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j Laboratoire de Physique Moléculaire pour l’Atmosph�ere et l’Astrophysique, UMR 7092, CNRS, Université Pierre et Marie Curie, 75252 Paris, France
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m University of Denver, Department of Physics, Denver, CO 80208, USA
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a b s t r a c t

The updated 2009 edition of the spectroscopic database GEISA (Gestion et Etude des

Informations Spectroscopiques Atmosphériques; Management and Study of Atmospheric

Spectroscopic Information) is described in this paper. GEISA is a computer-accessible

system comprising three independent sub-databases devoted, respectively, to: line

parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical

and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved

in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997

entries, in the spectral range from 10�6 to 35,877.031 cm�1.

The successful performances of the new generation of hyperspectral sounders depend

ultimately on the accuracy to which the spectroscopic parameters of the optically active

atmospheric gases are known, since they constitute an essential input to the forward

radiative transfer models that are used to interpret their observations. Currently, GEISA is

involved in activities related to the assessment of the capabilities of IASI (Infrared

Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) on board the

METOP European satellite through the GEISA/IASI database derived from GEISA. Since the

Metop-A (http://www.eumetsat.int) launch (19 October 2006), GEISA is the reference

spectroscopic database for the validation of the level-1 IASI data. Also, GEISA is involved

in planetary research, i.e., modeling of Titan’s atmosphere, in the comparison with

observations performed by Voyager, or by ground-based telescopes, and by the instru-

ments on board the Cassini–Huygens mission.

GEISA, continuously developed and maintained at LMD (Laboratoire de Météorologie

Dynamique, France) since 1976, is implemented on the IPSL/CNRS (France) ‘‘Ether’’

Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived

spectroscopic data can be handled through general and user friendly associated manage-

ment software facilities. More than 350 researchers are registered for on line use of GEISA.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction1

Spectroscopic remote sensing is an indispensable tool of

modern meteorology. It is used to investigate climate change

and provide an improved understanding of the different

phenomena driving an atmospheric system in order to

predict its past and future evolution. In particular, spectrally

highly resolved radiances measured by powerful observa-

tional techniques such as ground-, aircraft-, balloon-, or

satellite-based sensors enable global monitoring of atmo-

spheres, provide a wealth of information about its actual

state. The corresponding sensors have been improved sig-

nificantly in recent years. Currently, there are many satellite-

based instruments recording high quality spectra in order to

understand the atmospheric state in great detail. Planetary

examples include the recent Mars Express (http://www.

esa.int/SPECIALS/Mars_Express/index.html), Venus Express

(http://www.esa.int/esaMI/Venus_Express/) and Cassini–

Huygens missions (http://www.esa.int/SPECIALS/Cassini-

Huygens/index.html), studying the terrestrial planets and

Jupiter, Saturn and Titan, respectively. Numerous space-

based missions continually provide a very large number of

spectral observations which produce new revelations in

planetology.

For remote sensing of astronomical objects, an essential

prerequisite is high accuracy forward radiative transfer

modeling. This in turn requires extensive knowledge of both

the fundamental spectroscopic parameters of atmospheric

constituents and the equations governing the propagation of

radiation through the atmosphere. Numerous physical phe-

nomenon that influence the radiative transfer of a planet

can be discerned and often measured from the variation of

specific spectral features. As a consequence, spectroscopy is

at the root of modern planetology, enabling us to determine

the physical properties of planets remotely. Generally,

forward models used in such studies are generated from

line-by-line codes. Their accuracy is affected in many ways,

and uncertainty in the spectroscopic information is one of

the greatest impacts.

During second half of the 20th century, the synergy

between the simultaneous development of new technologies

(high speed processing with computers, high-resolution

laboratory facilities, quantum-mechanical treatment in

theoretical spectroscopy, etc.), provided the means to

interpret a multitude of long-path atmospheric transmis-

sions by performing radiance calculations for numerous

scenarios. As a result, the first standardized spectroscopic

database, the so-called ‘‘AFGL tape’’, oriented towards the

Earth’s atmosphere, was initiated in 1973, at Air Force

Geophysics Laboratory USA, by McClatchey et al. [1] and

Garing and McClatchey [2]. This early database was

limited to the strongest infrared absorbers (H2O, CO2,

O3, N2O, CO, CH4, and O2) in the terrestrial atmosphere. It

contained approximately 100,000 transitions.

In 1976, the ARA group at LMD (http://ara.abct.lmd.

polytechnique.fr) initiated a similar effort with the develop-

ment of GEISA [3–8]. The initial emphasis of GEISA and

HITRAN varied somewhat because HITRAN was focused on

the terrestrial atmosphere while GEISA was oriented towards

planetary atmospheres (in particular to support the Voyager

mission to the giant planets). The GEISA archive included the1 Acronyms used in the text are documented in Appendix A.
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same seven atmospheric absorbers as in HITRAN, with a

dozen additional species such as: NH3, PH3, C2H4, GeH4, C3H8,

C2H2, HC3N, HCOOH, C3H4, as well as molecules such as: NO,

SO2, NO2. There are other notable differences:

� a specific major initial task of GEISA has been to

develop software so that users of the database could

easily perform various kinds of extractions for their

own applications in atmospheric physics and molecu-

lar spectroscopy;

� since the very first edition of GEISA, any isotopologue

of a species having symmetry properties different from

that of the main isotopologue (e.g., CH3D and CH4,

C2HD and C2H2) was entered as an independent

molecular species; its line intensities were given for

a 100% sample rather than scaling by standard isotopic

abundances (as for 12CH4 and 13CH4).

The ARA group has continued to develop and maintain

GEISA for over three decades, responding to incorporate

new species and improve the completeness and accuracies

of the spectroscopic parameters. Since quality of its refer-

ence information strongly impacts applications of planetary

radiative transfer, there is an acute and constant demand for

validated, operational and interactive public spectroscopic

databases that are comprehensive and trustworthy. In its

present structure, GEISA is a computer accessible database

system, which, as described previously [5–9], delivers the

necessary data to interpret the terrestrial and planetary

atmospheric observations. GEISA comprises three inde-

pendent sub-databases devoted, respectively, to (a) line

parameters, (b) infrared and ultraviolet absorption cross-

sections, and (c) microphysical and optical properties of

atmospheric aerosols. It is used on-line by more than 300

laboratories for studies in atmospheric physics, astronomy

and astrophysics, and planetology.

The role of molecular spectroscopy in modern atmo-

spheric research has entered a new phase with the advent

of highly sophisticated spectroscopic instruments and

computers. The launch of high spectral resolution vertical

infrared sounders like AIRS (http://www-airs.jpl.nasa.gov/)

on board EOS (http://eospso.gsfc.nasa.gov/)-Aqua (http://

aqua.nasa.gov/) since May 2002, or IASI (http://smsc.cnes.

fr/IASI/index.htm) on board the European polar satellite

Metop-A (http://www.eumetsat.int/Home/Main/Satellites/

Metop/index.htm?l=en; http://www.esa.int/export/esaLP/

LPMetop.html) since October 2006, have opened promis-

ing perspectives for remote sensing applications as the

improvement of temperature and water vapor profile

retrieval, cloud and surface characteristics retrieval, or

retrievals of greenhouse gases (CO2 and CH4 for example)

and of various chemical species. The January 2009 launch

of the GOSAT satellite (http://www.gosat.nies.go.jp/index_e.

html) is another noteworthy event. The main aim of this

mission is to measure the column amounts and profiles of

the concentration of CO2 and CH4 over the globe.

Since the launch of Metop-A, GEISA has been declared

as the reference basis by the international working group

(ISSWG) in charge of the IASI hyperspectral sounder,

through the GEISA/IASI database [10] which was derived

from GEISA, as a sub-set for selected molecules, within

the 599–3001 cm�1 spectral range. GEISA/IASI is cur-

rently and routinely used for the validation of the level-

1 IASI data, using the 4A radiative transfer model [11,12];

4A/LMD; 4A/OP co-developed by LMD and Noveltis,

http://www.noveltis.fr/, with the support of CNES).

The contents of each of the three sections of GEISA in

its 2009 edition (hereafter GEISA-09) will be described in

this paper. Recommendations on the quality of spectro-

scopic line parameters required (from the conclusions of

experts involved in atmospheric and planetary science)

will also be summarized.

GEISA is freely accessible from Ether, the CNRS/CNES/

IPSL Products and Services Center, website (http://ether.

ipsl.jussieu.fr/).

It should be noted that other well known spectroscopic

data compilations are available including:

� HITRAN (former ‘‘AFGL tape’’) for atmospheric and

planetary remote sensing (see Ref. [13] for 2004 and

2008 Editions);

� MIPAS [14] specifically tied to satellite experiments in

the Earth’s atmosphere;

� BEAMCAT, for millimeter and submillimeter wave

propagation in the Earth’s atmosphere [15];

� the JPL Catalog of microwave to sub-millimeter transi-

tions [16] which contains, for the most part, rotational

transitions of a few hundred molecules which can or

may be observed in the atmospheres of Earth or other

planets to molecules occurring in the Inter StellarMe-

dium (ISM) or in CircumStellar Envelopes (CSE) of late

type stars. A small, but probably increasing number of

entries contain infrared transitions;

� the CDMS Catalog [17] which also contains mostly

rotational transitions of molecules important for the

ISM or CDEs. Naturally, some of the molecules are also

of relevance for Earth’s atmosphere or that of other

planets. Furthermore, a number of entries deal with

infrared transitions of such molecules. Selected exam-

ples are low-lying vibrational modes of C3 and C3O2 or

selected bands of CHþ , C2H, or CH3CCH.

2. Line parameters GEISA-09 sub-database description

2.1. General overview

In the significant 2009 update described below, the

GEISA-09 sub-database of line parameters archives, at the

reference temperature of 296 K, the spectral properties of 50

molecular species (111 isotopologues) corresponding to a

total of 3,807,997 entries in the spectral range from 10�6

to 35,877.031 cm�1 (1010 to 0.28 mm). This represents

an increase of 8 molecular species, 14 isotopologues and

2,139,626 entries since the GEISA-03 [8,9] edition. This 28%

increase in entries is mainly due to: extension of spectral

ranges (i.e., CO2, N2O, etc.), addition of new vibrational

bands and isotopologues (i.e., SO2, etc.), more sophisticated

theoretical and/or experimental determination of the spec-

troscopic parameters (i.e., CO2, HNO3, H2CO, C2H2, HCN,

C4H2, SF6, etc.), and new archived molecular species (see

Table 1 for details). The newly archived molecular species
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are: CH3Br, CH3OH, NO
þ , HNC, C6H6, C2HD, CF4, and CH3CN.

As stated above, the molecules included in GEISA-09 (and

since the database creation), are constituents, not only of

the atmospheres of Earth (major permanent and trace

molecules), but also of other planets (such as: C2H4, GeH4,

C3H8, C2N2, C4H2, HC3N, H2S, HCOOH and C3H4, mainly for

giant planets). The evolution of the GEISA line parameters

sub-database, since 1975, is presented in Fig. 1.

The parameters of each spectral line or molecular

vibrational–rotational transition are stored in the new

‘‘standard format’’ for GEISA and GEISA/IASI as described

in Ref. [10], with some newly introduced technical

Table 1

Contents of the GEISA-09 sub-database on line parameters. Details per molecule of the 2009 evolution of GEISA content since its 2003 edition. Reference

temperature is 296 K.

Mol. ID GEISA-03 GEISA-09 Refs.

Spectral range (cm�1) # lines Intensity exponent Spectral range (cm�1) # lines Intensity exponent

Max. Min. Max. Min.

H2O 1 0.007–22,656.465 58,726 �18 �31 0.007–25,232.004 67,789 �18 �33 [20–31]

CO2 2 436.123–9648.007 76,826 �18 �41 5.891–12,784.053 413,619 �18 �42 [32–69]

O3 3 0.026–4060.783 319,248 �19 �30 0.026–6395.379 389,378 �19 �30 [70–97]

N2O 4 0.838–5131.249 26,681 �17 �27 0.838–7796.633 50,633 �17 �25 [98–102]

CO 5 3.414–8464.882 13,515 �18 �77 3.414–8464.882 13,515 �18 �77 No update

CH4 6 0.010–9199.285 216,196 �18 �33 0.001–9199.284 240,991 �18 �38 [103–126]

O2 7 10�6–15,927.806 6290 �23 �50 10�6–15,927.230 6428 �23 �50 [127–137]

NO 8 3�10�5–9273.214 99,123 �19 �84 10�6––9273.214 105,079 �19 �94 [133–139]

SO2 9 0.017–4092.948 38,853 �19 �27 0.017–4092.948 68,728 �19 �28 [140–166]

NO2 10 0.498–3074.366 104,224 �18 �27 0.498–3074.152 104,223 �18 �27 [167–168]

NH3 11 0.058–5294.502 29,082 �18 �38 0.058–5294.501 29,082 �18 �38 [169–170]

PH3 12 17.805–2478.765 11,740 �18 �27 17.805–3601.652 20,421 �18 �27 [171–178]

HNO3 13 0.035–1769.982 171,504 �19 �26 0.012–1769.982 669,988 �19 �27 [179–195]

OH 14 0.005–35,877.030 42,866 �16 �84 0.005–35,877.031 42,866 �16 �84 No update

HF 15 41.110–11,535.570 107 �16 �25 41.111–11,535.570 107 �16 �25 No update

HCl 16 20.240–13,457.841 533 �18 �25 20.240–13,457.841 533 �18 �25 No update

HBR 17 16.231–9758.565 1294 �18 �32 16.231–9758.564 1294 �18 �32 No update

HI 18 12.509–8487.305 806 �19 �29 12.509–8487.305 806 �19 �29 No update

CLO 19 0.015–1207.639 7230 �20 �29 0.015–1207.639 7230 �20 �29 No update

OCS 20 0.381–4118.004 24,922 �17 �27 0.381–4199.671 33,809 �17 �27 [196–210]

H2CO 21 3�10�6–2998.527 2701 �19 �37 3�10�6–3099.958 37,050 �19 �37 [211–216]

C2H6 22 725.603–2977.926 14,981 �20 �27 706.601–3000.486 27,644 �20 �29 [217–236]

CH3D 23 7.760–3306.810 35,518 �22 �29 7.7602–6510.326 49,237 �22 �29 [237–245]

C2H2 24 604.774–4225.435 3115 �17 �26 604.774–9889.038 11,340 �17 �27 [246–255]

C2H4 25 701.203–3242.172 12,978 �19 �25 701.203–3242.172 18,378 �19 �36 [256–260]

GEH4 26 1937.37–2224.570 824 �18 �21 1937.371–224.570 824 �18 �21 No update

HCN 27 2.870–18,407.973 2550 �18 �27 0.006–17,581.010 82,042 �18 �33 [261–292]

C3H8 28 700.015–799.930 8983 �21 �23 700.015–799.930 8983 �21 �23 [293–298]

C2N2 29 203.955–2181.690 2577 �19 �23 203.955–2181.690 2577 �19 �23 [299–301]

C4H2 30 190.588–654.425 1405 �19 �23 191.635–730.235 119,480 �18 �23 [302–315]

HC3N 31 474.293–690.860 2027 �19 �23 463.604–759.989 179,347 �19 �23 [316–319]

HOCl 32 0.0236–3799.682 17,862 �19 �27 0.0236–3799.682 17,862 �19 �27 No update

N2 33 1992.63–2625.497 120 �27 �33 1992.63–2625.497 120 �27 �33 [320–322]

CH3Cl 34 674.143–3172.927 18,344 �19 �31 674.143–3172.927 18,344 �19 �31 [323–324]

H2O2 35 0.043–1499.486 100,781 �19 �28 0.043–1730.371 126,983 �19 �28 [325–327]

H2S 36 2.985–4256.547 20,788 �18 �25 2.985–4256.547 20,788 �18 �25 [328–331]

HCOOH 37 1060.96–1161.251 3388 �19 �21 10.018–1889.334 62,684 �19 �25 [332–342]

COF2 38 725.005–2001.348 83,750 �19 �23 725.005–2001.348 83,750 �19 �23 No update

SF6 39 940.424–952.238 11,520 �19 �21 588.488–975.787 92,398 �19 �23 [343–348]

C3H4 40 290.274–359.995 3390 �20 �22 288.913–673.479 19,001 �19 �23 [349–357]

HO2 41 0.173–3675.818 38,804 �19 �25 0.173–3675.819 38,804 �19 �25 No update

ClONO2 42 763.641–792.488 32,199 �21 �24 0.636–797.741 356,899 �21 �27 [358–362]

CH3BR 43 – 794.403–1705.612 36,911 �20 �26 [363–377]

CH3OH 44 – 0.019–1407.206 19,897 �19 �34 [378–389]

NOþ 45 – 1634.83–2530.462 1206 �18 �80 [390–391]

HNC 46 – 0.217–4814.904 5619 �17 �24 [392–401]

C6H6 47 – 642.427–705.262 9797 �20 �23 [402–405]

C2HD 48 – 416.785–3421.864 15,512 �22 �28 [406–409]

CF4 49 – 594.581–1312.647 60,033 �19 �23 [410–420]

CH3CN 50 – 890.052–1650.000 171,172 �19 �37 [428–432]

Total # lines: Total # lines:

1,668,371 3,807,997

Note: ‘‘No update’’ in the Refs. column indicates that the contents in GEISA-09 and GEISA-03 are identical.
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modifications, i.e., extended format field for quantum

identifications for the lower and upper states of the

transition, for self-broadened half-width and air-induced

pressure shift of the line transition, corresponding,

respectively, to fields of format symbols: Ei (i¼1–4), M

and N; former fields identified as P (accuracy indices for

wavenumber, intensity and half-width) and Q (indices for

lookup of references for wavenumber, intensity and half-

width) have been removed. See Appendix B for details.

Evolution of the contents of GEISA-09 since the 2003

edition of GEISA (hereafter GEISA-03) is summarized in

Table 1. Individual GEISA-09 molecule names and their

corresponding identification codes (ID codes defined for

the GEISA management software) are in the first two

columns of the Table. The following columns give succes-

sively for GEISA-03 and for GEISA-09: the spectral range

(cm�1), the number of entries, the exponents of the

maximum and minimum intensity values (expressed

in cm�1/(molecule cm�2) at 296 K), for each molecule,

and finally the 2009 update references. The spectroscopic

line parameters of 31 of the 42 molecules included in

GEISA-03 have been updated. The parameters of 11 mole-

cules, i.e., CO, OH, HF, HCl, HBr, HI, ClO, GeH4, HOCl, COF2,

and HO2, are kept unchanged as in GEISA-03. The details of

the GEISA-09 sub-database on line parameters are given in

Table 2. The items listed in columns 3–6 for each molecular

species, given in column 1, are: the number of lines, the

intensity average in cm molecule�1 (different expression

for cm�1/(molecule cm�2)), the average half-width at half-

maximum (HWHM in cm�1 atm�1), the present isotopo-

logue identification codes (see Table 2 of Ref. [7] for

isotopic species code identifications and complementary

information, in Appendix C, for new isotopic and molecular

species in GEISA-09); for each isotopic species listed in

column 6, are given in columns 7–11: the number of lines

with associated minimum and maximum wavenumbers

(cm�1) and intensities (in cm molecule�1).

Table 3 summarizes the differences between the

GEISA-09 and the HITRAN 2008 (hereafter HITRAN-08)

[13] databases in terms of the number of lines, bands, and

isotopologues. An example of quantitative comparison

between H2O intensity values in GEISA-09 and HITRAN-08

is given in Fig. 2. In the spectral range 1400–2100 cm�1,

5626 transitions with common quantum identification in

both databases and with intensity values larger than

10�23 cm�1/(molecule cm�2), are involved in this compar-

ison. One can notice that 8% of the strong lines (intensities

greater or equal 10�20 cm�1/(molecule cm�2)) exhibit

differences greater that 5%. Evaluations of impact on atmo-

spheric radiative transfer modeling, using HITRAN or GEISA,

are presented, for instance, in Jacquinet-Husson et al. [8],

Matricardi [18] Newman [19]. It may be noted that the

previous updates of HITRAN and GEISA databases have been

finalized at nearly the same time, and include very similar

data sources for many molecules. Because of its origin,

certain molecules, mainly related with planetary atmo-

spheres (especially those of the giant planets) are specific

to GEISA, such as: GeH4, C3H8, C2N2, C4H2, C3H4, HC3N, HNC,

C6H6, and C2HD. On the other hand, species HOBr and O are

HITRAN specific, and in HITRAN CH3D and C2HD are

considered isotopologues of methane and acetylene, but

they are independent molecules in GEISA (see Sections 1

and 2). In Table 3, molecular species formulae are listed in

column 1 and their identification codes for database man-

agements in column 2. For each molecular species and for

each data base, the number of bands, isotopologues and

lines, are given in columns 3, 4 and 5, respectively. The

related minimum and maximum of the spectral range

Fig. 1. Evolution of the GEISA line parameters sub-database since 1975. The year identifications are on the X-axis. The evolution of the number of lines is

displayed as histograms (green color) with corresponding scale given on the right Y-axis. The total number of molecules and isotopes, included in each

atlas, are color coded, as red and purple curves, respectively, with corresponding scale on the left Y-axis.
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Table 2

The GEISA-09 sub-database on line parameters. Spectral and intensity ranges per molecule and isotopologue.

Mol. ID # lines Intensity

average

(cm molecule�1)

HWHM average

(cm�1 atm�1)

Isot.

ID

# lines Minimum

wavenumber

(cm�1)

Maximum

wavenumber

(cm�1)

Minimum intensity

(cm molecule�1)

Maximum intensity

(cm molecule�1)

H2O 1 67,789 1.088�10�21 0.0699 161 41,147 0.401 25,224.909 9.400�10�33 2.654�10�18

81 8360 6.785 14,362.151 2.005�10�28 5.390�10�21

171 5468 6.471 13,909.783 2.671�10�31 9.830�10�22

162 11,980 0.007 13,900.444 1.240�10�32 2.700�10�22

182 659 1173.772 3824.717 2.033�10�27 5.083�10�26

172 175 1234.235 1598.7655 2.033�10�27 9.319�10�27

CO2 2 413,619 2.724�10�22 0.0704 626 165,181 345.936 12,784.052 1.000�10�30 3.520�10�18

636 66,657 433.190 12,462.048 1.000�10�30 3.740�10�20

628 110,136 5.891 11,422.648 1.000�10�30 6.870�10�21

627 19,064 10.600 8270.099 1.000�10�30 1.260�10�21

638 39,007 449.686 6744.160 1.000�10�30 7.810�10�23

637 2741 580.856 6768.643 1.000�10�30 1.400�10�23

828 10,045 484.297 8162.742 1.000�10�30 1.330�10�23

728 493 626.438 5031.885 1.009�10�28 2.500�10�24

838 295 2115.684 2276.481 4.870�10�42 3.289�10�24

O3 3 38,9378 5.247�10�23 0.0698 666 233,132 0.026 6395.379 3.904�10�29 4.060�10�20

668 44,302 0.921 2767.874 4.692�10�28 7.760�10�23

686 24,886 1.177 2739.289 9.970�10�29 7.560�10�23

667 58,171 0.289 820.380 5.135�10�31 5.356�10�25

676 28,887 0.213 822.795 1.433�10�31 5.827�10�25

N2O 4 50,633 1.254�10�21 0.0750 446 34,468 0.838 7796.633 1.016�10�29 1.003�10�18

456 4466 5.028 5088.906 5.220�10�26 3.423�10�21

546 4841 4.8580 4992.236 4.720�10�26 3.513�10�21

448 4412 541.342 4672.579 1.614�10�25 1.930�10�21

447 1778 549.367 4429.961 1.614�10�25 4.017�10�22

458 105 2121.770 2203.983 1.673�10�25 6.637�10�24

548 108 2144.997 2226.290 1.675�10�25 7.631�10�24

556 455 1226.536 3415.768 1.642�10�25 1.210�10�23

CO 5 13,515 7.543�10�22 0.0467 26 5908 3.53010 8464.882 7.880�10�78 4.460�10�19

36 4768 3.414 8180.219 3.610�10�73 4.690�10�21

27 748 3.714 6338.061 8.190�10�40 1.600�10�22

28 770 3.629 6266.577 7.610�10�39 8.320�10�22

37 580 1807.871 6196.551 1.030�10�36 1.680�10�24

38 741 3.462 6123.294 2.580�10�40 8.700�10�24

CH4 6 240,991 8.225�10�23 0.0521 211 212,115 0.010 9155.326 1.117�10�39 2.099�10�19

311 28,876 0.032 6069.084 4.936�10�34 2.317�10�21

O2 7 6428 3.885�10�26 0.0430 66 1431 0.000 15,927.230 9.808�10�51 8.762�10�24

67 4326 0.000 14,536.515 8.513�10�51 3.439�10�27

68 671 1.572 15,851.213 1.186�10�35 1.727�10�26

NO 8 105,079 4.625�10�23 0.0477 46 100,902 0.000 9273.214 1.451�10�95 1.188�10�20

48 679 1601.909 2038.846 4.190�10�28 1.390�10�22

56 699 1609.585 2060.462 4.430�10�28 2.550�10�22

SO2 9 68,728 5.850�10�22 0.0090 626 57,963 0.017 4092.948 1.020�10�28 4.851�10�20

646 10,765 1060.196 2500.400 4.980�10�24 4.493�10�23

NO2 10 104,223 5.980�10�22 0.0742 646 104,223 0.498 3074.153 4.240�10�28 1.302�10�19

NH3 11 29,082 1.639�10�21 0.0827 411 27,992 0.0582 5293.578 8.086�10�39 4.585�10�19

511 1090 0.375 5179.786 5.460�10�29 1.992�10�21

PH3 12 20,421 1.367�10�21 0.0648 131 20,421 17.805 3601.652 1.849�10�28 2.520�10�19

HNO3 13 669,988 1.768�10�22 0.1048 146 669,988 0.012 1769.982 3.590�10�28 3.130�10�20

OH 14 42,866 2.806�10�20 0.0440 61 42,711 0.005 35,877.030 1.500�10�85 6.450�10�17

62 90 0.010 1.824 2.090�10�31 5.780�10�29

81 65 0.053 6.325 1.200�10�30 1.200�10�26

HF 15 107 6.773�10�19 0.0407 19 107 41.111 11,535.570 1.110�10�26 1.440�10�17

HCl 16 533 3.189�10�20 0.0403 15 284 20.270 13,457.841 1.090�10�26 5.030�10�19

17 249 20.240 10,994.721 1.010�10�26 1.610�10�19

HBr 17 1294 4.769�10�21 0.0429 11 642 16.231 9757.189 1.528�10�32 1.178�10�19

19 652 16.236 9758.565 9.450�10�33 1.211�10�19

HI 18 806 1.361�10�21 0.0500 17 806 12.5094 8487.305 1.644�10�30 3.423�10�20

ClO 19 7230 1.605�10�22 0.0873 56 3599 0.028 1207.639 1.520�10�29 3.240�10�21

76 3631 0.015 1199.840 5.090�10�30 1.030�10�21
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Table 2 (continued )

Mol. ID # lines Intensity

average

(cm molecule�1)

HWHM average

(cm�1 atm�1)

Isot.

ID

# lines Minimum

wavenumber

(cm�1)

Maximum

wavenumber

(cm�1)

Minimum intensity

(cm molecule�1)

Maximum intensity

(cm molecule�1)

OCS 20 33,809 3.436�10�21 0.0894 622 19,130 0.406 4199.671 8.550�10�20 1.220�10�18

624 6665 0.396 4165.233 6.400�10�27 4.720�10�20

632 3243 0.404 4055.090 1.720�10�27 1.200�10�20

623 2788 509.007 4163.069 4.678�10�26 8.430�10�21

822 1626 0.380 4045.602 2.620�10�28 2.090�10�21

634 357 1972.188 2032.039 1.010�10�23 5.240�10�22

H2CO 21 37,050 1.175�10�21 0.1079 126 36,120 0.000 3099.941 1.224�10�38 7.436�10�20

128 367 0.034 47.486 1.392�10�30 1.332�10�22

136 563 0.037 72.744 2.424�10�30 7.548�10�22

C2H6 22 28,439 1.600� 10�22 0.0670 226 22,402 706.601 3000.486 5.422�10�29 3.210�10�20

236 6037 725.603 918.717 1.320�10�28 1.770�10�23

CH3D 23 49,237 1.903�10�25 0.0542 212 45,024 7.760 6510.326 5.677�10�30 5.714�10�23

312 4213 959.394 1694.123 2.768�10�29 1.398�10�25

C2H2 24 11,340 3.877�10�21 0.0720 221 11,055 604.774 9889.0377 4.425�10�28 1.187�10�18

231 285 613.536 6588.935 3.820�10�26 4.942�10�19

C2H4 25 18,378 1.081�10�21 0.0861 211 18,097 701.203 3177.173 2.764�10�37 8.412�10�20

311 281 2947.832 3180.238 5.061�10�24 1.618�10�21

GeH4 26 824 4.978�10�20 0.1000 411 824 1937.371 2224.570 1.960�10�22 3.680�10�19

HCN 27 82,042 4.201�10�22 0.1002 124 79,957 0.006 17,581.009 8.057�10�34 7.010�10�19

125 791 2.870 3550.842 5.156�10�32 2.468�10�21

134 791 2.880 3532.252 1.431�10�31 3.785�10�21

224 503 2.415 2725.192 1.801�10�30 7.317�10�23

C3H8 28 8983 4.139�10�23 0.0800 221 8983 700.015 799.930 1.583�10�24 1.810�10�22

C2N2 29 2577 1.885�10�21 0.1023 224 2577 203.955 2181.690 3.130�10�24 1.200�10�20

C4H2 30 119,480 2.530�10�22 0.0999 211 119,480 191.635 730.235 3.024�10�24 1.435�10�19

HC3N 31 179,347 6.982�10�23 0.0998 124 179,347 463.604 759.989 1.052�10�24 4.040�10�20

HOCl 32 17,862 1.867�10�21 0.0689 165 9293 0.023 3799.249 1.650�10�27 3.590�10�20

167 8569 0.349 3799.682 7.220�10�28 1.140�10�20

N2 33 120 5.605�10�29 0.0343 44 120 1992.628 2625.497 1.590�10�34 3.548�10�28

CH3Cl 34 18,344 4.370�10�22 0.0951 215 10,039 679.050 3172.927 9.051�10�32 1.128�10�20

217 8305 674.143 3161.830 4.192�10�26 3.542�10�21

H2O2 35 126,983 4.622�10�22 0.0999 166 126,983 0.043 1730.371 5.064�10�29 5.582�10�20

H2S 36 20,788 2.992�10�22 0.0740 121 12,330 2.985 4256.547 1.450�10�26 1.360�10�19

131 3564 5.601 4098.234 2.020�10�26 5.990�10�21

141 4894 5.615 4171.176 2.020�10�26 1.080�10�21

HCOOH 37 62,684 1.231�10�21 0.1010 261 62,684 10.018 1889.334 3.966�10�26 5.068�10�20

COF2 38 83,750 2.105�10�21 0.0845 269 83,750 725.005 2001.348 4.740�10�24 3.940�10�20

SF6 39 92,398 5.117�10�22 0.5000 29 92,398 588.488 975.787 1.000�10�24 1.453�10�20

C3H4 40 19,001 6.338�10�22 (�) 341 19,001 288.912 636.482 4.230�10�24 1.550�10�20

HO2 41 38,804 6.847�10�22 0.1070 166 38,804 0.173 3675.818 1.000�10�26 2.744�10�20

ClONO2 42 356,899 7.958�10�24 0.1404 564 206,861 0.636 797.741 7.547�10�28 3.850�10�22

764 150,038 0.928 790.805 7.519�10�28 1.260�10�22

CH3br 43 36,911 1.293�10�22 0.0939 79 18,692 794.403 1705.612 9.970�10�27 2.580�10�21

81 18,219 795.083 1696.896 1.000�10�26 2.530�10�21

CH3oh 44 19,897 9.181�10�22 0.1000 216 19,897 0.019 1407.205 8.826�10�35 3.771�10�20

NOþ 45 1206 2.168�10�21 0.0600 46 1206 1634.831 2530.462 6.121�10�81 1.186�10�19

HNC 46 5619 4.201�10�22 0.1002 142 5619 0.217 4814.904 1.001�10�25 1.164�10�18

C6H6 47 9797 8.394�10�22 0.1014 266 9797 642.427 705.262 4.070�10�24 9.490�10�21

C2HD 48 15,512 4.843�10�25 0.0680 122 15,512 416.785 3385.564 5.194�10�29 3.219�10�23

CF4 49 60,033 1.377�10�21 0.5000 291 60,033 594.581 1312.646 7.912�10�24 4.717�10�20

CH3CN 50 17,172 2.688�10�22 0.0792 234 17,172 890.052 1650.000 1.200�10�38 3.824�10�20

Total 3,807,997

Note: (�) Missing data.
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(in cm�1) are in the last four columns. The parameters for

molecules SF6, ClONO2 and CF4 have been archived in the

supplemental line list of HITRAN-08 whereas they are kept

in the main list of GEISA-09. The format of HITRAN-08 line

parameters [13] is different from that of GEISA. Among the

GEISA management software capabilities a program has

Table 3

Summary of differences for molecular species cataloged in the line parameter portion of GEISA-09 (G) and HITRAN 2008 (H) [13].

Mol. Mol ID # bands # isot # lines Spectral coverage (cm�1)

G H G H G H G H Minimum wavenumber (cm�1) Maximum wavenumber (cm�1)

G H G H

H2O 1 1 245 373 6 6 67,789 69,201 0.007 0.007 25,232.004 25,232.004

CO2 2 2 3747 2832 9 9 413,619 314,919 5.891 0.736 12,784.052 12,784.052

O3 3 3 162 218 5 5 389,378 409,686 0.026 0.026 6395.379 5786.118

N2O 4 4 369 351 8 5 50,633 47,843 0.838 0.838 7796.633 7796.633

CO 5 5 104 47 6 6 13,515 4477 3.414 3.462 8464.882 8464.881

CH4 6 6 138(y) 138 2 2(y) 240,991(y) 240,854(y) 0.001 0.001 9155.326 9155.326

O2 7 7 19 19 3 3 6428 6428 0.000 0.000 15,927.230 15,927.230

NO 8 8 293 293 3 3 105,079 105,079 0.000 0.000 9273.214 9273.214

SO2 9 9 17 13 2 2 68,728 58,250 0.017 0.017 4092.948 4092.948

NO2 10 10 11 11 1 1 104,223 104,223 0.498 0.498 3074.153 3074.153

NH3 11 11 78 78 2 2 29,082 29,084 0.058 0.058 5293.578 5293.578

PH3 12 28 19 18 1 1 20,423 20,099 17.805 770.877 3600.701 3600.701

HNO3 13 12 26 18 1 1 669,988 487,254 0.012 0.012 1769.982 1769.982

OH 14 13 245 221 3 3 42,866 31,976 0.005 0.003 35,877.030 19,267.804

HF 15 14 6 6 1 1 107 107 41.111 41.111 11,535.570 11,535.570

HCl 16 15 17 17 2 2 533 613 20.240 20.240 13,457.841 13,458.024

HBr 17 16 16 16 2 2 1293 1293 16.232 16.231 9758.312 9758.312

HI 18 17 9 9 1 1 806 806 12.509 12.509 8487.305 8487.305

ClO 19 18 12 16 2 2 7230 11,501 0.015 0.015 1207.639 1207.639

OCS 20 19 192 164 6 5 33,809 29,361 0.381 0.381 4199.671 4199.671

H2CO 21 20 17 17 3 3 37,050 37,050 0.000 0.000 3099.958 3099.958

C2H6 22 27 6 6 2 2 28,439 28,439 706.601 706.601 3000.486 3000.486

CH3D(y) 23 (y) 26 26 2 2(y) 49,237(y) 49,237(y) 7.760 7.760 6510.326 6510.326

C2H2 24 26 118 118 2 2 11,340 11,340 604.774 604.774 9889.038 9889.038

C2H4 25 38 12 12 2 2 18,378 18,378 701.203 701.203 3177.173 3177.173

GeH4 26 ABS 1 ABS 1 ABS 824 ABS 1937.371 ABS 2224.570 ABS

HCN 27 23 775 30 4 3 82,042 4253 0.006 0.015 17,581.009 3423.927

C3H8 28 ABS 1 ABS 1 ABS 8983 ABS 700.015 ABS 799.930 ABS

C2N2 29 ABS 7 ABS 1 ABS 2577 ABS 203.955 ABS 2181.690 ABS

C4H2 30 ABS 1509 ABS 1 ABS 119,480 ABS 191.635 ABS 730.2352 ABS

HC3N 31 ABS 3302 ABS 1 ABS 179,347 ABS 463.604 ABS 755.696 ABS

HOCl 32 21 6 8 2 2 17,862 16,276 0.024 1.081 3799.682 3799.682

N2 33 22 1 1 1 1 120 120 1992.628 1992.628 2625.497 2625.497

CH3Cl 34 24 14 83 2 2 18,344 196,171 674.143 0.873 3172.927 3172.927

H2O2 35 25 130 130 1 1 126,983 126,983 0.043 0.043 1730.371 1730.371

H2S 36 31 30 30 3 3 20,788 20,788 2.985 2.985 4256.546 4256.547

HCOOH 37 32 8 8 1 1 62,684 62,684 10.018 10.018 1889.334 1889.334

COF2 38 29 7 7 1 1 83,750 70,601 725.005 725.005 2001.348 2001.348

SF6(n) 39 30 6 3 1 1 92,398 2,889,065(n) 588.488 580.000 975.788 996.000

C3H4 40 ABS 22 ABS 1 ABS 19,001 ABS 288.912 ABS 673.479 ABS

HO2 41 33 4 4 1 1 38,804 38,804 0.173 0.173 3675.818 3675.818

ClONO2(n) 42 35 7 3 2 2 356,899 32,199(n) 0.636 763.641 797.741 797.741

CH3Br 43 40 6 6 2 2 36,911 36,911 794.403 794.403 1705.612 1705.612

CH3OH 44 39 16 16 1 1 19,897 19,897 0.019 0.019 1407.205 1407.205

NOþ 45 36 6 6 1 1 1206 1206 1634.831 1634.831 2530.462 2530.462

HNC 46 ABS 84 ABS 1 ABS 5619 ABS 0.217 ABS 4814.904 ABS

C6H6 47 ABS 1 ABS 1 ABS 9797 ABS 642.427 ABS 705.262 ABS

C2HD 48 ABS 348 ABS 1 ABS 15,512 ABS 416.785 ABS 3385.564 ABS

CF4 49 42 5 5 1 1 60,033 60,033 594.581 594.581 1312.647 1312.647

CH3CN 50 41 2 2 1 1 17,172 3572 890.052 890.052 1650.000 945.655

O ABS 34 ABS 1 ABS 1 ABS 2 ABS 68.716 ABS 158.303

HOBr ABS 37 ABS 1 ABS 2 ABS 4358 ABS 0.155 ABS 315.908

Note: ABS stands for a molecular species not included in the actual database (HITRAN or GEISA)

(y) CH3D considered as an individual molecule in GEISA; but as an isotopologue of CH4 in HITRAN.

(y) For HITRAN, column 5, sub-column ‘‘H’’, includes:

� for CH4 (Mol. ‘‘6’’), total # lines of isotopologues numbered ‘‘1’’ and ‘‘2’’ (coded ‘‘211’’ and’’311’’ [7], respectively, in GEISA);

� for CH3D (Mol. ‘‘23’’), total # lines of CH4 isotopologues numbered ‘‘3’’ and ‘‘4’’ (coded ‘‘212’’ and’’312’’ [7], respectively, in GEISA).

(n) Molecule included in HITRAN 2008 supplemental line list.
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been created which makes it possible to convert routinely

the format of one database into the other database format,

in their actual public release (GEISA-09 to HITRAN-08

format, or HITRAN-08 to GEISA-09 format). This has proven

to be an efficient added capability for both database users

especially for the purpose of easier identification and

evaluation of the impact of spectroscopic content in specific

applications (such as planetary atmosphere radiative trans-

fer modeling).

2.2. Description of updates per individual molecules

2.2.1. H2O (molecule 1)

The water molecule is of great interest both in terres-

trial and in planetary studies, not the least because of its

interference during ground-based observations.

The GEISA-09 H2O update involves spectroscopic para-

meters from three different origins, i.e. in the spectral

region 500–7973 cm�1, the JPL data of Toth are available

with their related description and references from the

mark4sun website at http://mark4sun.jpl.nasa.gov/spec

data.html. These data represent a total of 36,849 lines.

In the 10–2000 cm�1 spectral region, for the normal

isotopologue H2
16
O, updated line parameters are computed

using the results of Coudert et al. [20]. This update covers

line position and line intensity analyses of data up to the

second triad as well as line strength (or line intensity)

measurements for n2 band transitions. Using the spectro-

scopic parameters from this reference and the theoretical

approach of Lanquetin et al. [21], a line list of 5624 entries

was generated with a line intensity cutoff of 10�27 cm�1/

(molecule cm�2). This calculation along with the line

measurements of Ref. [20] revealed that experimental line

intensity values for transitions belonging to the n2 band in

the 1000–2000 cm�1 range were underestimated in pre-

vious measurements of Toth in 1998 [22], for the strongest

transitions in this region. Fig. 3 shows the differences

between the new intensity values from Coudert et al.

[20] and those reported in Ref. [22]. In agreement with

Ref. [20], this figure emphasizes that discrepancies of about

�5% arise for strong transitions with an intensity on the

order of 10�19 cm�1/(molecule cm�2).

For the spectral range 9500–14,500 cm�1, line posi-

tions and intensities were taken from Tolchenov and

Tennyson [23]. These data, representing 12,027 entries,

came from a refit of room temperature Fourier transform

absorption spectra of pure, natural abundance-water

vapor by Schermaul et al. [24,25] recorded at path lengths

Fig. 2. Quantitative comparison between H2O intensity values in GEISA-09 and HITRAN-08 [13]. Line intensity differences (GEISA-09 value minus

HITRAN-08 value), in percent of GEISA-09 value, are on the Y-axis; the base 10 logarithm of GEISA-09 line intensity is on the X-axis. Data points are

indicated by a read þ .

Fig. 3. Residuals of observed H2O line intensities of Toth Ref. [22] minus

those from Coudert et al. [20] (archived in GEISA-09). The X-axis is

the base 10 logarithm of the observed line intensity in cm�1/

(molecule cm�2). The Y-axis corresponds to the residual in percent of

the observed line intensities [22]. Each data point is indicated by a dot,

error bars are also drawn. For clarity, the figure only displays the 967

strongest transitions from Ref. [22], belonging to the n2 band, with an

intensity larger than 10�24 cm�1/(molecule cm�2 ).
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from 5 up to 800 m. These parameters have demonstrated

[23] to give a more consistent representation of the

underlying spectrum than previous studies. In this spec-

tral region, line broadening and shifting due to N2 and O2

pressure effects are included from calculations which use

a semi-empirical approach based on impact theory mod-

ified by introducing additional parameters to extend the

use of empirical data [26]. This method was further

developed by using anharmonic wavefunctions in the

estimates of the line parameters. The main feature is the

use of a complete set of high accuracy vibration–rotation

dipole transition moments calculated for all possible

transitions using wavefunctions determined from varia-

tional nuclear motion calculations and an ab initio dipole

moment surface [27]. Full details of this approach are

described in Ref. [28], the results of H2O line parameters

calculation and comparison with experimental data are

presented in Refs. [29–31].

Fig. 4 exhibits the differences between H2O lines, in the

frequency range 9500–14,500 cm�1, archived in GEISA-03,

and those added in GEISA-09. The exponents of the

intensity values (expressed in cm�1/(molecule cm�2)) at

296 K) are on the Y-axis and the transition wavenumbers

on the X-axis. Data included in each GEISA edition are

identified by different colors: red triangles for GEISA-03

and blue crosses for GEISA-09.

In practice, the resulting total file the GEISA-09 update

has been processed as follows: as a first step Toth’s data

were retained and replaced, for the main H2
16
O isotopolo-

gue, by Coudert’s data for lines with similar quantum

identification; as a second step the file was finalized by

adding the new data for the 9500–14,500 cm�1 spectral

region. The GEISA-09 H2O archive comprises 67,789

entries against 58,726 in GEISA-03.

2.2.2. CO2 (molecule 2)

Carbon dioxide, like water, is an ubiquitous species

observed in most of the solar system planets. To accom-

modate planetary applications, the GEISA-09 line list

update has been processed with 412,831 new transitions

from seven isotopologues (12C16O2,
13C16O2,

16O12C18O,
16O12C17O, 16O13C18O, 16O13C17O and 12C18O2) between

5.9 and 12,784.0 cm�1. It has to be noted that 788

transitions, of the two other isotopologues species:
13C18O2 and 17O12C18O, have been retained from GEISA-

03 in the final GEISA-09 CO2 line list. The increase in the

number of transitions (from 76,826 to 413,619) compared

to the GEISA-03 list (see Table 2) arises from lowering the

minimum intensity to 10�30 cm�1/(molecule cm�2) at

296 K, in the seven isotopologues update entries, and

merging the two compilations: the CDSD-296 databank

[32] and partly the JPL near-infrared line list [33], as

explained below.

The current version of the CDSD-296 databank is an

extension and development of its previous 2003 version

[34] which was used in GEISA/IASI [10] and GEISA-03. For

the four most abundant isotopologues 12C16O2,
13C16O2,

16O12C18O and 16O12C17O, the line positions and line inten-

sities are calculated using new sets of effective Hamiltonian

and effective dipole moment constants. These new con-

stants are determined by including extensive new measure-

ments in the fitting (see [35–59] and references therein); in

particular, the data obtained at JPL and at the Joseph Fourier

University (Grenoble, France) resulted in better accuracy

and completeness for the near infrared calculations. Using

Fourier transform spectroscopy experiments the first team

has performed very precise measurements of both line

positions and line intensities of nine isotopologues of carbon

dioxide in the 4300–7000 cm�1 region [33,38,48,52,57]. The

second team used highly sensitive CW-CRDS experiments

and measured line positions and line intensities of a large

number of lines including very weak lines as low as

10�29 cm�1/(molecule cm�2) of several isotopologues in

the 5851–7045 cm�1 region [35,40,46,51,55,56,58,59]. The

parameters obtained by including these weak lines belong-

ing to high J values or to hot band transitions considerably

improved the extrapolation properties of elaborated models

of effective Hamiltonian and effective dipole moment

operators. The theoretical approach used for global model-

ing of high resolution spectra of carbon dioxide is presented

in Refs. [60–63]. Extension of the wavenumber region for

the rare isotopologues was done using the sets of the

effective dipole moment parameters belonging to the most

abundant isotopologues. In order to meet the needs of the

modern infrared sensors the intensity cutoff was lowered to

10�30 cm�1/(molecule cm�2) at 296 K. Because of this a

large number of additional weak bands and weak lines

corresponding to high values of the angular momentum

quantum number of the strong bands became available in

the new version of CDSD-296. The accuracy of the line

parameters of these weak lines strongly relies on the

extrapolation abilities of the models used. It was shown in

Ref. [64] that the effective operator models, used for the

generation of CDSD-296, provide reliable extrapolation

properties.

On average, the residuals between CDSD calculated

line positions and those observed are two times

larger than measurement uncertainties. The CDSD calcu-

lated line intensities are practically always within their

measurement uncertainties for all isotopologues. Air- and

Fig. 4. H2O intensity versus wavenumber for transitions present in

GEISA-03 ( in red) and for those added in GEISA-09 ( in blue), in

the NIR spectral region.
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self-broadening parameters were calculated using the

equations from Rothman et al. [65], but the air-induced

pressure shift parameter was set to zero throughout. The

current atmospheric version of the databank is available on

the web site of the IAO: ftp.iao.ru/pub/CDSD-2008/296.

Finally, it was determined that some of the intensities

in the near infrared line list from Toth et al. were more

accurate than the reanalyzed values and that the newer

pressure broadening coefficients (widths and shifts) in the

Toth et al. studies [66,67] better represented the measured

spectra. Therefore, this line list, consisting initially of

28,530 entries, has been retained for the GEISA-09 update

too, adopting the following process for its inclusion:

first, 15,788 lines whose intensities were lower than

10�26 cm�1/(molecule cm�2) at 296 K for the two main

isotopologues 12C16O2 and 13C16O2 and for all the isotopo-

logues with intensities between 10�29 and 10�30 cm�1/

(molecule cm�2) at 296 K (Brown private communication)

were discarded; second, the 12,742 remaining lines were

merged with the CDSD data, replacing them when the

quantum identification was the same.

With this change, the choice of Toth et al. [66,67] for

air-broadening, self-broadening and air-induced pressure

shift of the line parameters is included in GEISA-09. These

broadening parameters were replaced, for 12C16O2 lines

with the same quantum numbers, by the results from the

latest work of Predoi-Cross et al. [68] for the temperature

dependences of air-broadened CO2 widths, temperature

dependence of air-induced pressure shift and tempera-

ture dependence of the self-broadened half-widths. The

parameters from Predoi-Cross et al. were implemented

for the entire line list when available. Since the database

was completed, a new effort to predict air-broadened

pressure shifts has been undertaken by Hartmann [69]

which will be considered for future database updates.

2.2.3. O3 (molecule 3)

An update of the line positions and intensities has been

made for the three main isotopologues of ozone, 16O3,
16O16O18O, and 16O18O16O. For the main isotopologue 16O3,

the list of the 27 newly included bands (spectral range

from 1632 to 4845 cm�1) in GEISA-09 is given in the first

column of Table 4 with associated spectral interval (cm�1),

number of lines and sum of line intensities, listed under

columns 2–4, respectively. Table 5 lists the 28 updated

bands with a similar display. These data cover the spectral

range from 1613 to 4845 cm�1. The line list is given with

an intensity cutoff of 2�10�26 cm�1/(molecule cm�2) at

296 K for 100% 16O3 abundance. These results are based on

the analyses of the absorption spectra recorded in the

GSMA laboratory using the FTS of the Champagne-

Ardennes University (Reims, France) [70]. The calculations

of the line positions were made using the Hamiltonian

parameters for the lower states (0 0 0), (1 0 0) and (0 0 1)

from Ref. [71], for the (0 1 0) state from Ref. [72] and for

the (0 2 0) state from Ref. [73].

The line positions of three bands associated with the

(0 3 1) upper state (3n2þn3�2n2, 3n2þn3�n2, and

3n2þn3) have been calculated using Hamiltonian para-

meters of Ref. [74]. The transition moment parameters of

the n2þn3 band [75] were used for calculation of line

intensities for the 3n2þn3�n2 band. The line intensities

of two other bands were calculated with the transition

moment parameters of Ref. [74].

Table 4

New ozone bands (16O3) in the GEISA-09 edition.

Band Spectral region (cm�1) Number of lines Sum of line intensities

(10�22 cm�1/(molecule cm�2))

031–020 1632–1711 1109 1.747

022–020 1921–2067 1046 0.740

121–020 1984–2079 1817 14.342

130–001 1991–2061 3 0.005

130–100 2040–2102 10 0.026

201–010 2281–2325 11 0.004

031–010 2333–2407 742 0.477

022–010 2603–2769 1629 1.740

131–020 2666–2741 899 0.834

031–000 3032–3111 689 0.420

130–000 3133–3249 384 0.126

022–000 3256–3511 1826 1.234

121–000 3286–3480 1764 7.481

131–010 3369–3440 910 0.694

113–100 3506–3566 466 0.197

014–001 3525–3605 992 1.316

113–010 3864–3968 1466 4.398

014–010 3875–3968 183 0.076

320–010 3888–4000 279 0.175

202–000 4034–4207 1387 1.108

131–000 4065–4145 714 0.460

301–000 4179–4264 1213 2.489

221–000 4444–4525 1066 1.041

014–000 4522–4700 1998 1.638

113–000 4562–4668 1599 8.814

320–000 4586–4700 587 0.435

212–000 4700–4845 924 0.415
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The line positions of six bands associated with the

upper states (0 2 2) and (1 2 1) have been calculated using

the Hamiltonian parameters for the upper states from Ref.

[76]. The calculations of the line intensities of the

2n2þ2n3 and n1þ2n2þn3, 2n2þ2 n3�n2 and n1þ2n2þ
n3�n2, 2n2þ2n3�2n2 and n1þ2n2þn3�2n2 bands

were made with the transition moment parameters from

Refs. [76–78], respectively.

The line positions of four bands of Table 4 and of all

bands of Table 5 (except the band n1þ2n2þn3–n2)
associated with the upper states {(0 1 2), (1 1 1), (2 1 0),

(0 0 3), (1 0 2), (2 0 1), (1 3 0), (3 0 0)} have been calcu-

lated using the Hamiltonian parameters for the upper

states from Ref. [79]. The transition moment parameters

for the cold bands (2590–3400 cm�1 spectral range) of

these states are given in Ref. [79]. The calculations of the

main part of the hot bands line intensities have been done

with the transition moments given in Refs. [75,78,80]. The

dipole moment transitions of the 2n1þn3�n2, n1þ2n3�n2
and 3n3�n1 bands can be found at the web sites of

the S&MPO system [81], similarly in Russia: http://smpo.

iao.ru/1446x915/en/tran/par/1/8-2/; http://smpo.iao.ru/

1446x915/en/tran/par/1/8-3/, or in France: http://ozone.

univ-reims.fr/1446x915/en/tran/par/1/8-2/; http://ozone.

univ-reims.fr/1446x915/en/tran/par/1/8-3/.

Three bands of the (1 3 1) upper state have been

calculated with the Hamiltonian parameters [82] and

the transition moment parameters [82,76,80] for the cold

and hot bands, respectively.

The line positions of the eight bands associated with

the upper states {(0 1 4), (1 1 3), (3 2 0)} and the line

intensities of cold bands have been calculated using the

Hamiltonian and the transition moments parameters

from Ref. [83]. The transition moment parameters from

Refs. [84,85] were used to calculate the line intensities of

the n1þn2þ3n3�n1, n2þ4n3�n3, and n1þn2þ3n3�n2
hot bands. Estimates of the transitions moments of the

4n3 and 3n1þn2 bands [86] were used for the calculations

of the line intensities of the n2þ4n3�n2, and 3n1þ
2n2�n2 hot bands.

The calculations for the 2n1þ2n3, 3n1þn3, 2n1þ
2n2þn3 and 2n1þn2þ2n3 bands are based on the results

from Refs. [87–90].

Table 6 lists 9 bands in the 5935–6394 cm�1 spectral

region. These results were obtained by using CW–CRDS

technique [91,92]. The spectra were recorded in Laboratoire

de Spectrométrie Physique at the Joseph Fourier University

(Grenoble, France). The analysis and theoretical modeling of

these data have been reported in Refs. [92,93]. Note that the

6017–6131 and 6318–6394 cm�1 spectral ranges are domi-

nated by a band labeled as 2n1þ2n2þ3n3. See Refs. [92,93]

for more details.

The spectral interval 1854–2768 cm�1 has been

updated for the two isotopologues 16O16O18O and
16O18O16O, this region relates to the bands: 2n3, n1þn2þ
n3�n2, n1þn3, 2n1, and n1þn2þn3. Bands 2n3, n1þn2þ
n3�n2, 2n1, n1þn2þn3 of 16O16O18O as well as bands

n1þn2þn3 and n1þn2þn3�n2 of 16O18O16O have been

Table 5

Updated ozone bands (16O3) in the GEISA-09 edition.

Band Spectral region (cm�1) Number of lines Sum of line Intensities

(10�21 cm�1/(molecule cm�2))

111–100 1613–1849 1271 0.269

012–001 1616–1826 1581 0.645

111–001 1629–1854 1557 0.131

012–100 1637–1706 85 0.004

210–100 1701–2051 1663 0.198

210–001 1719–2066 388 0.015

003–100 1848–2104 1920 1.183

003–001 1867–2098 2847 1.313

102–100 1869–2071 2206 0.429

012–010 1872–2120 3794 3.221

201–100 1888–2243 2831 10.979

201–001 1896–2289 2165 0.331

102–001 1901–2086 2965 15.787

111–010 1918–2220 3520 43.121

210–010 2005–2353 3050 0.844

300–001 2012–2313 1804 0.921

300–100 2021–2288 2508 0.475

003–010 2254–2396 1809 1.199

102–010 2270–2407 479 0.040

130–010 2424–2552 487 0.019

012–000 2590–3025 3886 3.293

111–000 2626–3050 3604 25.087

121–010 2678–2774 1851 1.658

210–000 2704–3156 3327 0.812

003–000 2907–3202 4512 141.143

201–000 2919–3273 2706 7.910

102–000 2925–3196 4646 13.774

300–000 2955–3398 2445 0.472
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included in the GEISA-09 database for the first time.

The calculations of all bands of both isotopologues were

made using the Hamiltonian parameters for the lower

states for the (0 0 0) and (0 1 0) states from Ref. [94].

Hamiltonian parameters of the upper vibrational states

correspond to Ref. [95] for 16O16O18O and to Ref. [96] for
16O18O16O. The transition moment parameters of both

species, given by Barbe and De Backer-Barilly [97] have

been obtained from studies of Fourier-transform ozone

spectra enriched in oxygen-18. The broadening para-

meters (both air and self) for all B-type and A-type bands

were derived, respectively, from those of n1 and n3 bands.
These values are originated from the S&MPO system [81]

(see Ref. [54] at http://smpo.iao.ru/1280x795/en/refs/9/

therein). These parameters are different from those reported

in HITRAN-08 [13].

The temperature dependence coefficient n¼0.76 of the

air pressure broadening has been attributed to all the

transitions. The absolute intensities are obtained from

direct experimental measurements for each band (no

indirect normalization).

Line lists are given with a cutoff intensity of

1�10�24 cm�1/(molecule cm�2) at 296 K for 100% abun-

dances of 16O16O18O and 16O18O16O. It has to be noted

that all the ozone data in GEISA-09 are given in natural

abundance of isotopologues.

2.2.4. N2O (molecule 4)

The N2O line list has been almost completely revised.

Only the rotational part: 0.83–45.263 cm�1 has been kept

from GEISA-03 (451 entries). All 50,182 lines of Toth’s data

[98–101] from the website: http://mark4sun.jpl.nasa.gov/

n2o.html, which cover the spectral range 525.462272–

7796.633112 cm�1, have been included in GEISA-09 line

list. As a consequence, three new isotopologues have been

added: 15N2
16
O, 14N15N18O and 15N14N18O, representing a

total of 668 entries. The source of the N2O broadening

parameters are from Ref. [101] which gives N2 and air

widths and shifts of N2O. These data were used to generate

the parameters used for the website http://mark4sun.jpl.

nasa.gov in 2004 under science data.

The N2O GEISA-09 archive now comprises 50,633

entries and eight isotopologues. This represents an

increase of 23,952 entries over GEISA-03 (26,681 entries).

The JPL catalog contains new entries for the rotational

transitions of N2O in its n2¼0, 1, and 2 vibrational states

as well as for the singly substituted isotopologues in their

ground vibrational states. These entries are based in

particular on [102]. These entries will be considered for

the next update of GEISA.

2.2.5. CH4 (molecule 6)

Many of the infrared methane line parameters of 12CH4

were updated between 0 and 3300 cm�1, but little

changes were made for the 13CH4 parameters. As noted

in Sections 1 and 2, entries for methane isotopologues
12CH3D and 13CH3D are included in GEISA as an indepen-

dent molecule, CH3D, numbered ‘‘23’’ (see Table 2);

related updates are described below. At the longer wave-

lengths, a minimum intensity limit of 10�29 cm/molecule

at 296 K was applied out of planetary considerations, but

the weak lines were still not included in the near-IR

regions. Misaligned fields in the near-IR quantum num-

bers were corrected, but only a few new assignments (and

thus lower state energies) were entered to existing

entries. Significant changes were made for air-broadening

coefficients between 5800 and 6180 cm�1.

Below 3300 cm�1, new calculated 12CH4 line positions

and intensities were obtained from the global analysis by

Albert et al. [103] of the three lowest polyads (ground

state, dyad from 900 to 1900 cm�1 and pentad from 1900

to 3400 cm�1). In the far-IR, the intensities of ground

state–ground transitions were adjusted by 16% based on

Wishnow et al. [104], but no change was required for the

dyad–dyad (n2�n2, n2�n4, n4�n4) hotbands. Some pre-

dicted pentad (2n4, n2þn4, n1, n3 and 2n2) positions were

recomputed using semi-empirical upper state energy

levels obtained by adding observed positions to calculated

lower state energies. The hot band parameters between

900 and 3500 cm�1 and of the Octad (3200 and

4900 cm�1) were taken from GEISA-03 rather than the

global study because the prior database had better

accuracies for the strongest features in the interval; a

minimum intensity limit for hot bands was set to

10�27 cm�1/(molecule cm�2) at 296 K.

The line list for methane near 6000 cm�1 was some-

what improved using new measurements of intensities,

empirical lower state energies and broadening para-

meters of the stronger features. First, the intensities and

widths for the 5860–6180 cm�1 region were replaced by

results from Frankenberg et al. [105]. This also included

implementation of the empirical lower state energies of

Margolis [106,107] which were missing in GEISA-03.

In addition, lower state values from Gao et al. [108]

Table 6

New GEISA-09 ozone bands (16O3) from CW-CRDS spectra [91,92].

Band Spectral region (cm�1) Number of lines Sum of line Intensities

(10�24 cm�1/(molecule cm�2))

034–000 5935–6083 610 1.178

105–000 5971–6071 1006 2.456

124–000 6004–6363 1933 4.566

223I–000 6017–6131 1578 13.188

510–000 6030–6139 272 0.401

025–000 6225–6311 913 7.656

430–000 6295–6395 75 0.298

501–000 6301–6366 685 6.335

223II–000 6318–6394 717 6.758
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were added. However, several thousand weak lines

(o10�24 cm�1/(molecule cm�2) are still missing be-

tween 5500 and 6180 cm�1. There are a number of

recently published and ongoing studies which will help

to improve the near infrared (4800–7700 cm�1) line

parameters [109–118].

For broadening, relatively few (o3000) direct mea-

surements of widths and pressure shifts are available for

methane transitions so that default values for self- and

air-broadened widths, air-induced pressure shifts and

temperature dependences are applied (similar to those

used in earlier versions of GEISA see [119,120]. For the

7.5 mm region of the Dyad, new measurements of �500

transitions from Smith et al. [121] were inserted for self-

and air-broadening widths, shifts and temperature depen-

dence of widths. For the 3.3 mm region of the Pentad,

�3800 theoretically predicted broadening coefficients

(air-widths, pressure shifts and temperature depen-

dences) from Antony et al. [122] and �500 prior mea-

surements [119] were inserted for n3. At 2.3 mm (the

Octad), the self- and air-broadening parameters of Predoi-

Cross et al. [123,124] were retained in the list carried over

from the GEISA-03 database.

In the 1.66 mm region (the Tetradecad) over 480 air-

broadened widths and shifts and some temperature

dependence were inserted between 5560 to 5860 cm�1

[111], while the scaled N2-broadening reported by

Frankenberg et al. [105] were used from 5860 to

6184 cm�1. Otherwise, defaults constants of 0.75 below

5860 cm�1 or 0.85 above 5860 cm�1 were set for the

temperature dependence.

Lastly, the current methane database is customized to

interpret atmospheric remote sensing of the Earth.

Further near-IR analyses will be needed for planetary

and stellar applications. (e.g., [125]). Calculations of

partition functions [126] and much weaker transitions

can be found at http://www.iao.ru/mirs or http://icb.

u-bourgogne.fr/JSP/TIPS.jsp. However, extrapolations to

higher values of quanta provide less accurate parameters,

particularly for the intensities.

2.2.6. O2 (molecule 7)

Line parameters for the oxygen A-band (b1Sg
þ
’X3Sg

�
)

were revised for 16O2 and 16O18O, and those of 16O17O

were added in the 0.76 mm region. The line positions,

intensities, air- and self-broadened half-widths and air-

induced pressure shifts were taken from the work of

Robichaud et al. [127–130] who performed CW-CRDS

of the P branch. The positions now have accuracies

of 0.00006 cm�1 or better for 16O2 and 16O18O and

0.00050 cm�1 for 16O17O through calibration against

atomic potassium calibration standards [131]. The differ-

ences between the old and new positions are on average

0.0007 cm�1 [127] for 16O2 and 0.002 cm�1 [129] for
16O17O, but much larger for 16O18O (up to 0.20 cm�1)

because the latter were based on 60-year-old results

[132].

Line intensities changed only slightly for the first two

isotopologues: �0.8% for 16O2, þ1% for 16O18O, but 75%

for 16O17O (depending on the rotational quanta). The

accuracies are thought to be 71% or better for the first

two species, but more study is needed for 16O17O.

For all three species, the widths are computed via an

expression from Yang et al. [133]

HWHM¼ Aþ
B

1þc1J0þc2J02þc3J04
ð1Þ

by using the 16O2 constants from Table 6 of Robichaud

et al. [128] based on retrievals done with Galatry (not

Voigt) profiles. For the widths, the values at high quantum

numbers (J422), previously in error by more than 40%

near J¼30, are now thought to be accurate to 72%.

Pressure-induced shifts are still rather uncertain

(70.003 cm�1) with different studies in poor agreement

(e.g., [129,134,135]). For the interim, the measured

A-band pressure shifts of Robichaud et al. [127] for the

P branch and the averages of shifts from Predoi-Cross

et al. [134,135] for the R branch were inserted, along with

the temperature dependence of widths from Brown and

Plymate [136].

Finally, it should be emphasized that even with these

improvements, the line parameters are not sufficient to

reproduce atmospheric observations at 13,100 cm�1

because Voigt line shapes are inadequate. The combined

analyses of Tran and Hartmann [137], Predoi-Cross et al.

[134,135] and Robichaud et al. [128–130] have demon-

strated the need to consider line mixing, Galatry and/or

speed dependence line shapes in order to model the

oxygen A-band properly.

It has to be noted that the revised O2 GEISA-09 line list

does not derive from the GEISA-03 line list, but from the

HITRAN 2004 [13] one. The major difference between

the two line lists is for the intensity values, especially in

the 1.27 mm spectral region (Ref. [32] of Ref. [8]). As an

unfortunate consequence of this alternate line list inclu-

sion (due to a final mis-manipulation among different

generated test files for data validation studies), the two

lines closest to the g band head (at 15,927.701 and

15,927.805 cm�1), present in GEISA-03, are now detri-

mentally missing in GEISA-09, propagating a technical

error occurring in HITRAN 2004. This must be fixed in the

next GEISA edition.

2.2.7. NO (molecule 8)

The GEISA-03 NO line list has been totally replaced by

a new one provided by Goldman [138]. The new line list is

partially based on the work described by Goldman et al.

[139], and is equivalent to the updated NO in HITRAN-08

[13]. The updates mainly consist of: including, for the first

time, Einstein-A coefficients to replace, in format field M,

the former GEISA-03 transition probabilities (see

Table 11) and the implementation of hyperfine splitting

for the microwave and far infrared lines. Magnetic dipole

satellite transitions between spin components of the

electronic ground state have also been added, and are

further identified by the letter ‘‘m’’ in the first field for the

upper state quantum numbers. When lines with resolved

hyperfine structure were not available from Ref. [139],

they were taken from the JPL catalog [16].

These updates have increased the total number of NO

transitions in GEISA from 99,123 to 105,079 (293 bands).
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2.2.8. SO2 (molecule 9)

Sulfur dioxide, SO2, is well known to be both of astro-

physical and planetary importance. SO2 is an important

constituent on Venus [140–144] and Io [145–148], where

it actively participates in the photochemistry of their atmo-

spheres. It has also been observed in comets [149–152]. In

the terrestrial atmosphere, SO2 is a trace species produced by

both anthropogenic and natural sources; mainly present in

the troposphere [153–155], it is a primary pollutant emitted

by fuel combustion and responsible for the production of

acid rain. The most important natural sources of SO2 are the

oxidation of sulfur compounds from oceans and marshes

and from volcanic eruptions and outgassing. Most volcanic

SO2 emissions remain in the troposphere where the lifetime

of the species strongly depends on the meteorological

conditions. After major volcano eruptions, SO2 is also present

in the stratosphere [156–157] in high concentrations, where

it is converted into sulfate aerosols which affect both strato-

spheric chemistry and climate. SO2 has been detected on Io

in the microwave and more recently at 19 mm [158]; this is

of high relevance to the studies of exchanges between the

atmosphere and the surface of the satellite.

The GEISA-03 database provided SO2 parameters in

seven different spectral regions, which correspond to transi-

tions in the microwave region and the 19.3, 8.6, 7.3, 4, 3.7

and 2.5 mm spectral regions. However in the 19.3, 8.6 and

7.3 mm spectral regions new studies [159–162] have been

performed improving the corresponding spectral para-

meters. These three spectral regions are important for SO2

measurements in atmospheres. The 7.3 mm which is the

strongest SO2 infrared region unfortunately cannot be used

for ground measurements of SO2 since it is severely over-

lapped with the strong n2 band of water vapor. On the other

hand, the n1 band, although about nine times weaker

corresponds to a rather clear atmospheric window. Finally

the rather weak 19.3 mm region can be used for retrieving

SO2 in the atmosphere of planets [158].

Based on the new studies an improved line list including

line positions, intensities, transition assignments and lower

state energy levels has been generated. It includes not only,

for the main isotopologue 32SO2, the cold bands n2, n1 and

n3, but also the corresponding hot bands 2n2�n2, 3n2�2n2,
n1þn2�n2 and n3þn2�n2, as well as the n1, n3,
n1þn2�n2, n2þn3�n2, n1þn3 bands of 34SO2, from the

results of a series of papers [163–165] devoted to the high

resolution study of the absorption of the 34SO2 species in the

infrared. The resulting newly archived 34SO2 spectral line

parameters are much better than the previous ones, related

only to the n1þn3 band. The accuracy for line positions is

estimated to be better than 0.001 cm�1. For line intensities

the accuracy is estimated to be of the order of 2–3%

degrading up to about 15% for high J or Ka transitions.

Finally, the GEISA-09 SO2 line list comprises a total of

68,728 lines among which 43,941 are new or updated

entries. From GEISA-03 have been kept 24,787 entries of

the main isotopologue 32SO2, in two distinct spectral

regions, i.e., 0.017394–256.241135 cm�1 (9622 rotational

lines) and 2433.192300–4092.948220 cm�1 (15,165 lines).

As far as the pressure broadening coefficients are

concerned the situation is different for air-broadening

and self-broadening coefficients.

For the air-broadened half-width coefficients (HWHM)

it turns out that it was only possible to estimate an

average value for this parameter. In fact no variation of

this parameter with respect to the lower quantum num-

bers J or Ka of the transitions could be determined. As an

example, Fig. 5 presents the measured parameters

(Y-axis) with respect to the lower quantum numbers J of

the transitions (X-axis), for the microwave and the n3 and

n1 bands spectral regions. It appears not possible to derive

any clear variation (the same is true when these para-

meters are plotted versus the quantum number Ka) so

only an average value of 0.1025 cm�1 atm�1 could be

determined. This value has been used for all the updated

lines of isotopologue 32SO2; in the case of isotopologue
34SO2, the value 0.1000 cm�1 atm�1 has been attributed

to the lines of n1þn3 The GEISA-09 missing value

�0.9999 cm�1 atm�1 has been given to the lines of

n2þn3�n2 for both isotopologues. Related with the

entries remaining from GEISA-03, the average value is

0.1000 cm�1 atm�1 for the 9622 rotational lines and

0.1100 cm�1 atm�1 for the other 15,165 lines.

The situation is quite different for the self-broadening

parameters. It was possible indeed to observe a clear

variation of these parameters with respect to the Ka

quantum number of the lower state of the transitions

(see illustration in Fig. 6 for the n1, n2, and n3 bands, with

a display similar to Fig. 5). On the other hand no variation

with respect to the quantum number J could be observed.

Based upon these results, it was decided to include in

the database the following values for the self-broadened

half-width coefficients:

HWHMself¼0.4 cm�1/atm for Kar5

HWHMself¼0.156 cm�1/atm for KaZ21

HWHMself is calculated through a linear interpolation

for 6rKar20

For the updated transitions, these new parameters

have been used for all the lines of main isotopologue
32SO2 except for those of band n2þn3�n2 for which the

GEISA-09 missing value �9.9999 cm�1 atm�1 has been

Fig. 5. 32SO2 Lorentz air-broadened half-width parameters (at 296 K)

( Microwave, n3 band,’ n1 band) versus the quantum number J of

the lower level of the transition.
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given to both isotopologues, as well as to 83 lines of

isotopologue 34SO2 in the spectral region 1165.402–

1379.267 cm�1.

For the GEISA-03 retained transitions, the missing value

has been attributed to the rotational transitions and the

default value 0.39 cm�1 atm�1 to all the other ones

As a consequence, an accuracy of 10–15% for the newly

updated air-broadening and self-broadening parameters

seems reasonable.

Finally, a ‘‘standard’’ default value of 0.75 has been

used for the temperature dependence coefficient n of the

air-broadening halfwidth.

It is worthwhile mentioning that the CDMS catalog

provides an entry for n2 which is based on extensive

rotational transitions in its n2¼0 and 1 states [166] along

with previous IR data. This entry may be the basis for a

GEISA entry in the next update.

2.2.9. NO2 (molecule 10)

The study by Perrin et al. [167] provided accurate line

positions and absolute intensities for several NO2 bands,

including the n2 and n3 fundamentals and their associated

hot bands. Benner et al. [168] obtained precise line

positions and relative intensities for the n3 band including

accurate determinations of position differences for a large

number of spin-splittings. In addition, air-broadened half-

width and air-induced pressure shift coefficients and their

variations with temperature were also determined for

over 1000 transitions. These two studies [167,168] were

combined to form an updated NO2 line list at 6 mm. The

positions and absolute line intensities are retained to

values from Ref. [167] for the n3 band transitions, while

the measured values of half-width, pressure-induced shift

and the temperature dependence exponents of half-width

coefficients were inserted line-by-line.

For all other transitions the values calculated using the

empirical expressions of Ref. [168] were applied for the

half-width, pressure shift and their temperature depen-

dences. Values for higher Ka quantum numbers were

constrained to the highest measured Ka (Ka¼9 for half-

width and Ka¼7 for pressure-induced shift coefficients).

No pattern was discerned for the air-broadening tem-

perature dependence exponents, and a simple linear

equation in m (m¼N00 for P and Q branch transitions

and N00þ1 for R-branch transitions) was fit to the mea-

surements. For selected widths, the RMS deviation was

2.5%. In GEISA-03, the air-broadened half-width coeffi-

cients of all transitions were set to a default value of

0.067 cm�1 atm�1 at 296 K, the self-broadened half-

width coefficients to 0.095 cm�1 atm�1 at 296 K, air

induced pressure-shift coefficients were set to zero and

the temperature dependence exponents of air-broadened

half-width coefficients were set to a default value of one.

In the new database at 6 mm, only the self-broadened

half-width coefficients remain as default values

(0.095 cm�1 atm�1 at 296 K), as was done in [8,9]. The

NO2 line lists are similar in GEISA-09 and HITRAN-08 [13].

2.2.10. NH3 (molecule 11)

The line parameters given in GEISA-03 for the spectral

interval 0.058–5294.502 cm�1 from Kleiner and Brown

[169] and described in Kleiner et al. [170] have been

slightly revised in GEISA-09, on the basis of an updated

line list issued soon after the final completion of GEISA-03

final process. The NH3 line lists are similar in GEISA-09

and HITRAN-08 [13] except for duplication of two lines in

HITRAN, at 4561.037254 cm�1 and 4568.372254 cm�1.

2.2.11. PH3 (molecule 12)

Phosphine has been detected in the atmosphere of

both Jupiter and Saturn [171,172] and is a significant

absorber in the 5 mmwindow in Jupiter where it was used

to probe the deeper atmosphere [173]. Features of PH3

near 3425 cm�1 are clearly seen in ground-based spectra

of Saturn [174,175], and line parameters for these bands

are needed for the interpretation of data recorded by

VIMS on the Cassini spacecraft [176].

Based on the work of Butler et al. [177], 9 new bands

have been added in the region from 2724 to 3602 cm�1,

representing an increase of 8359 entries since GEISA-03 PH3

archive. The collision-broadened parameters of the 770 to

2472 cm�1 spectral range have been updated using the

results in Ref. [177]. Over 8000 line positions and intensities

of phosphine, between 2724.477 and 3601.652 cm�1, were

measured at 0.0115 cm�1 resolution.

Quantum assignments were made to most of the

eight interacting vibrational states: 3n2 (2940.8 cm�1),

2n2þn4 (3085.6 cm�1), n2þ2n4 (3214.9 cm�1), n1þn2
(3307.6 cm�1), n2þn3 (3310.5 cm�1), 3n4 (� 3345 cm�1),

n1þn4 (3426.9 cm�1), and n3þn4 (3432.9 cm�1). However,

a recent global study of PH3 by Nikitin et al. [178] demon-

strated the complexities of modeling this region and

revealed the need to investigate the consistencies between

band intensities at 5 and 3 mm.

2.2.12. HNO3 (molecule 13)

A very important improvement has been brought to the

entire list of lines of HNO3. The entire GEISA-03 content

(171,504 entries in the spectral range 0.035141–

1769.982240 cm�1) has been replaced with data originating

from two different sources, i.e., from Perrin [179], in the

Fig. 6. 32SO2 Lorentz self-broadened half-width parameters ( n2, n3
band, ’ n1 band) versus the quantum number Ka of the lower level of

the transition.
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spectral range 0.011922–769.982240 cm�1, and from Petkie

[180] in the spectral range 0.155640–527.247646 cm�1.

In Perrin’s work, an improved set of line positions, line

intensities and line broadening parameters was generated

in the infrared spectral region, using new and accurate

experimental results concerning line positions and line

intensities as well as sophisticated theoretical methods.

The present update was performed in two steps,

described in Refs. [181,182], respectively.

The first study [181] was performed in the 820–

1770 cm�1 spectral range covered by the MIPAS instru-

ment and the results of this first update are summarized

in Table 5 of Ref. [181]. The line positions have been

improved for the n5 and 2n9 cold bands and n5þn9�n9
hot band around 11.2 mm and for the n8þn9 and n6þn7
bands around 8.3 mm (see details in Refs. [181,183] and in

Refs. therein). In addition, the line intensities were

updated in the 11.3, 8.3 and 7.6 mm spectral ranges by

making use of the cross-sections measurements per-

formed in Ref. [184].

The results of the second update are described in

Table 1 of Ref. [182]. The intensities for the n6 and n8
bands centered at 646.826 and 763.154 cm�1, respec-

tively, were decreased by about 20–30% as compared to

GEISA-03. Near 11.3 mm approximate parameters for the

n5þn7�n7 and n5þn6�n6 hot bands have been added to

the line list for the first time. Also a complete update of

the air-broadening parameters was performed in the

11 mm region following recent line-broadening calcula-

tions [185]. It should be noted that the air-broadening

parameters implemented in the narrow Q branches of the

n8 and n5þn9�n9 bands at 763.154 and 885.425 cm�1,

respectively, account empirically for line mixing effects as

evidenced by laboratory measurements.

The validation of these updates in the new line list

was performed during several ground based, balloon

borne or satellite measurements of atmospheric HNO3

[181,185,186].

Future studies should concentrate to the improve-

ments of HNO3 line parameters in the 7.6 mm region.

Indeed this region which corresponds to the n3 and n4
bands located at 1325.7354 and 1303.5182 cm�1, respec-

tively, needs major updates in term of line positions and

intensities. Also, the previous studies in this region [188]

did not consider resonances due to several dark states

which perturb the 31 and 41 energy levels.

The cataloged spectral parameters of nitric acid have

been updated in the millimeter/sub-millimeter-wave and

22 mm far-infrared regions. The calculated line para-

meters are based on the spectroscopic constants derived

from the analyses of millimeter and sub-millimeter wave

rotational spectra found in Refs. [189–191]. All predic-

tions were calculated using the SPCAT program package

[192]; (http://spec.jpl.nasa.gov/ftp/pub/calpgm/spinv.pdf)

for a temperature of 296 K, an isotopic abundance of

0.989, a rotational partition function of 27,343, and a

vibrational partition function of 1.304 [193].

In the mm/sub-mm-wave region, the pure rotational

transitions from the vibrational states with band origins

below 1000 cm�1 have been included in this update.

These vibrational states account for about 97% of the

thermally populated molecules at 296 K. This includes

transitions in the ground state, n9¼1, n7¼1, n6¼1, n8¼1,

and the interacting n5¼1/n9¼2 dyad. The details of the

analyses and measurements can be found in Refs.

[189,190] and the set of references contained therein.

In the 22 mm far-infrared spectral region, line para-

meters for the fundamental n9 band as well as the two hot

band n9�n9 and n5�n9, have been updated. Line posi-

tions for the bands were calculated from the rotational

analyses in Refs. [189,190] and the band origins deter-

mined in Refs. [183,194]. The high-resolution far-infrared

spectrum in Ref. [195] was used both as a stringent test

of the predicted far-infrared transition frequencies and

to determine the relative intensities of the hot bands

referenced to the intensity of the fundamental n9 band

determined in Ref. [193]. Details of the far-infrared

simulation can be found in Ref. [191].

The new HNO3 GEISA-09 line list has been processed as

the following: starting from Perrin’s line list [179], Petkie’s

data have been included [180], replacing the Perrin’s values

for transitions with same quantum identifications. The

final GEISA-09 HNO3 line list comprises 669,988 entries

in the spectral range 0.011922–1769.982240 cm�1.

2.2.13. OCS (molecule 20)

Substantial revisions involving five isotopologues
16O12C32S, 16O12C34S, 16O13C32S, 16O12C33S, and 18O12C32S

provide new parameters for some 50 bands between 3800

and 4200 cm�1; 13 allowed and two forbidden bands arise

from the ground state while the remainders are hot bands.

The number of transitions increases from �1100 transitions

(for 2n3 of five isotopologues and the n2þ2n3�n2 of
16O12C32S and 16O12C34S) to 10,425 lines. Most of the line

positions are calculated using the effective rovibrational

energy constants based on a global analysis [196–200] whose

line position accuracy was reported to be 5�10�5 cm�1

[196]. The calculated line intensities are taken from analyses

of new FTIR measurements [201–202] performed at JPL to

support Venus studies. Sung et al. [201] reported line

intensities of the 2n3 band at 4101.387 cm�1, n1þ2n2þn3
at 3937.427 cm�1, and 4n2þn3 at 4141.212 cm�1 of
16O12C32S. The new band strengths are in good agreement

(1.3%) with the prior studies by Bermejo et al. [203] and

Naim et al. [196]. Intensities of all the other bands are

determined by Toth et al. [202] with many bands being

measured for the first time, and their uncertainties range

from 1% to 6% depending on bands. The line intensities vary

through five orders of magnitude, but very weak unassigned

features are omitted from the database pending further

analysis.

The air- and self-broadened half-widths are computed,

respectively, using Refs. [204–207]. The self-broadened

temperature dependence exponents of n1 from Bouanich

et al. [207] are also applied for the broadened half-width

coefficients in this region. For the transitions whose J

values are greater than 65 and 75, their air- and self-

broadened half-widths coefficients at 296 K are set to 0.12

and 0.0817 cm�1/atm, respectively [208]. Air-induced

pressure shift coefficients for 2n3 band of OCS reported

by Domenech et al. [209] are inserted for the first time.

In a separate parameter file, the air-broadened OCS
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half-width coefficients are replaced by CO2-broadened

half-width coefficients, using the measurements of Boua-

nich et al. [210] in the n1 band of OCS. This second

database is intended to support remote sensing of Venus

at 2.4 mm and is archived in a GEISA-09 complementary

files line list.

2.2.14. H2CO (molecule 21)

Formaldehyde (H2CO) in the atmosphere can be

retrieved in the 5.7 mm region by MIPAS aboard the

ENVISAT satellite [211] and by the ACE-FTS instrument

on board the Canadian satellite SCISAT-1 at 3.6 mm [212].

For this reason the major update for H2CO in the infrared

region which consists of the complete replacement of

the line positions and line intensity parameters near

3.6 mm and the addition of a line list in the 5.7 mm
region [213].

The line positions were generated using the models

and the parameters described in details in Refs. [214,215]

for the 5.7 and 3.6 mm, respectively. The 5.7 mm corre-

sponds to the n2 band together with three dark bands. In

the 3.6 mm region the lines belong to the n1 and n5 bands

together with nine dark bands. In addition, a consistent

set of line intensity parameters was generated for both

the 5.7 and 3.6 mm spectral regions [213] from analyzing

high-resolution Fourier transform spectra recorded in the

1600–3200 cm�1 spectral range.

The calculated band intensities derived for the 5.7 and

3.6 mm bands are in excellent agreement with the values

achieved recently by medium resolution band intensity

measurements.

Compared to the GEISA-03 database which contains

only 1161 lines near 3.6 mm, the quality of the line

parameters in GEISA-09 is significantly improved in terms

of both the positions and intensities. Details giving the

description of the new database which involves 3713 and

31,796 transitions at 5.7 and 3.6 mm, respectively, are

given in Table 9 of Ref. [213]. A subsequent and comple-

mentary study dealing with measurements and calculations

of formaldehyde pressure induced self- and N2-broadened

half-width coefficients is in progress [216].

Fig. 7 illustrates the extended H2CO line parameter

information included in GEISA-09. Comparative absorp-

tions as synthetic spectra (intensity, in similar arbitrary

unit, along the Y-axis, versus wavenumber along the

X-axis), are displayed in the 5.7 mm and 3.6 mm spectral

regions, corresponding, respectively, to GEISA-03 (red

curve) and GEISA-09 (blue curve) archives.

2.2.15. C2H6 (molecule 22)

The GEISA-03 line list for the 12 mm region of ethane

contained data for the n9 fundamental band of 12C2H6,

from a 1992 analysis by Daunt et al. [217], and the n12
fundamental band of 13CH3

12
CH3, from a high-resolution

work by Weber et al. [218,219]. In the updated 2009

edition, only the line list for the n12 band of 13CH3
12
CH3

has been kept; the data for the n9 band of 12C2H6 has

been replaced with a new list which includes a total

of 21,607 lines belonging to the n9, 3n4, n9þn4�n4, and
n9þ2n4�2n4 bands (n4 is the torsional mode near

289.3 cm–1). It was generated by Vander Auwera et al.

[220] using a spectrum of the n9 band recorded at the

PNNL [221], results from a global analysis of data invol-

ving the four lowest vibrational states of ethane [222]

and measurements of pressure-broadening parameters

[223,224]. Details can be found in [220]. As a result, the

sum of the line intensities and wavenumber coverage in

the 12 mm region are increased from 5.881�10–19 to

1.011�10–18 cm�1/(molecule cm�2) at 296 K (natural

abundance) and from 725.6–918.7 cm�1 to 706.6–

961.2 cm�1, respectively. As shown by Nixon et al.

[225] and Coustenis et al. [226] based on Cassini CIRS

(http://cirs.gsfc.nasa.gov/) data, the new list for the 12 mm
spectral region of 12C2H6 constitutes a significant

improvement over the previously available data, leading

to the first measurement of 12C/13C isotopic ratio of

C2H6 in the atmosphere of Titan. It can be mentioned

that C2H6 acts as the main catalyst in photosensitized

Fig. 7. Overview of the H2CO line parameters in the 5.7 mm and 3.6 mm spectral regions. Lower and upper traces describe the status in GEISA-03 [8,9] and

in GEISA-09, respectively.
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dissociation in Titan’s stratosphere, as shown by Wilson

and Atreya [227].

Note that the quantum number notation for represent-

ing rotation–torsion states has evolved since the GEISA-03

edition. In [220], the levels are identified by J, the

quantum number for the total angular momentum of

the molecule, K, the quantum number for its component

along the symmetry axis, ‘, the quantum number asso-

ciated with the vibrational angular momentum of the

degenerate mode n9, and s¼0–3 which labels the tor-

sional sublevels. In the new line list archived in GEISA-09,

the latter is replaced by the symmetry species A1s, A2s,

A3s, A4s, E1s, E2s, E3s, E4s and Gs in the G36
þ

extended

permutation-inversion group. Because all the allowed

species are s-species, the letter ‘s’ is omitted: for instance,

E1s symmetry is given as ‘E1’ and A1sþA2s is given as

‘A12’. The symmetry of the vibration–rotation–torsion

levels of 12C2H6 corresponding to the excitation of n9
and n4 is given in Table 7. This new notation is common to

GEISA-09 and HITRAN-08 [13]. In GEISA-09, the former

notation has been kept for the not updated n12 funda-

mental band of 13CH3
12
CH3.

Vander Auwera et al. [220] determined absolute line

intensity information by matching to low-resolution

cross-sections. They indicated that the best match

between high-resolution spectra of the n9 band of pure

ethane and spectra calculated at the same experimental

conditions using the generated line list could be obtained

Table 7

Symmetry in the G36

þ

extended permutation-inversion group of vibration–rotation–torsional levels of 12C2H6 involving the excitation of the n9 bending

and n4 torsional modes of vibration.

(a) n9¼even, n4¼even

K J s¼0 s¼1 s¼2 s¼3

0 Even A1s (6) E3s (2)

Odd A2s (10) E4s (6)

6n71 Gs (16) E1s (4)

6n72 E1s (4) Gs (16)

6nþ3 E3sþE4s (8) A1sþA2s (16)

6na0 A1sþA2s (16) E3sþE4s (8)

(b) n9¼even, n4¼odd

K J s¼0 s¼1 s¼2 s¼3

0 Even A3s (6) E3s (2)

Odd A4s (10) E4s (6)

6n71 Gs (16) E2s (4)

6n72 E2s (4) Gs (16)

6nþ3 E3sþE4s (8) A3sþA4s (16)

6n a 0 A3sþA4s (16) E3sþE4s (8)

(c) n9¼odd, n4¼even

G K J s¼0 s¼1 s¼2 s¼3

0 Z0 Even A3s (6) E3s (2)

Odd A4s (10) E4s (6)

o0 Even A4s (10) E4s (6)

Odd A3s (6) E3s (2)

6n71 Gs (16) E2s (4)

6n72 E2s (4) Gs (16)

6nþ3 E3sþE4s (8) A3sþA4s (16)

6na0 A3sþA4s (16) E3sþE4s (8)

(d) n9¼odd, n4¼odd

G K J s¼0 s¼1 s¼2 s¼3

0 Z0 Even A1s (6) E3s (2)

Odd A2s (10) E4s (6)

o0 Even A2s (10) E4s (6)

Odd A1s (6) E3s (2)

6n71 Gs (16) E1s (4)

6n72 E1s (4) Gs (16)

6nþ3 E3sþE4s (8) A1sþA2s (16)

6na0 A1sþA2s (16) E3sþE4s (8)

J and K are, respectively, the quantum numbers associated to the total angular momentum of the molecule and its projection along the molecule top

3-fold symmetry axis, s¼0–3 is the torsional index and G¼K�‘Z0 with ‘¼71 the vibrational angular momentum quantum number associated to n9.
nZ0. The nuclear spin statistical weights are given in parentheses [218]. Empty cells correspond to non-existing levels.
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provided the line intensities were reduced by about 9%.

Very recently, Devi et al. [229] carried out extensive

measurements of spectral line parameters in the n9 band

of 12C2H6. They showed that their high-resolution line

intensities were 10–15% lower than those in the line list

of Ref. [220]. These observations seem to indicate that the

line intensities in GEISA-09, and also in HITRAN-08 [13],

are probably 10–15% too high. Note that the Devi et al

[229] work also provides improved characterization of the

temperature dependence of the N2- and self-broadening

parameters, which will be applied in future editions of

databases.

In the 3.3 mm region, the n7 fundamental band of
12C2H6 exhibits a number of strong unresolved Q-

branches (pQ4 to rQ4), observed between 2973 and

3001 cm�1. GEISA contained a list of 421 lines belonging

to the pQ3 branch observed near 2976 cm�1, generated by

Pine and Rinsland [230]. To complement this rather

limited information, the line positions and intensities

determined for the other strong Q-branches by Goldman

et al. [231,232] have been added to this edition, even

though the data are now quite dated and only allow a

rather approximate modeling of the observed structure of

the branches. The other line parameters have been set to

the same values as for the n9 band. The quantum number

labeling of all the levels and the symmetry of torsionally

split levels are also defined as for the n9 band. The

symmetry of levels involving unresolved torsional com-

ponents is expressed using the species of the D3d group,

i.e., A1g (8), A1u (8), A2g (16), A2u (16), Eg (20) and Eu (20)

(the numbers between parentheses are the nuclear spin

statistical weights [228]). Recent studies [233,234–236]

are becoming available for infrared ethane. For the

important atmospheric region at 3.3 mm, Harrison et al.

[233] measured absorption cross-sections for both pure

ethane and mixtures with synthetic dry air at a number of

temperatures and pressures appropriate for atmospheric

conditions. These data were later converted to line-by-

line parameters by Toon [234] with lower state energies

estimated from the recorded spectra [233]. Two theore-

tical analyses interpreted high resolution spectra and

modeled the observed positions. Di Lauro et al. [235]

predicted positions and relative intensities of seven bands

at 7 mm while Lattanzi et al. [236] extended assignments

in four bands at 3.3 mm and modeled those line positions.

Both studies are reporting new databases applicable to

atmospheric remote sensing with the caveat that the

intensities must be studied further and that unassigned

observed features are not yet included.

2.2.16. CH3D (molecule 23)

This GEISA independent molecule (see the section

Introduction and Table 2) involves methane isotopologues
12CH3D and 13CH3D. For the GEISA-09 modifications, nine

new infrared bands were added at three different wave-

lengths (8, 2.9 and 1.56 mm). In addition, a far-IR predic-

tion (version 1) from the CDMS database [17], based on

frequencies reported by Lattanzi et al. [237], was

included. The 13CH3D species was added to the database

for the first time because the isotopologue 13CH3D was

recently detected in Titan’s stratosphere [238], using

Cassini/CIRS infrared spectrum near 8.7 mm. Fitting simul-

taneously the n6 band of both 13CH3D and 12CH3D and the

n4 band of CH4, this detection allowed a precise determi-

nation of the D/H ratio in methane and yielded a 12C/13C

ratio in 13CH3D consistent with that measured in normal

methane.

A prediction of the 13CH3D triad (n6, n3 and n5) between

952 and 1694 cm�1 was based on the line positions and

energy levels analysis by Ulenikov et al. [239]. The inten-

sities were calculated using the transition dipole moment

parameters of the 12CH3D from Brown et al. [240]. The

calculations were limited to J¼K¼18 as they are the

maximum quantum numbers covered by the experimental

rovibrational term values published in Ref. [239].

Titan and Saturn observations [241,242] also revealed

the need for additional parameters at 2.9 mm. Six new
12CH3D vibrational bands (n2þn3, n2þn5, n2þn6, n3þ2n6
and 3n6) were included for the first time from the analysis

of positions and line intensities of by Nikitin et al. [243].

Finally, the Boussin et al. [244] empirical line list in the

3n2 region at 1.56 mm was included. The self- and air-

broadened widths were generally applied using empirical

formula obtained from 12CH3D triad measurements [245];

however, self- and air-broadened widths and shifts

observed by Boussin et al. [244] were used for 3n2. For
temperature dependence of widths, CH4 values averaged

by J [119] were used as a rough estimate. Additional

laboratory and theoretical studies are needed to complete

and improve the new mid- and near-IR parameters.

2.2.17. C2H2 (molecule 24)

Acetylene has been identified in some of the giant

planets and Titan since the mid-1940s, and recently has

been quantified by the Galileo (http://nssdc.gsfc.nasa.gov/

planetary/galileo.html) and Cassini–Huygens missions.

Up to now, the data available in GEISA for acetylene

isotopologues, namely 12C2H2 and 12C13CH2, were limited

to the lower energy region of the spectrum, up to 3 mm
(note that the C2HD molecule has a different code, i.e.,

‘‘48’’, than the one of C2H2, i.e., ‘‘24’’; see Table 1). This

new edition sees the extension of data into the near

infrared range for these two isotopologues, with the

inclusion of a list of line parameters generated by El

Hachtouki and Vander Auwera [246] and Jacquemart

et al. [247,248]. In the 1.5 mm region, corresponding to

the simultaneous excitation of the symmetric and anti-

symmetric C–H stretching modes n1 and n3, respectively,
the line list was created following the high-resolution

intensity study [246]. The identification of the lines, their

positions and lower state energies are from Kou et al.

[249], and the line intensities are calculated using the

parameters of Table 7 of [246]. Note that there is a

mistake in [246]: the isotopic abundance used for
12C13CH2 is a factor 2 too small; it should read 0.02176

instead of 0.01088. As a result, the vibrational transition

dipole moments of 12C13CH2 listed in Tables 6 and 7, and

in Fig. 7 of [246] are a factor 2 too large. The list included

in GEISA-09 contains the corrected values. Also, a large

update has been performed for the 12C2H2 isotopologue

and led to new data in nine spectral regions, namely, in

the regions around 3.8, 3, 2.5, 2.2, 1.9, 1.7, 1.5, 1.4, 1.3, 1.2,
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and 1 mm. The new line lists are described in details in

Refs. [247,248]. Corrections of the 2.5 and 3.8 mm spectral

regions of 12C2H2 have also been performed [250,251]

and are described in Ref. [247]. Table 8 summarizes

the number of new bands (cold/hot in column 2) and

transitions (column 3) of the spectral regions added in

GEISA-09, together with the intensity ranges (in cm�1/

(molecule cm�2)) and spectral domains involved (in mm
in the first column and in cm�1 in the fourth column). It

has to be noted that no transitions are unidentified so that

the lower state energies are calculated using the spectro-

scopic constants from Kabbadj et al. [252].

Fig. 8 illustrates the noticeable improvements brought

to GEISA-09. The information is displayed as the follow-

ing: spectral regions corresponding to existing (or in

project) C2H2 spectroscopic data are identified by vertical

rectangles perpendicular to 3 horizontal axes, with spec-

tral region mean value given at the center of each figure;

on the 3 horizontal axes are given, downwards: the

spectral range extend in two units, mm (top axis) and

cm�1 (middle axis); the DP polyad series values (bottom

third axis; see [247] and Refs. therein for definition)

associated with each of the spectral regions mean values

identified along the above two axes.

These data improve and summarize the current

experimental spectroscopic knowledge on acetylene. Sev-

eral of the spectral regions involved are of atmospheric,

planetary, astrophysical, or meteorological interest, e.g., at

3, 2.2, 1.5, and 1 mm. The study of the region at 7.7 mm,

very useful for several applications, is in progress [253]. In

this spectral region, intensity measurements were under-

taken because the knowledge of C2H2 line intensities is

important for several applications, especially for astro-

physical interest. For example, the acetylene molecule has

been observed in the circumstellar envelopes of carbon-

rich stars. Using IRS on board the SST telescope, Matsuura

et al. [254] detected acetylene bands at 7 and 14 mm in

carbon-rich asymptotic giant branch stars in the Large

Magellanic Cloud. Around 7 mm, GEISA-09 only contains

line positions and intensities that Vander Auwera calcu-

lated from his absolute intensity measurements in the

(n4þn5)
0
þ band [255], for the rotational quantum number

J up to 35. But intensities measured in [255] for some

lines of the (n4þn5)
2 band are not reported in the

databases. The temperature of interest for applications

being around 500 K [254], the knowledge of intensities in

the remaining hot bands is also important. In Ref. [254],

Matsuura et al. could not reproduce the shapes that they

observed in their IRS-SST spectra around 7 mm because of

the lack of data available in the databases.

The GEISA-09 C2H2 line list involves 11,340 entries and

118 vibrational transitions against 3115 entries and 29

vibrational transitions in GEISA-03.

2.2.18. C2H4 (molecule 25)

Ethylene has been identified in the atmospheres of

some of the giant planets and Titan. The spectroscopic

information available for this molecule in GEISA-03 dates

back to the 1997 edition [7]. It includes the 10 and 3.3 mm
spectral regions of the main isotopologue and the 3.3 mm
region of 12C13CH4 [7]. The 10 mm region of 12C2H4

involves the n10, n7, n4 and n12 bands observed near

826, 949, 1027 and 1442 cm–1, respectively. The first

Spectroscopic data present in GEISA-03 

Spectroscopic data recently measured and added in GEISA-09 

Work in progress for line intensities measurements 

cm
-1

100     20     13.6     7.7   5         3.8        3    2.5       2.2       1.9

100    500     700    1300   2100     2600   3300    4000    4600   5200   5900 6600    7200    7800    8500   9000    9600 

0        1          1          2         3           4 5          6           7          8         9         10        11         12       13         14       15 
�P

�m

1.31.41.5 1.2 1.1 11.7

Fig. 8. Improvement of data available in GEISA-09 for the 12C2H2 isotopologue of acetylene. P is the pseudo-quantum number defined for acetylene as:

P¼5n1þ3n2þ5n3þn4þn5, where n1, n2, n3, n4, and n5 are the quantum numbers associated with the normal modes of vibration of the molecule in the

ground electronic state. Note that the thickness of each box does not represent the frequency span.

Table 8

Summary of the bands and transitions added for the 12C2H2 molecule in

the GEISA-09 database. Reference temperature is 296 K.

Spectral

region

(mm)

Number of

bandsa

(cold/hot)

Number of

transitionsa

(cold/hot)

Spectral

domain

(cm�1)

Intensity range

(cm�1/

(molecule cm�2))

3.8b 2/3 90/331 2499–2769 10�21–10�25

3c 0/18 77 e/1971 3139–3398 10�20–10�26

2.5b 4/5 450/720 3762–4226 10�21–10�27

2.2c 4/4 254/392 4421–4798 10�22–10�25

1.9c 7/0 539/0 5032–5567 10�24–10�26

1.7c 2/4 175/350 5692–6032 10�23–10�26

1.5e 2/2 129/224 6448–6685 10�20–10�24

1.5c 4/16 200/1443 6277–6865 10�23–10�28

1.4c 4/0 347/0 7042–7476 10�22–10�25

1.3d 1/0 51/0 7671–7791 10�25–10�24

1.2d 2/0 132/0 8407–8612 10�26–10�23

1.0d 3/1 193/108 9516–9890 10�25–10�22

a A 12C13CH2 data are not mentioned.
b New data from Refs. [246,249].
c New data from Refs. [247,248].
d New data from Ref. [248].
e New data from Ref. [246].
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three bands are already in GEISA [8], while the n12 band is

absent. Recently, Rotger et al. [256] carried out an

experimental and theoretical study of line positions and

intensities in the n12 band of 12C2H4. 1240 line positions

and 871 intensities, measured in a set of Fourier trans-

form spectra recorded at ULB, were fitted using the

tensorial formalism developed at ICB with global root

mean square deviations of 1.6�10–4 cm–1 and 1.88%,

respectively [256]. Using the refined model thus obtained,

the positions, intensities and lower state energies of 5400

lines in the n12 band were calculated. These lines corre-

spond to transitions from levels with Jr40, and lower

and upper state rotational energies up to 1380 and

1510 cm–1, respectively. This initial list of line parameters

was complemented with the self- and air-broadening

parameters, and the temperature dependence of the air-

broadening parameter based on literature [257–260] (see

[256] for details). This n12 band line list (5400 entries),

whose content is summarized in Table 9, has been added

to the present 2009 edition of GEISA.

2.2.19. HCN (molecule 27)

In planetary atmospheres, HCN is an important nitrile, of

astrobiological interest in many cases and whose abundance

and its variations has been thoroughly studied (see for

example Coustenis et al. [226] in the case of Titan). A major

improvement has been accomplished on the entire list of

lines of HCN. The entire GEISA-03 content (2550 entries in

the spectral range 2.870484–18,407.972700 cm�1) has been

replaced, in GEISA-09, with new data originating from two

different sources, i.e., from Harris [261] and from Maki

[262]. The new line list comprises 82,042 entries in the

spectral range 0.00636–17,581.009367 cm�1.

Harris’s [261] data are related to the main isotopolo-

gue H12C14N. Among a total of 108,402 entries 28,624

have been implemented in a supplemental line list

because they did not have upper vibrational state identi-

fications. The HCN archive has been obtained from a

combination of experimental and theoretical data. The

theoretical data were taken exclusively from the line list

of Harris et al. [263]. Experimental data were used in

preference to the ab initio data where they were available.

The line list covers the spectral region 0.011561–

17,943 cm�1. Hot bands, with a lower vibrational state

of 3 quanta of bend, are given for many of the lower

energy transitions. Data are included for transitions up to

the (5001) stretching combination bands. The HCN line

list was constructed in the following stages:

� Construction of a list of laboratory determined energy

levels: The available laboratory line measurements

[264–270]; for line positions were gathered. From these

line position data, a list of HCN energy levels was

determined. This was done by using a technique that

deviates only slightly from that of Harris et al. [271];

the rotational constants are used to compute energy

levels up to an angular momentum quantum number

of 60.

� Construction of a list of laboratory determined line

positions: Using the laboratory determined energy

levels it is straight forward to compute a list of line

frequencies for dipole allowed transitions. The well

known selection rules for dipole transitions require a

change in symmetry and allow a change in angular

momentum of 0, 71. When applied to HCN the

allowed transitions form two groups. The first has a

change in parity of the vibrational angular momentum

with no change in total angular momentum. The

second group has no change in the parity of the

vibrational angular momentum, but a change of plus

or minus one in total angular momentum. For all the

dipole allowed transitions between laboratory deter-

mined energy levels, line positions were computed

by subtracting the lower state energy from upper state

energy.

� Construction of a list of laboratory determined line

intensities: A list of line intensities were computed from

laboratory data [272,273,268–270]. These data are

usually given in the form of band strengths or dipole

moments that are often supplemented with Herman–

Wallis factors. From this data, the line intensities of

individual lines were computed by using the relevant

Höln–London factor and the equation given by Maki

et al. [272].

� Construction of laboratory determined line list: Experi-

mentally measured line intensities were inserted into

the list of laboratory determined energy levels. In this

way, a HCN line list is created that is based upon

laboratory measurements.

� Augmentation of the laboratory determined line list with

ab initio line intensities: Many of the intensities for the

Table 9

Summary of the content of the line list for the n12 band of 12C2H4. The intensities are given at 296 K for an isotopologue abundance of 0.9773.

Value Value

F-min (cm�1) 1380.0239 Int-min (cm�1/(molecule cm�2)) 2.764�10�37

F-max (cm�1) 1509.9819 Int-max (cm�1/(molecule cm�2)) 6.948�10�21

J00max 40 Int-sum (cm�1/(molecule cm�2)) 1.549�10�18

Ka
00
max 20 HWHMair min (cm�1 atm�1) 0.0813

# lines 5400 HWHMair max (cm�1 atm�1) 0.0989

n 0.82 HWHMself (cm
�1 atm�1) 0.125

‘min’ and ‘max’ represent the minimum and maximum values of the corresponding quantity, respectively; ‘F’ is the wavenumber; J00 and Ka
00 are rotational

quantum numbers; ‘# lines’ is the total number of lines; ‘n’ is the temperature dependence exponent of the air-broadening parameter; ‘Int’ is the line

intensity; ‘Int-sum’ is the sum of all the line intensities; ‘HWHMair’ and ‘HWHMself’ are, respectively, the air- and self-broadening parameters.
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dipole allowed bands have not been measured. The

resulting gap in the laboratory determined line list

may only be filled by ab initio data.

Many of the transitions in the ab initio line list of Harris

et al. [263] have been assigned an approximate vibra-

tional quantum number. It has been therefore possible

to insert the line strengths from the Harris et al. [263]

line list into the GEISA-09 line lists, creating a more

complete list of lines.

� Augmentation with ab initio data and truncation: The

upper and lower energy levels for many strong room

temperature lines have not been determined. In order to

account for these strong lines, the GEISA-09 line lists for

HCN were augmented with purely ab initio line position

and intensity data from Harris et al. [263]. Finally, to

reduce the size of the final line list, a minimum line

intensity of 10�30 cm�1/(molecule cm�2) was chosen.

Lines with intensities below this level were removed

from the final line lists.

Maki’s data [262] include the isotopologues: H12C14N,

H12C15N, H13C14N and a new isotopologue species

for GEISA-09, i.e., D12C14N and comprise 5 files in the

spectral ranges: 0.014975–175.672283 cm�1 (408

entries); 533.819433–895.585448 cm�1 (981 entries);

1241.392310–1591.111005 cm�1 (709 entries);

2428.365681–3609.137515 cm�1 (1710 entries) and

452.016228–2725.191923 cm�1) (452 entries) and

452.016228–2725.191923 cm�1 (452 entries) for DCN.

Note that DCN is considered as an isotopologue of HCN

and not as an independent molecule, because it has the

same symmetry as HCN (see Sections 1 and 2).

The origin of the spectroscopic parameters is as the

following:

� The values of line positions and their uncertainties

were based on a large body of data that included many

very accurate microwave and mm-wave measure-

ments [264–281] and also several infrared measure-

ments [265,266,282,283]. For each isotopologue all the

wavenumber data were included in a least-squares

analysis that made it possible to calculate all the

transition wavenumbers, and their uncertainties, given

in the GEISA-09 line list. These uncertainties are twice

the standard deviation.

� The intensities of the far-infrared transitions are

assumed to be well represented by the dipole moment

measured for each vibrational state. The best dipole

moment measurements are those given by Tomasevich

[284] and by DeLeon and Muenter [285] and Ebenstein

and Muenter [286]. The dipole moment is very large

and any Coriolis-type mixing of intensity with other

vibrational states would probably have a very small

effect because the vibrational transition moments are

small compared to the dipole moment. For that reason

it was assumed that the intensities of the far-infrared

transitions could be calculated by using the same dipole

moment for all values of J. The intensities for the n2
transitions for H12C14N, H12C15N, and H13C14N were

taken from the work of Devi et al. [287]. The same

intensity constants were used for the hot bands that

accompany n2. For transitions that involve n241, the

effects of l-type resonance were included as described

by Maki et al. [272]. The intensities of the 2n2 band and

hot band are based on the measurements of Devi et al.

[288] and Maki et al. [272,289]. For these transitions the

effects of l-type resonance were taken into account

[272,289]. The intensities of the n1 transition for HCN,

H13CN, and HC15N were taken from the work of Devi

et al. [290]. The hot bands were assumed to require the

same intensity constants, as was verified by the agree-

ment with the measurements of Devi et al. [290]. For

the n1�n2 transitions near 2600 cm�1 the intensity

constants were taken from the measurements of Maki

et al. [272]. The intensities of the n2þn3 band near

2800 cm�1 came from the work of Maki et al. [289] and

the intensities of the 2n2þn3 transitions near

3520 cm�1 were taken from that same work. In all

cases the GEISA-09 archived line intensities of HCN

could be used to calculate the intensities for other

conditions such as temperature or isotopic composition.

� Except for the regions 2428–2720 cm�1 and 3089–

3450 cm�1, the air-broadened half-width and air-

induced pressure shift coefficients of HCN, and their

temperature dependences, were based on the data

given by Devi et al. [287] for the n2 band of HCN.

Except for some transitions that did not include states

with v140, the line parameters for the regions 2428–

2720 cm�1 and 3089–3450 cm�1 were based on the

measurements by Rinsland et al. [291]. Their earlier

work on the 2n2 and n1 bands of HCN indicated that,

aside from the wavenumbers of the transitions and the

intensities, there is very little vibrational dependence

of the Lorentz pressure-broadened half-width coeffi-

cients for HCN. The only parameters that seemed to be

dependent on the vibrational state were the air-

induced shift coefficients and their temperature

dependences. In GEISA-09 those parameters were

assumed to have the same values given by Rinsland

et al. [291] for all transitions with v1¼1 in the upper

state. The air-induced pressure shift parameters for all

transitions with v1¼0 were assumed to be the same as

those measured by Devi et al. [287] for n2. Devi et al.
[287,288] believed that the parameters were the same,

within experimental error, for both n2 and for 2n2 and

probably would be the same for the ground state as

well. Since GEISA-09 includes transitions involving

much higher rotational states, to J¼60, than those

measured by Malathy Devi et al. [287,288,290] and

Rinsland et al. [291] (Jo34), the trends in the various

line shape parameters were extrapolated beyond rea-

sonable bounds and the uncertainties in the para-

meters were increased to attempt to encompass

reasonable values. All of the broadening and shift

parameters for H13C14N and H12C15N were assumed

to be the same as for the most common isotopologue,

H12C14N. Within experimental error, this assumption

was based on a number of measurements made on the

2n2 band of H12C14N [288].

The air induced pressure shifts for DCN were given

values that were 70% of those for HCN in agreement with

N. Jacquinet-Husson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 2395–2445 2417



a private communication from Smith [292]. That estimate

was not based on any real measurements of DCN but

rather was based on the trend shown by HCl and DCl. The

other parameters for DCN were the same as for HCN, but

again that was not based on any measurements.

In a supplementary file (Table S1), the uncertainties in

the various parameters are summarized and given along

with many other parameters used for processing Maki’s

new HCN data.

The HCN GEISA-09 line list has been processed as

follows: starting from Harris’s line list [261], Maki’s data

[262] have been included, replacing those of Harris’s with

the same quantum number identifications.

The HCN GEISA-09 line list includes 82,042 entries

(775 transitions) against 2550 entries (41 transitions) in

GEISA-03.

2.2.20. C3H8 (molecule 28)

The intensities of the n26 band transitions were cor-

rected in GEISA-03 line list which includes only the cold

band. A PNNL spectrum at 298 K and 0.11 cm�1 resolution

yields an intensity of 4.27�10�19 cm�1/(molecule cm�2)

for the whole band, including cold and hot bands [293], a

value (4.33�10�19 cm�1/(molecule cm�2)) that agrees

with the earlier measurement of Giver et al. [294] at

lower resolution. The vibrational partition function at

296 K is 2.71, so that the intensity of the fundamental

cold band should be about 4.27/2.71¼1.58�10�19 cm�1/

(molecule cm�2). In the GEISA-03 line list, an intensity of

3.76�10�19 cm�1/(molecule cm�2) had been set for the

cold band, based on some low-resolution spectra that

include the hot bands, which is incorrect. The GEISA-03

intensities have thus been multiplied by a factor of 1.58/

3.76¼0.420 in the GEISA-09 edition (see Nixon et al. [295]).

This scaling factor yields an intensity of 1.58�10�19 cm�1/

(molecule cm�2) at 296 K for the fundamental band, as

estimated from the integrated intensity of the whole region

in the PNNL spectrum, 4.27�10�19 cm�1/(molecule cm�2)

including hot bands, divided by the vibrational partition

function at 296 K (2.71).

For all bands, a Lorentz half-width coefficient of

0.12 cm�1 atm�1 at 296 K and a temperature dependence

exponent of 0.50 was assumed for all transitions, follow-

ing N2-broadening measurements by Nadler and Jennings

[296] and Hillman et al. [297]. Propane has been identi-

fied in the atmospheres of some of the giant planets and

of Titan. New propane data from Flaud et al. [298]

including hot bands will be archived in the next version

of the GEISA database. The total number of entries (8983)

has not been altered since GEISA-03.

2.2.21. C2N2 (molecule 29)

A mistake was found in the relative intensities of the

hot sub-bands of the n5 band listed in GEISA-03 (and in

previous versions). More precisely, the intensities of the

(02)2’(02)1, (03)1’(02)2 and (03)3’(02)2 sub-bands

were two times too big; they have been corrected accord-

ingly in GEISA-09. Following this correction, the total

band intensity has been updated by multiplying all line

intensities by 0.95, a factor that yields the best agreement

with Grecu et al. [299] absolute intensity measurements

in the (01)1’(00)0 cold band, as listed in Table 3 (data for

8 mbar of N2 pressure) of Ref. [299]. Note that this

determination slightly disagrees with the older measure-

ment of the integrated band intensity by Kim and King

[300], which would yield intensities 15% larger. For the

Lorentz broadening parameter (HWHM), we used the

expression ‘‘0.12–0.00035m’’ at 296 K, derived from a fit

of the data points in Fig. 5 of Grecu et al. [301]. We

arbitrarily assumed a temperature dependence exponent

of 0.75 for all transitions listed in GEISA-09. This updated

line list will be used for planetary studies in the case of

Titan. The total number of entries (2577) has not been

altered since GEISA-03.

2.2.22. C4H2 (molecule 30)

The diacetylene line list (issued 1982, 1986 [3,4]) still

included in GEISA-03 (1405 entries; 5 bands) has been

replaced in GEISA-09 by a new line list (119,480 entries;

1509 bands) based on experimental and theoretical stu-

dies by Jolly et al. [302]. The lines included belong to the

n8 and n9 bands in the range between 581–730 cm�1 and

191–257 cm�1, respectively. The number of lines has

been increased from 1405 to 119,480. Due to low energy

vibrational modes, the vibrational partition function of

C4H2 is large (Qv¼61 at 300 K). This means that only 28 %

of the molecules are in the ground state at room tem-

perature. In the previous GEISA-03 line list, hot band

transitions from three different excited levels were pre-

sent in the n9 band complex but none in the strong n8
band complex. The new line list includes hot band

transitions with lower vibrational levels up to about

1300 cm�1 for the n8 band complex and up to about

900 cm�1 for the weaker n9 band. This was necessary to

allow for the inclusion of the contributions of all the hot

band transitions with a non negligible intensity at room

temperature. The minimum intensity of the lines is

3�10�24 cm�1/(molecule cm�2) at 296 K. It was also

necessary to extend the quantum identification, in parti-

cular the vibrational quantum numbers of both upper and

lower levels. All n values for the nine vibration modes of

C4H2 have been included in the assignment together with

the four ‘ values corresponding to all bending modes (n1,
n2, n3, n4, n5, n6, n7, n8, n9, ‘6, ‘7, ‘8, ‘9). The new line list is

based on a global analysis study as described by Fayt et al.

[303]. High resolution data from Arié and Johns [304]

were fitted together with other experimental data in the

infrared [305,306] and in the microwave domain [307].

Since no new intensity measurements were available,

band intensity measurements by Koops et al. [308] were

chosen to infer the absolute intensities of the lines.

The improvement of the data is very important in

particular for the study of planetary atmospheres. Diace-

tylene was first detected in Titan’s atmosphere by the IRIS

[309] spectrograph on board the Voyager spacecraft [310]

and is now under close scrutiny by the CIRS spectrometer

on board Cassini [226,311,312]. Using the new line list

Jolly et al. [302] were able to obtain a new fit of the

diacetylene contribution in Titan’s atmosphere recorded

by Cassini–CIRS resulting in very precise abundance

determination and the first detection of the 13C isotopo-

logues of diacetylene in Titan’s atmosphere. Recently
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detection of the main isotopologue occurred in the atmo-

spheres of both Uranus and Neptune using the Spitzer

space telescope [313,314]. Outside the solar system,

detection of diacetylene was achieved in the post-AGB

object CRL2688 and in the proto-planetary nebulae

CRL618 [315]. All detections so far where obtained thanks

to the strong n8 bending mode centered at 628 cm�1, but

the weaker n9 bending mode at 220 cm�1 was also

detected by IRIS and CIRS in Titan’s atmosphere.

2.2.23. HC3N (molecule 31)

A line list for cyanoacetylene has been included in

GEISA since its first editions [3,4] thanks to Goldman’s

data [316]. It was already modified in 1990 following a

new analysis by Arié et al. [317]. In GEISA-09 a completely

new line list, based on experimental and theoretical

studies by Jolly et al. [318], replaces the previous version.

Lines included belong to the n5 and n6 band in the range

between 463 and 760 cm�1. The number of entries has

increased from 2027 (20 bands) in the 1990 version to

179,347 (3302 bands) in GEISA-09. This consider-

able increase was necessary to take into account all

hot band transitions with a minimum intensity of

10�24 cm�1/(molecule cm�2) at 296 K. Transitions with

lower vibrational levels up to about 1500 cm�1 had to be

included to take into account all the intensity of the

bands. Only few lines belonging to hot band transitions

where included [318] in the previous line list. To obtain

this new line list, a global analysis was performed fitting

simultaneously high resolution data from Arié et al. [317]

together with all available experimental data including

microwave and infrared measurements. As a result, posi-

tions and relative intensities of lines belonging to 123

excited sub-states could be obtained. As for C4H2, the

assignment code needed to be modified to take into

account levels with high vibrational quanta numbers (n, ‘).
HC3N possess four stretching and three bending modes.

A complete vibrational assignment includes all seven n
values and three ‘ values (n1, n2, n3, n4, n5, n6, n7, ‘5, ‘6, ‘7).
The absolute intensities of the lines have were derived

from a new measurement of the integrated band inten-

sities of n5 and n6 at 0.5 cm�1 resolution as described in

Jolly et al. [318].

Cyanoacetylene is a molecule of great interest for

planetary atmospheres and in particular for Titan’s atmo-

sphere where it has been detected by IRIS [309] during

the Voyager mission [310]. The presence of HC3N was

confirmed by the ISO space telescope [311] and has been

observed in details since 2004 by the CIRS spectrometer

on board the Cassini spacecraft. The quality of the new

observations by CIRS improves greatly in terms of spectral

and spatial resolution on the previous observations.

Recently, Jennings et al. [319] used the new line list

proposed by Jolly et al. [318] to obtain a good fit of the

HC3N feature at 663 cm�1 in Titan’s spectrum. The con-

tribution of hot bands where clearly observed as a large

shoulder on the high energy side of the main feature. The

quality of the fit enabled small contributions due to 13C

isotopologues of HC3N to be observed, for the first time in

the solar system. The contribution of hot bands a cold

environment such as Titan’ atmosphere is not surprising

given that the partition function equals to 1.69 at 200 K,

which means that about 40 % of the molecules are still in

an excited state.

2.2.24. N2 (molecule 33)

The whole of the line parameters of N2 has been

replaced by a new line list provided by Goldman [320].

Improvements to the line parameters mainly include

intensities and half-widths. The new intensities are

obtained by the use of two works: the work by Goldman

et al. [321], where a semi-empirical Herman–Wallis for-

mulation of the vibration–rotation effects on the inten-

sities associated with a final scaling based on observed

spectra, and the work by Li and Le Roy [322] based on ab

initio methods. Values derived by both, Goldman et al.

[321] and Li and Le Roy, methods are very similar.

However, the ab initio matrix elements of Ref. [322] have

been adopted for the GEISA-09 line list, because it can be

expected that the Herman–Wallis formulation of Gold-

man et al. yields less accurate values with increasing J.

Presently, the GEISA-09 N2 line list is restricted to only the

(1–0) N2 band. It should be noted that Li and Le Roy

method makes it possible to derive additional line para-

meters for other bands that may be of atmospheric impor-

tance. The absolute accuracy of the Li and Le Roy intensities

is estimated to be about 1% by the authors; these new

values are still being validated. As described in Ref. [321],

the new half-widths are based on available experimental

and theoretical studies. As stated in Ref. [321], further

extensions are expected in the near future. The total number

of entries (120) has not been altered since GEISA-03.

2.2.25. CH3Cl (molecule 34)

The GEISA-03 line list for CH3Cl, which was based on

Ref. [323], has been revised using data from Ref. [324]. In

particular, previously unassigned vibrational transitions

have been identified as belong to 2n3 and the self-

broadened half-widths have also been revised for both

isotopologues. The total number of entries (18,344) has

not been altered since GEISA-03.

2.2.26. H2O2 (molecule 35)

The H2O2 (hydrogen peroxide) data previously

archived in GEISA-03 (100,781 entries; 2 bands), for the

n6 band in the 7.9-mm region, have been completely

replaced, leading to improved line positions and intensi-

ties in GEISA-09 (126,983 entries; 130 bands). Indeed, this

new list is more complete as it includes several hot

torsional-vibration sub-bands of the n6 band (up to the

n¼2 torsional quantum number), instead of only the two

main torsional components of the n6 band (in the n¼0,

t¼1 and n¼0, t¼3 torsional quantum numbers). In

addition the new line positions are more accurate since

the vibration–torsion–rotation coupling the energy levels

from the 61 state with those from the 21, 31 and ground

vibrational states were accounted for. The line intensities

are also more accurate as these parameters are based on

new line intensity measurements and on a sophisticated

theoretical treatment which account for the torsional

effects. The sources of the new data are Perrin et al.

[325] and Klee et al. [326].
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2.2.27. H2S (molecule 36)

No new line list has been implemented in GEISA-09 for

hydrogen sulfide, but updates occurred for air- and self-

broadened pressure half-widths. Where available, mea-

sured values have been adopted – those from Sumpf et al.

[327], Kissel et al. [328,329] and Waschull et al. [330], for

air-broadened half-widths and those from Refs. [327,330]

and from Sumpf [331] for self-broadened half-widths.

Otherwise, default values of 0.074 and 0.1580 have been

assigned to air- and self-broadened half-widths, respec-

tively. These values have been obtained as averages of the

ones previous quoted in the above reference. The total

number of entries (20,788) has not been altered since

GEISA-03.

2.2.28. HCOOH (molecule 37)

GEISA-09 contains a complete replacement and

enhancement of the spectroscopic information provided

for formic acid (62,684 entries; 8 bands). Indeed, until

GEISA-03, only parameters for 3388 lines of the n6 band of

trans-H12C16O16OH near 9 mm were available. They origi-

nated from the work of Goldman and Gillis [332]. The sum

of the line intensities was equal to 1.757�10–17 cm2/

(molecule cm�1) at 296 K, determined using a Fourier

transform laboratory spectrum recorded at the University

of Denver.

GEISA-09 provides spectroscopic information for trans-

H12C16O16OH in three spectral regions: the pure rotation

spectrum in the far infrared, the n6 and n8 bands near

9 mm, and the n3 band around 5.6 mm.

Far-infrared Fourier transform spectra of the pure

rotation spectrum of formic acid were recorded in the

range from 20 to 130 cm�1 and analyzed by Vander

Auwera [333]. To provide an accurate set of parameters

describing the rotational structure of the ground state of

trans-H12C16O16OH, 592 far-infrared line positions were

fitted together with 372 microwave lines [334–336]. The

resulting constants and known dipole moment [337] were

then used to calculate the positions, intensities and lower

state energies of 6808 a- and b-type pure rotation lines

observed between 10 and 100 cm�1, originating from J/Ka

levels ranging from 0/0 to 70/17, corresponding to

DKa¼0, 71 and DKc¼71, 73, and being stronger than

4.0�10–26 cm�1/(molecule cm–2) at 296 K. The line posi-

tions have been substantiated by a study of Winnewisser

et al. [338]. Note that the intensities listed in GEISA-09 are

a factor 4 larger than those listed in Table II of [333],

because of the oversight of the nuclear spin degeneracy of

the hydrogen in the latter. To complement these data, the

self- and air-broadening parameters, and temperature

dependence exponent of the air-broadening parameter

of all the lines were set to the same values as applied to

the n6 and n8 bands (see here below).

The 9 mm spectral region was updated according to the

recent work by Vander Auwera et al. [339]. They reported

absolute line intensities measurements for the n6 and n8
bands using Fourier transform spectroscopy, taking the

existing dimer (HCOOH)2 into account in the analysis.

They showed that the intensities reported by Goldman

and Gillis [332], and therefore in GEISA-03, were a factor

of about 2 lower than the average of the other existing

laboratory measurements, and than theoretical calcula-

tions. Relying on results of that work, Perrin and Vander

Auwera [340] generated a new set of 49,625 line posi-

tions, intensities and lower state energies covering the

range from 940.20 to 1244.41 cm�1. To complete these

data, the self- and air-broadening parameters, and the

temperature dependence exponent of the air-broadening

parameter of all the lines were set to 0.32 cm�1 atm�1

[339], 0.101 cm�1 atm�1 [341] at 296 K, and n¼0.75,

respectively. With a sum of the line intensities equal to

3.51�10�17 cm–1/(molecule cm�2) at 296 K and a three-

fold increase of the wavenumber coverage, this new list

was shown to provide a significantly improved modeling

of the n6 spectral region of formic acid [340].

Using high-resolution Fourier transform spectra of

trans-HCOOH recorded at 5.6 mm, Perrin et al. [342]

carried out an extensive analysis of the strong n3 funda-

mental band at 1776.83 cm�1, starting from results of a

previous analysis [337]. As pointed out in the literature,

the n3 band is significantly perturbed by resonances with

numerous dark bands. Perrin et al. [342] were able to

assign series belonging to the n5þn7, n5þn9, n6þn7 and

n6þn9 dark bands, located at 1843.48, 1792.63, 1737.96

and 1726.40 cm�1, respectively. The model used to cal-

culate energy levels accounted partly for the observed

resonances, and reproduced most of the observed line

positions, within experimental uncertainties. Absolute

line intensities were also determined in that work with

an accuracy estimated to 15% [342]. From these results,

the first database for the 5.6 mm region of the formic acid

spectrum was built. It includes 6251 lines belonging to

the n3, n5þn7, n5þn9, n6þn7 and n6þn9 bands of trans-

H12C16O16OH with Jr66, Kar18, and lower and upper

states energies up to 2700 and 3600 cm�1, respectively.

Table 6 of Ref. [342] details the contents of the line list.

2.2.29. SF6 (molecule 39)

Sulfur hexafluoride is a strong greenhouse gas whose

concentration in the atmosphere should be monitored

and limited, according to the Kyoto protocol [343]. The

spectrum of SF6 is, however, poorly characterized, (at

least for atmospheric purposes). The main reason is that

this molecule is heavy, which has two important con-

sequences for its spectrum: (i) there are low-lying bend-

ing vibrational modes producing a lot of hot bands and (ii)

the spectrum is very dense so that even at high resolution

there is virtually no isolated line, each line being a cluster

of many overlapping transitions. The second point renders

the determination of line intensities and, thus, of dipole

moment derivatives, very difficult.

Although at lot of work remains to be done on this

molecule, many vibrational bands have been investigated

in the past years at ICB [344]. A new line list for the n3
stretching and the n4 bending fundamental regions has

been produced. The only partial knowledge of the inactive

n6 lowest fundamental still prevents a full hot band

analysis, especially for n3þn6�n6. However, the lower

spectral density in the n4 region has allowed the detailed

investigation of n4þn6�n6 [345]. In the case of n3
itself, which is the strongest absorption band, a very

detailed line position analysis exists, based on various
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high-precision experimental data (FTIR but also saturated

absorption and IR–IR double resonance). In this case, the

resulting accuracy for line positions is estimated to be

better than 0.001 cm�1 up to J¼100. For the n4 funda-

mental, the accuracy for line positions is around

0.001 cm�1 up to J¼100 and for the n4þn6�n6 hot band

it is ca. 0.002 cm�1 up to J¼65. The J values given above

correspond to the highest values for the assigned lines.

The accuracy may decrease quickly when extrapolating to

higher J values, although this is difficult to estimate in a

quantitative manner.

As mentioned above, the question of line intensities in

the case of SF6 is a difficult problem. To generate the

present list, we used the best-known dipole moment

derivative values found in the literature [346,347]. We

checked with the previous list for n3 from GEISA-03 that

we obtain exactly the same intensities in this case.

However, we globally estimate the line intensity accuracy

to be no better than 20 %, in the absence of precise

intensity measurements on isolated lines.

Analyses and calculations have been performed with

the HTDS software [348]. The whole original ICB line list

contains 30,106,484 entries. It has been reduced by apply-

ing intensity cutoff in suitable for SF6 impact signatures

in most atmospheric radiative transfer calculation.

The applied intensity cutoff, in cm�1/(molecule cm�2) at

296 K, had the value 10�24 for band n3 (46,031 lines

retained among 2,826,164 in the original list) and 10�23

for bands n4 (10,986 lines retained among 2,657,543) and

n4þn6�n6 (35,381 lines retained among 24,622,777). As a

consequence, the new line list for SF6 in GEISA-09 (spectral

range 580 to 996 cm�1) contains a total number of entries

reduced to 92,398 lines (6 bands). For the whole line list, a

default value of 0.50 cm�1 atm�1 has been given to the

air-broadening pressure half-widths and of 0.65 to the

associated temperature dependence coefficient n.

2.2.30. C3H4 (molecule 40)

Line parameters for two CH3C2H (C3H4) bands (the n10
at 331 cm�1 and the n9 at 639 cm�1) were provided by

Graner (private communication), based on constants of

Pekkala et al. [349] for the frequency calculations and

Blanquet et al. [350] for intensities of individual lines. For

the n10 band, the study of a first spectrum at a resolution

of 0.0056 cm�1 by Horneman et al. [351] was followed by

the analysis of a 0.002 cm�1 resolution spectrum by

Graner and Wagner [352]. The description of the n10
was accomplished and, in addition, two main hot bands

were also provided [352,349]. In the 16-mm region, the n9
fundamental band was recorded at 0.003 cm�1 resolution

and a full analysis was completed by Pekkala et al. [349]

and Pekkala [353].

The extraction of intensities from these high resolution

spectra was not an easy task. As a consequence, global

intensities from the literature were used to predict indivi-

dual line intensities, as explained by Horneman et al. [351].

This dataset was first applied to Titan in Coustenis

et al. [354]; see Fig. 11a therein. Both propyne bands were

detected on Titan and the more accurate spectroscopic

parameters are presented GEISA-09 which is updated for

the first time since the 1992 edition. These parameters

allow for a better determination of the molecule abun-

dance since it can now be separated from the nearby C4H2

band [312]. The C3H4 GEISA-09 line list includes 19,001

entries (22 transitions) against 3390 entries (1 transition)

in GEISA-03.

The CDMS catalog contains entries for n¼0, n10¼1, v10
and v9 based on [355,356]. A future update of GEISA shall

consider these entries or may even be based on [357].

2.2.31. ClONO2 (molecule 42)

The rotational transitions from 0 to 45 cm�1 for the

ground and n9¼1 vibrational states have been included in

the GEISA database for the first time.

The predicted transitions for each isotopologue are based

on the spectroscopic constants derived from the analyses of

millimeter and submillimeter wave rotational spectra in

Refs. [358–360]. All predictions were calculated using the

SPCAT program package ([192]; http://spec.jpl.nasa.gov/ftp/

pub/calpgm/spinv.pdf) for a temperature of 296 K.

From Ref. [361], isotopic abundances of 0.74957 and

0.23969 and rotational partition functions of 4,788,362

and 4,910,202 were used in the predictions for the 35 and

37 chlorine isotopologues, respectively. A vibrational

partition function of 4.02 [362] was used that includes

the n9 vibrational mode that has a band origin near

121 cm�1. The rotational spectra from the ground and

n9¼1 states account for about 39% of the thermally

populated states. Future updates will include the addition

of pure rotational spectra from higher lying vibrational

states and the infrared simulation of the n6 fundamental

band and the first two associated hot bands for each

isotopologue in the 22 mm region. Due to the low lying n9
mode, there will be significant hot band intensity con-

tributions to each infrared band.

The ClONO2 GEISA-09 line list includes 356,899 entries

(7 bands) against 32,199 entries (3 bands) in GEISA-03.

2.2.32. CH3Br (molecule 43)

CH3Br contributes significantly to ozone depletion

since it is dissociated by UV radiation producing Br

radicals who catalyze the destruction of ozone [363]. This

molecule is the major contributor to bromine in the

stratosphere and the main organobromide in the lower

atmosphere. The bromine atoms are 50 to 60 times more

destructive of ozone than the chlorine atoms coming from

the chlorofluorocarbons compounds (CFCs) [364].

Methyl bromide spectroscopic line parameters are

present for the first time in GEISA-09 (36,911 entries; 6

bands). Two line lists of both isotopologues have been

generated: one around 10 mm for the n6 band [365], and

the other around 7 mm for the interacting n2 and n5 bands
[365–367]. In natural abundances, methyl bromide is

composed of 50.54% of CH3
79
Br and 49.46% of CH3

81
Br.

Note that the broadening coefficients and its temperature

dependence obtained in Refs. [365,366] around 10 mm
have been used for the 7mm spectral region. Air-broad-

ening coefficients have been deduced from nitrogen-

broadening coefficients using a constant scaling as for

the H2O molecule, for which air-broadening coefficients

could be obtained by multiplying N2-broadening coeffi-

cients by the value 0.9 as suggested in Refs. [369–371].
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Since CH3Br is chemically and structurally related to

CH3Cl, we proposed to use the ratio HWHMair/

HWHMN2
¼0.96 in order to convert the N2-broadening

to the air-broadening. This value comes from the ratio

HWHMN2
/HWHMO2

¼1.25 obtained by averaging mea-

surements of CH3Cl from Refs. [372,373]. Note that this

result is quite similar to what has been proposed for

ozone in Ref. [374]. This procedure is approximate since

HWHMN2
/HWHMO2

varies from line to line. However it is

expected to be accurate within a few percent which is

sufficient in view of the experimental uncertainties and

the accuracy of the calculations. Also, the air-width

temperature dependence has been added in both spectral

regions, using the same values as those obtained for the

N2-width temperature dependence (see Eq. (5) and text in

Ref. [366]). Accuracies and details of the line parameter

calculation can be found in Refs. [366,368]. In the absence

of experimental or theoretical results for air-pressure

shifts for CH3Br, the GEISA standard missing value of

�9.999999 cm�1 atm�1 has been used for all transitions.

Note also that line mixing effects have been observed and

modeled in the strong Q-branches between 220 and 300 K

[375,376]. Line mixing parameters (for direct calculation

or Rosenkranz profile [377]) are available upon request to

the authors.

2.2.33. CH3OH (molecule 44)

The importance of methanol microwave, millimeter

wave, sub-millimeter wave and terahertz spectroscopy to

space science and astrophysics can be traced back to

several decades ago when methanol was first discovered

in interstellar clouds and star forming regions [378]. The

rich variety of torsion–rotational methanol transitions

falling in the frequency bands accessible to most radio

and sub-millimeter wave telescopes and notably the new

Herschel (http://www.esa.int/SPECIALS/Herschel/SEMB

M00YUFF_0.html), ALMA (http://www.eso.org/sci/facil

ities/alma/) and SOPHIA (http://www.sofia.usra.edu/)

observatories, leads to a dense and detailed interstellar

spectrum and demands an accurate knowledge of the

methanol energy levels so that the interstellar ‘‘methanol

weeds’’ can be removed. The infrared spectroscopy of

methanol has also acquired renewed importance in wide

areas of application in recent years, such as the recent

observations of the 10 mm feature in forest fire [379], the

influence of biogenic emissions on upper-tropospheric

methanol as revealed from space [380], observations in

the terrestrial atmosphere [381], the 3 mm features in

several comets and the icy mantles of interstellar dust

grains [382–385]. These applications require reliable

simulation of the absorption band profiles at any pre-

scribed conditions of temperature and density. Achieving

reliable calculations in turn requires detailed understand-

ing of the vibration–torsion–rotation structures of the

bands, in terms of both the line positions and intensities.

A methanol line list (19,897 entries; 16 bands) is

included for the first time in the GEISA database; it

consists of two regions, 0.019265–33.336958 cm�1 and

911.608420–1407.205540 cm�1. The first region is based

on a global analysis of the first two torsional states of

n12¼0, and 1 and Jmax¼20 [386] which led to a prediction

list to Jmax¼26 at a frequency cutoff of 1 THz [387]. Line

strengths in that list were calculated using permanent

dipole moment values of ma¼2.999�10�30 C m (0.899 D)

and mb¼�4.803�10�30 C m (�1.44 D). The list was

originally designed at that time to assist the radio astron-

omy community. More recently, an expanded global

analysis with n12¼0, 1, 2 and Jmax¼30 has been published

[388]. The second region was built on extensive Fourier

transform spectroscopic analyses of methanol spectra in

the 10 mm region ([389] and references therein). Due to

strong vibration–torsion and rotational interactions, the

transitions observed in the 10 mm region arise not only

from the n8 CO-stretch fundamental band, but also from

n8 hot bands and nearby vibrations such as n5, n6 and n7
entering in the region with different n12 torsional combi-

nations. Within the limits of the isolated vibration–

torsion–rotation band model, the predicted positions

and intensities unfortunately did not reproduce the spec-

trum within experimental uncertainties for n8 and

n8þn12. In addition to strong and medium intensity

transitions of the n8 and n8þn12 bands, there are many

additional transitions appearing with visible intensity in

the spectral window; these were identified as belonging

to the n8þ2n12�2n12, n7—ground, n7þn12�n12, n6�n12,
n6�2n12, n6þn12�n12, n5�2n12, 3n12—ground and

4n12—ground bands. Many of these transitions are per-

turbation-induced, gaining intensity via anharmonic and

Coriolis interactions with the strong n8 vibration in the

region. Thus, with an isolated-band approach, these

transitions cannot be modeled in either position or

intensity. Therefore, it has been chosen simply to include

empirical positions and intensities of these features

whenever available in our database.

Arriving at the ultimate 10 mm region database, several

steps were taken to ensure that the contents reflected the

best knowledge of the molecule at the present time (i.e.,

with observed positions and intensities substituted for

predictions whenever available). More specifically, (i) line

positions (for 95% of the transitions) were replaced with

observed values from the NRC FT spectra except for the

congested Q-branch region, in which Q transitions were

recomputed from the corresponding observed R- and

P-transitions using averaged upper-state term values;

(ii) intensities were replaced with measured intensity retrie-

vals from the highest density Kitt Peak spectrum (1.95 Torr,

10 cm). With the predicted database as the input, over

13,500 new intensities were retrieved between 970 and

1085 cm�1, including a few lines not currently assigned.

Weak lines in the prediction that could not be discerned in

the new effort were added to the database with a ‘‘default

intensity’’ in order to maintain a complete record of known

assignment; the very low intensity value of 10�26 cm�1/

(molecule cm�2) was chosen so that these unmeasured

transitions would not contribute extra absorption in the

radiative transfer calculations for most applications.

The lower state transition energy is referenced to

128.1069 cm�1 for the K¼0 a level, the temperature

dependence of width have been attributed the 0.75 default

value and the air pressure shift of the line transition has

the GEISA-09 standard missing value (i.e., �9.999999). The

vibrational index are: Ground, n12, 2n12, 3n12, 4n12, n8,
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n8þn12, n8þ2n12, n7, n7þn12, n6, n6þn12, n5 for upper and
lower states and the torsional symmetry A, E1 or E2; the

overall rotational angular momentum J involves compo-

nent K along the molecular a-axis. Resolved K-doublets of A

symmetry have an additional7to distinguish the Aþ or A�

component of the doublet.

2.2.34. NOþ (molecule 45)

The data on the nitric oxide molecular ion NOþ are

debuting in GEISA-09.

The line positions of the GEISA-09 NOþ line list are

issued of a paper by Lopez Puertas et al. [391] and

associated subsequent publications: using high resolution

(0.035 cm�1 unapodized) spectra of the Earth’s atmo-

sphere, recorded by the MIPAS experiment, line positions

of rovibrational NOþ transitions have been obtained with

an unprecedented accuracy. As a consequence, compari-

sons with the HITRAN 1996 line list [390] have shown that

the spectral line positions of the NOþ (1–0) and of the

NOþ (2–1) rovibrational bands are shifted by about

0.15 cm�1 and approximately 0.05–0.1 cm�1, respectively.

For J00r40, the archived line positions have been

derived from a set of Hamiltonian constants for NOþ

obtained from a fit of the MIPAS data together with the

existing microwave and infrared data (see [391] for

details). Accurate frequencies for high-J values cannot be

predicted with the use of those constants; consequently,

for J’’ greater than 40, line positions have been derived

from the former HITRAN 1996 archive [390].

It has to be noted that the newly generated NOþ

GEISA-09 line list by Flaud [391] (1206 entries; 6 bands,

in the spectral range 1634.831–2530.462 cm�1), is similar

with the HITRAN-08 one [13]; this includes, in particular,

the intensities, kept from Werner and Rosmus [390], and

the default value 0.06 cm�1 chosen for the air-broadened

half-widths, as well.

It is clear that new high resolution spectra of the NOþ

species are needed in order to improve its spectral

parameters.

2.2.35. HNC (molecule 46)

Although HCN and HNC actually lie on a single poten-

tial energy surface, they are separated by a significant

barrier [392]. Within GEISA-09 they are treated as sepa-

rate species and HNC is a new molecular species for this

new edition of GEISA. HNC is the less stable isomer but is

known to be overabundant compared to HCN in the

interstellar medium (e.g., [393]). Furthermore the parti-

tion function of HNC increases much more rapidly with

temperature than that of HCN meaning that at tempera-

tures of about 2500 K, the equilibrium abundance of HNC

should be about 20% of HCN [394]. The spectrum of HNC

has been identified in carbon stars Harris et al. [395].

The GEISA-09 HNC line list was compiled by Harris

[261] for the main isotopologue H14N12C. Among an initial

total of 9117 entries, in the spectral range 0.216955–

12,594.316928 cm�1, 3498 are included only in a supple-

mental line list because they did not have upper vibrational

states identification. Consequently, the final GEISA-09

archived HNC data comprises 5619 lines (84 bands) in the

spectral range 0.216955–4814.904168 cm�1.

As for HCN, the GEISA-09 HNC line list was constructed

from a combination of experimental and theoretical data.

The theoretical data are taken exclusively from the line

list of Harris et al. [263]. Experimental data are used in

preference to the ab initio data when they are available.

The GEISA-09 HNC line list is less extensive than that for

HCN; it is also less accurate since there is substantially

less laboratory data to base it on. The spectral region

covered for HNC is 0.217–12,594 cm�1. Hot bands with a

lower vibrational state of 2 quanta of bend, are given for

most of the transitions.

The GEISA-09 HNC line list was constructed in the

following stages:

� Construction of a list of laboratory determined energy

levels: The laboratory line frequency measurements of

Northrup et al. [396] were used to determine a set of

experimental HNC energy levels. This was done by

using a technique that deviates only slightly from that

of Harris et al. [271]; the rotational constants are used

to compute energy levels up to an angular momentum

quantum number of 60.

� Construction of a list of laboratory determined line

positions: Using the laboratory determined energy

levels it is straight forward to compute a list of line

positions for dipole moments allowed transitions. The

well known selection rules for dipole moments transi-

tions require a change in symmetry and allow a change

in angular momentum of 0, 71. When applied to HNC

the allowed transitions form two groups. The first has

a change in parity of the vibrational angular momen-

tum with no change in total angular momentum. The

second group has no change in the parity of the

vibrational angular momentum, but a change of plus

or minus one in total angular momentum. For all the

dipole moments allowed transitions between labora-

tory determined energy levels, line positions were

computed by subtracting lower state energy from

upper state energy.

� Construction of a list of laboratory determined line

intensities: A list of line intensities was computed from

laboratory data given by Nezu et al. [397]. These data

are given in the form of band dipoles that are supple-

mented with Hermann–Wallis factors. From these

data, the intensities of individual lines were computed

by using the relevant Höln-London factor and the

equation given by Maki et al. [272].

� Construction of laboratory determined line list: Experi-

mentally measured line intensities were inserted into

the list of laboratory determined energy levels. In this

way, an HNC line list based upon laboratory measure-

ments was created.

� Augmentation of the laboratory determined line list with

ab initio line intensities: Many of the intensities for the

dipole allowed bands have not been measured. The

resulting gap in the laboratory determined line list

may only be filled by ab initio data.

Many of the transitions in the ab initio line list of

Ref. [263] have been assigned an approximate vibra-

tional quantum number. We were therefore able to
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insert the line strengths from Ref. [263] line list into

the GEISA-09 final HNC file, creating a more complete

list of lines.

� Augmentation with ab initio data and truncation: The

upper and lower energy levels for many strong room

temperature lines have not been determined. In order

to account for these strong lines the HNC GEISA-09 line

list was augmented with purely ab initio line frequency

and intensity data from Ref. [263]. Finally, 3498 entries

have been suppressed from the original file because of

lack of upper vibrational quanta identification.

Recent reports on emission spectra of HNC [398,399]

not only provide many more experimental lines, but

also used in the analyses comparatively recent pure rota-

tional data [400,401]. These results will be used in

updated CDMS entries and may also be used in future

GEISA updates.

2.2.36. C6H6 (molecule 47)

Benzene (C6H6) (benzol, benzin) is an aromatic hydro-

carbon produced in the Earth’s atmosphere and is found

in air due to emissions from the burning of coal and oil

and also from gas stations, and from motor vehicle

exhaust. Benzene is also of importance for astronomical

studies. The high abundances of N2 and CH4 in the atmo-

sphere of Titan, Saturn’s largest moon lead to high

abundances of nitrogen and carbon compounds, and its

atmosphere and smog-like haze are of particular interest

because of its similarity to the atmosphere that may have

existed on Earth before life began. Polycyclic Aromatic

Hydrocarbons (PAHs) are important interstellar species,

and their precursor benzene (C6H6) has been detected in

our solar system, in particular on Titan. Benzene was

identified on Titan through ISO and Cassini/CIRS data

[312]. It has also been measured in the upper atmo-

spheres of Jupiter at midlatitudes and Saturn (disk aver-

age) [402].

Benzene is introduced in GEISA-09 for the first time.

Line parameters for the n4 band of benzene near

678 cm�1 were provided by Dang-Nhu (private commu-

nication) and generated from the molecular constants and

band strength compiled in Dang-Nhu and Plı́va [403].

Two approaches were used to determine the absolute

intensities. Dang-Nhu et al. [404] made a line-by-line

study, using a very high resolution tunable diode laser

which yielded 30 individual intensities, from which a

vibrational strength was derived (see also [403]). At the

same time, a study at medium resolution (1 cm�1) per-

formed on spectra recorded at LISA by Raulin et al. [405]

provided the integrated band intensity of benzene in the

spectral region which was related to the previous one

through the vibrational partition function.

This dataset (9797 lines) was first applied to modeling

of the Titan spectrum in Coustenis et al. [354,318]; see

Figs. 5, 6, 8, 9 and 11a therein.

2.2.37. C2HD (molecule 48)

The line list of monodeuterated acetylene is new in the

GEISA database. The need for a line list of deuterated

acetylene arose following the recent detection of this

isotopologue in the atmosphere of Titan by Coustenis

et al. [406]. The line list has been assembled by a joint

effort of several laboratories [407]. It is based on new

band intensity measurements performed at a resolution

of 0.5 cm�1 in France (LISA) and a new analysis done in

Belgium (ULB, UCL) of the high resolution spectra of C2HD

recorded in Italy (University of Bologna) [407]. The new

global fit was obtained by using the computer package

developed in UCL and dedicated to both energy and

intensity treatments [408,409]. Included lines belong to

both bending modes n4 and n5 which could be detected

on Titan thanks to their strong Q-branch at 519 and

678 cm�1, respectively. Lines belonging to both strong

stretching modes n1 and n3 centered at 3335.6 and

2583.6 cm�1, respectively, are also present in the new

line list. A total of 15,512 lines (348 bands) are present in

the list with a minimum intensity of 1.6 10�25 cm�1/

(molecule cm�2) at 296 K. All five vibrational modes and

both ‘ values are used in the vibrational assignment of the

upper and the lower level of each transition (n1, n2, n3, n4,
n5, ‘4, ‘5). The line broadening parameters of C2HD have

been assumed to be equal to those of the most abundant

C2H2 isotopologue.

The study of deuterated acetylene in planetary atmo-

spheres is of great importance and in particular the

determination of D/H isotopic ratios. The recent detection

of 12C2HD in Titan allowed a value of D/H [406] to be

determined. This could be compared to the values obtain

for CH4 (CH3D) and H2 (HD) as C2HD is the third

deuterated molecule to be detected in Titan’s atmosphere.

2.2.38. CF4 (molecule 49)

In the previous editions of GEISA, tetrafluorocarbon

(CF4) was referred to as CFC-14 and was only included in

the cross-sections part [410], with no line list. It is,

however, a strong greenhouse gas of both anthropogenic

and natural origin [411,412]. Its concentration is increas-

ing in the atmosphere [413,414]. Although it has been

identified and measured from balloon-borne measure-

ments [415], its spectroscopy remains only very patchily

investigated, for much the same reasons as for SF6 (pre-

sence of many hot bands, dense spectrum with clustered

lines). Its infrared spectrum is dominated by the strong n3
stretching fundamental band at 1282 cm�1 [415], this

band being strongly coupled with the first overtone of the

n4 bending mode.

The n4 (around 15.8 mm) and 2n4/n3 regions (around

7.3 mm) have been recently reinvestigated, thanks to

several new Fourier transform infrared spectra recorded

at a resolution of 0.003 cm�1. Just as in the previous work

of Gabard et al. [416], a simultaneous analysis of the

ground state, n4, n3, 2n4 and n3�n3 bands was performed,

thanks to the XTDS and SPVIEW programs [417] devel-

oped by the ICB group. Compared to Ref. [416], the

present work extends the analysis to much higher J values

(70 instead of 40 for n4 and 63 instead of 32 for the 2n4/n3
dyad). As for absorption intensities, it was possible to

go a bit further than for SF6. By calculating synthetic

spectra for exactly the same physical conditions as for

the experiment, it was possible to fit the n4 and n3
dipole-moment derivatives. The results compare very
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well to the literature values of Papoušek et al. [418]. The

details of this new analysis will be given in a forthcoming

paper [419].

This analysis allowed to generate the first reliable line

list for 12CF4 that covers the spectral ranges 600 to

670 cm�1 (n4) and 1276 to 1290 cm�1 (2n4/n3). Tetra-
fluorocarbon becomes GEISA-09 molecule number 49. The

precision for line positions is estimated to be around

0.001 cm�1, up to J¼60. The intensity accuracy, however,

may not be better than 20%, especially for the high-J

regions. Line-broadening coefficients were taken from Ref.

[420]. The newly archived CF4 line list comprises 60,033

entries (5 bands) in the spectral range 594-1312 cm�1.

2.2.39. CH3CN (molecule 50)

CH3CN (methyl cyanide, acetonitrile, ethanenitrile), a

molecule of astronomical and atmospheric importance, is

a new entry in GEISA-09. Line parameters of CH3CN are

needed for planetary studies because this species has

been observed, by heterodyne millimeter wave spectro-

scopy from the ground [421], on Titan. The dissociation of

N2 leads to the formation of nitriles such as HCN, HC3N

and C2N2, identified for the first time by the Voyager

probes in the earlier 1980s. One of the goals of the

Cassini–Huygens mission, investigating the Saturn system

between 2004 and 2008, was to map all the photochemi-

cal compounds, hydrocarbons and nitriles, in order to

better understand the photochemical cycle of Titan and

its coupling with the dynamics and the production of

organic aerosols [312,422]. CH3CN spectra have been

observed in comets [423], and in interstellar molecular

clouds [424], as well.

CH3CN is also a gas present in the Earth’s atmos-

phere with a lifetime of several months, mainly emitted

through forest fires and then probably deposited in

the oceans. Since 1993, this molecule has been classified

as an atmospheric pollutant and is the object of a number

of varied chemical, biological and atmospheric [425–428]

studies.

The GEISA-09 CH3CN line list consists of spectroscopic

parameters for two different regions.

Region 1: as the result of a multispectrum nonlinear

least squares fitting technique applied to measure accu-

rate zero-pressure line center positions, Lorentz self- and

N2-broadening coefficients and self- and N2-pressure-

induced shift coefficients, 3571 features have been

archived in the n4 parallel band region between 890 and

946 cm�1. Published line positions and intensities from

Rinsland et al. [429] have been supplemented by unpub-

lished measurements from the same dataset, as well as

selected values from preliminary Hamiltonian calcula-

tions. Only lines with intensities greater than 10�24

(cm�1/(molecule cm�2)) at 296 K are included. The spec-

tral region from 918.5 to 920.3 cm�1 (containing the Q

branch and the P1 and P2 manifolds) proved too dense to

measure directly and so these parameters are represented

by 326 calculated transitions of n4. Some 2243 lines are

given without quantum identifications; many are thought

to be hot band lines involving yet unanalyzed upper state

levels of n4þn8. The lower state energy of these uniden-

tified lines is set to the GEISA-09 standard missing value,

i.e., �0.9999. It should be noted that a number of hot-

band lines are not included in the list; this is most

noticeable at the hot band Q branch near 924 cm�1.

Measured self-broadening coefficients were available,

and identified lines with the same K quantum number

and the same or very close m were assigned approxi-

mately the same or interpolated values. The total number

of lines with self-broadening assigned in this manner is

2185. For the lines lacking measured or estimated Lorentz

half-width coefficients for air- and self-broadening,

default values of 0.14 and 1.5 cm�1 atm�1 at 296 K were

used, respectively (obtained as an approximate average of

measured values). The measured N2 shifts [429], where

available, were inserted for air shifts. Unmeasured pres-

sure shifts are set to zero, the approximate average of the

measured values. There are no measurements of the

temperature dependence of the Lorentz half-width in air

and only one in N2 [430], so the default n is set to the

single measured N2 value of 0.72.

Region 2: an excerpt in the spectral range of 970–

1650 cm�1 of an empirical ‘‘pseudo-line-list’’ (total extent

870–1650 cm�1), where the n7 band around 1050 cm�1

and the n3, n6, n7þn8 bands around 1450 cm�1 are

located. This represents a total of 13,601 entries. A

pseudo-line list, typically derived by fitting equally

spaced ’’pseudo-lines’’ to laboratory spectra, is not

intended to supplant any proper quantum-mechanically

based line list. However, it provides a convenient means

for radiative transfer calculations in case quantum-

mechanically derived line lists are unavailable or unreli-

able. In the process of building up the GEISA-09 CH3CN

line list, the mixing of quantum-mechanically derived

lines and pseudo-lines has been avoided, as one cannot

expect to get realistic results in a radiative transfer

calculation if the quantum-mechanically derived lines

have not been taken into account during the derivation

of the pseudo-lines. The pseudo-line-list for CH3CN has

been successfully used to identify and quantify CH3CN in

the Earth’s atmosphere from balloon-borne solar occulta-

tion Fourier-Transform infrared measurements [428] and

to attempt its detection on Titan from Cassini CIRS

infrared data.

The CH3CN pseudo-line-list [431] was created based

on 29 laboratory spectra taken at PNNL. The measure-

ments and the absorption cross-sections, including

assignments of major bands, are described by Rinsland

et al. [432]. The cross-sections were converted back into

transmittance spectra from knowledge of the cell length

and gas concentrations. The resulting laboratory trans-

mittance spectra were then simultaneously fitted by

iteratively adjusting the strengths and ground-state ener-

gies of the pseudo-lines. At each line frequency, an

effective strength and ground-state energy was derived

by simultaneous non-linear least squares fitting to the 29

spectra. The air-broadened half-width was calculated

from the ground-state energy using a simple parameter-

ization that results in air-broadened half-widths between

0.04 and 0.08 cm�1/atm and gives the most appropriate

fit to the narrowest features in the considered frequency

region. The self-broadened half-width, the temperature

dependency of the air-broadened half-width, and the
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pressure shift were chosen to be values that are typical for

heavy molecules.

Due to the resolution of the laboratory spectra of

0.1125 cm�1 and their spectral point spacing of

0.0603 cm�1, a pseudo-line spacing of 0.05 cm�1 was

considered to be appropriate. Note that when the

pseudo-line-list is used in radiative transfer calculations,

it is recommended that the Doppler-width of the lines is

set to the value of the pseudo-line spacing. Otherwise

calculations for low pressures will lead to unrealistic

spikes at the positions of the individual pseudo-lines.

2.2.40. Non updated molecules

Since GEISA-03 no update occurs for the following

molecules: CO (molecule 5), OH (molecule 14), HF (mole-

cule 15), HCl (molecule 16), HBr (molecule 17), HI

(molecule 18), ClO (molecule 19), GeH4 (molecule 26),

HOCl (molecule 32), COF2 (molecule 38) and HO2 (mole-

cule 38). For HO2, a technical error in the GEISA-03

rotational quantum number identification is corrected in

GEISA-09.

3. GEISA-09 infrared absorption cross-sections

sub-database

The infrared absorption cross-section sub-database of

GEISA-03 contents has been extensively described in Refs.

[8,9] (see Table 2.5 of Ref. [9]). In the spectral range from

200 cm�1 to 2000 cm�1, 35 molecular species have been

already archived, i.e., CFC-13, CFC-113, CFC-114, CFC-115,

CFC-11, CFC-12, CFC-14, HCFC-22, HCFC-123, HCFC-124,

HFC-125, HFC-134a, HCFC-141b, HCFC-142b, HFC-152a,

HCFC-225ca, HCFC-225cb, HFC-32, HFC-143a, HFC-134,

N2O5, SF6, ClONO2; HFC-143, HCFC-21, CCl4, C2F6, C2H2,

C2H4, C2H6, C3H8, C4H8, HNO4, SF5CF3, HCH-365mfc. Note

that in this list, many of the molecular species are

identified by their common name (i.e., CFC-14 for CF4).

3.1. Complementary data for species already implemented

in GEISA-03

3.1.1. SF5CF3 (trifluoromethyl sulfur pentafluoride)

SF5CF3 IR absorption cross-sections from M. Hurley

were implemented in GEISA-03. The absorption cross-

sections measured by Rinsland et al. [433], at five tem-

peratures between 213 and 323 K in the infrared bands of

SF5CF3 are newly added to GEISA-09. The spectra were

recorded at a resolution of 0.112 cm�1 using a commer-

cial Fourier transform infrared spectrometer and a 20 cm

temperature-controlled sample cell. The full spectral

range of the measurements was 520–6500 cm�1, with

only weak bands observed beyond 1400 cm�1. Absorp-

tion of thermal radiation in the 8–12 mm atmospheric

window region being important for climate change, the

measured integrated cross-sections of the significant

absorption bands in that spectral region have been added

to the GEISA archive as summarized in Table 10. It has to

be noted that the SF5CF3 atmospheric growth has closely

paralleled the rise of SF6 during the past three decades,

with an estimated radiative forcing of 0.57 W m�2 ppb�1,

slightly higher than for SF6 [434].

3.2. Molecular species added since GEISA-03 edition

3.2.1. C6H6 (benzene)

To provide a database for both Earth’s and planetary

atmosphere studies (as an example, benzene has recently

been detected in the atmosphere of Titan as the first PAH

of this kind [312]), integrated band intensities of benzene

at temperatures of 278, 298, and 323 K, in the spectral

range 600–6500 cm�1 by Rinsland et al. [435], have been

added to GEISA-09 IR cross-sections archive. These data

derived from pressure broadened (1 atm N2) laboratory

spectra of benzene vapor (in natural abundance) recorded

at PNNL with a 0.112 cm�1 resolution Bruker-66 V Four-

ier transform spectrometer configured to operate in the

mid-infrared. Using very high precision capacitance nan-

ometers, over nine sample pressures were recorded

for each of the three temperatures. Hard-mounted into

the spectrometer, a temperature-stabilized static cell

(19.94 cm path length), was used for support of the

samples introduced into it. Two-hundred fifty-six inter-

ferograms were averaged for each sample spectrum.

A composite spectrum was calculated for each cell tem-

perature from the individual absorbance spectra recorded

at that temperature. The average uncertainty (NIST type-

A) is, respectively: 0.40%, 0.38% and 0.54% for the 278,

298, and 323 K spectra. The number density for the three

composite spectra was normalized to 296 K. The spectra

give the absorption IR cross-sections (cm2 molecule�1,

naperian units) of benzene as a function of wavenumber,

as summarized in Table 10 for GEISA-09 contents.

3.2.2. CH3CN (acetonitrile, – methyl cyanide)

Infrared cross-sections were measured at the Pacific

Northwest National Laboratory by Rinsland et al. [432].

These 29 spectra covered 600 and 6500 cm�1 with a

resolution of 0.1125 cm�1 and were measured at three

different temperatures (276 K, 299 K, and 324 K). They

were recorded with different CH3CN volume mixing ratios

at 1 atm pressure using N2 as pressure broadening gas.

Table 10 summarizes the related GEISA-09 contents.

3.2.3. C2H3NO5 (peroxyacetyl nitrate, – PAN)

PAN is an interesting molecule, linking carbon and

nitrogen chemistry, which has recently gained a new

importance for remote sensing. The terrestrial spectro-

scopic signature of PAN in the thermal infra-red was first

observed in Los Angeles smog [436] but the ability to

observe PAN concentrations more widely has been revo-

lutionized by recent detections in high resolution spectra

obtained in balloon-borne [437] and space-borne experi-

ments [438,439]. New spectroscopic data for PAN, in the

form of cross-sections, have therefore been included in

the GEISA database for the first time, based on the

measurements of Allen et al. [440,441]. The cross-sections

cover the spectral range between 560 and 1400 cm�1 at

three temperature (295, 273, 250 K), and between 1686

and 2000 cm�1 at two temperatures (295 and 250 K). The

data include all bands from n4 to n19, except for n16
centered at 1653 cm�1 which is detected in the original

measurements at 295 K but is not included here

because of weakness of the band and residual water vapor
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contamination. The band assignments are based on those

reported in Gaffney et al. [442] and Bruckmann and

Wilner [443]. The five main bands are n4, n5, n9, n10 and

n16 centered at 1842, 1741, 1302, 1161.5 and 791.5 cm�1,

respectively; a small shift of 1 cm�1 was observed in the

peak of the n4 band at 1842 cm�1 with temperature

[441]. Uncertainties in the cross-sections were estimated

to be 5% at 250 K [441] rising to 7% at 295 K [440]. See

Table 10 for details.

3.2.4. (CH3)2CO (acetone)

Acetone is a fundamental molecule in volatile organic

chemistry which evaporates rapidly, even from water and

soil. Once in the atmosphere, it is degraded by UV light

with a 22-day half-life. Acetone dissipates slowly in soil,

animals, or waterways since it is sometimes consumed by

microorganisms, but it is a significant groundwater con-

taminant due to its high solubility in water. Acetone may

pose a significant risk of oxygen depletion in aquatic

systems due to the microbial activity consuming it.

The spectroscopic signature of acetone in spectra of

the terrestrial atmosphere has been reported first in the

n19/n23 band complex centered at 530 cm�1 (citation in

[444]) and in the n17 band at 1220 cm�1 [445,437] and in

the n16 Q-branch at 1365 cm�1 [439]. Hence it has been

important to include new spectroscopic data for acetone,

under the form of cross-sections, in the GEISA database

for the first time, based on the measurements of Waterfall

[446]. The cross-sections, at spectral resolution of

0.03 cm�1, cover the spectral range between 600 and

1800 cm�1 around six temperature series (214, 223, 233,

253, 272 and 297 K); see Table 10 for precise details. The

data include the n18 band centered at 830 cm�1, the n17 at
1218 cm�1, the n16/n5 bands close to 1360 cm�1 over-

lapping with the unresolved bands of n15,�n4 and n21
centered between 1430 and 1460 cm�1, and the n3 band

centered at 1738 cm�1; band assignments are taken from

Wang et al. [447]. The n7 band, centered at 777 cm�1, and

the n22/n6 near 1093 cm�1 are only very weakly present

in the measured cross-sections. The main cross-section

influence is for the strongest bands observed between

1200 and 1800 cm�1 for which uncertainties range from

5% (7% for the center of the n3, 1738 cm�1 band) at the

strongest parts of the band to 10% towards the edges. For

the 830 cm�1 band, errors are approximately 12% at band

center rising to greater than 20% at the band edges.

Table 10

Summary of GEISA-09 update and additions for infrared cross-sections.

Molecule Temperature (K) Spectral range (cm�1) Foreign broadening pressurea (Pa) Refs.

Trifluoromethyl sulfur pentafluoride, SF5CF3 213 600–2600 101,324.72 [433,434]

243

278

298

323

Benzene, C6H6 278 600–6500 101,324.72 [435]

298

323

Acetonitrile, CH3CN 276.1 624–4574 101,324.72 [429,432]

298.7

324.1

PAN, C2H3NO5 250 560–2000 0 [436–443]

273 560–1400

295 560–2000

Acetone, (CH3)2CO 214.0 600–1800 0 [444–447]

223.4 0

223.5 20,811.60

223.5 80,260.10

223.6 50,902.50

233.4 19,985.00

233.4 50,022.50

233.4 80,113.40

233.5 0

253.3 50,089.20

253.3 79,886.80

253.4 20,051.70

253.8 0

272.3 20,025.00

272.3 49,915.90

272.3 92,765.70

272.6 0

297.4 20,718.30

297.5 50,062.50

297.5 93,325.60

297.8 0

a Pressure¼0.0 Pa: spectra measured for pure gas.
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4. GEISA-09 absorption cross-sections sub-database

in UV/visible regions

For molecules absorbing in the UV and visible spectral

regions, except for O2, H2O, NO and OH, there are no

individual line lists available, since most molecules and

radicals show rather broad-band absorption features due

to repulsive potential curves or surfaces in the upper

electronic states of the relevant transitions, or due to pre-

dissociation. Therefore, absorption cross-sections at all

relevant temperatures (and in some cases, pressures),

have to be used.

The requirements for the accuracy of molecular

absorption cross-sections in this spectral range are most

important for strong absorbers, especially for O3, but it is

also important to highlight the need of very accurate

spectral calibration (hence reference data derived from

FTS are usually recommended) and for a high dynamic

range and absolute consistency between different spectral

regions (e.g., between the ultraviolet and visible bands for

O3, or the consistency with respect to the mid-infrared

bands). The latter requirements are especially important

when the retrieved atmospheric data are used for photo-

chemical modeling or for chemical budget calculations,

where uncharacterized biases between different spectral

regions may lead to difficult problems.

In the GEISA database, only UV–visible reference

spectra of such molecules that have already been detected

in the Earth’s or planetary atmospheres are presented, i.e.,

contrary to other databases which focus on photochemi-

cal data (e.g., the NASA-JPL, NIST or IUPAC recommenda-

tions) or offer a complete coverage of all absorption

spectra (e.g., the MPI Mainz and SoftCon databases). It is

also important to note that, in contrast to the HITRAN

database, for the sake of coherence of future studies, and

to facilitate the comparison with previous work, the

GEISA database contains different sets of relevant absorp-

tion cross-sections, i.e., multiple data sources and data

sets for the same species; however recommendations are

made for each molecule.

The GEISA database contains UV–visible absorption

cross-sections for the following molecules and radicals:

NO2, CS2, O3, SO2, O2–O2 (O4), OClO, H2CO, OBrO, BrO, NO3,

HONO, IO, OIO, and aromatic hydrocarbons (i.e., C6H6,

C7H8 and the three isomers of (C6H4(CH3)2 as well). Here

below, each molecule and the relevant reference data in

the new GEISA-09 edition will be discussed individually.

4.1. NO2 (nitrogen dioxide)

For NO2, there is quite a variety of different laboratory

measurements of ultraviolet–visible absorption cross-sec-

tions. For atmospheric applications, the currently recom-

mended data set by Orphal [448] is the one of Vandaele

et al. [449], but it is important to stress that also the data of

Voigt et al. [450], Yoshino et al. [451], Harder et al. [452]

and Frost et al. [453] are of high quality and show excellent

agreement with each other. The cross-section of Harder

et al. may contain a slight contamination by HONO,

however. For applications where a very high signal-to-

noise ratio is required or in spectral regions where the

previously mentioned NO2 absorption cross-sections are

limited, the data recorded with GOME by Burrows et al.

[454] or with SCIAMACHY by Bogumil et al. [455] are

recommended (again, it is important to note that these

data are limited by the spectral resolution of the instru-

ments). It has to be recalled that, in general, the cross-

sections recorded by an FTS have a wavelength calibration

of better than 0.01 nm [448] which is an important

advantage for atmospheric applications, in particular when

retrieving several absorbers simultaneously.

4.2. CS2 (carbon disulfide)

Small amounts of carbon disulfide CS2 are released by

volcanic eruptions and marshes. The absorption cross-

sections, recorded with an FTS at 294 K covering the

290–350 nm spectral range are from Vandaele et al. [456].

4.3. O3 (ozone)

As for NO2, there exist many laboratory measurements

of UV–visible absorption cross-sections at atmospheric

temperatures (see [448]). However, only a few of them

cover the entire spectral range from the ultraviolet to the

near-infrared. Therefore, it is difficult to recommend one

single data set that would be best suited for all applica-

tions. For the Huggins bands (300–360 nm), the recom-

mended reference data are those of Brion et al. [457] and

those of Bass and Paur [458], since both data sets cover

most relevant temperatures (note however that the data

of Brion et al. are not available below 218 K) and have

been recorded at high resolution. While the data of Bass

and Paur were used as some kind of standard during the

past 20 years, more recent studies tend to recommend the

data of Brion et al. for atmospheric remote-sensing

applications (since they show better wavelength calibra-

tion, wavelength sampling, less noise and less inconsis-

tencies concerning the temperature dependence of the

cross-sections). For applications where absorption cross-

sections over a broader spectral range are needed (in

particular in the visible and near-infrared, i.e., the Chap-

puis and Wulf bands, the O3 cross-sections recorded with

GOME [454] or with SCIAMACHY [455] are recommended.

These absorption cross-sections show also a very high

signal-to-noise ratio, but are partly limited by the spectral

resolution of the instruments. If O3 cross-sections at very

high spectral resolution are needed, then the data of Voigt

et al. [459] are recommended.

4.4. SO2 (sulfur dioxide)

SO2 presents three main regions of absorption in the

near ultraviolet domain. The strongest band lies in

the 45,000 cm�1 (220 nm) region and corresponds to

the Ĉ1B2–X
1A1 electronic transition. A strong absorption

structure extends between 29,000 and 40,000 cm�1,

which can be ascribed to at least two electronic transi-

tions. Underlying the structured bands of the A1A2–X
1A1

[460], the ‘continuous’ absorption has been attributed to

the B1B1–X
1A1 transition, which has been predicted by

theory [461] and measured by Brand et al. [462]. The
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A1A2–X
1A1 transition is forbidden but is observed because

of strong vibrational interactions through the n3 vibration
mode and is strongly perturbed by the 1B1 state. The

allowed transition B1B1–X
1A1 is so perturbed that no

rotational or vibrational analysis is possible. It forms a

continuum due to the density of weak absorptions.

A weak absorption feature arises in the 25,000–

29,000 cm�1 region (345–400 nm). It has been assigned

to the a3B1–X
1A1 electronic transition and is a spin-

forbidden transition.

In the previous edition of GEISA [8,9] the UV/vis data

set for SO2 consisted in cross-sections recorded with the

SCIAMACHY spectrometer [455], covering five tempera-

tures between 203 and 293 K and interesting for plane-

tary science application. The 2009 update consists in

recently obtained absorption cross-sections, at high reso-

lution and at high temperatures, in support to planetary

applications [463,464]. They were recorded in the 24,000–

44,000 cm�1 spectral range (227–420 nm) with a Fourier

Transform spectrometer at a resolution of 2 cm�1

(0.45 cm MOPD and boxcar apodization). Pure SO2 sam-

ples were used and measurements were performed at

room temperature (298 K) as well as at 318, 338 and

358 K. Temperature effects were investigated and were

found in favorable agreement with existing studies in the

literature. Comparison of the absorption cross-sections at

room temperature [465,466] shows good agreement in

intensity with most of the literature data, but shows that

most of the latter suffer from inaccurate wavelength scale

definition. Moreover, literature data are often given only

on restricted spectral intervals, whereas this new data set

offers the considerable advantage of covering the large

spectral interval extending from 24,000 to 44,000 cm�1,

at the four temperatures investigated. These data are also

available in digital form from the website of the Belgian

Institute for Space Aeronomy (http://www.aeronomie.be/

spectrolab/).

4.5. O2–O2 (O4) (the so-called oxygen ‘‘dimer’’)

These broad features are mainly used for air mass

determination in atmospheric remote-sensing applica-

tions. It is rather difficult to recommend one particular

set of data since the differences between the available

cross-sections are still not well understood. Therefore, the

data of Greenblatt et al. [467], of Newnham and Ballard

[468], and of Vandaele et al. [456] are all available in the

archive.

4.6. OClO (chlorine dioxide)

OClO is involved in polar stratospheric chemistry,

linking the catalytic cycles of ClO and BrO, and has been

observed in ultraviolet–visible spectra from ground, air-

borne platforms and satellites. It is important to monitor

stratospheric OClO in order to validate the quantitative

understanding of ozone destruction in polar winter. As in

the previous edition of GEISA, the UV–visible absorption

cross-sections of Kromminga et al. [469] that were

recorded at different temperatures using high-resolution

Fourier-transform spectroscopy are recommended. For

the sake of coherence with previous studies, GEISA also

contains the OClO cross-sections of Wahner et al. [470].

4.7. H2CO (formaldehyde, also called CH2O or HCHO)

Formaldehyde is another important source of OH

radicals in the troposphere, and one of the smallest

organic molecules in the atmosphere. Gratien et al.

[471] have demonstrated that the high-resolution H2CO

absorption cross-sections of Meller and Moortgat [472]

are in excellent agreement with the available infrared

cross-sections. For applications requiring a very high

signal-to-noise ratio, the data recorded with SCIAMACHY

[455] may also be of interest.

4.8. OBrO

Only cross-sections recorded by an FTS were selected.

For OBrO (385–616 nm spectral range) cross-sections are

available only at room temperature [473].

4.9. BrO (bromine monoxide)

BrO is observed in the stratosphere but also in the

marine troposphere and in volcanic plumes. There are two

sets of data which have been recorded using high-resolution

Fourier-transform spectroscopy and cover all relevant

atmospheric temperatures: Wilmouth et al. [474] and

Fleischmann et al. [475]; both show very good agreement.

As for OClO, for the sake of coherence with previous

studies, GEISA also contains the BrO absorption cross-

sections of Wahner et al. [476] that were used as refer-

ence spectra, before the new data became available.

4.10. NO3 (nitrogen trioxide; the nitrate radical)

For NO3, the main night-time oxidant in the tropo-

sphere, but also strongly occurring in the stratosphere,

the recommended data set for all atmospheric tempera-

tures is the one of Yokelson et al. [477]; note however

that there exists a room-temperature spectrum that was

recorded using high-resolution Fourier-transform spec-

troscopy [448]. The latter paper also provides an accurate

theoretical model for the temperature dependence of the

strong peak at 662 nm, which is based on the molecular

symmetry and structure of the radical.

4.11. HONO (nitrous acid)

Nitrous acid is an atmospheric species that has

received a lot of attention in the past decades, since it is

a source of OH radicals in the troposphere, while its

sources are still not well understood. A recent study by

Gratien et al. [478] has shown that the HONO absorption

cross-sections of Bongartz et al. [479] and of Stutz et al.

[480] are in very good agreement with each other and

with the available infrared cross-sections. Therefore, both

data sets are recommended.
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4.12. CHOCHO (glyoxal)

Glyoxal is a small organic molecule involved in tropo-

spheric chemistry and aerosol formation. It has only

recently been measured for the first time in the Earth’s

atmosphere using optical methods. Its sources are still not

fully understood, especially since some CHOCHO is also

observed over the Pacific Ocean. The recommended

absorption cross-sections for CHOCHO are those of Volk-

amer et al. [481] recorded using high-resolution Fourier-

transform spectroscopy.

4.13. IO (iodine monoxide)

IO has been observed only in the marine troposphere,

and an upper limit of less than 1 pptv has been estab-

lished for stratospheric IO. The reference data in GEISA are

the cross-sections of Spietz et al. [482] which have an

excellent signal-to-noise ratio, rather high resolution, and

are in good agreement with other studies and with

photochemical models of IO chemistry following flash

photolysis of suitable precursors.

4.14. OIO (iodine dioxide)

As for IO, the OIO radical has been observed only in the

marine troposphere. Its atmospheric relevance has been

established only as late as 1996 when it was observed for

the first time in flash-photolysis experiments by Himmel-

mann et al. [483]. The reference data in GEISA are the

absorption cross-sections of Gomez-Martin et al. [484].

4.15. Aromatic hydrocarbons

UV absorption cross-sections (cm2 molecule�1) of five

gaseous aromatic hydrocarbons have been measured with

a FTS Bruker IFS120M at the resolution of 1 cm�1 (0.9 cm

MOPD and boxcar apodization) over the 30,000–

42,000 cm�1 spectral range (238–333 nm). The mole-

cules, benzene (C6H6), toluene or methylbenzene (C7H8),

and the three isomers of dimethyl-benzene (C6H4(CH3)2)

also called meta-, ortho-, and para-xylene, were chosen

for their importance in the chemistry of tropospheric

ozone [485], in urban air quality problems [486] and in

astronomical studies [317,318,402,487].

The recordings were carried out under different pres-

sure and temperature conditions with pure samples. The

complete dataset is composed of absorption cross-sec-

tions for: (i) benzene at 253, 263, 273, 283 and 293 K, (ii)

toluene at 263, 273, 283 and 293 K, and (iii) the three

isomers of xylene at 273, 283 and 293 K. Wavenumbers

are given by increments of 0.2 cm�1. Systematic and non-

systematic errors are given separately, a value of 8% being

estimated for the former and individual values being

reported in a separate column for the latter. The experi-

mental set-up and the procedure of analysis are given in

details in [488].

Comparisons with recent studies in the same UV

region [488–491] show that large discrepancies are pre-

sent in some cases which are largely attributed to the

experimental difficulties and to a resolution effect.

Compared to these studies, a better spectral resolution,

an accurate wavelength scale, and several atmospheric

temperatures are provided. A linear parameterization for

the temperature effect is also proposed for benzene and

toluene in support of remote sensing atmospheric studies

both on Earth and on other planets. These data are also

available in digital form from the website of the Belgian

Institute for Space Aeronomy (http://www.aeronomie.be/

spectrolab/).

5. GEISA-09 sub-database on microphysical and optical

properties of atmospheric aerosols

Besides the molecular species which define the gas-

eous infrared opacity in the Earth’s atmosphere, aerosol

particles also contribute to this opacity. Consequently, a

GEISA aerosols sub-database has been constructed. It

gathers the micro-physical and optical properties from

four published aerosol data catalogs, i.e., Massie

[492–494], Rublev [495], Hess et al. [496], Köpke et al.

[497], the overall content of which deals with the archive

of complex refractive indices and possibly computed

optical related properties, for selected basic aerosol com-

ponents. Softwares for data management and user-

selected aerosol mixtures elaboration are available

as well.

The GEISA-09 aerosols sub-database contains data on

microphysical and optical properties of basic aerosol

components. The following 4 sub-databases are included:

5.1. A database on refractive indices of basic atmospheric

aerosol components

This database by Massie [492–494] comprises an

extensive archive of complex refractive indices, deter-

mined both in situ and in laboratory, from spectral

transmission and reflection measurements (over 40 refer-

ences), of various aerosol components, i.e.,

� Solid substances (0.33–50,000 cm�1)

� Water ice (0.–22,570 cm�1)

� Water droplets (0.33–15,000 cm�1)

� Water soluble components (250–50,000 cm�1)

� H2SO4 solutions (0.–50,000 cm�1)

� HNO3 solutions (0.–16,382 cm�1)

� Thin films (482–7000 cm�1)

� Ternary H2SO4/HNO3/H2O solution droplets

(2.000–12.1126 cm�1).

5.2. The aerosols database from LITMS

The first part of the archive [495] consists in complex

indices of refraction of aerosol components, which have

been used for the computation of archived aerosol inte-

grated optical properties (extinction coefficient, single

scattering albedo, asymmetry factor). In the second part,

the so-called AERCOMP (FORTRAN code) software pack-

age, allowing the determination of optical properties for

user-defined aerosol mixtures, has been included with its
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associated files for basic aerosol constituent optical prop-

erties and related scattering phase functions, as well.

5.3. The database and associated software package OPAC

The first part of this archive [496] is a data set of

microphysical properties and the associated optical prop-

erties of:

� Ten basic aerosol components: Insoluble, soot, water

soluble, two sea salt modes (various kinds of salt

contained in seawater), three mineral modes (mixtures

of quartz and clay minerals), mineral transported,

sulfate droplets.

� Six water clouds: Stratus (continental and maritime),

cumulus (continental (clean and polluted) and mar-

itime), fog, and three kinds of cirrus ice clouds, both in

the solar and terrestrial spectral range.

The second part is a FORTRAN program making it

possible to extract data from the above archive and

allowing for the calculation of any user-defined mixtures

of these components. A set of computed typical mixtures

is archived, as well.

5.4. The Global Aerosol Data Set GADS

Global fields of all optical parameters necessary for an

estimate of the radiative forcing by aerosol particles

and to quantify the resulting climate effects are not

available from measurements due to the multiple influ-

ence parameters. Therefore, using the OPAC aerosol

archive, GADS (Köpke et al. [497]), provides the related

global aerosol distribution as climatologically averaged

values both for the winter (December through February)

and summer (June through August) seasons on a global

grid with a resolution of 51�51 longitude and latitude,

independently of the components selected in OPAC.

More details on the archived files structure is given in

Ref. [498].

5.5. GEISA interactive web distribution through Ether

Products and Services Centre

The scientific input into GEISA is maintained at LMD

(Ecole Polytechnique): http://ara.abct.lmd.polytechnique.fr)

which involves selection and collection of new or enhanced

spectroscopic data in cooperation with spectroscopy labora-

tories, both theory and experiment, and experts; processing

of the data; software development and maintenance for the

data base management and products extraction.

The GEISA on line web access and its associated

maintenance are responsibility of the Ether Products and

Services Centre (http://ether.ipsl.jussieu.fr), at IPSL, where

the database is implemented. Ether is especially involved

in distribution and generation of products of interest to

the Atmospheric Chemistry Research community.

The GEISA web site is freely accessible, via the

GEISA logo, through the welcome page of the Ether

web site, which offers the following GEISA interrogation

facilities:

� Very detailed information on the available spectroscopic

data, i.e., spectroscopic parameters of the individual lines

and cross-sections (IR and UV/vis), and optical and

microphysical properties of atmospheric aerosols as well.

� FTP access to file data for a quick download of the

database, partly or fully.

� Interactive access to the individual line spectroscopic

parameters, making possible sharper search and extrac-

tion of data of interest. In this purpose, six options are

available for display, histograms visualization and

extractions of user’s selected data information.

6. Concluding comments

The 2009 edition of GEISA exhibits important updates in

spectroscopic parameters and significant addition of

archived molecular species (line transitions and cross-

sections sub-databases), with an associated extension of

spectral ranges (especially towards near IR regions). Some

specific results of this effort are especially valuable for

various current research programs aiming at a better knowl-

edge of the Earth’s and planetary atmospheres, as well as

climate and environmental evolution understanding. Exam-

ples of such updates, among the ones detailed above are:

(a) Within the frame work of the IASI METOP program, and

ISSWG associated GEISA/IASI efforts, among the 14

molecular species selected for operational meteorological

soundings, i.e., H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2,

NO2, HNO3, OCS, C2H2, and N2, the spectroscopic

parameters of eleven of them have been updated in

the GEISA/IASI spectral range (599–3001 cm�1); three

of them (CO, O2, OCS) are unchanged in this specific

spectral region (however O2 and OCS are updated

elsewhere in the database). Recently, in conjunction

with the 2009 update, to aid the atmospheric chemistry

and climate monitoring capabilities of IASI soundings, 6

additional molecular species have been included in the

GEISA/IASI archive, i.e., HCN, NH3, HCOOH, C2H4, CH3OH

and H2CO (this list is not final or complete) as well as

PAN cross-sections. All these molecular species have

been updated in GEISA-09 and PAN is a new cross-

section entry. HCN is almost totally new in GEISA-09.

(b) Related with spectroscopy requirements for space

studies of outer planets and Titan, as documented in

Ref. [8], important subsequent updates have been done

in GEISA-09. Data on complementary new molecular

species, to those already archived in GEISA, have been

included in GEISA-09, i.e., C6H6 (individual lines and

cross-sections as well) and C2HD; among the updated

molecules are especially: C4H2, HC3N, C2H6, C2H2, C2H4,

HCN, C3H4, CH3CN. Also HNC is introduced as a new

molecular species. HCN and HNC molecules are of

great astronomical interest. They have been observed

in many galactic and extragalactic objects, ranging

from circum-stellar masers through interstellar clouds

to planetary atmospheres.
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Even regularly updated and evolving spectroscopic

databases, such as GEISA, still have their limitations and

shortcomings; these have to be continuously corrected or

improved upon to meet the requirements of a diverse

group of users. Detailed examples, but a non-exhaustive

list of these requirements was given in Ref. [8]. Among

those still not met we can underline:

(a) From the ‘‘Summary Report on the Second IASI Inter-

national Conference’’ [498]; http://smsc.cnes.fr/IASI,

among the conclusions on IASI related RTM spectro-

scopy problems still to be solved, high priority was

given to the investigation of areas mainly related to

H2O, CO2 and CH4, summarized as follows:

� For H2O (highest priority): Review of the accuracy of

line widths (could be more important than the

intensities); review of the continuum in the short

wave window region (i.e., band 3; spectral range

2000–2760 cm�1); measurements of widths and

shifts should be made (with temperature depen-

dence if possible).

� For CO2: The inconsistency between CO2 n2 and

CO2 n3 bands bias by improving the CO2 spectro-

scopy in the n3 band.

� For CH4: Improvement of the methane spectro-

scopy, introducing line mixing.

It has to be noted that, since this report and GEISA-09

have been issued, Toth et al. [499] revisited H2
16
O line

strengths in the n2 and 2n2�n2 bands at 6 mm. These

results will be considered for the next GEISA Edition.

(b) In the frame work of space studies of outer planets

and Titan: besides the 2009 updates described above,

the description of data that remain to be obtained and

implemented in GEISA, as given in Ref. [8], is still

available.

Finally, in terms of outstanding spectroscopy issues,

among the most important actions already underway, but

which must be reinforced and maintained, is the neces-

sary validation of archived spectroscopic data. This and

other activities will be performed in conjunction with the

recently started VAMDC European project (http://www.

vamdc.eu). This project aims at building an interoperable

e-Infrastructure for the exchange of atomic and molecular

data [500].
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Appendix A. List of acronyms

4A Atlas Automatisé des Absorptions

Atmosphériques

4A Automatized Atmospheric Absorption Atlas

4A/OP 4A/O Perational release

ACE Atmospheric Chemistry Experiment

AERCOMP Aerosol Composite

AFGL Air Force Geophysics Laboratory

AGB Asymptotic Giant Branch

AIRS Advanced InfraRed Sounder

ALMA Atacama Large Millimeter/submillimeter Array

ARA Atmospheric Radiation Analysis

BIRA/IASB Institut d’Aéronomie Spatiale de Belgique/

Belgian Institute for Space Aeronomy

BEAMCAT BErnese Atmospheric Meta Catalog Access

Tool

CDMS Cologne Database for Molecular Spectroscopy

CDSD Carbon Dioxide Spectroscopic Databank

CIRS Composite InfraRed Spectrometer

CNRS Centre National de la Recherche Scientifique

(France)

CNES Centre National d’Etudes Spatiales (France)

CSE Circum Stellar Envelope

CW–CRDS Continuous Wave-Cavity Ring Down

Spectroscopy

DU Denver University

ENVISAT ENVIronmental SATellite

EPS European Polar System

EOS-aqua Earth Observing System-water

EU European Union

EUMETSAT European Organisation for the Exploitation of

Meteorological Satellites

FT Fourier Transformed

FTIR Fourier Transformed InfraRed spectroscopy

FTS Fourier Transform Spectrometer

GADS Global Aerosol Data Set

GEISA Gestion et Etude des Informations Spectroscopi-

ques Atmosphériques; Management and study

of Atmospheric Spectroscopic Information

GOME Global Ozone Monitoring Experiment
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GOSAT Greenhouse Observing SATellite project

GSMA Groupe de Spectroscopie Moléculaire et Atmo-

sphérique (France)

HITRAN HIgh-resolution TRANsmission molecular

absorption data base

HTDS Highly spherical Top Data System

HWHM Line Half-width at Half Maximum (line

broadening)

IASI Infrared Atmospheric Sounder Interferometer

ICB Institut Carnot de Bourgogne

INSU Institut National des Sciences de l’Univers

(France)

IPSL Institut Pierre Simon Laplace

ISM Inter-Stellar Medium

IAO Institute of Atmospheric Optics (Russia)

IR InfraRed

IRS InfraRed Spectrograph

ISO Infrared Space Observatory

ISSWG IASI Sounding Science Working Group

IUPAC International Union of Pure and Applied

Chemistry

JPL Jet Propulsion Laboratory (USA)

LADIR Laboratoire de Dynamique, Interaction et réac-

tivité (France)

LESIA Laboratoire d’Etudes Spatiales et d’Instrumen-

tation en Astrophysique (France)

LISA Laboratoire Inter-Universitaire des Syst�emes

Atmosphériques (France)

LITMS Laboratory for Information Technologies and

Mathematical Simulation (Russia)

LMD Laboratoire de Météorologie Dynamique

(France)

MIPAS Michelson Interferometer for Passive Atmo-

spheric Sounding

Metop Meteorological operational satellite

MOPD Maximum Optical Path Difference

NASA National Aeronautics and Space Administration

(USA)

NCAR National Center for Atmospheric research (USA)

NIR Near InfraRed

NRC National Research Center (Canada)

NIST National Institute of Standards and

Technologies

OPAC Optical Properties of Aerosols and Clouds

PAH Polycyclic aromatic hydrocarbon

PAN PeroxyAcetyl Nitrate

PNNL Pacific Northwest National Laboratory (USA)

RTM Radiative Transfer Modeling

SCIAMACHY SCanning Imaging Absorption spectroMeter

for Atmospheric ChartograpHY

SCISAT-1 Scientific Satellite-1

SOPHIA Stratospheric Observatory for Infrared Astronomy

SPCAT Spare Parts Catalog Software

S&MPO Spectroscopy & molecular properties of Ozone

SST Spitzer Space Telescope

UCL Université catholique de Louvain (Belgium)

ULB Université Libre de Bruxelles (Belgium)

UV Ultra Violet

VAMDC Virtual Atomic and Molecular Data Centre

VIMS Visible and Infrared Mapping Spectrometer

VIS Visible

Appendix B. Description of the format used for the line

parameters archive in the 2009 edition of GEISA (http://

ether.ipsl.jussieu.fr/etherTypo/?id=1306)

The GEISA-09 individual line list sub-database includes

31 spectroscopic line parameters corresponding to 252

characters record per entry, as described in Table 11:

spectroscopic parameters symbolic field names are in the

first line, and the associated field lengths and FORTRAN

format descriptors in lines 2 and 3, respectively. Standard

missing values, as adopted for each parameter and for the

whole database, are detailed in line 4. Those values are

mainly negative; blank characters correspond to missing

transition quantum number identifications and to internal

GEISA code as well; value ‘‘0’’ have been attributed to non

identified field L (HITRAN isotopologue number). The

description of each field is given at the bottom of the

table.

Some modifications have been brought to the GEISA-

03 [7–9] (http://ether.ipsl.jussieu.fr/etherTypo/?id=1072)

format, i.e.,

� Lengths of fields E1, E2, E3, E4, N, O, N0, O0 have been

extended.

� Fields P and Q, related with specific HITRAN internal

information, have been suppressed. Field P, uncer-

tainty codes for wavenumber, intensity and half-

width, has been replaced in GEISA by effective

values of the errors. Field Q, HITRAN indices for lookup

of references for wavenumber, intensity and half-

width has no correspondence in GEISA which does

not include reference numbers among its line

parameters.

It has to be noticed that:

� Fields K and L are HITRAN-08 [13] specific, for the

users’ easier possible interface between the two data-

bases. These fields information content, i.e., molecule

number (K) and isotope number (L) as in HITRAN,

makes it possible to apply a biunivoque correspon-

dence with GEISA related fields (I) and (G), respec-

tively. It has to be noted that field (L) corresponds, in

HITRAN, to the isotopologue fractional abundance

code; in GEISA, field (G) represents the code associated

with the isotope chemical formula; these specificities

are handled in the software making it possible to

convert the format of a one of the database into the

one of the other.

� Value in field M is given only if directly provided by

the author of the spectroscopic line file. This field has

been newly appended in GEISA-09.

Detailed description of fields E1 and E2, specific of each

molecule, is given on the GEISA distribution WEB site at,

http://ether.ipsl.jussieu.fr, for database interactive soft-

ware use facilities. The shift of the positions of certain

already existing fields (such as field R), as consequence of

modifications in the format of GEISA-09 since the GEISA-03

one, has to be noted.
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Table 11

Fields of the format for GEISA-09 individual line list sub-database.

Parameter A B C D E1 E2 E3 E4 F G

Field length 12 11 6 10 25 25 15 15 4 3

FORTRAN descriptor F12.6 1PD11.4 0PF6.4 F10.4 A25 A25 A15 A15 F4.2 I3

Undefined values �0.999999 �9.9999D�01 �0.9999 �0.9999 �0.99 �99

Parameter I J K L M N O R A0 B0

Field length 3 3 2 1 10 7 9 6 10 11

FORTRAN descriptor I3 A3 I2 I1 1PE10.3 0PF7.4 F9.6 F6.4 F10.6 1PD11.4

Undefined values �99 �9 0 �9.999E�01 �9.9999 �9.999999 �0.9999 �0.999999 �9.9999D�01

Parameter C F0 O0 R0 N0 S S0 T T0 U U0

Field length 6 4 9 6 7 4 4 8 8 4 4

FORTRAN descriptor 0PF6.4 F4.2 F9.6 F6.4 F7.4 F4.2 F4.2 F8.6 F8.6 F4.2 F4.2

Undefined values �0.9999 �0.99 �9.999999 �0.9999 �9.9999 �0.99 �0.99 �0.999999 �0.999999 �0.99 �0.99

A: Wavenumber of the line n (cm�1).

B: Intensity of the line I (cm�1/(molecule cm�2)).

C: Air broadening pressure half-width a (HWHM)(cm�1 atm�1).

D: Energy of the lower transition level E0 (cm�1).

Ei (i¼1,2,3,4): Transition quantum identifications for the lower and upper state transition (unitless).

F: Temperature dependence coefficient n of the air broadening half-width (unitless).

G: Identification code for isotopologue as in GEISA (unitless).

I: Identification code for molecule as in GEISA (unitless).

J: Internal GEISA code for the data identification (unitless).

K: Molecule number as in HITRAN [13] (unitless).

L: Isotopologue number (1¼most abundant, 2¼second, etc.) as in HITRAN [13] (unitless).

M: Einstein A-coefficient (s�1).

N: Self-broadening pressure half-width (HWHMself) (cm�1 atm�1).

O: Air pressure shift of the line transition (cm�1 atm�1).

R: Temperature dependence coefficient of the air pressure shift (unitless).

A0: Estimated accuracy on the line position (cm�1).

B0: Estimated accuracy on the intensity of the line (cm�1/(molecule cm�1)).

F0: Estimated accuracy on the temperature dependence coefficient of the air broadening half-width (unitless)

O0: Estimated accuracy on the air pressure shift of the line transition (cm�1 atm�1).

R0: Estimated accuracy on the temperature dependence coefficient of the air pressure shift (unitless).

N0: Estimated accuracy on the self-broadened (cm�1 atm�1).

S: Temperature dependence coefficient of the self-broadening half-width (unitless).

S0: Estimated accuracy on the temperature dependence coefficient of the self-broadening half-width (unitless).

T: Self-pressure shift of the line transition (cm�1 atm�1).

T0: Estimated accuracy on the self-pressure shift (cm�1 atm�1).

U: Temperature dependence coefficient of the self-pressure shift (unitless).

U0: Estimated accuracy on the temperature dependence coefficient of the self-pressure shift (unitless).
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Appendix C. New molecules and isotopologues

in GEISA-09

Description of new molecule and isotopologue codes in

GEISA-09 is given in Table 12. The molecule names and

associated codes are in the two first columns; for each

molecule, the isotopologue codes and the corresponding

detailed formula are in columns 3 and 4, respectively.

Appendix D. Supplementary materials

Supplementary data associated with this article can

be found in the online version at doi:10.1016/j.jqsrt.2011.

06.004.
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[7] Jacquinet-Husson N, Arié E, Ballard J, Barbe A, Bjoraker G, Bonnet B,
et al. The 1997 spectroscopic GEISA databank. J Quant Spectrosc
Radiat Transfer 1999;62:205–54.

[8] Jacquinet-Husson N, Scott NA, Chédin A, Crépeau L, Armante R,
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