid automaton can be encoded similarly to that of a DTS.

In the hybrid case the underlying logic is the fi rst-order logic over (R, +, <, 0, 1),
i.e., formulas are the Boolean combinations of (in)equations over linear terms us-

ing real-valued variables. The transition relation captures two cases: discrete jumps

and continuous flows, that must both be represented in the BMC encodings. For a

detailed description of the encodings and optimizations see [3].

5.2 LP-SAT-Checking

The above formulas describing counterexamples of a fi xed length are checked,

like in the discrete case, by a suitable solver. As now we are dealing with the

Boolean combination of linear (in)equations over real-valued variables, the satisfi -

ability check is done by a combined SAT-LP-solver, as illustrated in Figure 4.

First, the hybrid formulas are abstracted in an over-approximative manner to

pure Boolean ones by replacing each real constraint, i.e., each linear (in)equation,

by an auxiliary Boolean abstraction variable. This Boolean abstraction is checked

for satisfi ability by a SAT-solver. In case the abstraction is unsatisfi able, the con-

crete hybrid formula is unsatisfi able, too. Otherwise, if the abstraction has a so-

lution, then the LP-solver checks whether there is a corresponding solution in the

real domain. I.e., the LP-solver collects all those real constraints whose abstraction

variables are true and the negation of all those whose abstraction variables are false,

and checks whether they are together satisfi able using a Simplex-based approach

similar to [21]. If yes, then we have found a solution for the concrete problem.

If not, then the LP-solver provides an explanation in the form of an unsatisfi able
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(in)equation set that explains the contradictory assignment within the real domain.

The SAT-solver can now refi ne the abstraction by excluding the abstracted expla-

nation in the further search.

The above mechanism is known as lazy satisfi ability check. Less lazy variants

check for consistency in the real domain more often, not only for full Boolean so-

lutions, but also for partial ones. This allows earlier detection of real conflicts, and

thus also earlier backtracking for such conflicts. Though LP-checks are relatively

expensive in running time, the advantage of earlier backtracking usually pays off.

However, the degree of laziness is crucial for the running time. If there are only

few solutions for the abstraction, then the full lazy variant will probably be faster,

while for abstractions with many solutions the less lazy variant is expected to be

more effi cient. In our solver, the frequency of LP-checks is determined dynamically

depending on the number of solutions already found for the abstraction.

During the SAT-checks, our solver also learns the explanations served by the

LP-solver in order to refi ne the abstraction. Those explanations are contradictions

in the real-valued domain, thus we could exclude them using all possible renamings

of the involved real-valued variables. In our solver those conflict clauses, stemming

from the real-valued domain, are treated as T-conflict clauses.

5.3 Results

We also implemented a combined SAT-LP-solver, working as the SAT-solver of the

previous section, but extended with an LP-solver for the real part of the check. Sim-

ilarly to the discrete case, we compare a parametric and a non-parametric version

of the solver, using the same SAT-LP-algorithm.

The experiments were carried out on the same computer as in the discrete case.

We used as fi rst example Fischer’s mutual exclusion protocol [26] for 3 and for 4
processes (see Figure 5 for the ith process). The specifi cation states the mutual

exclusion property, i.e., that at each time point there is at most one process in its

critical section. The second example is a Railroad Crossing [24], consisting of 3
parallel automata: one modeling a train, one a railroad crossing gate, and one a

controller. The specifi cation requires that the gate is always fully closed when the

train is near to the railroad crossing.

Figure 6 shows the running times for Fischer’s protocol with 3 processes (on the
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GF ED@A BC
idlei

k=0→xi:=0
//

GF ED@A BC
testi

4
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≤ẋi≤1

xi ≤ A

k,xi:=i,0
//

GF ED@A BC
waiti

4
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≤ẋi≤1

xi≥B∧k=i
//

xi≥B∧k 6=i

yy GF ED@A BC
criti

k:=0

hh

Hi:
k=0

//

Fig. 5. Fischer’s mutual exclusion protocol: The ith process
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Fig. 6. Results for Fischer protocol with 3 processes
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Fig. 7. Results for the Fischer protocol with 4 processes and the Railroad example

left), and the memory requirements (on the right) compared to the non-parametric

version of our solver. The running times show that the computation is not slowed

down by the parametric structures. Figure 7 shows the memory consumption for

the remaining examples, again for both, the non-parametric and parametric version.

6 Conclusion and Related Work

In this paper we introduced parametric data structures to reduce the memory re-

quirements of satisfi ability checking for the special purpose of bounded model
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checking. The application of BMC to some discrete and hybrid examples served to

point out the practical relevance of our approach.

Most research on SAT-solving is done in the important area of increasing the

runtime effi ciency. Related work, like those dealing with the basic solver algo-

rithms, bounded model checking, and learning in the context of BMC etc., is al-

ready mentioned in the introduction.

We know of only two papers explicitly dealing with the reduction of the BMC

memory requirements. In [19], similarly to our approach, the authors make use of

the symmetry of the transition steps. However, instead of introducing new internal

data structures as we do, they apply quantifi cation to compress the k transitions of

a counterexample description into a single quantifi ed term. The quantifi ed formula

is checked for satisfi ability by a dedicated QBF solver.

The approach of [22] tackles memory problems during BMC by distributed

computation. There, the unfolding of the clause set is partitioned and each partition

is assigned to one component in the network. The focus lies on the distribution

of the Boolean constraint propagation to local components such that a memory

reduction is achieved due to the decentralized organization. Thus [22] works in

some sense orthogonal to our approach where we exploit the inherent symmetry of

the BMC formula by means of parametric data structures. As to future work, we

are also working on a parallelization scheme that incorporates both ideas.

Another interesting point is the integration of optimization techniques like cone-

of-influence reduction [12] and don’t-care optimization [25]. While the former

does not limit our concept of parameterization, the latter requires a feasibility study

as future work.
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[3] Ábrah´am, E., B. Becker, F. Klaedke and M. Steffen, Optimizing bounded model

checking for linear hybrid systems, in: Proc. of VMCAI’05, LNCS 3385, pp. 396–412.

[4] Alur, R., C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis and

S. Yovine, The algorithmic analysis of hybrid systems, Theoretical Computer Science

138 (1995), pp. 3–34.

[5] Audemard, G., P. Bertoli, A. Cimatti, A. Korniłowicz and R. Sebastiani, A SAT based

approach for solving formulas over boolean and linear mathematical propositions, in:

Proc. of CADE’02 [1].

55



[6] Audemard, G., A. Cimatti, A. Korniłowicz and R. Sebastiani, Bounded model checking

for timed systems, in: Proc. of FORTE’02, LNCS 2529, pp. 243–259.

[7] Transregional collaborative research center 14 AVACS: Automatic Verification and

Analysis of Complex Systems, http://www.avacs.org.

[8] Barrett, C. and S. Berezin, CVC Lite: A new implementation of the cooperating validity

checker, in: Proc. of CAV’04 [2], pp. 515–518.

[9] Bayardo Jr., R. and P. Schrag, Using CSP look-back techniques to solve real-world

SAT instances, in: National Conference on Artificial Intelligence (AAAI), 1997.

[10] Biere, A., A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without BDDs,

in: Proc. of TACAS’99, LNCS 1579, pp. 193–207.

[11] Biere, A., A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu, Bounded model

checking, Advances in Computers 58 (2003).

[12] Biere, A., E. Clarke, R. Raimi and Y. Zhu, Verifying safety properties of a PowerPCTM

microprocessor using symbolic model checking without BDDs, in: Proc. of CAV’99,

LNCS 1633.

[13] Copty, F., L. Fix, R. Fraer, E. Guinchiglia, G. Kamhi and M. Y. Vardi, Benefits of

bounded model checking in an industrial setting, in: Proc. of CAV’01, LNCS 2102,

pp. 436–453.

[14] Davis, M., G. Logemann and D. Loveland, A machine program for theorem-proving,

Communications of the ACM 5 (1962), pp. 394–397.

[15] Davis, M. and H. Putnam, A computing procedure for quantification theory, Journal

of the ACM 7 (1960), pp. 201–215.

[16] de Moura, L. and H. Rueß, An experimental evaluation of ground decision procedures,

in: Proc. of CAV’04 [2], pp. 162–174.

[17] de Moura, L., H. Rueß and M. Sorea, Bounded model checking and induction: From

refutation to verification, in: Proc. of CAV’03, LNCS 2725, pp. 14–26.

[18] de Moura, L., H. Rueß and M. Sorea, Lazy theorem proving for bounded model

checking over infinite domains, in: Proc. of CADE’02 [1], pp. 438–455.

[19] Dershowitz, N., Z. Hanna and J. Katz, Bounded model checking with QBF, in: Proc.

of SAT’05, LNCS 3569, pp. 408–414.
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Abstract

One of the most paradigmatic practical applications of Boolean Satisfiability (SAT)
is bounded model checking (BMC). The utilization of SAT in model checking has
allowed significant performance gains and, as a consequence, a large number of
commercial verification tools now include SAT-based model checkers. Recent work
has provided SAT-based BMC with completeness conditions, and this is generally
referred to as unbounded model checking (UMC). Among the existing approaches
for SAT-based UMC, the utilization of interpolants is among the most effective.
Despite their success, interpolants have only been used for identifying a fixed point
of the set of reachable states. This paper extends the utilization of interpolants in
SAT-based model checking. This is achieved by observing that, under reasonable
assumptions, interpolants can be reused, i.e. computed interpolants can be reused
at later stages of the model checking process. The paper develops conditions for va-
lidity of interpolant reuse. Preliminary practical experience on interpolant learning
and reuse is reported.

Key words: Boolean Satisfiability, Bounded Model Checking,
Interpolants.

1 Introduction

The utilization of Boolean Satisfiability (SAT) in Model Checking has been
the subject of extensive research in recent years. The main result of this effort
has been a number of fairly competitive incomplete and complete SAT-based
model checking algorithms [3,4,5,20,21,25,26]. Moreover, SAT-based model
checking has also been rapidly adopted by industry, and a number of vendors
have included SAT-based Model Checking in their tools.

The utilization of SAT in model checking was first proposed in the form of
Bounded Model Checking (BMC) [3], where a counterexample is searched for
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increasing unfoldings of a finite state automaton. The original BMC work has
been shown to be extremely useful for finding counter-examples but, unless
the recurrence (or the reachability) diameter of the automaton is known [2],
the BMC procedure is incomplete.

Different solutions have been proposed for ensuring the completeness of
BMC [25,5,17,16,21], the most promising of which is arguably based on the
utilization of interpolants [21].

This paper reviews the utilization of interpolants in SAT-based unbounded
model checking and proposes the learning and reuse of computed interpolants
with the purpose of allowing increased search pruning for subsequent calls to
the SAT solver during the model checking process. The paper shows that
different interpolants can be computed and used in different contexts.

The paper is organized as follows. The next section provides a necessarily
brief perspective on SAT solvers and related concepts. Afterwards, Section 3
reviews SAT-based model checking, including bounded and unbounded model
checking. Section 4 develops conditions for reusing learnt interpolants. Initial
practical experience is summarized in Section 5 and Section 6 concludes the
paper.

2 Preliminaries

Propositional formulas are defined over finite sets of Boolean variables X =
{x1, x2, . . .}, W = {w1, w2, . . .}, X1, X2, etc., where each variable can be as-
signed value 1 (True) or 0 (False). In what follows propositional formulas
are represented by ψ1, ψ2, . . . . When relevant other subscripts can be used,
e.g. ψa, ψb, etc. For specific cases, letters and names representing predicates
are also used for denoting the associated propositional formulas, examples
include I, T , F , P , Q and Bmc. When referring to propositional formulas
in conjunctive normal form (CNF), we associate with each propositional for-
mula ψa(Xa) a CNF formula ϕa(Xa, Ua), where Ua denotes a set of auxiliary
Boolean variables. Formulas in CNF consist of a conjunction of clauses (each
clause represented by ωi), where each clause consists of a disjunction of literals
(represented by lj). When used in an expression, a propositional formula ψ is
interpreted as a predicate, and so corresponds to ψ = 1. Similarly, when the
propositional formula ¬ψ is used in an expression, it corresponds to ψ = 0.

We consider model checking of LTL safety properties G ψS. A finite state
automaton M = (I, T, F ) is assumed, where I is a predicate defined on state
variables, T is the state transition relation, and F represents the failing prop-
erty (i.e. F = ¬ψS), defined on state variables. Moreover, the utilization of
predicates I, T or F assumes an underlying automaton M = (I, T, F ). As
mentioned above, for simplicity, the propositional formulas associated with
these predicates are represented with the same letters, I, T and F .

It will also be necessary to map propositional formulas from one set of vari-
ables to another set of variables. The notation ψ(Y/Yk) is used to denote that

60



the propositional formula ψ, defined over the set of variables Y , is mapped into
the set of variables Yk. Moreover, state variables are preferably represented as
set Y , Yk when referring to the state variables in time step k, Boolean circuit
variables are preferably represented as sets X or W , respectively Xk and Wk

for variables in time step k, and finally auxiliary variables used in the CNF
representation are preferably represented as sets W or Z.

2.1 Boolean Satisfiability Solvers

The remarkable evolution of Boolean Satisfiability (SAT) solvers over the last
decade [19,23,14] has motivated the application of SAT in model checking.
The most effective SAT solvers are based on backtrack search [9] and share a
number of key techniques, including:

• Unit clause rule, also referred as Boolean constraint propagation, that con-
sists of the identification of implied variable assignments [10].

• Clause learning, consisting of learning new clauses in presence of conflicts
during the execution of backtrack search. A few techniques related with
clause learning are the utilization of unique implication points (UIPs) [19],
and non-chronological backtracking [19].

• Memory efficient lazy data structures [23].

• Adaptive branching heuristic, usually derived from the VSIDS heuristic [23].

• Utilization of search restarts [15], by using some completeness criterion.

Because modern backtrack search SAT solvers learn clauses, it is straightfor-
ward to track all the learned clauses, and use these clauses for constructing a
resolution refutation (or unsatisfiability proof) of the original formula [28].

2.2 SAT-Related Concepts

This subsection addresses a number of byproducts of modern SAT solvers,
which are required for the utilization of interpolants in SAT-based model
checking. For this purpose, we review proof traces, unsatisfiable cores and
unsatisfiability proofs.

As mentioned above, modern SAT solvers learn clauses. For unsatisfiable
instances, the original clauses and the learned clauses can be used for gener-
ating a resolution-based unsatisfiability proof [28]. Modern SAT solvers can
be instructed for generating a proof trace, which associates with each learned
clause ω, all the clauses that explain the creation of ω [28].

Given a proof trace Γ, where the final traced clause is the empty clause ⊥,
we can identify, in linear time on the size of the proof trace, a subset of the
original set of clauses which is itself unsatisfiable [28]. This subset is referred
to as an unsatisfiable core.

Moreover, and given a proof trace Γ, generated by a SAT solver, it is
possible to create a resolution-based unsatisfiability proof in time and size
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linear on the size of the proof trace.

Definition 2.1 [Unsatisfiability Proof [21]] A proof of unsatisfiability Π for
a set of clauses ϕ is a directed acyclic graph (VΠ, EΠ), where VΠ is a set of
clauses, such that:

• For every ω ∈ VΠ, either
· ω ∈ ϕ, and ω is a root, or
· ω has two predecessors, ω1 and ω2, such that ω is the resolvent of ω1 and
ω2 (the variable v used for resolving ω1 with ω2 is referred to as the pivot
variable of the resolution step), and

• the empty clause ⊥ is the unique leaf.

2.3 Craig Interpolants

Assume a propositional formula ψA(Y,X), defined over the sets of variables
Y and X, and a propositional formula ψB(Y,W ), defined over the sets of
variables Y and W . If ψA(Y,X)∧ψB(Y,W ) is unsatisfiable, then there exists
a propositional formula ψP (Y ), defined over the set of variables Y , such that
ψA(Y,X)→ ψP (Y ) is a tautology and ψB(Y,W )∧ψP (Y ) is unsatisfiable. The
propositional formula ψP (Y ) is referred to as an interpolant for ψA(Y,X) and
ψB(Y,W ) [8]. Recent work has shown that an interpolant can be constructed
in linear time on the size of a resolution refutation of ψA(Y,X)∧ψB(Y,W ) [24].

In what follows we outline McMillan’s interpolant construction [21], even
though Pudlák’s construction [24] could also be considered. Regarding the
propositional formulas ψA(Y,X) and ψB(Y,W ), and associated CNF formulas,
respectively ϕA(Y,X, U) and ϕB(Y,W, V ), variables in set Y are referred to
as global variables, whereas variables in sets X and U are local to ϕA(Y,X, U),
and the variables in sets W and V are local to ϕB(Y,W, V ). Further, let g(ω)
denote the literals corresponding to global variables in clause ω.

Definition 2.2 [Interpolant [21]] Let (ϕA, ϕB) be a pair of clause sets and let
Π be a proof of unsatisfiability of ϕA∪ϕB, with leaf vertex ⊥. For each vertex
ω ∈ VΠ, let ψω be a Boolean formula, such that:

• If ω is a root then
· if ω ∈ ϕA then ψω = g(ω),
· else ψω = True

• else, let ω1, ω2 be the predecessors of ω and let v be their pivot variable
· if v is local to ϕA, then ψω = ψω1

∨ ψω2
,

· else ψω = ψω1
∧ ψω2

The Π-interpolant of (ϕA, ϕB), denoted Itp(Π, ϕA, ϕB) is ψ⊥.

The interpolant Itp(Π, ϕA, ϕB) has size linear on the size of the unsatisfi-
ability proof [24,21].
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Algorithm 1 Organization of BMC

BMC(M = (I, T, F ), λ, ι, µ)

1 j ← 0
2 k ← λ
3 while k ≤ µ
4 do ϕ← Cnf(Bmc

k
j (M),W )

5 if Sat(ϕ)
6 then return false ✄ Found counterexample
7 k ← k + ι
8 return true

3 SAT-Based Model Checking

This section overviews the work on using SAT in model checking, emphasizing
the initial work on Bounded Model Checking (BMC) and the more recent work
on Unbounded Model Checking (UMC).

3.1 Bounded Model Checking

The generic Boolean formula associated with SAT-based BMC is the follow-
ing [3,26,2]:

Bmc
k
j (M) = I(Y0) ∧

(

∧

0≤i<k

T (Yi, Yi+1)

)

∧

(

∨

j≤i≤k

F (Yi)

)

(1)

This formula represents the unfolding of the state machine for k time steps,
where I(Y0) represents the initial state, T (Yi, Yi+1) represents the transition
relation between states Yi and Yi+1, and F (Yi) represents the failing property
in time step i. Given the Boolean formula Bmc

k
j (M), it is straightforward

to generate a CNF formula ϕ, by applying Tseitin’s transformation [27] and
by using additional auxiliary Boolean variables. This formula can then be
evaluated by a SAT solver.

The typical organization of BMC for safety properties is illustrated in Algo-
rithm 1. The details regarding the sets of variables associated with each propo-
sitional formula are omitted, but are clear from the context. Experimental
evidence has confirmed SAT-based BMC to be an extremely competitive tech-
nique, that has been widely applied in industrial settings [2,12,7].

In order to describe the work on UMC and the reusing of interpolants, the
following predicates are extensively used:

Unfold
s
r(M) = I(Y−r) ∧

(

∧

−r≤i<s

T (Yi, Yi+1)

)

(2)

Tran
t
s(M) =

∧

s≤i<t

T (Yi, Yi+1)(3)
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Prop
u
v(M) =

(

∧

u≤i<u+v

T (Yi, Yi+1)

)

∧

(

∨

u≤i≤u+v

F (Yi)

)

(4)

Hence, we can express the BMC formula in terms of these predicates:

BMC
k
j (M) = Unfold

j
0(M) ∧Prop

j
k−j(M)

= Unfold
0
0(M) ∧Tran

j
0(M) ∧Prop

j
k−j(M)

(5)

3.2 Unbounded Model Checking

A key difficulty with BMC is its inability for proving that there is no coun-
terexample for a given safety property G ψS. Unless the recurrence (or the
reachability) diameter [2] of an automaton is known, it is not possible to es-
tablish the value of the upper bound (UB) used in Algorithm 1; in the case the
recurrence diameter is known, BMC becomes complete. In general the recur-
rence diameter of an automaton is not known, and so BMC is incomplete. As
a result, in recent years different approaches have been proposed for ensuring
the completeness of SAT-based model checking. We refer to these approaches
as Unbounded Model Checking (UMC) [20,21]. The first UMC SAT-based
approach was proposed by Sheeran et al. in [25] and extended in [4]. Addi-
tional techniques include [5,20,13,22,21,16]. The induction-based approach of
Sheeran et al. [25] requires unfolding the state machine for the largest sim-
ple path between any two reachable states in the worst case. However, the
largest simple path between any two reachable states can be exponentially
larger than the reachability diameter. Alternatively, Chauhan et al. [5] and
Glusman et al. [13] propose refinement techniques based on elimination of false
counterexamples. Another approach based on iterative abstraction is proposed
by Gupta et al. in [16]. More recently, McMillan and Amla [22] propose the
utilization of proof-based abstraction, even though the proposed approach is
not fully SAT-based. According to experimental data from [21], the utilization
of interpolants in SAT-based model checking is the most effective approach.
We detail the utilization of interpolants in the next section.

3.3 Interpolant-Based Unbounded Model Checking

Recent work on SAT-based Unbounded Model Checking has addressed the
utilization of interpolants [21], with quite promising experimental results. This
section reviews McMillan’s interpolant-based UMC algorithm [21].

The definition of the BMC proposition formula is modified slightly with
respect to (1):

Prefl(M) = I(Y−l) ∧
(
∧

−l≤i<0
T (Yi, Yi+1)

)

= Unfold
0
l (M)

(6)
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Algorithm 2 UMC Algorithm

UMC(M = (I, T, F ))

1 k ← 0
2 if Sat(I ∧ F )
3 then return false ✄ Counterexample found
4 while true

5 do status = CheckFixpoint(M,k)
6 if status = false

7 then return false ✄ Counterexample found
8 else if status = true

9 then return true ✄ Property proved
10 k ← k + 1 ✄ Unfold further

Suff
k
j (M) =

(
∧

0≤i<k T (Yi, Yi+1)
)

∧
(

∨

j≤i≤k F (Yi)
)

= Tran
j
0(M) ∧Prop

j
k−j(M)

(7)

Hence, the BMC formula becomes:

Bmc
k
j (M) = Pref1(M) ∧ Suff

k
j (M)(8)

The above equation corresponds to the one proposed by McMillan [21], where
the separation between prefix and suffix identifies the set of variables with
respect to which interpolants are to be computed.

The SAT-based model checking algorithm can be organized into two main
phases: a BMC loop, where the circuit is unfolded, and a fixed point check-
ing step, that checks for the existence of a counterexample and where the
existence of a fixed-point is tested. Observe that the second phase requires
the iterative computation of interpolants until a fixed-point is reached or a
true or (possibly) false counterexample is identified. The organization of the
BMC loop is outlined in Algorithm 2, whereas the organization of fixed point
checking step is outlined in Algorithm 3.

For the BMC loop there is no upper bound on the number of unfoldings,
since the algorithm is now complete. The increment of k is not required to
be 1. In fact, feeback from the fixed point checking procedure can be used for
increasing k by values larger than 1 [18]. In addition, observe that the fixed
point checking procedure consists of iterative computation of interpolants,
where for iteration m the interpolant represents an abstraction of the reach-
able states in m time steps [21]. At each iteration of the UMC fixed point
checking procedure, the existence of a fixed-point is tested. The fixed-point is
reached when the abstraction of the reachable states in m time steps contains
only states already included in the abstractions of the reachable states in less
than m time steps. Finally, observe that the algorithm sets j = 0, because
interpolants are computed with respect to Y0.
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Algorithm 3 Fixed point identification in SAT-based UMC

CheckFixpoint(M = (I, T.F ), k)

1 R← I
2 while true

3 do M ′ ← (R, T, F )
4 A← Cnf(Pref1(M

′),W1)
5 B ← Cnf(Suff

k
0(M

′),W2)
6 (isSat,Γ)← Sat(A ∪B)
7 if isSAT
8 then if R = I
9 then return false

10 else return abort

11 ✄ A ∪B is unsat
12 Π← UnsatProof(Γ)
13 P ← Itp(Π, A,B)
14 R′ ← P (Y/Y0)
15 C ← Cnf(¬R,W3)
16 D ← Cnf(R′,W4)
17 (isSat,Γ)← Sat(C ∪D)
18 if not isSAT
19 then return true

20 R← R ∨R′

4 Interpolant Learning and Reuse

This section develops conditions for reusing computed interpolants, and con-
sists of two main parts. Conditions for interpolants representing over-approxi-
mations of the set of reachable states, and conditions for interpolants repre-
senting over-approximations of the set of states satisfying the failing property.
We should note that the work on interpolant reuse is largely motivated by
previous (and successful) work on clause reuse [26]. Clause reuse has been
used extensively in BMC and is widely regarded as a key technique [26,12].

The main motivation is to develop conditions which enable computed in-
terpolants to be reused. Hence, the following definition is used extensively.

Definition 4.1 A Boolean formula ψN is said to be usable for Boolean formula
ψB iff ψB → ψN .

Hence, ψN preserves satisfiability of the original formula and so we get the
following straightforward result:

Proposition 4.2 Let ψN be usable for ψB. Then ψB is satisfiable iff ψB ∧ψN

is satisfiable.

In order to generalize the computation of interpolants, equation (5) is

66



modified as follows:

Bmc
k
j (M) = Unfold

k
0(M) ∧Prop

k
j (M)(9)

Observe that the new equation differs from (5) and (8). In equation (9) the
failing property is checked for only in the last j time steps for an unfolding of
k + j time steps 2 . (This approach is also used for example in [7,25,12]). For
simplicity we assume j = 0; generalization for j > 0 is simple.

The standard interpolants used in [21] are referred to as direct interpolants.
It is also possible to compute reverse interpolants by exchanging the sets A
and B in the definition of interpolant. Direct interpolants are computed as
described in McMillan’s work [21] (see also the previous section), but relaxing
the 1 time step unfolding for A. For computing an interpolant after r time
steps from I and t = k − r time steps from F , the propositional formulas for
A and B become:

A = Cnf(Unfold
r
0(M),W1)(10)

B = Cnf(Tran
k
k−t(M) ∧Prop

k
0(M),W2)(11)

The interpolant computed with A and B above will be denoted P r
t . It is also

possible to compute an interpolant by replacing I with another interpolant
P u

v :

A = Cnf(P u
v (Y0) ∧Tran

r
0(M),W1)(12)

B = Cnf(Tran
k
k−t(M) ∧Prop

k
0(M),W2)(13)

And the new interpolant is denoted P u+r
t .

Reverse interpolants are computed by interchanging A and B in the defi-
nitions above, and will be denoted respectively by Qr

t and Qu+r
t .

Consequently, P r
t , r, t ≥ 0, denotes the direct interpolant computed with

a (possibly virtual) unfolding of r time states from the initial state, and t
time steps until the failing property is checked for. Hence, P r

t represents an
over-approximation of the set of states reachable in r time steps and an under-
approximation of the set of states which do not satisfy the failing property in
t time steps. Similarly, Qr

t , r, t ≥ 0, denotes the reverse interpolant computed
with a (possibly virtual) unfolding of r time states from the initial state, and
t time steps until the failing property is checked for. Hence, Qr

t represents
an under-approximation of the set of states that are not reachable in r time
steps and an over-approximation of the set of states which satisfy the failing
property in t time steps.

Given the definitions of direct and reverse interpolants, we can now estab-
lish conditions for interpolant reuse in SAT-based model checking.

Theorem 4.3 Let Bmc
k
j (M) be given by (9). Then the following holds:

(i) P r
t (Yr) is usable for Bmc

k
j (M), with t ≥ 0 and 0 ≤ r ≤ k.

(ii) ¬P r
t (Yk−t) is usable for Bmc

k
j (M), with r ≥ 0 and 0 ≤ t ≤ k.

2 The automaton is assumed to be stuttering closed [6,21].
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Proof.

(i) If Bmc
k
j (M) is satisfiable, then Unfold

r
0(M), with r ≤ k is also satis-

fiable and Yr represents a state reachable in r time steps. By definition,
P r

t (Yr) represents an over-approximation of the states reachable in r time
steps. Hence, P r

t (Yr) holds for any assignment to the variables in Yr rep-
resenting a state reachable in r time steps. Thus, Bmc

k
j (M) → P r

t (Yr),

with r ≤ k. By definition, P r
t (Yr) is usable for Bmc

k
j (M), with r ≤ k.

Observe that there is no upper bound on the value of t.

(ii) Observe that P r
t (Yk−t) represents an under-approximation of the states

which do not satisfy the failing property in t time steps. Hence, P r
t (Yk−t)→

¬Bmc
k
j (M) with t ≤ k. Consequently, Bmc

k
j (M)→ ¬P r

t (Yk−t). By def-

inition, P r
t (Yk−t) is usable for Bmc

k
j (M), with t ≤ k. Observe that there

is no upper bound on the value of r.

✷

Theorem 4.4 Let Bmc
k
j (M) be given by (9). Then the following holds:

(i) Qr
t (Yk−t) is usable for Bmc

k
j (M), with r ≥ 0 and 0 ≤ t ≤ k.

(ii) ¬Qr
t (Yr) is usable for Bmc

k
j (M), with t ≥ 0 and 0 ≤ r ≤ k.

Proof. The proof is similar to the proof for Theorem 4.3.

(i) If Bmc
k
j (M) is satisfiable, then Tran

k
k−t(M) ∧ Prop

k
k(M), with t ≤ k

is also satisfiable and Yk−t represents a state that satisfies the failing
property in t time steps. By definition, Qr

t (Yk−t) represents an over-
approximation of the states that satisfy the failing property in t time
steps. Thus, Bmc

k
j (M)→ Qr

t (Yk−t), with t ≤ k. By definition, Qr
t (Yk−t)

is usable for Bmc
k
j (M), with t ≤ k. Observe that there is no upper bound

on the value of r.

(ii) Observe that Qr
t (Yr) represents an under-approximation of the states that

are unreachable r in time steps. Hence, Qr
t (Yr) → ¬Bmc

k
j (M), with

r ≤ k. Consequently, Bmc
k
j (M) → ¬Qr

t (Yr). By definition, Qr
t (Yr) is

usable for Bmc
k
j (M), with r ≤ k. Observe that there is no upper bound

on the value of t.

✷

Remark 4.5 Even though we describe the most general setting for learning
and reusing interpolants, the specific interpolants computed in the standard
interpolant-based fixed point condition [21] are also usable according to the
conditions of Theorems 4.3 and 4.4. Hence, interpolant reuse can be readily
integrated in a standard interpolant-based UMC flow.

Remark 4.6 The conditions of Theorems 4.3 and 4.4 can be used in any
BMC/UMC setting, independently of whether a fixed point is used and whether
it is based on interpolants.
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Instance w/o interpolants w/ interpolants

6-bit counter 1.51 5.29

7-bit counter 16.38 61.03

8-bit counter 236.90 784.81

I1 7.08 7.11

I2 31.36 36.96

I3 38.36 60.60

I4 52.45 58.25

I5 150.54 157.81

Table 1
Results with and without interpolant reuse

Remark 4.7 It is straightforward to conclude that reverse interpolants can
be used for developing a fixed point condition alternative to the one of [21].
The advantages of this alternative fixed point condition are expected to depend
on the actual automaton.

5 Experimental Results

The practical experience reported in this section respects a preliminary SAT-
based model checking prototype. The prototype represents interpolants as Re-
duced Boolean Circuits (RBCs) [1]. The backend SAT solver is MiniSAT [11].
The implementation of interpolant computation is still preliminary and, cur-
rently, different interpolants do not share structure. Even though each inter-
polant is generated with the rules of [1], each different interpolant is main-
tained with a separate RBC manager, and so common nodes among different
interpolants are not shared. Moreover, the utilization of interpolants was eval-
uated in a standard BMC loop, and so interpolants were solely computed for
search pruning purposes. Iinterpolants were computed with respect to the last
time step and reused in the last time step. As a result, reused interpolants
serve for preventing sets of unwanted states to be reached.

Table 1 shows preliminary results from interpolant reuse. The first set of
instances represent standard counters, for which counterexample exists. The
second set of instances represent industrial problem instances, for which a
counterexample also exists. As can be concluded, the utilization of inter-
polants does not yield improvements to the run times. For the first set of (ar-
tificial) examples the results are worse than for the second set of (industrial)
examples. As mentioned above, the setup for the utilization of interpolants is
certainly not the most adequate. We considered a simple BMC loop, where
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interpolants are solely used for search pruning purposes. The reuse of in-
terpolants in a UMC setting is expected to provide more competitive results,
since the interpolants have be computed for checking the fixed point condition.

6 Conclusions and Future Work

This paper develops conditions for learning and reusing of interpolants in
SAT-based model checking. Computed interpolants can be used for requiring
states from a set of states or for preventing states from a set of states.

The preliminary results are not positive, albeit the implementation is still
very preliminary. Moreover, the experimental setup chosen was not beneficial
for the reuse of interpolants. Instead of an interpolant-based UMC algorithm,
where interpolants need to be computed, our experiments consisted of a stan-
dard BMC loop, where computed interpolants were solely used for search
pruning purposes.

A few drawbacks of the current implementation have been identified. Ex-
amples include the lack of structure sharing between different interpolants,
and the fact that interpolants were computed solely for interpolant reuse and
not for checking the existence of a fixed point. A future implementation of
these improvements is expected to yield more promising results from inter-
polant reuse.
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Abstract

We present a syntactic scheme for translating future-time LTL bounded model
checking problems into propositional satisfiability problems. The scheme is similar
in principle to the Separated Normal Form encoding proposed in [5] and extended
to past time in [3]: an initial phase involves putting LTL formulae into a normal
form based on linear-time fixpoint characterisations of temporal operators.

As with [3] and [7], the size of propositional formulae produced is linear in the
model checking bound, but the constant of proportionality appears to be lower.

A denotational approach is taken in the presentation which is significantly more
rigorous than that in [5] and [3], and which provides an elegant alternative way of
viewing fixpoint based translations in [7] and [1].
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1 Introduction

Frisch, Sheridan and Walsh [5] proposed a scheme for translating LTL bounded
model checking problems into satisfiability problems that is significantly dif-
ferent from the original bounded model checking encoding scheme presented
in [2]. This scheme involves simplifying temporal formulae using rules based
on fixpoint characterisations of temporal operators to put formulae into a
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separated normal form (SNF) similar to that used by Fisher in his tempo-
ral resolution work [4]. Frisch, Sheridan and Walsh [5] showed that this new
scheme had significant advantages in terms of compactness of propositional
formulae generated and SAT solver run times. This SNF approach smoothly
extends to handle past time LTL [3] and has similarities with automata-based
translations [8].

In this paper, we present an alternate set of simplification rules for fu-
ture time LTL that again exploits fixpoint characterisations, but is simpler to
describe. As with [3] and [7], the size of propositional formulae produced is
linear in the model checking bound, 4 and the constant of proportionality is
smaller than with [7].

A major contribution of the paper is in providing a denotational semantics
approach to justifying the encoding. This justification is much more com-
plete and rigorous than that in [5] and [3], and it enables easy exploration of
variations on these and other encodings.

A minor novelty is that we experiment with using an abstract symbolic
representation of Kripke structures. Most formal presentations of BMC con-
flate a description of the BMC translation from LTL syntax to propositional
logic syntax with a description of its semantics, and only informally refer to
possible symbolic representations (for example, using propositional formulae,
BDDs or Boolean circuits) of Kripke structures. Our approach allows us to
keep the translation and semantics distinct. While our approach is more ver-
bose, we argue that it is easier to understand, especially when handling the
auxiliary variables introduced by our translation.

Our implementation is not yet complete so we do not have empirical data
on SAT solver performance on the resulting encoded problems. We certainly
expect the performance to be no worse than with SNF because of the similarity.

The structure of the rest of the paper is as follows. In Section 2 we present
the foundations of our denotational approach, closely following the logic of the
original BMC translation from [2]. Section 3 then gives a high-level overview of
our new translation. The translation is split into two phases: the normalisation
phase is covered in Section 4 and the translation to propositional logic phase
in Section 5. Section 6 covers related work and we draw our conclusions in
Section 7.

2 Preliminaries

2.1 Syntax for LTL

Fix some set V of Boolean-valued state variables. We use these as the atomic
propositions of our LTL formulae. We initially consider LTL formulae de-

4 The super-linear behaviour of the SNF encoding as noted in [7] was obtained with an
older version of the SNF code than that presented in [3]
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scribed by the grammar

φ ::= v | ¬v | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φU φ | φR φ

where v ∈ V . Such formulae are in negation normal form (NNF): negations
are only applied to state variables. Any LTL formula can be transformed into
an equivalent NNF formula by pushing negations inwards. We use φ ⇒ ψ as
an abbreviation for ¬φ ∨ ψ.

2.2 Kripke structures

The set of states S associated with a set of state variables V is the set of
valuations V → B of those variables. A Kripke structure M over a set of
state variables V is a pair 〈I, T 〉 where I ⊆ S is a set of initial states and
T ⊆ S × S is a transition relation which has to be total. Many treatments of
Kripke Structures consider the set of states S more abstractly and introduce a
labelling function specifying which atomic propositions are true in each state.
It is straightforward to adapt our presentation to this more general approach,
but, for simplicity, we do not. A similar simplification is common in automata-
based approaches to LTL model checking. An unconstrained path π over M is
an infinite sequence of states π = s0, s1, . . . where si ∈ S. A constrained path
or simply a path over M must satisfy the constraints s0 ∈ I and, for every
i ≥ 0, 〈si, si+1〉 ∈ T . Let Paths(M) be the set of all paths over M . A finite
path is a finite prefix of a path. A finite path s0, s1, . . . , sk−1 has bound k.

We denote distinct copies of the set of state variables using superscripts.
For example, V ′, V i for i ∈ N. If v ∈ V , the corresponding variable in V ′ is v′

and in V i is vi. A symbolic Kripke structure M̂ over a set of state variables
V is a pair 〈Î , T̂ 〉 where Î(V ) is a symbolic representation of the set of initial
states and T̂ (V, V ′) is a symbolic representation of the transition relation.
The notation A(V ) here indicates that the symbolic representation A is over
the variables V . We then write elsewhere A(W ) for A with the variables V
replaced with the variables W . The Kripke structure corresponding to M̂ has
I
.
= {s ∈ S | s |= Î} and T

.
= {〈s, t〉 ∈ S × S | s, t |= T̂}. This definition

uses satisfiability relations |= for single states and pairs of states satisfying a
propositional formula defined in the expected way.

2.3 Infinite path semantics

A common approach to LTL semantics is to define an inductive relation π |=i φ

indicating at which positions i ∈ N on path π the LTL formula φ is satisfied.
We give an exactly equivalent definition in a denotational style. We define the
infinite denotation [[π

φ]] of formula φ to be an infinite sequence of a0, a1, . . .

of Boolean values, elements of B = {⊥,⊤}, such that ai is true just when φ is
satisfied at position i of path π. We write the set of all such infinite boolean
sequences as B

ω. We often view a sequence a ∈ B
ω as a function of type

75



N → B, and refer to element i as a(i). When we say that a formula is satisfied
by a path without indicating an explicit position on the path, we mean that
the formula is satisfied at position 0. Formally, the infinite denotation of an
LTL formula is given inductively by:

[[π
v]](i) = si(v)

[[π ¬v]] = [[¬]]( [[π
v]])

[[π Oφ]] = [[O]]( [[π
φ]]) for O ∈ {X,F,G}

[[π
φO ψ]] = [[O]]( [[π

φ]], [[π
ψ]]) for O ∈ {∧,∨,U,R}

where the individual operator denotations are given by

[[¬]](a)(i)
.
= ¬a(i)

[[∧]](a, b)(i)
.
= a(i) ∧ b(i)

[[∨]](a, b)(i)
.
= a(i) ∨ b(i)

[[X]](a)(i)
.
= a(i+ 1)

[[F]](a)(i)
.
= ∃j ≥ i. a(j)

[[G]](a)(i)
.
= ∀j ≥ i. a(j)

[[U]](a, b)(i)
.
= ∃j ≥ i. b(j) ∧ ∀n ∈ {i .. j−1}. a(n)

[[R]](a, b)(i)
.
= ∀j ≥ i. b(j) ∨ ∃n ∈ {i .. j−1}. a(n)

Here a, b ∈ B
ω are infinite denotations and i ∈ N indexes positions in denota-

tions. These explicit denotations for operators help simplify the presentation
later. Their use emphasises that the meaning of operators is dependent only
on the meaning of subformulae, not on the syntactic structure of subformulae.

Let us write φ ≡ ψ when LTL formulae φ and ψ have the same infinite
denotation for all Kripke structures M and paths π over those structures.

2.4 Finite denotations when paths are looping

In producing finite propositional encodings of model checking problems, bounded
model checking works with finite representations of infinite paths and infinite
denotations. In this subsection we consider loop case representations. In the
next subsection we consider prefix case representations.

In the loop case with bound k and loop start l where 0 ≤ l < k, a fi-
nite path π̇ = s0, . . . , sk−1 such that T (sk−1, sl) represents the infinite path
s0 . . . sl−1(sl . . . sk−1)

ω. We call such infinite paths (k, l) loop paths. Similarly,
finite loop-case denotations such as ȧ = a0, . . . , ak−1 where ai ∈ B represent
infinite denotations a0 . . . al−1(al . . . ak−1)

ω. A loop-case inflation function ↑∞◦
maps finite paths and denotations to the corresponding infinite paths and
denotations. A restriction function |k maps (k, l) loop paths and infinite loop-
case denotations to their finite representations.

When working with loop paths and their finite denotations, we can define

a finite loop-case denotation function π̇
l

F

[[φ]]k with range B
k that exactly mimics

the infinite denotation function:

[[π̇↑∞
◦ φ]] = π̇

l

F

[[φ]]k ↑∞◦
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where π̇ is a k-bounded path representing a (k, l) loop path. The definition is
similar to that of the infinite denotation with the following changes:

l

F

[[X]]k(ȧ)(i)
.
=







ȧ(i+1) if i < k−1

ȧ(l) if i = k−1

l

F

[[F]]k(ȧ)(i)
.
= ∃j ∈ {min(i, l) .. k−1}. ȧ(j)

l

F

[[G]]k(ȧ)(i)
.
= ∀j ∈ {min(i, l) .. k−1}. ȧ(j)

l

F

[[U]]k(ȧ, ḃ)(i)
.
= (∃j ∈ {i .. k−1}. ḃ(j) ∧ ∀n ∈ {i .. j−1}. ȧ(n))

∨ ∃j ∈ {l .. i−1}. ḃ(j) ∧ ∀n ∈ {i .. k−1} ∪ {l .. j−1}. ȧ(n)

l

F

[[R]]k(ȧ, ḃ)(i)
.
= (∀j ∈ {i .. k−1}. ḃ(j) ∨ ∃n ∈ {i .. j−1}. ȧ(n))

∧ ∀j ∈ {l .. i−1}. ḃ(j) ∨ ∃n ∈ {i .. k−1} ∪ {l .. j−1}. ȧ(n)

where ȧ, ḃ ∈ B
k are finite denotations and index i is in range {0 .. k−1}.

All quantifications in the finite loop-case denotation function are over fi-
nite ranges. Following the denotation function’s structure, we can define an
executable loop-case translation function [l φ]

i

k that can translate a question
concerning the existence of a finite path loop-case satisfying a formula into a
propositional satisfiability question. The relationship between the loop-case
denotation and translation functions is expressed by:

π̇
l

F

[[φ]]k(i) ⇔ π̇ |= [l φ]
i

k

where the relation π̇ |= q for when a finite path π̇ satisfies a propositional
formula q is defined in the expected way. Representative cases of the definition
of the loop-case translation function are

[l v]
i

k

.
= vi [l Fφ]ik

.
=

∨k−1
j=min(i,l) [l φ]

j

k

In the original paper introducing BMC [2] and many other papers in the
BMC literature, symbolic Kripke structures are not explicitly introduced and
confusing semantic notations occur in translation function definitions. For
example, the base case of the translation function might be written as [l v]

i

k

.
=

v(si) where a state variable v is treated as function which it is not, and a state
si is introduced which is part of the semantic presentation, not part of the
language of propositional logic that is being translated into.

2.5 Finite denotations when paths have common prefix

In the prefix case with bound k, a finite path π̇ = s0, . . . , sk−1 represents
the set of all paths that have it as a prefix. Prefix-case denotations such as
ȧ = a0, . . . , ak−1 where ai ∈ B represent infinite denotations ȧ⊥ω. A prefix-case
inflation function ↑∞ maps finite denotations to the corresponding infinite
denotations. The restriction function π|k introduced in the last section is also
used to select the k-bounded prefix of an infinite path π.
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We define a finite prefix-case denotation function π̇
F

[[φ]]k (or sometimes

π̇
−

F

[[φ]]k) in a similar way to the the finite loop-case denotation function. In this
case, the denotations for the LTL temporal operators are given by:

F

[[X]]k(ȧ)(i)
.
=







ȧ(i+ 1) if i < k−1

⊥ if i = k−1

F

[[F]]k(ȧ)(i)
.
= ∃j ∈ {i .. k−1}. ȧ(j)

F

[[G]]k(ȧ)(i)
.
= ⊥

F

[[U]]k(ȧ, ḃ)(i)
.
= ∃j ∈ {i .. k−1}. ḃ(j) ∧ ∀n ∈ {i .. j−1}. ȧ(n)

F

[[R]]k(ȧ, ḃ)(i)
.
= ∃j ∈ {i .. k−1}. ȧ(j) ∧ ∀n ∈ {i .. j}. ḃ(n)

The prefix case denotation underapproximates the standard infinite deno-
tation and so is sound. We can express this by the assertion

π|k
F

[[φ]]k ↑∞ ⊑ [[π
φ]]

where π is any infinite path and we are treating the domain of infinite deno-
tations B

ω as a lattice with order relation a ⊑ b
.
= ∀i ∈ N. a(i) ⇒ b(i). As

with the loop-case, we can derive a prefix translation function [φ]ik (sometimes

written as [− φ]ik) from the prefix-case denotation function.

3 The new full translation

We describe here the high-level structure and properties of our translation in
order to motivate the details in subsequent sections. The translation takes
an LTL formula φ, symbolic Kripke structure M̂ and bound k and creates
a propositional formula that is satisfiable just when some path in M̂ with a
k-bounded representation satisfies φ. Conceptually the translation proceeds
in 3 stages:

1. Apply normalisation function N () to φ to create normalised temporal
logic formula ψ.

2. Create a formula

[M̂ ]k ∧
(

[ψ]0k ∨
k−1
∨

l=0

Ll k(M̂) ∧ [l ψ]0k
)

(1)

that brings together the prefix case and loop case translations of ψ and
correspondingly checks that an unconstrained finite path is representing
a prefix case or a loop case path. Here [M̂ ]k

.
= Î(V 0)∧

∧k−2
i=0 T̂ (V i, V i+1)

generates a proposition for checking that a finite state sequence is a finite
path and Ll k(M̂)

.
= T̂ (V k−1, V l) is a constraint for specifying that a

finite path represents a (k, l) loop path.
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3. Apply standard logic transformations so as to collect together common
factors in the disjuncts of Formula (1) and ensure the formula’s size is
linear in k.

The original translation of [2] consists of step 2 without steps 1 and 3. Even
with careful optimisations, the size of the original translation is claimed in
[7] to be cubic in the worst case. Our normalisation in step 1 enables the
factoring for linear size in step 3.

We formally write our full translation as:

Full[M̂, φ]k
.
= body

(

Norm[ M̂, N (φ) ]k
)

where the normalised-formula translation function Norm[M̂, ψ]k groups to-
gether steps 2 and 3. This translation function produces formulae of form
∃ z. q where z is a vector of propositional variables and q is a propositional
logic formula. The function body() returns the body q of such formulae. This
existential quantification ∃z arises because N () produces formulae in LTL ex-
tended with existential quantification. See Section 4 for a full definition of
N () and Section 5 for a full definition of Norm[M̂, ψ]k.

To state the correctness of our full translation, we introduce a reference
semantics which combines the infinite and finite prefix-case semantics. A
(k, l) loop path π satisfies at bound k an LTL formula φ if π satisfies it in the
standard infinite semantics ( if [[π

φ]](0) holds). If π is not a (k, l) loop path
for any l, then π satisfies at bound k a formula φ if the k-bounded prefix of π

satisfies φ in the finite prefix case semantics ( if π|k
F

[[φ]]k(0) holds). A formula φ
is existentially valid with bound k in Kripke structure M , written M |=k Eφ,
when some path π of M satifies φ at bound k. We can now state the overall
correctness claim for our new translation as follows.

Theorem 3.1 (Correctness of new translation). For any symbolic Kripke
structure M̂ with corresponding semantic structure M , any LTL formula φ and
any bound k > 0, we have that

M |=k Eφ ⇔ Full[M̂, φ]k is satisfiable

4 Formula normalisation

4.1 Overview

Normalisation proceeds in two main stages. Firstly the LTL operators F, G,
Uand R in the input formula are all converted into forms involving greatest
fixpoint operators. Section 4.3 handles how this is done with G and R, oper-
ators with natural greatest fixpoint characterisations and Section 4.4 handles
the more subtle case of F and U which have natural least fixpoint characterisa-
tions. Secondly, as described in Section 4.5, each greatest fixpoint expression is
converted into a form involving existential quantification at the outermost level
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of the formula. Section 4.5 also explains why least fixpoint characterisations
cannot be handled. Normalisation also involves some renaming transforms on
X in the input formula and on certain new formulae produced in the first nor-
malisation stage. Section 4.6 covers renaming transforms in general. Finally
Section 4.7 gives a self-contained summary of the normalisation function.

The interesting part of the proof of Theorem 3.1 involves showing the
following two equations concerning normalisation:

[[π̇↑∞
◦ φ]] = π̇

l

F

[[N (φ)]]k ↑∞◦ (2)

π̇
F

[[φ]]k = π̇
F

[[N (φ)]]k (3)

where φ is any LTL formula and l ∈ {0 .. k−1}. Equation (2) states that the
finite loop-case denotation of normalized formulae is equivalent to their stan-
dard infinite denotation. Equation (3) states that the prefix-case denotation
is preserved by normalisation. The subsections which follow include assertions
of equalities which are intermediate steps in the proofs of Equation (2) and
Equation (3).

We write φ ≡L ψ (φ ≡P ψ) when two formulae always have the same finite
loop-case (prefix-case) denotation, and φ ≡F ψ when they always have the
same denotation under both finite semantics.

4.2 Extending LTL with a greatest fixpoint operator

We add to the syntax of LTL formulae timed variables α (also known as
flexible variables), and greatest fixpoint expressions να. φ with infinite and
finite semantics:

[[π
α]]ρ = ρ(α) π

l

F

[[α]]ρ̇k = ρ̇(α)

[[π
λα.φ]]ρ = λa ∈ B

ω. [[π
φ]]ρ[α 7→a] π̇

l

F

[[λα.φ]]ρ̇k = λȧ ∈ B
k. π̇

l

F

[[φ]]
ρ̇[α 7→ȧ]
k

[[π
να.φ]]ρ = gfp

(

[[π
λα.φ]]ρ

)

π̇
l

F

[[να.φ]]ρ̇k = gfp
(

π̇
l

F

[[λα.φ]]ρ̇k
)

where l ∈ {0 .. k−1}∪{−}. Lambda abstractions λα.φ are examples of unary
function formulae. To provide meaning in the semantics for free variables,
we extend the semantic functions with an environment argument ρ or ρ̇. An
unbounded environment ρ maps each free variable to an infinite sequence in
B

ω and a k-bounded environment ρ̇ maps each free variable to a finite sequence
in B

k. In the other previously-defined clauses of the semantic functions, the
environments are recursively propagated down unchanged.

The greatest fixpoint operator gfp is given the standard definition from the
Tarski-Knaster construction. Let F be a monotone function of typeD → D on
a complete lattice 〈D,⊑〉 with least upper bound operator ⊔. We have that
gfp(F )

.
= ⊔{x ∈ D|x ⊑ F (x)} . In all our semantics D is of form R → B. In

the infinite semantics R = N and in both finite semantics R = {0 ..k−1}. The
order relation ⊑ and least upper bound operation ⊔ are defined pointwise:
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x ⊑ y
.
= ∀i. x(i) ⇒ y(i) and (⊔S)(i)

.
= ∃x ∈ S. x(i) where lattice elements

x, y ∈ R → B, set of elements S ⊆ R → B and index i ∈ R.

4.3 Greatest fixpoint characterisations for G and R

Fixpoint versions of the globally operator G and the release operator R are

G̃ β
.
= να. β ∧ Xα β R̃ γ

.
= να. γ ∧ (β ∨ Xα)

Our following discussion focusses the G̃ operator. It extends very straightfor-
wardly to cover the R̃ operator too.

It is well known that the standard G is equivalent to this fixpoint version
in the infinite semantics: G β ≡ G̃ β. It is straightforward to check that this
equivalence also holds in the prefix semantics. For example, it is easy to show
G β ≡P G̃ β once one observes that λα. β ∧ Xα has a unique fixpoint in
the prefix semantics when a binding for β is fixed. Indeed, if one adds least
fixpoint operators µα. φ to LTL, one can also make the definitions

F̃ β
.
= µα. β ∨ Xα β Ũ γ

.
= µα. γ ∨ (β ∧ Xα)

and show F β ≡P F̃ β and β U γ ≡P β Ũ γ. This provides some justification
for the naturalness of the prefix-case semantics of the LTL operators.

In the proof of Equation (2), an appropriate stage of normalisation for
shifting to the finite semantics is after G̃ and R̃ have been introduced. With
l ∈ {0 .. k−1} and ḃ ∈ B

k, we have the following:

[[G̃ ]](ḃ ↑∞◦ ) =
(

l

F

[[G̃ ]]k(ḃ)
)

↑∞◦

4.4 Greatest fixpoint characterisations for F and U

As noted in the previous section, in the prefix case the fixpoint with operators
F̃ and Ũ is unique, the least and greatest fixpoints are the same. For example,
we have that: F̃ β ≡P να. β ∨Xα. The loop-case is not so simple. Consider
the loop-case semantics for F.

l

F

[[F]]k(ȧ)(i) = ∃j ∈ {min(i, l) .. k−1}. ȧ(j)

The right-hand side here is equivalent to

(∃j ∈ {i .. k−1}. ȧ(j)) ∨ (∃j ∈ {l .. k−1}. ȧ(j))

Each disjunct here is an instance of the prefix semantics for F and, as above,
we know we can switch to greatest fixpoints in the prefix semantics. We craft
some definitions of new operators to take advantage of this observation.

Let us introduce variations X⊤ and X⊥ on the next step operator that
have non-looping semantics even in the loop case. Their finite semantics is
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l

F

[[X⊤]]k(ȧ)(i)
.
=

{

ȧ(i+ 1) if i < k−1

⊤ if i = k−1
l

F

[[X⊥]]k(ȧ)(i)
.
=

{

ȧ(i+ 1) if i < k−1

⊥ if i = k−1

where l ∈ {0 .. k−1} ∪ {−}. We use these in the definitions

F̃⊥ β
.
= να. β ∨ X⊥ α G̃⊤ β

.
= να. β ∧ X⊤ α

β Ũ⊥ γ
.
= να. γ ∨ (β ∧ X⊥ α)

These newly introduced fixpoint operators have the following semantic char-
acterisations in both the prefix and the loop cases.

l

F

[[F̃⊥]]k(ȧ)(i) = ∃j ∈ {i .. k−1}. ȧ(j)

l

F

[[G̃⊤]]k(ȧ)(i) = ∀j ∈ {i .. k−1}. ȧ(j)

l

F

[[Ũ⊥]]k(ȧ, ḃ)(i) = ∃j ∈ {i .. k−1}. ḃ(j) ∧ ∀n ∈ {i .. j−1}. ȧ(n)

To force consideration of the semantics of an operator at the loop start in
the loop case, we introduce a unary LTL operator loopstart with semantics

l

F

[[loopstart]]k(ȧ)(i)
.
=

{

ȧ(l) if l ∈ {0 .. k−1}

⊥ if l = −

With these new operators at hand, we have the following identities allowing
us to replace F and U with expressions involving greatest fixpoint operators.

Fα ≡F F̃⊥ α ∨ loopstart F̃⊥ α

αU β ≡F α Ũ⊥ β ∨ (G̃⊤ α ∧ loopstart(α Ũ⊥ β))

The identity involving F can readily be derived using facts presented above.
The main steps are:

π
l

F

[[F̃⊥ α ∨ loopstart F̃⊥ α]]k(i) = π
l

F

[[F̃⊥ α]]k(i) ∨ π
l

F

[[F̃⊥ α]]k(l)

= (∃j ∈ {i .. k−1}. π
l

F

[[α]]k(j)) ∨ (∃j ∈ {l .. k−1}. π
l

F

[[α]]k(j)) = π
l

F

[[Fα]]k(i)

These identities are also closely related to those discussed in Section 6.1.

4.5 Expressing greatest fixpoints using existential operators

We focus on the cases of the two finite semantics since these are the cases we
need. A similar discussion applies with the infinite semantics.

Let us augment our LTL syntax with existential quantification over timed
variables ∃α. φ and a globally from the start operator G0 which have finite
semantics
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π̇
l

F

[[∃α. φ]]ρ̇k(i)
.
= ∃ȧ ∈ B

k. π̇
l

F

[[φ]]
ρ̇[α 7→ȧ]
k (i)

l

F

[[G0]]k(ȧ)(i)
.
= ∀j ∈ {0 .. k−1}. ȧ(j)

where 0 ≤ i < k, ȧ ∈ B
k and l ∈ {0..k−1}∪{−}. Note that the globally-from-

the-start operator G0 always quantifies over the full time range, no matter
what index i we consider its value at, even in the prefix case.

Using these definitions we can phrase an identity for eliminating greatest
fixpoint expressions occurring in contexts, buried under other operators:

Ψ[να. φ] ≡F ∃α. G0 (α⇒ φ) ∧ Ψ[α]

where context expression Ψ is a unary function formula with monotone deno-
tation, and the notation ·[·] is the application operator for such functions.

The existential quantification derives from the least-upper-bound operator
in the definition of the gfp operator, and semantics of the formula G0 (α⇒ φ)
captures the x ⊑ F (x) constraint in the definition body (see Section 4.2).

The corresponding identity for an lfp (least-fixpoint) operator involves a
universal quantification derived from the greatest-lower-bound operator in the
lfp operator definition. Since our goal is to eventually produce satisfiability
problems, we cannot make use of this identity.

4.6 Renamings

An LTL formula in some context is renamed if it replaced by a new timed
variable which is asserted equivalent to it. When contexts are monotone, it is
sufficient to assert an implicational relationship between the new variable and
the renamed formula. We have that

Ψ[φ] ≡F ∃α. G0 (α⇒ φ) ∧ Ψ[α]

where Ψ is a monotone unary function formula.

In some cases, the formula to be replaced is time invariant : it has deno-
tation ⊥k or ⊤k. In these cases, it is sufficient to replace it by an untimed
variable (sometimes called a rigid variable) and use existential quantification
over untimed variables. Let us add untimed variables x to the LTL syntax
and existential quantification over them ∃x. φ with semantics:

π̇
l

F

[[x]]ρ̇k(i) = ρ̇(x) π̇
l

F

[[∃x. φ]]ρ̇k(i) = ∃a0 ∈ B. π̇
l

F

[[φ]]
ρ̇[x 7→a0]
k (i)

where 0 ≤ i < k, ȧ ∈ B
k and l ∈ {0 .. k−1} ∪ {−}, and we extend the notion

of environment ρ̇ to provide Boolean-valued bindings for untimed variables.
We then have:

Ψ[φ] ≡F ∃x. (x⇒ φ) ∧ Ψ[x]

where Ψ is a monotone unary function formula and φ a time invariant formula.
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4.7 The normalisation function

We assemble here the results from the previous subsections into a single overall
definition of the normalisation function N (). Assume that formulae to start
are in negation normal form. N () applies the following transformation rules:

Ψ[G f ] −→ ∃α. Ψ[α] ∧ G0 (α ⇒ f ∧ Xα)

Ψ[f R g] −→ ∃α. Ψ[α] ∧ G0 (α ⇒ g ∧ (f ∨ Xα))

Ψ[X f ] −→ ∃α. Ψ[α] ∧ G0 (α ⇒ X f)

Ψ[F f ] −→ ∃α, x. Ψ[α ∨ x] ∧ G0 (α ⇒ f ∨ X⊥ α) ∧ (x⇒ loopstartα)

Ψ[f U g] −→ ∃α, β, x. Ψ[α ∨ (β ∧ x)] ∧ G0 (α ⇒ g ∨ (f ∧ X⊥ α))

∧ G0 (β ⇒ f ∧ X⊤ β) ∧ (x ⇒ loopstartα)

These rules are applied in a single bottom-up pass over the initial formula.
To suggest this bottom-up direction, the subformulae f and g are required
to be propositional, free from temporal operators. Rules are not applied to
any of the new generated structure, for example, new X s. Usual assumptions
are made about variables bound by the existential quantifiers being suitably
renamed to avoid any unintentional capture of variables. An example of ap-
plying the normalisation function is

FG¬p −→ ∃α. Fα ∧ G0 (α⇒ ¬p ∧ Xα) by G rule

−→ ∃α, β, x. (β ∨ x) ∧ G0 (β ⇒ α ∨ X⊥ β)

∧ (x⇒ loopstartβ) ∧ G0 (α⇒ ¬p ∧ Xα) by F rule

where, in the intermediate expression, we have underlined the partially re-
duced input formula that is about to be transformed by a second rule, and,
in the final expression, the propositional residue of the input formula.

The resulting formulae have normal form

∃α, x. R ∧ LS ∧ G0 (X ∧ X∗)

where α is a vector of timed variables, x is a vector of untimed variables,
R is the residual top-level propositional structure of the initial formula, LS
is a conjunction of formulae of form x ⇒ loopstartα, X is a conjunction of
formulae of form α⇒ f [X g] where context f and formula g are propositional,
and X∗ is a conjunction of formulae of form α ⇒ f [X⊤ g] and α ⇒ f [X⊥ g]
where again context f and formula g are propositional.

The function N (φ) can be computed in time linear in the size φ.
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5 Translation of normalised formulae

The loop-case and prefix-case translation functions over the syntax of the
components R, LS, X and X∗ of our normalised formulae are as follows:

[l α]ik = αi

[l x]
i
k = x

[l v]
i
k = vi

[l ¬φ]
i
k = ¬ [l φ]

i
k

[l φ ∧ ψ]ik = [l φ]
i
k ∧ [l ψ]ik

[l φ ∨ ψ]ik = [l φ]
i
k ∨ [l ψ]ik

[l Xφ]ik =



























[l φ]
i+1
k if i < k−1

⊥ if i = k−1
and l = −

[l φ]
l
k if i = k−1

and l ∈ {0 .. k−1}

[l loopstartφ]ik =







⊥ if l = −

[l φ]
l
k if l ∈ {0 .. k−1}

[l X⊤ φ]ik =







[l φ]
i+1
k if i < k−1

⊤ if i = k−1

[l X⊥ φ]ik =







[l φ]
i+1
k if i < k−1

⊥ if i = k−1

where l ∈ {0 .. k−1} for the loop case and l = − for the prefix case. The
translation function for formulae ψ in the normal form described at the end
of the last section is:

Norm[M̂, ψ]k
.
= ∃z. [M̂ ]k ∧ [R]0k ∧

∧k−2
i=0 [X]ik ∧

∧k−1
i=0 [X∗]ik ∧

(

([LS]0k ∧ [X]k−1
k ) ∨

∨k−1
l=0 ( Ll k(M̂) ∧ [l LS]0k ∧ [l X]k−1

k )
)

where [M̂ ]k and Ll k(M̂) are as defined in Section 3 and the vector of proposi-
tional variables z contains variables α0, . . . , αk−1 for each timed variable α in
α and a variable x for each untimed variable x in x. The resulting formula has
size linear in k, |φ| and |M̂ |. More precisely, its size is O(|Î|+ k · (|φ|+ |T̂ |)).

6 Related work

6.1 Helsinki work

The BMC translations closest to ours are those of [7] and [6]. These transla-
tions are also linear in k and they exploit fixpoint characterisations of oper-
ators. A core observation in [7] from the viewpoint of this paper is that the
loop-case denotations of the LTL operators F, G, U and R are all equivalent
to the restriction to bound k of the denotation of non-looping versions of the
operators at bound k + (k − l)−1. For example:

l

F

[[G]]k(ȧ) =
(

l

F

[[G̃⊤]]k(ȧ↑
k+(k−l)−1
◦ )

)

|k
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where ȧ ∈ B
k, l ∈ {0 .. k−1}, ȧ↑k′

◦
.
= ȧ ↑∞◦ |k′ unrolls a loop denotation to

bound k′ and G̃⊤ is as defined in Section 4.4. The justification in [7] for
these identities is rather indirect and involves appealing to arguments about
fixpoints in CTL. However, we note that we can prove them straightforwardly
using some of the same insights as are necessary to prove the identity

[[π̇↑∞
◦ φ]] = π̇

l

F

[[φ]]k ↑∞◦

introduced in Section 2.4 which is at the heart of the justification of the original
bounded model checking translation of [2].

A major apparent difference is that the approach in [7] introduces very
few auxiliary variables by encoding to reduced Boolean circuits (RBCs), a
DAG representation of Boolean formulae. However, when these circuits are
subsequently translated into CNF, auxiliary variables are introduced for many
of the internal nodes of the circuits, and we guess that one gets roughly one
new auxiliary variable per fixpoint step, the same as what we use.

Comparing the sizes of resulting propositional formulae in the approach
of [7] to ours, we observe that our encoding for G and R involves unrolling
the fixpoint functions for k rather than 2k steps, and so involves introducing
about half the number of ∧s and ∨s. For F and U the number of ∧s and
∨s introduced appears to be more similar, though for F we introduce roughly
half the number of auxiliary variables into the final CNF formulae.

The approach of more recent work [6] from the same group is more similar
to an automata-based approach in that the fixpoint constraints on auxiliary
variables in the loop case also have a loop shape. Ignoring the incremental
and past-time aspects of [6], the numbers of operators and auxiliary variables
introduced seem to be slightly closer to those with our approach.

Experimentation and more detailed analysis are needed to sharpen the
above preliminary remarks and importantly to compare how the approaches
affect SAT run times.

6.2 Other work

The BMC journal paper [1] gives a translation exploiting fixpoint characteri-
sations, though the encoding size is not linear in the bound. As written, the
translation is not sound: it appears to be using a greatest fixpoint charac-
terisation for all the LTL operators which is clearly unsound for F and U.
We speculate that this mistake could have been avoided if the translation had
been derived within a formal framework such as presented in this paper.

We observe that a recent NuSMV release (V2.3.1, Nov 2005) seems to use
a similar translation that is sound. This translation has some similarities to
that of [7] discussed above in Section 6.1 in that the loop case translation is
calculated using non-looping fixpoint constraints.
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7 Conclusions

We have presented a translation for future time LTL bounded model checking
that is linear in the bound k and more compact than competing translations,
in particular that of [7].

We have also presented a rigorous framework for analysing translations.
Both the body of the paper and the discussion of related work show the
usefulness of the framework, and it is expected that it will be of significant
use in exploring future variations on and extensions to BMC translations.
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