
332 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

The 2010 Mario AI Championship:

Level Generation Track
Noor Shaker, Julian Togelius, Georgios N. Yannakakis, Member, IEEE, Ben Weber, Tomoyuki Shimizu,

Tomonori Hashiyama, Member, IEEE, Nathan Sorenson, Philippe Pasquier, Peter Mawhorter, Glen Takahashi,
Gillian Smith, Student Member, IEEE, and Robin Baumgarten

Abstract—The Level Generation Competition, part of the IEEE
Computational Intelligence Society (CIS)-sponsored 2010 Mario
AI Championship, was to our knowledge the world’s first proce-
dural content generation competition. Competitors participated
by submitting level generators—software that generates new
levels for a version of Super Mario Bros tailored to individual
players’ playing style. This paper presents the rules of the com-
petition, the software used, the scoring procedure, the submitted
level generators, and the results of the competition. We also
discuss what can be learned from this competition, both about
organizing procedural content generation competitions and about
automatically generating levels for platform games. The paper is
coauthored by the organizers of the competition (the first three
authors) and the competitors.

Index Terms—Computational and artificial intelligence, com-

putational intelligence, computer science education, evolu-
tionary computation, hybrid intelligent systems, neural networks

education.

I. INTRODUCTION

I N the last few years, a number of game AI competitions

have been run in association with major international con-

ferences, several of them sponsored by the IEEE Computational

Intelligence Society (CIS). These competitions are based either

on classical board games (such as Othello and Go) or video

games (such as Pac-Man, Super Mario Bros, and Unreal Tour-

nament). In most of these competitions, competitors submit con-

trollers that interface to the game through an application pro-

Manuscript received October 25, 2010; revised March 10, 2011 and June 02,
2011; accepted August 14, 2011. Date of publication August 30, 2011; date of
current version December 14, 2011. This work was supported in part by the
European Union FP7 ICT project SIREN (Project 258453) and by the Danish
Research Agency project AGameComIn (Project 274-09-0083).
N. Shaker, J. Togelius, and G. N. Yannakakis are with the Center for Com-

puter Games Research, IT University of Copenhagen, Copenhagen 2300, Den-
mark (e-mail: nosh@itu.dk; juto@itu.dk; yannakakis@itu.dk).
B.Weber, P. Mawhorter, G. Takahashi, and G. Smith are with the Department

of Computer Science, University of California at Santa Cruz, Santa Cruz, CA
95064 USA (e-mail: bwebersoe.ucsc.edu; pmawhort@soe.ucsc.edu; glen.taka-
hashi@gmail.com; gsmith@soe.ucsc.edu).
T. Shimizu was with the University of Electro-Communications, Tokyo 182-

8585, Japan. He is now with Fuji Xerox Co., Ltd., Tokyo 107-0052, Japan
(e-mail: tomoyuki@media.is.uec.ac.jp).
T. Hashiyama is with the University of Electro-Communications, Tokyo 182-

8585, Japan (e-mail: hashiyama@is.uec.ac.jp).
N. Sorenson and P. Pasquier are with Simon Frasier University, Burnaby, BC

V5A 1S6 Canada (e-mail: nds6@sfu.ca; pasquier@sfu.ca).
R. Baumgarten is with Imperial College, London SW7 2AZ, U.K. (e-mail:

robin.baumgarten06@doc.ic.ac.uk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2011.2166267

gramming interface (API) built by the organizers of the compe-

tition. The competition is won by the person or team that sub-

mitted the controller that played the game best, either on its own

(for single-player games such as Pac-Man) or against others

(in adversarial games such as Go). One interesting variation on

this formula is the 2k BotPrize, where the submitted entries are

not supposed to play the game as well as possible, but in an as

human-like manner as possible [1]. Several of these competi-

tions have spurred valuable research contributions as reported

in [2] and [3] (among others).

However, nonplayer character (NPC) behavior is not the only

use for computational intelligence (CI) and artificial intelligence

(AI) in games. In fact, according to some game developers [4],

it might not even be the area where new advances in AI are

needed the most. Another very interesting area, in which there

is growing interest both from the CI and AI research communi-

ties and from game developers, is procedural content generation

(PCG).

PCG refers to any method which creates game content al-

gorithmically, with or without the involvement of a human

designer. There are several reasons one might want to create

game content automatically: saving development costs, saving

storage or main memory (e.g., in creating “infinite” games), or

adapting the game to players and augmenting human creativity.

The field has a fairly long history [see, for example, the early

1980s games Rogue (AI Design 1983) and Elite (Acornsoft

1984)], but only recently have approaches from artificial and

computational intelligence begun to be explored in the con-

text of creating central game elements such as levels, maps,

items, and rules. In particular, “search-based” approaches to

PCG, building on evolutionary algorithms or other stochastic

search/optimization algorithms, have recently been the subject

of some interest in the computational intelligence and games

community [5]–[7]; recent overviews of such techniques can

be found in [8] and [9], along with a taxonomy of PCG in

general. The coupling of player experience and PCG under a

common framework named “experience-driven PGC” is intro-

duced in [10].

A key concern for many commercial game developers is the

spiraling cost of creating high-quality content (levels, maps,

tracks, missions, characters, weapons, vehicles, artwork, etc.)

for games. As the graphics and other technical capabilities of

game hardware have increased exponentially, so have the de-

mands on game content. However, the most common use of

PCG in commercial games today is offline creation of trees and

1943-068X/$26.00 © 2011 IEEE

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 333

vegetation.1 Even though there are a few examples of level gen-

eration in commercial games, e.g., Rogue and games inspired

by it such as Diablo (Blizzard 1996), PCG algorithms are still

rarely used for the creation of central game elements, or for

online creation of game content during gameplay. This is be-

cause available PCG techniques are not seen, by many game

developers, as efficiently and reliably producing content of suf-

ficient quality to be used in such roles. Therefore, given the need

for making content creation faster and more reliable, the devel-

opment of better PCG techniques is an important research di-

rection for industrially relevant game AI research and beyond.

As there are many different types of game content that could

potentially be generated (levels, maps, weapons, rules, stories,

etc.), and several different roles that could be imagined for PCG

within a game, different content generation problems are ex-

pected to require different approaches [11].

Apart from being fast, reliable, and producing high-quality

content, another desirable characteristic of PCG algorithms in

many contexts is that they are controllable. A controllable PCG

algorithm can take parameters that describe desired features of

the generated content, and produce content that complies to

these specifications. Such features can be defined on different

levels of abstraction, from the geometric aspects (e.g., the length

of a race track or the ruggedness of a landscape) to gameplay as-

pects (e.g., how hard a level would be to clear for a particular

player). This is useful when content is produced collaboratively

by human designers and algorithms, so that the human designer

can request content with particular features suitable for further

human editing or content that fits into already human-authored

content [12]–[14]. It is also important when using PCG to au-

tomatically adapt a game to the human player (e.g., producing

more challenging levels for better players or more fun levels

for particular player types) [5], [10], [15], [16]. Such person-

alization becomes increasingly important as the game-playing

population gets more diverse [17], [18].

With the importance of research on effective and controllable

PCG in mind, we created the level generation track within the

Mario AI Championship to spur and benchmark development of

PCG algorithms. To the best of our knowledge, this is the first

PCG competition within an academic research community, and

the first competition about adaptive or controllable PCG.

Competitors participated in the competition by submitting

controllable content generation algorithms, which would create

game content intended to maximize enjoyment for individual

players. In order to ensure the relevance of the competition,

we set ourselves the goal of addressing an important content

generation problem with considerable generality, within a com-

plex and well-known game context. We then evaluate the gen-

erated content in a fair and accurate manner. This goal was ad-

dressed by using Infinite Mario Bros (Persson 2008), an all-Java

clone of the classic platform game Super Mario Bros (Nintendo

1985). For that game the content type is specified to be com-

plete levels which yields a particularly complex content gener-

ation task with room for diverse strategies. The submitted level

generators were evaluated by letting human players play levels

1See http://www.speedtree.com

generated to suit their particular playing style, and ranking them

in order of enjoyment.

Our hope is that this competition will spur research in

methods of creating levels for platform games, and also in

modeling players of such games and adapting levels to indi-

vidual players. The competition is also expected to advance

the study on computational gameplay aesthetics, playing ex-

perience modeling, and experience-driven PGC [10]. Many

concerns relevant to designing platform game levels recur in

the design of levels and maps for other games, for example,

rhythm and variation may be as important in, e.g., first-person

shooter (FPS) levels and role-playing game (RPG) dungeons

as in platform games, and it is likely that principles for gen-

erating levels that include these features carry over to other

game genres. Appropriate challenge balancing is an important

concern in the design of almost all game content.

The paper is structured as follows. First, a brief introduc-

tion is given to Infinite Mario Bros and the Mario AI Champi-

onship, a series of AI competitions built around this game. This

is followed by a description of the level generation track (part

of the Championship), including the Java interface between the

game and the generators, the rules of the competition, and the

scoring procedure. The section after this describes the level gen-

erators that were submitted to the competition. To ensure that the

descriptions of the generators are both accurate and allow for

meaningful comparison, the subsection about each level gen-

erator is written by the authors of the corresponding generator.

However, all authors were asked to answer a specific set of ques-

tions about their level generator within their text. After the pre-

sentation of the submitted generators, the results of the compe-

tition are presented. Moreover, a concluding section discusses

what we can learn from this competition, both in terms of gen-

erating levels for platform games and in terms of organizing a

PCG competition.

II. INFINITE MARIO BROS

InfiniteMario Bros (Markus Persson 2008) is a public domain

clone of Nintendo’s classic platform game Super Mario Bros

(1985). The original Infinite Mario Bros is playable on the web,

where Java source code is also available.2

The gameplay in Super Mario Bros consists in moving the

player-controlled character, Mario, through 2-D levels, which

are viewed sideways. Mario can walk and run to the right and

left, jump, and (depending on which state he is in) shoot fire-

balls. Gravity acts on Mario, making it necessary to jump over

holes to get past them.Mario can be in one of three states: Small,

Big (can crush some objects by jumping into them from below),

and Fire (can shoot fireballs).

The main goal of each level is to get to the end of the level,

which means traversing it from left to right. Auxiliary goals in-

clude collecting as many as possible of the coins that are scat-

tered around the level, finishing the level as fast as possible,

and collecting the highest score, which in part depends on the

number of collected coins and killed enemies.

2http://www.mojang.com/notch/mario/

334 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

Complicating matters is the presence of holes and moving

enemies. If Mario falls down a hole, he loses a life. If he touches

an enemy, he gets hurt; this means losing a life if he is currently

in the Small state. Otherwise, his state degrades from Fire to

Big or from Big to Small. However, if he jumps and lands on

an enemy, different things could happen. Most enemies (e.g.,

goombas, cannon balls) die from this treatment; others (e.g.,

piranha plants) are not vulnerable to this and proceed to hurt

Mario; finally, turtles withdraw into their shells if jumped on,

and these shells can then be picked up by Mario and thrown at

other enemies to kill them.

Certain items are scattered around the levels, either out in the

open, or hidden inside blocks of brick and only appearing when

Mario jumps at these blocks from below so that he smashes

his head into them. Available items include coins, mushrooms

which make Mario grow Big, and flowers which make Mario

turn into the Fire state if he is already Big.

No textual description can fully convey the gameplay of a

particular game. Only some of the main rules and elements of

Super Mario Bros are explained above; the original game is one

of the world’s best selling games, and still very playable more

than two decades after its release in the mid-1980s. Its game

design has been enormously influential and inspired countless

other games.

The original Super Mario Bros game does not introduce any

new game mechanics after the first level, and only a few new

level elements (enemies and other obstacles). There is also very

little in the way of story. Instead, the player’s interest is kept

through rearranging the same well-known elements throughout

several dozens of levels, which nevertheless differ significantly

in character and difficulty. This testifies to the great importance

of level design in this game (andmany others in the same genre),

and to the richness of the standard Super Mario Bros vocabulary

for level design.

III. THE MARIO AI CHAMPIONSHIP

The Mario AI Championship was set up as a series of linked

competitions based on Infinite Mario Bros. In 2009, the first it-

eration of the Championship (then called the Mario AI Com-

petition) was run as a competition focusing on AI for playing

Infinite Mario Bros as well as possible. A writeup of the organ-

ization and results of this competition can be found in [3].

The 2010 Mario AI Championship was a direct successor of

this competition, but with a wider scope. It consisted of three

competition tracks (the Gameplay Track, the Learning Track,

and the Level Generation Track) that were run in association

with three international conferences (EvoStar, IEEE Congress

on Evolutionary Computation, and IEEE Conference on Com-

putational Intelligence and Games). While the championship

was open to participants from all over the world, the cash prizes

(sponsored by the IEEE CIS) could only be awarded to com-

petitors that were physically present at the relevant competition

event.

IV. THE LEVEL GENERATION TRACK

While the Gameplay and Learning tracks, which will be dis-

cussed at length in a separate paper, focused on controllers that

could play Infinite Mario Bros as well as possible, the Level

Generation track focused on software that could design levels

for human players. For this track, special software was designed

that allowed the game to connect with the submitted level gen-

erators, and that partly automated the scoring procedure. The

competition also required inventing a scoring system, as well as

laying down general rules for what was and was not allowed.

A. Rules

The competition was open to individuals or teams from all

over the world without any limitations, e.g., in terms of aca-

demic affiliation. (In practice, all competing teams in the Level

Generation Track included at least one graduate student, but this

is incidental; the other tracks of the championship had several

entrants without academic affiliation.)While the highest scoring

competitor would be the overall winner of the competition and

receive the certificate, in case no representative of the winning

team was present at the competition event, the IEEE CIS-spon-

sored prize money would be awarded to the highest scoring

competitor who was actually present. The competition event

was heldAugust 19, 2010 in Copenhagen (during the IEEECon-

ference on Computational Intelligence and Games), and final

entries had to be submitted by a deadline a week before that

date. The final submissions were expected to already fulfill the

technical requirements, but technical assistance was available

from the organizers up until the deadline.

The main technical requirement was that the software should

be able to interface to an unmodified version of the Java frame-

work built by the organizers around the Infinite Mario Bros

game. It was not a requirement that the submissions be written

in Java, though no particular assistance was given for non-Java

development. Another key requirement was that the call to the

level generation routine should return within one minute on

a standard MacBook from 2009—in other words, that a level

should always be generated in under a minute.

In what was probably the most controversial rule, which was

later relaxed, the organizers decided to impose certain arbitrary

and unpredictable requirements on the generated levels. The in-

terface was extended so that in addition to data about how the

human judge played the test level, the required number of coin

blocks, turtles, and gaps in the ground was passed to the level

generator (the final numbers were not revealed to the competi-

tors until the competition event). Originally, it was intended

that any level generator which generated levels with numbers

of gaps, turtles, and coin blocks that differed from those spec-

ified would be disqualified. The motivation for this rule was to

prevent competitors from bypassing the purpose of the competi-

tion by entering “level generators” that only generated a single,

human-designed (and presumably well-designed) level at each

method call, or one that simply generated minor variations on

a single level. However, some competitors complained that the

rule overly restricted the level generators, and after some delib-

eration the organizers decided to not disqualify any level gen-

erator that was deemed to generate sufficiently dissimilar levels

each time.

All important information regarding the Mario AI Champi-

onship, including rules, and software was posted on a dedicated

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 335

website.3 Prospective participants and other interested parties

were encouraged to join a Google Group devoted to the com-

petition.4 All technical questions were supposed to be posted

and answered publicly within the group, so that the archive of

the group could function as a searchable repository of technical

knowledge regarding the championship.

B. Scoring Procedure

The rationale behind the scoring was that the level gener-

ator which generated levels that were preferred by most players

should win. As mentioned earlier, the primary aim of the com-

petition was the generation of personalized Super Mario Bros

levels for particular players. For this purpose, we used human

judges as Mario players to assess the quality of each submitted

competitor; everyone who was present at the competition event

was encouraged to participate in the judging. Each human judge

was given a test level to play, and his or her performance on

that level was recorded and passed on to the level generators.

The judge then played two generated levels from two competing

generators, and ranked them according to how much fun they

were to play.

A two-alternative forced-choice questionnaire was used ac-

cording to which each judge expressed a pairwise preference of

fun after completing the two levels (i.e., “which game of the two

was more fun to play”). (The concept of “fun” was deliberately

not defined further, so as not to bias judges more than what is un-

avoidable.) The adoption of this experimental procedure was in-

spired by earlier attempts to capture player experience via pair-

wise preference self-reports which were introduced by the com-

petition organizers (see [19]–[21] among others). For all compe-

tition entries to be treated fairly, all generators had to be played

an equal number of times by the judges and compared against

all other generators submitted. On that basis, the required min-

imum number of judges was 15 given that there were six com-

petitors (i.e., all possible combinations of two games out of six

competitors). To control for order of play effects, each pair was

played by the same judge in both orders.

To make sure that each pair of competitors were judged at

least once in both orders we set up an online structured query

language (SQL) database that initially contained all possible

pairs marked as “unplayed.” Whenever a game session started,

the software connected to the database and asked for an un-

played pair to load. Once the two level generators in the pair

had been chosen from the database, the levels were generated

according to the judge’s gameplay behavioral statistics and the

judge was set to play the generated two levels in both orders.

The level generators had access to player metrics such as num-

bers of player jumps and coins collected (see Section IV-C for

more details about those data).

When the two games and the questionnaire were completed,

the judge’s preferences and gameplay statistics were stored to

the database and the pair was marked as “played.” The experi-

ment was reset if there were no more pairs available in the data-

base to play (all pairs were marked as “played”).

3http://www.marioai.org

4http://groups.google.com/mariocompetition

C. Software and Interface

An interface was designed to pass information between the

game and the level generator. In the main loop, the level gener-

ator was called by the competition software with information on

the human player’s playing style and expected to return a com-

plete level, expressed as a 2-D array of level elements.

Gameplay metrics were collected and statistical features were

extracted from these data. Features included number of jumps,

time spent running, time spent moving left, number of oppo-

nents of each type killed, and many others; for a complete list of

the data collected, see [16]. The selection of features was based

on the organizers’ understanding of what differentiates players

in this particular game, and were all features that could be ex-

tracted with a minimum of processing from the game engine.

These data about the player’s behavior were available to each

competitor at the end of each level.

The resulting software is a single threaded Java application

that can run on any major hardware architecture and operating

system, with the methods that the generators need to implement

specified in Java interface files. Level generators had to imple-

ment the LevelInterface which specifies how the level is con-

structed and how different type of elements are scattered around

the level:

public byte[][] getMap();
public SpriteTemplate[][] getSpriteTemplates()

The size of the level was constrained to be the same for all

competitors: 320 15 level cells. Different levels can be gen-

erated by placing different types of elements in each cell of the

level map. The type of elements that can be placed in each cell

may vary from basic level elements like a block, a ground, a

specific background, and a coin to different enemy types like a

goomba, a turtle, a cannon, and a flower. The total number of

elements that can be used is 29.

Generators implement the LevelGenerator interface—that is

used to communicate with the simulator—and are bound to re-

spond to the GenerateLevel method call with a new level:

public LevelInterface generateLevel
(GamePlay playerMetrics);

The GamePlay interface provides information about the

player experience and might be useful to construct a per-

sonalized level. An example of five statistical features (as

captured by the GamePlay interface) that contain information

about level design parameters and gameplay characteristics is

as follows:

//total number of enemies
public int totalEnemies;
//total number of empty blocks
public int totalEmptyBlocks;
//total number of coins
public int totalCoins;
//number of Green Turtle Mario killed
public int GreenTurtlesKilled;
//total time spent running to the left
public int timeRunningLeft;
//number of empty blocks destroyed
public int emptyBlocksDestroyed;

336 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

Fig. 1. Passes applied by Ben Weber’s ProMP generator: (1) ground, (2) hills, (3) pipes, (4) enemies, (5) blocks, and (6) coins.

Keeping with the tradition from previous IEEE CIS-spon-

sored competitions, the competition software was open source

and full source code was published on the competition web

page.

V. THE COMPETITORS

In this section, the five level generators that took part in the

competition are presented. Each section is written by the au-

thor(s) of the level generator. In order to facilitate comparison

of the level generators, and make sure that information about

key features was present, a certain structure was imposed on

these descriptions. The competitors were asked to answer the

following questions about their generator, if possible in the in-

dicated order.

1) What is the main idea behind, and general architecture of,

the level generator?

2) Were any CI/AI techniques used for offline training? If so,

which?

3) Does the level generator adapt to the recorded playing style

of the human player? If so, how?

4) How much of the generated levels are actually designed

by a human designer? Conversely, what level of creative

control would a human designer have when using the gen-

erator?

5) What are the main strengths and weaknesses of the level

generator?

6) Could the underlying principles be generalized to work for

other games, or other types of content?

A. Ben Weber: Probabilistic Multipass Generator

1) Idea and Architecture: The probabilistic multipass

(ProMP) generator creates a base level and then iterates

through it several times, each pass placing a new component

type. The generation process consists of six passes, where

each pass places a different component type by traversing

the level from left to right. At each generation step, a set of

events specific to the current pass can occur based on weighted

probabilities. For example, during the initial pass events can

occur that change the ground height, begin a gap, or end a gap.

Events are selected using a uniform probability distribution. In

total, the system includes 14 event types with author-specified

weights. An overview of the level generation process is shown

in Fig. 1.

The system enforces two types of constraints. Playability con-

straints are used to constrain the range of values that can be se-

lected by the generator, such as limiting the maximum height

of pipes to ensure that players can traverse the levels. Competi-

tion constraints are enforced by limiting the number of objects

placed each pass. For example, if a generated level contains the

maximum number of gaps, the probability for new gap place-

ment is set to zero.

2) Offline Training: No offline training is performed.

3) Creative Control: The authorial control provided by the

ProMP generator is limited to parameter selection. The author

can manipulate weights of specific events in order to change

the frequency of gaps, enemies, and hills. However, creating

noticeably different levels requires modifying the algorithm.

4) Adaptation: The initial ProMP algorithm did not adapt

based on the player log. Since the competition, the algorithm

has been modified to adapt event probabilities based on the skill

of a player. Level completion causes an increase in the enemy

and gap placement probabilities, while deaths cause a decrease

in these probabilities.

5) Strengths andWeaknesses: While the generator is capable

of building levels in real time, it outputs levels of limited vari-

ation. One of the main disadvantages of the ProMP algorithm

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 337

Fig. 2. This figure shows the overall architecture of the Tomoyuki Shimizu and
Tomonori Hashiyama’s level generator. The Parts collector runs offline using in-
teractive evolutionary computation. The Skill and preference estimator derive
players’ characteristics. Based on the outputs of these modules, the parts con-
nector arranges the corresponding parts sequentially.

is that scaling up the range of the generator is nonintuitive, be-

cause adding new event types or additional passes may break

previously playable levels.

6) Generalizability: The ProMP algorithm was designed

specifically for platformer level generation and has limited ap-

plication outside this domain. However, the concept of creating

a base level and then applying procedural decoration [22] may

translate well to other genres.

B. Tomoyuki Shimizu and Tomonori Hashiyama

1) Idea and Architecture: The main idea behind our level

generator is to make players experience flow, according to the

theory of Csikszentmihalyi [23]. A key element of the theory of

flow implies a linear relationship between challenge and skill as

an important factor of enjoyment. To realize this relationship,

we have implemented and combined three separate modules: 1)

the skill and preference estimator, 2) the parts collector, and 3)

the parts connector (see Fig. 2).

2) Offline Training: Players’ skills and preferences are eval-

uated by the skill and preference estimatorwith GamePlay logs.

Based on the player’s log from a test level, this module carries

out the inference using heuristic rules given by the designers

a priori. The premises of these rules include parameters such

as number of deaths, time spent running, numbers of enemies

killed by stomping, time spent in each mode, and numbers of

mode switches. Players’ skills are classified into five degrees

from 4 (excellent) to 0 (below average). Players’ preferences

are represented as three values, each corresponding to a distinct

playing behavior: 1) CoinCollector, 2) BlockDestroyer, and 3)

EnemyKiller. Each preference is represented by a real number

between 0 and 100, which denotes the percentages of: 1) coins

collected, 2) blocks destroyed, and 3) enemies killed by the

player in the test level.

The parts collector is a tool for the designers to collect the

appropriate parts corresponding to a set of sprites and environ-

ments through interactive evolutionary computation (IEC) [24].

This module works offline. Parts are generated randomly at ini-

tialization, and their difficulty and features are evaluated by the

designer (collector). The difficulty of these parts is classified

into five degrees. Features of these parts are classified into three

categories depending on their number of 1) coins, 2) blocks, and

3) enemies. Five degrees of difficulty and three categories of

features correspond to those of players’ skills and players’ pref-

erences, respectively. The parts used in this competition were

evolved by us in advance and saved into the parts pool.

The parts connector is a module which generates a level as

serial connection of evolved parts. Some parts which match best

to the player’s skill and preferences as derived from the skill and

preference estimator are selected as candidates. This module

connects these candidates from left to right horizontally.

3) Adaptation: Our level generator estimates players’ skills

and preferences through a skill and preference estimator. Those

parts which match the player’s skill and preference best are se-

lected and connected with a level by the parts connector.

At first, this module selects some candidate parts whose diffi-

culty matches the player’s skill. These parts are then examined

for whether they match the player’s preference. The selected

parts are connected sequentially by the level, growing it from

left to right. This selection–connection procedure is repeated

until the length of generated level meets the requirement of the

competition.

4) Creative Control: The designer can control the generator

in at least two important ways. The estimation of players’ skills

and preferences is done through human-authored rules, based on

our domain knowledge. Also, the parts are evolved using IEC,

and their difficulty and features evaluated by human designers.

5) Strengths and Weaknesses: Our approach has two main

advantages. 1) We generate levels that correspond to players’

skills and preferences. 2) Designers can affect the composition

of levels directly through IEC. No formula needs to be derived

for the fitness function of the evolutionary algorithm, because

the level parts are evaluated by the designers themselves.

The main weakness of our approach is that the variety of

levels depends on the evolved parts. If there is not enough va-

riety in the parts pool, the generated levels may be monotonous.

The variety of levels also depends on that of the evolutionary

mechanism used in IEC. IEC relies on interaction with humans;

it becomes a bottleneck for evolution, because of the (human)

time required for evaluation.

6) Generalizability: Our approach is capable of applying to

various types of game content. The approach simply consists of

two main modules: 1) collecting parts of game content through

IEC, and 2) connecting these parts. Moreover, the propriety of

rules for players’ skills and preferences estimation could im-

prove by tuning rules [25].

C. Nathan Sorenson and Philippe Pasquier

1) Idea and Architecture: Our system combines an evolu-

tionary algorithm and a constraint satisfaction solver to generate

338 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

levels in a top–down manner. It is a generic approach which is

able to create levels for a variety of games, and Mario is one of

its primary applications. As opposed to bottom-up techniques

characterized by low-level production rules that can be inflex-

ible and difficult to debug, our system is ultimately driven by a

high-level fitness function that specifies desirable design goals

independent of any particular generative procedures. This fit-

ness function, which we use to guide the evolution of a pop-

ulation of potential level designs, is based on the observation

that certain configurations of challenge are vital to a player’s

experience of fun [26], [27]. Specifically, levels which present

the player with alternating periods of high and low difficulty,

known as rhythm groups [28], are often considered examples of

good design.

The fitness function used for the competition is a modified

form of one previously discussed [29], and is used to esti-

mate the entertainment value of a given level. Essentially, the

function infers the location of a number of rhythm groups,

according to threshold parameters which identify periods of

low challenge. Each of these rhythm groups is then assessed

to ensure it presents an appropriate amount of difficulty to the

player. The underlying model is described in (1), where is

a heuristic estimation of the challenge of rhythm group , and

represents the ideal amount of challenge a player can expe-

rience while still having fun. This formulation rewards levels

that have a large number of rhythm groups with appropriate

degrees of difficulty. Because rhythm groups boundaries are

located at periods of low difficulty, levels that alternate between

challenging and relaxing segments will be rated the highest and

be favored for selection by the genetic algorithm

(1)

A challenge presented by the evolutionary approach is that

the crossover and mutation operations often yield infeasible off-

spring which contain gaps that are too wide to leap across or

walls too high to jump over. A constraint satisfaction subsystem

is used to repair these unplayable designs, and is detailed in pre-

vious work [30]. This subsystem is also used to enforce the con-

test regulations that dictate the specific number of various de-

sign elements that must be present in a valid level.

2) Offline Training: Offline training is used to find values

for the constant terms in the fitness function. Our approach at-

tempts to find parameter values which assign high values to well

designed levels, and low values to poorly designed levels. A

number of actual levels from the original SuperMario Bros form

the set of positive examples and a number of levels randomly

generated with no regard for player enjoyment form the neg-

ative set. The optimal parameter settings are those which best

discriminate between the two sets.

3) Adaptation: Currently, the generative process is guided

only by the fitness function, which results in challenge config-

urations that resemble those of the original Super Mario Bros

game. However, adaptive design could certainly be considered

in future work. By adjusting the model parameters based on

player feedback, levels could be generated that have different

challenge configurations. An example of this would be gener-

ating easier levels by reducing the value of if the player is

found to be failing more than expected.

4) Creative Control: One of the advantages of a top–down

generative approach is that it provides a human designer with a

small number of high-level parameters to manipulate. The sim-

plest way to influence the design of a level is through the ma-

nipulation of the model parameters. By varying the value of

over time, one can create levels with a specific difficulty pro-

file. For example, one could strategically inflate to produce

levels that have a particularly difficult portion at the halfway

point, with another challenging section near the end. Another

approach to influence the generated levels is to anchor any man-

ually created elements of a design. The evolutionary algorithm

is then not permitted to alter these human-created portions of

the level. Because the fitness function is applied to levels as a

whole, this procedure results in the algorithm selecting for de-

signs that best incorporate these fixed elements into a cohesive

experience. In other words, if a designer creates a very chal-

lenging segment of a level by hand, the algorithm will naturally

create easier segments on either side of this section.

5) Strengths and Weaknesses: An advantage to the evolu-

tionary approach is the ability to influence the designs at a high

level by manipulating the fitness function. However, genetic al-

gorithms and constraint solvers are both computationally inten-

sive, and, therefore, only offline generation of levels is practical;

it is not yet possible to generate a level on the fly as a player

is playing. Search time is not prohibitive, however: if the orig-

inal population of level designs is seeded with existing well-de-

signed levels, new viable designs can be found quickly, even

within the one minute time limit dictated by the contest.

6) Generalizability: The system’s top–down design is moti-

vated by the goal of devising a general approach to level gen-

eration which is not bound to a single, specific game. For ex-

ample, the genetic encoding of the levels is not only applicable

to Mario, but can describe any spatial arrangement of compo-

nents; thus, it is suited to describing many different types of

game levels. More importantly, the fitness function is defined

only in terms of the configuration of challenge over time, and

is likely applicable to any game where this dynamic is funda-

mental to player enjoyment, such as action or arcade games.

We are currently exploring the possibility of using our system to

create levels for top–down adventure games such as The Legend

of Zelda (Nintendo 1986). Though this has proven to be a much

more difficult task, our initial results are promising.

D. Peter Mawhorter: Occupancy-Regulated Extension

1) Idea and Architecture: The occupancy-regulated exten-

sion (ORE) algorithm [31] builds a level by fitting together

small hand-authored pieces. Each piece (called a “chunk”) is

annotated with anchor points, which represent positions that the

player might occupy relative to that chunk during gameplay.

These anchor points are used to align chunks as they are being

placed, and once used, each anchor point will not be reused

(unless all anchor points get used up). The chunks, which

come from a hand-authored library, are annotated with various

properties, and generation is customized by defining rules for

probabilistic chunk selection that depend on these properties

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 339

Fig. 3. A screenshot from a particularly complex level generated by Peter
Mawhorter’s level generator.

(in this way, the algorithm bears some similarity to case-based

reasoning [32]). Once the level is constructed using chunks,

there is a final postprocessing step that enforces some global

constraints and maintains a specified distribution of enemies

and powerups. An example of generator output is shown in

Fig. 3.

2) Offline Techniques: The ORE algorithm does not use any

AI techniques to optimize offline parameters, instead relying on

a human to build a chunk library and define both the properties

of each chunk and the biases with which chunks are selected

during generation. However, future work on automatic extrac-

tion of chunks from existing levels would change this, adding in-

telligent techniques for chunk extraction and labeling, and more

fully automating the level-design process.

3) Adaption: For the purposes of the competition, and to

demonstrate the customizability of the basic ORE algorithm,

some basic adaption techniques were implemented. From the

given data, a very rough player model is constructed, focusing

mostly on how often the player used the run button (more

often being taken to imply higher skill) and how often and

how the player died. This player model is then used to alter

generated levels, both by altering the default rules for chunk

selection (such as by making chunks with a particular label

less common) and by altering the distributions of enemies and

powerups maintained by the postprocessing step. The adaption

parameters were hand-tuned; more robust methods would use

some form of optimization, although getting enough data to

do so might be time consuming. Of course, because ORE is

iterative, it should also be possible to use it for dynamic diffi-

culty adjustment. There would be some additional challenges

to overcome (such as finding a way to run the postprocessing

online), but dynamic difficulty adjustment has been shown to be

a promising application of procedural content generation [33].

4) Creative Control: Because the chunk library is hand-au-

thored, the human designer has quite a bit of control over the

types of levels generated, albeit in an awkward manner. Since

in this case the chunk library author is the system designer, it is

easy to use knowledge of the specifics of the system to author

chunks that would result in certain kinds of output (e.g., adding

chunks to make levels that had more height variance, for ex-

ample). The ability to tune the chunk library to achieve desired

results does depend on a thorough understanding of the algo-

rithm, however, and so in general, chunk authoring is not an

interface that provides much leverage on level design. On the

other hand, the ORE algorithm is almost purely incremental, so

it is in theory possible to hand-author part of a level and have

ORE generate the rest. Given the right interface, and combined

with library manipulations, this would offer a rich interface for

mixed-initiative level design, which is a topic that has already

received some study [13].

5) Strengths and Weaknesses: The main strengths of the

ORE algorithm lie in the variety and unpredictability of pos-

sible output (it is a generator that regularly surprises even its

author) and in the possibilities for customization. Combinations

of low-level chunks result in emergent structures that can be

quite complex, which means that even after playing many

levels generated from the same chunk library, one will still

encounter surprising new constructs. The ability to manipulate

the chunk library and the fact that the algorithm is iterative

mean that ORE has lots of potential for customization to

different purposes. Unfortunately, the iterative model means

that certain constraints (including playability constraints) are

difficult to implement. In this respect, ORE is unlike many

other generators [16], [29], [34], which take advantage of more

constrained generation to achieve a particular goal.

6) Generalizability: As written, ORE could generalize to an-

other grid-based game quite easily, and in theory any spatial

(and even some nonspatial) content could be generated using it.

As long as there are concepts of anchor points and chunks, ORE

can generate content in a space. The strength of the algorithm

depends on the specifics of the anchors and chunks, however.

ORE works well in Super Mario Bros in part because using po-

tential positions as anchor points naturally results in coherent

levels.

E. Glen Takahashi and Gillian Smith:

The Hopper Level Generator

1) Idea and Architecture: Hopper was designed to create

levels that imitate the style of Super Mario World levels. These

levels are customized according to the style of player and their

skill at playing, both of which are inferred from player metrics.

Hopper uses a rule-based approach to place level terrain,

enemies, coins, and coin blocks on a tile-by-tile basis. Levels

are built from left to right, with probabilities governing which

tile will be placed next. These probabilities are manually tuned

according to the inferred player types and difficulty described

below, and control the variance in terrain height, occurrence

and width of gaps, and frequency of enemy placement. For

example, an “easy” level will have a low probability of gap

placement, and a level generated for a speed run play style

will be flatter than one created for a player who jumps a lot.

Obstacle placement is also influenced by the number of times

a player died on the particular obstacle: for example, even in

a medium difficulty level, there is a lower probability of gaps

appearing if the player has previously died by falling down a

gap. In order to ensure a reasonable distribution of gaps and

340 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

Fig. 4. Examples of the hidden coin zone (top left), fire zone (top right), shell zone (bottom left), and super jump zone (bottom right), as used in Glen Takahashi
and Gillian Smith’s level generator.

enemies, the probability of placing these increases with the

distance from the last such feature.

2) Offline Training: No offline training was performed.

3) Adaptation: Based on metrics from the initial test level,

players are classified in two ways: by the type of behavior they

exhibit, and their skill level. These classifications drive the

level generation process by influencing generation parameters.

Hopper infers three different special styles of player behavior:

a speed run style, an enemy-kill style, and a discovery style. A

player is categorized as a “speed runner” if they take very little

time to complete a level and do not engage in collecting coins

or killing enemies. The enemy-kill style is applied to players

who spend a lot of time killing enemies. Players are placed

into the discovery style category if they collect a large number

of coins, powerups, and coin boxes. These categories are not

mutually exclusive; i.e., it is possible for a player to have

none of these traits, or more than one of them. There are three

discrete difficulty levels—easy, medium, and hard—which are

determined by the number of times the player died in the test

level, and how long it took the player to complete it. Player

styles, difficulty levels, and the thresholds used to calculate

them are based on informal observation of a number of players

with differing skill levels.

4) Creative Control: This base level generation algorithm

creates approximately 85% of a given level. The remainder is

taken up with “special zones” that are built from human-au-

thored patterns. The four special zone patterns are: fire zone,

shell zone, super jump, and hidden coin area. A given level may

contain a small number of each type of zone, depending on the

inferred player behavior and difficulty level. Each zone has a

varying length. Fire and shell zones are more likely to appear

for players who spend a lot of their time killing enemies, the

super jump zone appears for speed run players, and the hidden

coins appear for discovery style players. Fig. 4 shows an ex-

ample of each zone.

5) Strengths and Weaknesses: Hopper is capable of creating

a wide variety of levels for different player types; however, only

the first level it creates is given to the player. Future incarnations

of this generator will incorporate a generate-and-test structure

similar to that found in an author’s prior rule-based level gener-

ator [34]. Generate-and-test allows a designer to exert additional

control over created levels by specifying global qualities of the

level that they wish to see; it would also be possible to choose

levels that are similar to others that the player has enjoyed.

The incorporation of special zones gives a designer direct in-

fluence over the generator. These patterns and the probabilities

for their appearance are quite simple to specify. They reflect a

desire expressed by some 2-D platformer designers [35] for pro-

cedural level generation to support designers by building a level

around preauthored sections.

Hopper’s parameters for adaptation are currently tuned based

on informal testing with friends and colleagues. A formal study

of different player behavior in platformer levels would improve

Hopper’s adaptation and be a useful contribution to the field.

Incorporating a model of the difficulty of certain combinations

of geometry [33] is also a potential way to improve adaptation.

More information from player metrics would be helpful in cate-

gorizing player behavior; for example, time-stamped player be-

havior would allow us to determine the purpose of a jump, or

understand if the player confidently killed enemies or mademul-

tiple attempts before being successful.

6) Generalizability: Hopper’s level generation technique is

not particularly extensible to other genres; while rule-based ap-

proaches in general have shown promise in content generation

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 341

Fig. 5. Linear discriminant analysis of 11 players with five sessions each, pro-
jected onto the first two dimensions. Data used by Robin Baumgarten’s level
generator.

[36], [37], they require a great deal of domain specific informa-

tion to be built into the rules. However, the general approach of

creating levels based on a formal understanding of play styles

and associated behavior is an interesting future direction for re-

search in procedural level generation.

F. Robin Baumgarten: LDA-Based Level Generator

1) Idea and Architecture: This level generator uses linear

discriminant analysis (LDA) to analyze the data provided after

the initial play-through of a player. The new data vector is pro-

jected into an LDA space created by playing data gathered in a

prior survey. This LDA representation provides us with a single

value that we interpret as skill and use to create a level based on

handcrafted level chunks with varying difficulty.

Discriminant analysis is used in statistics and machine

learning to characterize or separate classes of objects based

on a set of measurable features and class information of these

objects. LDA utilizes a linear combination of these features to

separate the groups of objects. This combination can be used

as a linear classifier or for dimensionality reduction. LDA has

previously been used to estimate feature weights for heuristics

in an Othello game tree [38], and to automatically analyze

logged game data to identify the most significant metrics for

player classification in Pac-Man [39].

2) Offline Training: In our case, we first gathered data in a

small survey, which comprised the playing data of 11 players

playing five different levels each. The levels were randomly

generated (but the same across players) and had an increasing

difficulty. For data analysis, we use LDA to both perform a di-

mensionality reduction and extract information about player be-

havior from the resulting transformed space, which is shown in

Fig. 5. We treat each set of five sessions of a player as one class.

The weights of the features in the first dimensions of the LDA

transformed space indicate the most important features that de-

termine the behavior of a player and how it differs from other

players. A positive side effect of this method is that unimportant

or highly correlated features are eliminated automatically.

3) Adaptation: As the LDA space automatically highlights

variables that were especially helpful in separating players from

each other, we can use the first few dimensions of the feature

vectors in LDA space to guide the level generator in order to

tailor a level suitable to the player.

In our initial survey, we found that the first LDA dimension

(LD1 from now on) gave us a fairly accurate indication of player

skill; as players we (subjectively and manually) judged as good

(bad) players had a high (low) LD1 value. Thus, in this initial

version of our algorithm, we only used the LD1 value of each

player to guide level generation.

4) Creative Control: Our level generator builds levels by

concatenating chunks of predesigned level parts, each with a

length of slightly more than one screen (25 blocks). The human

designer manually annotates the expected difficulty of each

chunk, allowing a selection based on the LD1 skill level. The

proportion of easy, medium, and hard chunks is directly based

on the estimated skill level, with a slight randomization and

repetition avoidance to increase level diversity.

Thus, in this first version of the level generator, the human

designer still plays a big role in creating individual parts of the

level and annotating their difficulty.

5) Strengths and Weaknesses: The process of judging the

skill of a player has been fully automated with the help of LDA

using existing playing data of other players, with the possible

exception of interpreting the first dimension of the LDA space

as the skill level. However, our previous work indicates that a

combination of the first two or three dimensions should give an

accurate representation of player behavior.

Weaknesses of our current implementation are the depen-

dency on a human designer to create the building blocks of our

level, and annotating their difficulty. Furthermore, there was a

programming error in the generator that was submitted to the

contest, which disabled the proper selection of level chunks and

always led to the selection of the most difficult piece first, which

led to a low ranking in the competition. This issue has been fixed

for following studies.

The described version of the level generator leaves a lot of

room for further automatization, especially in selecting appro-

priate dimensions of the LDA space for level generation, and

annotating the difficulty of level chunks, where our A playing

bot could be used (described in [3]).

6) Generalizability: The approach of using LDA to generate

a semiautomatic classification of players can easily be gener-

alized to at least some other games, as we have shown with

our Pac-Man study [39]. It could conceivably be generalized

further.

G. Taxonomic Classification of Competition Entries

According to the taxonomical classification in [8], Ben

Weber’s, Robin Baumgarten’s, Peter Mawhorter’s and Glen

Takahashi and Gillian Smith’s level generators can all be classi-

fied as constructive generators, as they construct their levels in

one or a fixed number of sweeps, without backtracking. Nathan

Sorenson and Phillipe Pasquier’s level generator is search

based, as it uses a search/optimization algorithm (in this case a

342 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

TABLE I
THE RESULT OF THE LEVEL GENERATION TRACK FOR THE 2010 MARIO AI

CHAMPIONSHIP, TURING TEST TRACK

genetic algorithm) to search a space of possible content (levels)

in order. Tomoyuki Shimizu and Tomonori Hashiyama’s level

generator is a combination, which performs a search-based

generation of level segments (using an interactive fitness func-

tion) offline, whereas the online generation of complete levels

is constructive.

Only three of the level generators attempted any kind of adap-

tation to the playing style and/or inferred preferences of the

judge. Shimizu and Hashiyama’s and Takahashi and Smith’s

generators adapt the levels using theory-driven player models,

i.e., the algorithms sort players into categories (e.g., CoinCol-

lector, speed run style) based on thresholds explicitly specified

by the human designers. Baumgarten’s generator, on the other

hand, uses a data-driven player model where the classification

is based on data collected from a number of players.

VI. RESULTS

Following the scoring procedure presented in Section IV-B,

we needed to have at least 15 participants for a fair competi-

tion result (with 15 participants we guarantee that each pair of

competitor submissions is played at least once in both orders).

Since we encouraged everyone present at the competition event

to participate as a judge, we ended up having more than 15

participants but fewer than 30. Thus, for the sake of fairness,

the winner was decided by taking into consideration the first

complete set with all pairs played by the first 15 judges only.

The results presented in Table I are also taken from the first 15

participants.

The numbers presented in the score column in Table I refer to

the number of times the particular generator scores higher than

another generator when played in a pair. The maximum value

of the score is 10: the competitor is preferred to any other of

the five competitors in both orders. As can be seen from the

table, the winner of the competition was Ben Weber with a dif-

ference of only one vote from Tomoyuki Shimizu and Tomonori

Hashiyama who came in second, with the other competitors rel-

atively evenly spread out in the score table.

A. Level Features and Pairwise Preferences

During the competition, all levels that were generated by

the generators were stored on the competition server together

Fig. 6. Average values of eight statistical features that have been extracted from
all generated levels of each competitor.

with the reported preferences of the players. This has given us

an opportunity to extract statistical features from the levels,

and attempt to correlate these with player reported prefer-

ences. Note that, in the first implementation of the competition

server–client system (used in the CIG 2010 competition), data

related to player actions were not collected. Thus, any attempt

to relate level features generated with player characteristics and

furthermore with reported fun preferences is not possible at

this stage. On that basis, reported pairwise preferences cannot

be linked to individual players’ playing styles (as done in [19]

among others) but only associated to level attributes. Any

model learned from these data will therefore be a generic model

that does not take the differences between players into account.

Fig. 6 presents a comparison between the average values of

eight key statistical features that have been extracted from the

data of all competitors: numbers of coins, rocks, powerups, en-

emies and gaps, the average gap width, as well as the spatial di-

versity of gaps (gap H) and enemy placements (enemy H) which

is measured by the entropy of the number of gaps and enemies,

respectively, appearing in a number of 10 equally spaced seg-

ments of the level (see [16] for more details on the calculation

of entropy). All feature values are uniformly normalized to the

range using max–min normalization. As clearly seen from

Fig. 6, the winner’s entry (Weber) generates, on average, more

gaps than most competitors and the most enemies placed in a

rather unpredictable manner. The aforementioned characteris-

tics contribute to more challenging levels which might be one of

the criteria that this level generator was preferred more than any

other entry. The levels generated by Shimizu and Hashiyama’s

generator reached second place in the competition with level

features that are inverse to those of Weber: the levels have, on

average, fewer coins, enemies, and gaps while enemies are more

evenly distributed across the level. Results from these two very

different levels indicate that the relationship between level char-

acteristics and fun is most likely not a simple linear function.

They also reflect upon the highly subjective notion of level aes-

thetics and gameplay attributes.

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 343

TABLE II
CORRELATION COEFFICIENT VALUES BETWEEN EIGHT KEY STATISTICAL
FEATURES EXTRACTED FROM GENERATED LEVELS AND FUN PAIRWISE

PREFERENCES. SIGNIFICANT VALUES APPEAR IN BOLD
—SIGNIFICANCE EQUALS 5% IN THIS PAPER

At the bottom of the score board, the entry of Baumgarten

generates way too many rocks and gaps which result in highly

challenging levels that were not preferred by most judges. It is

also worth noticing that Takahashi and Smith’s entry (which

received two votes) generates, on average, challenging levels

with very wide gaps which are placed in a rather unpredictable

manner. The levels generated by Mawhorter’s entry are charac-

terized by many coins while the entry of Sorenson and Pasquier

seems to generate the most powerups among all competitors.

These level features appear to be valued by some judges and

brought these entries in the middle of the score board.

Table II presents a correlation analysis between the judges’s

expressed fun preferences and the eight key level features ex-

amined earlier. Correlation coefficients are obtained through

, following the statistical analysis proce-

dure for pairwise preference data introduced in [19], where

is the total number of game pairs (is 15 in this paper) and

, if the judge preferred the game with the larger value of

the examined feature and , if the judge chose the other

game in the game pair . The -values of are obtained via

the binomial distribution. A high positive correlation value in-

dicates that levels with a high value of the examined level fea-

ture are in general preferred over levels with lower values of

that feature. On the contrary, features which are highly but neg-

atively correlated to fun preferences characterize levels which

are not preferred. A correlation value close to zero suggests that

there is no apparent linear relationship between the examined

feature and fun preferences. From the significant correlations of

Table II it can be inferred that levels with fewer coins and rocks,

smaller gaps, and even distribution of enemies are, in general,

preferred (or generate more fun). There appears to be a relation-

ship between level fun preference and game challenge show-

cased through these statistical effects: the lower the challenge

in a level the higher the preference for that level. The clear rela-

tionship of the two can only be obtained if the sample size of the

judges is larger and, in addition to fun preferences, the judges

are asked to report the level that generated the most challenging

gameplay. Previous work on the relationship between reported

fun and reported challenge in Super Mario Bros has demon-

strated that they are highly and positively correlated [16] (in

contrast to what is observed here), at least for a more restricted

class of levels.

The correlation values obtained suggest that the relationship

between content characteristics and game preference is most

likely nonlinear (as also found in [16]) since the linear rela-

tionships are far from being exact—i.e., the correlation values

are significant but not close to 1 or 1. Moreover, studies have

shown that player behavioral characteristics are key towards

the prediction of player preferences (see [16] among others)

which further implies that level personalization would most

likely yield more successful generators.

In order to further validate the results of the competition with

more participants/judges, we are currently performing an addi-

tional round of data collection online. A Java applet has been

created and placed on a web page,5 which has been advertised

over social networks, mailing lists and blogs.

VII. DISCUSSION

This section discusses what we can learn from this round of

the Level Generation Track (which was also the first academic

PCG competition and the first competition about adaptive or

controllable PCG), both about organizing a PCG competition

and about generating levels for platform games.

A. Organizing a PCG Competition

Compared to other game AI competitions the PCG competi-

tion attracted a reasonably large set of competitors, representing

a considerable diversity geographically and, in particular, in

terms of algorithmic approaches to the particular content gen-

eration problem. All of the entries submitted contain novel

elements, most of the approaches are sophisticated, and some

of them are connected to the competitors’ ongoing research

programs. The number and quality of submissions indicate a

fairly strong interest in the field of procedural content genera-

tion, forming a subcommunity devoted to PCG that lies within

the broader game AI and computational intelligence and games

communities. Therefore, it seems very plausible that given

a simple enough interface and an interesting enough content

generation problem, future PCG competitions will attract good

attention.

In organizing this competition, the organizers drew on ex-

perience of organizing several previous game AI-related com-

petitions, as well as a set of “best practices” that have been

accumulated within the computational intelligence and games

community over the past few years. One core principle is that

the competition should be as open as possible in every sense,

both in terms of source code, rules, procedures, and participa-

tion. Another key principle is that the software interface should

be so simple that a prospective competitor is able to download

the software and hack together a simple entry in five minutes.

Limitations in terms of operating systems and programming lan-

guages should be avoided wherever possible. It has also become

customary to provide a cash prize in the range of a few hundred

dollars, along with a certificate, to the winner. We believe that

these principles have served us well.

This is not to say that the current competition has been

without its fair share of problems, actual as well as potential.

It was until the last moment unknown how many members

of the audience would be willing and able to participate in

the judging, and it would in general be desirable to have a

5http://noorshaker.com/participate_in_experiments.htm

344 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

larger number of votes cast in order to increase the statistical

validity of the scores. One of the key limitations of the existing

survey protocol is that all entries need to be played against

each other; ideally multiple times from different judges. That

generates a large number of judges—which is combinatorial

with respect to the number of entries—required to sufficiently

assess the entries. This problem can be solved, in part, with

a fair sampling of the pairs and an adaptive protocol which

is adjusted according to the number of judges existent in the

competition room. It is also questionable how representative

of the general game-playing population an audience of game

AI researchers is. As already mentioned, an Internet-based

survey is currently running, where the software is included on

a public web page and judges are solicited through mailing lists

and social networking sites; this approach would undoubtedly

come with its own set of limitations, such as preventing the

competitors from gaming the system by voting multiple times

themselves.

Additional minor problems include the short time period

given for the presentation of the competition; the competitors

agree that it would have been very useful to have on-spot

presentations of their submissions as well. Moreover, one of the

entries included a trivial but severe bug which was only discov-

ered during the scoring, and which was arguably responsible

for the very low score of that entry. The competition software

repeatedly locked up on several of the judges’ laptops during

level generation for as yet unknown reasons.

A potential problem which was briefly discussed in

Section IV-A is that someone could submit a “level gener-

ator” that essentially outputs the same human-designed level

each time and, if that level is good enough, it could win the

competition. As we have abandoned the idea of forcing addi-

tional constraints on the level generators for fear of restricting

them too much, such a case would probably have to be decided

by the organizers of the competition based on some fairly fuzzy

guidelines. The deeper problem is the distinction between a

level and a level generator and it is not clear. It should rather

be thought of as a continuum with intermediate forms possible,

e.g., a fixed level design that varies the number and distribution

of enemies according to the player’s skill level. (Bear in mind

that several of the submitted level generators included complete

human-designed level chunks of different sizes.)

A possible solution to the above problem would be to let the

judge play not one but several levels generated by the same level

generator with the same player profile as parameters. In such a

setting, a generator that always outputs the same level would

probably come across as boring. This solution would also en-

sure that the judges rate the actual design capacity of the gen-

erator rather than just the novelty value of a single generated

level. If this is done, the player metrics might be updated as the

player plays, allowing the generators to continuously adapt to a

player’s changing playing style. It would require that each judge

spends more time on judging, which might lead to a shortage of

willing judges, but given the considerable advantages it seems

like a good idea that the next level generation competition lets

judges play several levels from each generator.

There are certainly aspects of the questionnaire protocol

used that could be improved on the next iteration of the compe-

tition. A four-alternative forced-choice questionnaire scheme

[40] could be adopted to improve the quality of self-reported

preferences. Such a questionnaire scheme would include two

more options for equal preferences (i.e., “both levels were

equally fun” and “neither level was fun”) and thereby eliminate

experimental data noise caused by judges who do not have a

clear preference for one of the two levels.

In the future, we might consider including hand-authored

levels (e.g., original Super Mario Bros levels) among the gener-

ated levels; a litmus test for whether the (personalized or other)

level generators are really successful would be whether they

were generally preferred over professionally hand-authored

levels. We would also like to try to answer not only the “which”

question about fun levels, but also the “why” question; asking

judges why they prefer a particular level over another would

be interesting, but would require significant human effort in

interpreting the data. Another method would be to ask not

only which level was more fun, but also which was more

challenging, interesting, etc., similar to the questionnaires used

in [16].

Another takeaway from previous CIG competitions is that

competitions usually benefit from repetition. When basically

the same competition is run a second or third time, competitors

get a chance to perfect their entries and learn from each other,

meaning that much better entries are submitted. Refining indi-

vidual entries also means that techniques that are more appro-

priate for the problem stand out from initially interesting ideas

that fail to deliver on their promise. In other words, the scientific

value of a competition in general increases with the number of

times it is run.

B. Generating Levels for Platform Games

The main point to note about the competition results is that

the simplest solution won. Ben Weber’s ProMP level generator

does not search and backtrack while constructing the level, does

not include any human-designed level chunks, and does not in

any way adapt to the judge’s playing style. Above all, it does

not attempt any form of large-scale level structure, pacing or

anything similar, but simply places individual level elements in

a context-free manner.

It would be premature to conclude that the aforementioned

features (adaptation, human-designed chunks, search in level

space and macrostructure), which were attempted by the other

generators, cannot in principle add to the quality of generated

levels. Rather, we believe that imperfect implementation and a

lack of fine-tuning were responsible for the relative failure of

the more complex level generators. It is clear that the entrants

need more time to perfect their entries, and possibly recombine

ideas from different approaches. In addition, player behavioral

information could assist the generation of more personalized,

and thereby preferred, levels (as in [41]). While level genera-

tion studies in Super Mario Bros indicate features that are re-

sponsible for a level’s high aesthetical value [16] we are still

far from identifying the complete set of features—which could

be represented computationally—that would yield a highly en-

gaging platform game. Earlier findings suggest that this fea-

ture set needs to be individualized for each player behavioral

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 345

type [16]. In other words, the competition needs to run again to

give the competitors further opportunities to improve their level

generators.

While Ben Weber’s level generator did not generate any

macrostructure, it can be argued that it generates more

microstructure than several of the other level generators. Indi-

vidual images of levels generated by Ben Weber’s generator

tend to be densely filled with items, creatures, and landscape

features and frequently give the false appearance of macrostruc-

ture, such as there being multiple paths through the level. This

suggests that the current evaluation mechanism incentivizes

judges to make judgements on level quality early or based only

on local features.

On a positive note, all the entries produced levels that were, at

least once, judged to be more entertaining than some level gen-

erated by another entry. Also, the score difference between the

winner and the runner-up was very small, despite the level gen-

erators being very dissimilar. This suggests that widely differing

approaches can successfully be used to generate fun levels for

Super Mario Bros. This particular content generation problem

is still very much an open problem.

We have also attempted to see how much of the preference

for certain levels over others, and therefore the quality of level

generators, can be explained by simple extracted features using

linear correlations. The analysis showed that there are partic-

ular key level attributes, such as the number of coins and rocks

as well as the average gap width and the even placement of en-

emies, that affect the fun preference of judges. These features

are all negatively correlated; more items and more irregularly

distributed items are associated with less fun. The most succinct

summary of the statistical analysis would be that the less clutter,

the more fun level.

At the same time, the correlations are far from strong enough

to explain all of the expressed preferences, suggesting that the

relationship between level features and quality is too complex to

be captured by linear correlations. We also know from previous

research that level preferences are highly subjective. It is likely

that an analysis of more extracted features, including playing

style metrics, from a larger set of levels played by a larger set

of judges could help us understand the complex interplay of the

different aspects of level design better.

REFERENCES

[1] P. Hingston, “A new design for a turing test for bots,” in Proc. IEEE

Conf. Comput. Intell. Games, 2010, pp. 345–350.

[2] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta,

M. V. Butz, T. D. Lönneker, L. Cardamone, D. Perez, Y. Saez, M.

Preuss, and J. Quadflieg, “The 2009 simulated car racing champi-

onship,” IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 2, pp.

131–147, Jun. 2010.

[3] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario

AI competition,” in Proc. IEEE Congr. Evol. Comput., 2010, DOI:

10.1109/CEC.2010.5586133.

[4] A. J. Champandard, AI Game Development. Berkeley, CA: New

Riders Publishing, 2004.

[5] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic per-

sonalised content creation for racing games,” in Proc. IEEE Symp.

Comput. Intell. Games, 2007, pp. 252–259.

[6] E. Hastings, R. Guha, and K. O. Stanley, “Evolving content in the

galactic arms race video game,” in Proc. IEEE Symp. Comput. Intell.

Games, 2009, pp. 241–248.

[7] C. Browne, “Automatic generation and evaluation of recombination

games,” Ph.D. dissertation, Faculty Inf. Technol., Queensland Univ.

Technol., Brisbane, Qld., Australia, 2008.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne,

“Search-based procedural content generation,” in Proceedings of

EvoApplications, ser. Lecture Notes in Computer Science. Berlin,

Germany: Springer-Verlag, 2010, vol. 2024, pp. 141–150.

[9] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne,

“Search-based procedural content generation: A taxonomy and

survey,” IEEE Trans. Comput. Intell. AI Games, vol. 3, no. 3, pp.

172–186, Sep. 2011.

[10] G. N. Yannakakis and J. Togelius, “Experience-driven procedural

content generation,” IEEE Trans. Affective Comput., vol. 2, no. 3, pp.

147–161, Jul.-Sep. 2011.

[11] C. Remo, “MIGS: Far Cry 2’s Guay on the Importance of Pro-

cedural Content,” Gamasutra, Nov. 2008 [Online]. Available:

http://www.gamasutra.com/php-bin/news_index.php?story=21165

[12] J. Doran and I. Parberry, “Controlled procedural terrain generation

using software agents,” IEEE Trans. Comput. Intell. AI Games, vol.

2, no. 2, pp. 111–119, Jun. 2010.

[13] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative

level design tool,” in Proc. Int. Conf. Found. Digit. Games, 2010, DOI:

10.1145/1822348.1822376.

[14] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “In-

tegrating procedural generation and manual editing of virtual

worlds,” in Proc. ACM Found. Digit. Games, Jun. 2010, DOI:

10.1145/1814256.1814258.

[15] N. Shaker, J. Togelius, and G. N. Yannakakis, “Towards automatic per-

sonalized content generation for platform games,” in Proc. AAAI Conf.

Artif. Intell. Interactive Digit. Entertain., Oct. 2010.

[16] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-

perience for content creation,” IEEE Trans. Comput. Intell. AI Games,

vol. 2, no. 1, pp. 54–67, Mar. 2010.

[17] T. L. Taylor, Play Between Worlds. Cambridge, MA: MIT Press,

2006.

[18] J. Juul, A Casual Revolution. Cambridge, MA: MIT Press, 2009.

[19] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment

in computer games,” Appl. Artif. Intell., vol. 21, pp. 933–971, 2007.

[20] G. N. Yannakakis, H. P. Martínez, and A. Jhala, “Towards affective

camera control in games,”User Model. User-Adapted Interaction, vol.

20, no. 4, pp. 313–340, 2010.

[21] G. N. Yannakakis and J. Hallam, “Real-time game adaptation for op-

timizing player satisfaction,” IEEE Trans. Comput. Intell. AI Games,

vol. 1, no. 2, pp. 121–133, Jun. 2009.

[22] J. Whitehead, “Toward procedural decorative ornamentation in

games,” in Proc. Workshop Procedural Content Generat. Games,

2010, DOI: 10.1145/1814256.1814265.

[23] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.

New York: Harper Perennial, 1991.

[24] H. Takagi, “Interactive evolutionary computation: Fusion of the capac-

ities of EC optimization and human evaluation,” Proc. IEEE, vol. 89,

no. 9, pp. 1275–1296, Sep. 2001.

[25] J. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”

IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, May./Jun.

1993.

[26] J. Juul, “Fear of failing? the many meanings of difficulty in video

games,” in The Video Game Theory Reader 2. New York: Routledge,

2009, pp. 237–252.

[27] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-

tals. Cambridge, MA: MIT Press, Oct. 2003.

[28] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of

2D platformer levels,” in Proc. ACM SIGGRAPH Symp. Video Games,

2008, pp. 75–80.

[29] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level

design through challenge modeling,” in Proc. 1st Int. Conf. Comput.

Creativity, Lisbon, Portugal, 2010, pp. 258–267.

[30] N. Sorenson and P. Pasquier, “Towards a generic framework for au-

tomated video game level creation,” in Proceedings of the European

Conference on Applications of Evolutionary Computation (EvoAppli-

cations), ser. Lecture Notes in Computer Science. Berlin, Germany:

Springer-Verlag, 2010, vol. 6024, pp. 130–139.

[31] P. Mawhorter and M. Mateas, “Procedural level generation using

occupancy-regulated extension,” in Proc. IEEE Conf. Comput. Intell.

Games, 2010, pp. 351–358.

346 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 4, DECEMBER 2011

[32] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,

methodological variations, and system approaches,” AI Commun., vol.

7, no. 1, pp. 39–59, 1994.

[33] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: Dy-

namic difficulty adjustment through level generation,” in Proc.

Workshop Procedural Content Generat. Games, 2010, DOI:

10.1145/1814256.1814267.

[34] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based

level generation for 2D platformers,” in Proc. 4th Int. Conf. Found.

Digit. Games, 2009, pp. 175–182.

[35] A. Neuse, Personal Communication to Gillian Smith.May 2010.

[36] A. Smith, M. Romero, Z. Pousman, and M. Mateas, “Tableau machine:

A creative alien presence,” in Proc. AAAI Spring Symp. Creative Intell.

Syst., Mar. 2008.

[37] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Pro-

cedural modeling of buildings,” in Proc. ACM SIGGRAPH, 2006, pp.

614–623.

[38] M. Buro, “Statistical feature combination for the evaluation of game

positions,” J. Artif. Intell. Res., vol. 3, no. 1, pp. 373–382, 1995.

[39] R. Baumgarten, “Towards automatic player behaviour characterisation

using multiclass linear discriminant analysis,” in Proc. AISB Symp., AI

Games, 2010.

[40] G. N. Yannakakis, “How to model and augment player satisfaction:

A review,” in Proc. 1st Workshop Child Comput. Interaction, Chania,

Crete, Oct. 2008.

[41] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-

perience in Super Mario Bros,” in Proc. IEEE Symp. Comput. Intell.

Games, Milan, Italy, Sep. 2009, pp. 132–139.

Noor Shaker received the five-year B.A. degree
in IT engineering from Damascus University,
Damascus, Syria, in 2007 and the M.Sc. degree in
artificial intelligence from Katholieke Universiteit
Leuven, Leuven, Belgium, in 2009. Currently,
she is working towards the Ph.D. degree at the IT
University of Copenhagen, Copenhagen, Denmark.
Her research interests include player modeling,

procedural content generation, affective computing,
and player behavior imitation.

Julian Togelius received the B.A. degree in phi-
losophy from Lund University, Lund, Sweden, in
2002, the M.Sc. degree in evolutionary and adaptive
systems from University of Sussex, Sussex, U.K.,
in 2003, and the Ph.D. degree in computer science
from University of Essex, Essex, U.K., in 2007.
He is an Assistant Professor at the IT University

of Copenhagen, Copenhagen, Denmark. Today, he
does game adaptivity, procedural content generation,
player modeling, reinforcement learning in games,
etc.

Georgios N. Yannakakis (S’04–M’05) received the
M.Sc. degree in financial engineering from the Tech-
nical University of Crete, Crete, Greece, in 2001 and
the Ph.D. degree in informatics from the University
of Edinburgh, Edinburgh, U.K., in 2005
He is an Associate Professor at the IT University

of Copenhagen, Copenhagen, Denmark. His research
interests include user modeling, neuroevolution,
computational intelligence in computer games, cog-
nitive modeling and affective computing, emergent
cooperation, and artificial life.

Ben Weber is currently working towards the Ph.D.
degree in computer science withM.Mateas in the Ex-
pressive Intelligence Studio, University of California
Santa Cruz, Santa Cruz.
His research focuses on the application of plan-

ning, machine learning, and case-based reasoning to
game AI.

Tomoyuki Shimizu received the B.Eng. and M.Eng.
degrees from The University of Electro-Communica-
tions, Tokyo, Japan, in 2009 and 2011, respectively.
He has been working with Fuji Xerox co., Ltd.,

Tokyo, Japan, since 2011. His research inter-
ests include computational intelligence for game
applications.

Tomonori Hashiyama (M’96) received the B.Eng.,
M.Eng., and Dr.Eng. degrees in information elec-
tronics from Nagoya University, Nagoya, Japan, in
1991, 1993, and 1996, respectively.
He joined Nagoya University in 1996 and Nagoya

City University in 2000. Since 2007, he has been with
The University of Electro-Communications, Tokyo,
Japan. His research interests include computational
intelligence for human–computer interactions.

Nathan Sorenson received the M.S. degree in inter-
active arts and technology from the School of Inter-
active Arts and Technology, Simon Fraser University,
Burnaby, BC, Canada, in 2011.
With his background in mathematics and com-

puter science, he researches the application of
computational intelligence to problems that typically
demand human creativity. His thesis focused on
formal models of fun in video games and automated
level design.

SHAKER et al.: THE 2010 MARIO AI CHAMPIONSHIP: LEVEL GENERATION TRACK 347

Philippe Pasquier received the B.Sc. degree from
the Université catholique de Louvain (UCL), Lou-
vain-la-Neuve, Belgium, in 1998, the M.Sc. degree
from Nantes Science University, Nantes, France, in
1999, and the Ph.D. degree from Laval University,
Quebec City, QC, Canada, in 2005, all in computer
science.
He is an Assistant Professor at the School of Inter-

active Arts and Technology, Simon Fraser University,
Burnaby, BC, Canada. His scientific research focuses
on the development of models and tools for endowing

machines with autonomous, intelligent or creative behavior. His contributions
vary from theoretical research in artificial agent theories to applied research in
computational creativity and generative processes.

Peter Mawhorter received the B.S. degree in
computer science from Harvey Mudd College,
Claremont, CA, in 2008. He is currently working
towards the Ph.D. degree studying games and AI
with M. Mateas at the University of California Santa
Cruz, Santa Cruz, focusing on procedural generation
and storytelling.

Glen Takahashi is currently working towards the
B.S. degree in computer science at the University of
California—Los Angeles, Los Angeles.
He also works at an education company where he

writes programs to aid in the tutoring of children.

Gillian Smith (S’10) received the B.S. degree in
computer science from the University of Virginia,
Charlottesville, in 2006 and the M.S. degree in com-
puter science from the University of California Santa
Cruz, Santa Cruz, in 2009, where she is currently
working towards the Ph.D. degree in computer
science.
Her research interests include procedural content

generation and mixed-initiative design tools.

Robin Baumgarten received the M.Sc. degree in ad-
vanced computing from Imperial College, London,
U.K., in 2007, where he is currently working towards
the Ph.D. degree within the Computational Creativity
Group, supervised by S. Colton.
His research interests are applying AI methods

to game design and automatically adapting video
games.

