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Abstract 2014–2017 was an unprecedented period of

successive record-breaking hot years, which coincided with

the most severe, widespread, and longest-lasting global-

scale coral bleaching event ever recorded. The 2014–2017

global-scale coral bleaching event (GCBE) resulted in very

high coral mortality on many reefs, rapid deterioration of

reef structures, and far-reaching environmental impacts.

Through the papers in this special issue of Coral Reefs

entitled The 2014–2017 Global Coral Bleaching Event:

Drivers, Impacts, and Lessons Learned, as well as papers

published elsewhere, we have a good analysis of the

2014–2017 GCBE and its impacts. These studies have

provided key insights into how climate change-driven

marine heatwaves are destroying coral reef ecosystems:

(a) The 2014–2017 GCBE is unique in the satellite record

in its spatial scale, duration, intensity, and repetition of

bleaching. (b) The impacts have been the most severe ever

seen at many reefs. (c) Timing of observations matters and

needs to be considered during the analysis of impacts.

(d) On both global and local scales, the intensity of heat

stress and impacts varied. (e) We continue to see important

differences among and within coral taxa, with key roles

played by algal symbionts and the microbiome. (f) Heat

stress and bleaching both play a role in subsequent disease,

which plays a key role in mortality. (g) Impacts ripple far

beyond corals, with significant changes to the fish and

invertebrate community that may last decades. (h) The

structure of both individual coral’s skeletons and entire

reefs has been eroded much more quickly than previously

realized. (i) The 2014–2017 GCBE provided little support

for the proposed ‘‘lifeboat’’ hypothesis, whereby deep or

mesophotic reefs serve as a means of coral reef salvation.

(j) While marine protected areas (MPAs) provide protec-

tion from local stressors, they not only do not protect reefs

from global-scale stressors, but also here is also little evi-

dence they provide significant resilience.
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Introduction

Widespread coral bleaching was first witnessed in 1983 as

part of the extremely strong 1982–1983 El Niño (Coffroth

et al. 1990). The next extremely strong El Niño, arguably

stronger than that in 1982–1983 (Wolter and Timlin 1998;

McPhaden 1999), resulted in the first global-scale coral

bleaching event (GCBE) in 1998, the effects of which were

apparent throughout tropical locations (Wilkinson 2000).

Just over a decade later, a much milder El Niño gave rise to

the second GCBE in 2010, but this was not well docu-

mented, in part because integrated assessments such as the
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Global Coral Reef Monitoring Network and ReefBase were

no longer there to nudge scientists to publish on the

bleaching (Heron et al. 2016a, 2016b).

Just 4 yrs later, the incomplete formation of a

2014–2015 El Niño followed by the strong 2015–2016 El

Niño initiated the third GCBE that lasted for three full

years (Eakin et al. 2014, 2016, 2017). Extreme atmospheric

and oceanic temperatures, representing the highest annual

globally averaged temperatures recorded since the 1800s,

were recorded in 2015, 2016, and 2017 (Blunden and Arndt

2018); notably, 2017 was the warmest non-El Niño year

ever recorded. This extended period of record-breaking

temperatures brought us the most severe, widespread, and

longest-lasting GCBE on record (Eakin et al. 2018a).

What was different in 2014–2017?

As sea surface temperature anomalies at levels capable of

causing coral bleaching moved from northern to southern

hemispheres repeatedly from 2014 to 2017, a nearly con-

tinuous set of bleaching events moved across most of the

world’s coral reefs. In 2015 and again in 2016, the pattern

of bleaching matched that seen during the first global-scale

coral bleaching event in 1998 (Hoegh-Guldberg 1999).

Thus, the 2014–2017 GCBE represents the first multi-year

global-scale coral bleaching event, causing bleaching and

mortality two or more times during the 3-yr event (Har-

rison et al. 2018; Head et al. 2019; Hughes et al. 2019a;

Raymundo et al. 2019; Smith et al. 2019; Teixeira et al.

2019). The heat stress on coral reefs has successively

increased over the past 3 decades, but the 3-yr event from

June 2014 to May 2017 stands out as unique in the multi-

decadal record (Skirving et al. 2019). The 2014–2017

GCBE lasted 36 months, spanned four calendar years, and

included positive (El Niño), negative (La Niña), and neu-

tral phases of the El Niño–Southern Oscillation cycle

(Blunden and Arndt 2018; Eakin et al. 2018a).

While the full extent and impacts of the 2014–2017

GCBE are still emerging, this was the longest-lasting, most

widespread, and most likely the most damaging on record.

Heat stress values in some locations, including the central

tropical Pacific, were the highest ever recorded as heat

stress lasting for months, with continuous heat stress last-

ing up to a full year and resulting in almost complete coral

loss (Eakin et al. 2017; Brainard et al. 2018; Vargas-Ángel

et al. 2019). Even some of the hottest coral reef areas in the

world succumbed to heat stress during the 2014–2017

GCBE, showing that heat stress had even exceeded their

limits (Burt et al. 2019). In the western Pacific US terri-

tories of Guam and the Commonwealth of the Mariana

Islands, the 2014–2017 period was only part of a series of

repeated heat stress events in a place where we are

beginning to see how the annual return of bleaching levels

of heat stress may impact reefs (Raymundo et al. 2019).

Successive years of extreme summer temperatures have

been predicted to occur a few decades from now (Donner

et al. 2018)—so why are we already seeing it before 2020?

While it may have resulted from random variations in

climate extremes, it is most likely the result of a common

problem that climate models underestimate both extreme

events and rates of change (Fischer et al. 2018; Schewe

et al. 2019).

Heat stress during this event was not distributed evenly

across reefs, devastating some areas while leaving some

areas relatively unscathed. On the Great Barrier Reef

(GBR), heat stress in 2016 was most concentrated in the

northern third of the reef (Hughes et al. 2017b), while heat

stress in 2017 was farther south (Hughes et al. 2019a).

Similarly, 2016 heat stress in Western Australia was

strongest above 20�S latitude, diminishing to the south (Le

Nohaı̈c et al. 2017; Gilmour et al. 2019). A surprise was the

second area of warming off southern Australia in 2016,

resulting in bleaching as high as 34�S in Sydney Harbour

(Goyen et al. 2019). At regional scales, these studies found

damage largely followed the degree of heat stress recorded.

What have we learned from GCBE-3?

From a practical standpoint, a clear lesson that has emerged

during the latest and prolonged bleaching event is the

critical importance of the timing of surveys used to docu-

ment the incidence and severity of coral bleaching (Claar

and Baum 2018). While frequent, repeated, and well-timed

observations are the best way to monitor bleaching and

mortality during heat stress events, this is not always

possible, especially at remote locations (e.g., Kiritimati

Island). Some remote locations that are typically surveyed

every 2–3 yrs have been surveyed annually since the onset

of the 2014–2017 GCBE (Brainard et al. 2018; Vargas-

Ángel et al. 2019). However, even well-resourced, large-

scale programs to survey much of the GBR or US coral

reefs are only conducted at a predetermined time of the

year or even every 2 to 3 yrs (Jonker et al. 2008; NOAA

2014). Resulting estimates of bleaching or mortality will

depend on whether surveys were conducted before, during,

or after the peak of heat stress. While satellite remote

sensing of heat stress is readily available and continues to

be improved (Liu et al. 2017) and climate-model-based

systems can predict heat stress with reasonable skill (Liu

et al. 2018), we are currently reliant on direct and timely

in-water surveys to establish the incidence and extent of

coral bleaching and associated mortality (Hughes et al.

2017b, 2018a). Being able to detect coral bleaching

remotely would improve temporal and spatial coverage in
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studies of bleaching incidence and greatly advance under-

standing of the causes and consequences of coral

bleaching.

While global-scale tools such as those provided by

satellites and climate models provide valuable insights into

large-scale patterns, local patterns of heat stress or survival

reveal considerable variability within reefs and reef sys-

tems (Green et al. 2019; Reid et al. 2019). Past studies have

suggested that either the ability of corals to resist heat

stress or to recover after heat stress may be related to other

environmental factors such as local anthropogenic stress

(McClanahan et al. 2012). At one of the hardest-hit loca-

tions, local stress and heat stress interacted to influence the

survival of the heat-tolerant coral Porites lobata in Kiriti-

mati Island (McDevitt-Irwin et al. 2019). Examination of

the microbiome of these corals showed that heat stress in

2016 had a similar impact on microbiome diversity as local

stressors (subsistence fishing pressure, minor pollution

from sewage runoff, and dredging) during the prior non-

bleaching year. However, there was no indication of syn-

ergistic interaction between local stress and heat stress in

terms of the corals’ bleaching response, showing that these

patterns may be more complicated than previously thought.

Elsewhere, now-familiar patterns of symbiont shuffling

were seen in some of the most heat-sensitive coral species

but not in those more resistant (Gong et al. 2019; Thinesh

et al. 2019).

There are winners, losers, and surprises. Some reefs

bleach heavily and suffer significant coral mortality at low

levels of heat stress (Hughes et al. 2017b, 2018a). In other

cases, high heat stress may cause minimal mortality as

corals recover well from bleaching (Fox et al. 2019). Some

of this may be the result of inaccuracies in the heat stress

products, especially in areas close to the equator with poor

seasonal cycles. In some cases, local conditions like

upwelling (Riegl et al. 2019) or high turbidity (Morgan

et al. 2017; Teixeira et al. 2019) may help corals survive,

while local growth of fleshy algae may increase bleaching

susceptibility (Smith et al. 2019). In others, reefs may be

predominated by a few species that are resilient to

bleaching and recover well (Johnston et al. 2019) but may

have reduced reproductive output or success (Fisch et al.

2019; Hughes et al. 2019b). Repeated years of heat stress

may result in less bleaching during later events (Harrison

et al. 2018; Fisch et al. 2019; Hughes et al. 2019a) or may

overwhelm reefs to the point that their persistence is in

question (Riegl et al. 2018; Raymundo et al. 2019). In a

theme repeated from earlier mass bleaching events, heat

stress, bleaching, and disease were interrelated, with

greater tissue loss from disease in highly bleached corals

(Brodnicke et al. 2019). During the 2014–2017 GCBE,

scientists in Florida grappled with a multi-species disease

that spread through most of their corals (Walton et al.

2018). That disease and tissue loss started during the

warmest years on record in Florida, but it is still uncertain

what role high temperature may have played.

Not surprisingly, where the broader ecosystem is

examined, impacts from severe coral mortality ripple

through the associated fauna and impact the entire

ecosystem (Richardson et al. 2018; Sikkel et al. 2019;

Wilson et al. 2019). Stuart-Smith et al. (2018) surveyed a

year after the 2016 marine heatwave hit the GBR, finding

widespread impacts throughout coral reef ecosystems, with

an expected patchiness as local impacts varied. However,

their work showed that heat stress was directly impacting

the ecosystem at multiple levels, not just corals. They

found greater correlations to the level of local heat stress

than to the level of coral loss. A new long-term study of

ecosystem impacts shows that severe bleaching persistently

changes reef fish communities, lasting for more than 15 yrs

(Robinson et al. 2019). Other novel work indicated that fish

living within the branches of corals may moderate the

impacts of bleaching on their hosts (Chase et al. 2018).

Bioerosion of reef structures is faster than previously

understood. At multiple locations, severe bleaching and

mortality caused declines in the net carbonate production

on reefs by reducing carbonate production and increasing

erosion (Couch et al. 2017; Lange and Perry 2019). Such

erosion can be much more rapid than previously under-

stood, as endolithic cyanobacteria can rapidly grow, per-

forating and weakening the outer part a coral’s skeleton

within days to weeks after mortality. This can rapidly

flatten the fine structure of colonies, weaken branches

(Leggat et al. 2019), and significantly reduce rugosity/to-

pographic complexity, within less than a year after

bleaching (Couch et al. 2017).

What about deep reefs?

Questions still remain unanswered regarding deep and

mesophotic reefs. Despite the hypothesis that mesophotic

reefs may serve as lifeboats for coral reefs (Baker et al.

2016), subsequent work has yet to bear this out. In fact,

work has shown mesophotic reefs generally contain dif-

ferent coral species than shallow reefs and are no less

susceptible to anthropogenic and natural impacts (Rocha

et al. 2018). In the course of the 2014–2017 GCBE, the

answer to this question remains cloudy as two groups

working on deep GBR corals found conflicting results.

While Baird et al. (2018) found a decline in bleaching with

depth in a small part of the northern GBR during April of

2016, Frade et al. (2018) worked across a wider set of

northern GBR reefs over a longer time found that upwel-

ling only kept corals cool during the early part of the 2016

marine heatwave, only delaying bleaching until later in the
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event. As was discussed for shallow reefs, timing matters

for deep reefs—perhaps more so as our observations of

these reefs are far more limited. Much more work is needed

to document the environmental change and bleaching

incidence in deeper habitats, but the ‘‘lifeboat’’ hypothesis

still remains an unlikely means of coral reef salvation.

What role does conservation play in bleaching

events?

While marine protected areas (MPAs) provide protection

from local stressors, they can do nothing to protect reefs

from global-scale stressors like the marine heatwaves that

caused the 2014–2017 GCBE. The worst heat stress during

the 2014–2017 GCBE hit Jarvis Island, one of the most

remote coral reefs in the world (Vargas-Ángel et al. 2019),

and high heat stress again hit the remote reefs far offshore

from Western Australia (Gilmour et al. 2019). Examining

the patterns of the 2016 bleaching across a gradient of local

stressors in the GBR showed no sign of bleaching protec-

tion where water quality was high (Hughes et al. 2017b).

Examination of some of the world’s best-managed reefs,

those falling in World Heritage properties, showed that

72% of these were exposed to severe and/or repeated heat

stress during the 2014–2017 GCBE (Heron et al. 2017).

Fortunately, studies of reef recovery after severe bleaching

and mortality in 1998 showed that some reefs have an

ability to bounce back (Golbuu et al. 2007; Gilmour et al.

2013; Graham et al. 2015). However, recovery success was

controlled by reef morphology (Graham et al. 2015) and

hydrodynamics (Golbuu et al. 2007), not protection from

fishing (Graham et al. 2015)—one of the stressors most

often controlled in MPAs. Studies of mortality from heat

stress over the last 2 decades, along with the multi-year

bleaching in 2014–2017, are leading to a new hypothesis:

While local protection such as MPAs can protect reefs

against local stressors, they neither protect reefs against

marine heatwaves caused by climate change nor even

provide significant aid in reef recovery (Hughes et al.

2017b; Bates et al. 2019). Past conservation approaches do

not address the scale of the greatest threats corals face in

the Anthropocene—the growing climate crisis (Hughes

et al. 2017a; Bellwood et al. 2019). Clearly, this points to

the need for action to avert the growing climate crisis

rather than relying on local action. In fact, perceptions of

the importance and impact of climate change increased

among GBR visitors after the bleaching events of 2016 and

2017, suggesting a strengthening base of support to address

the sources of climate change (Curnock et al. 2019).

Closing thoughts

The papers in this special issue of Coral Reefs, together

with the numerous papers on the 2014–2017 GCBE pub-

lished elsewhere, and the papers still being prepared, pro-

vide significant insights into this multi-year bleaching

event. However, as we saw with the 1998 global-scale

bleaching event, the full impacts will not be known for

years to come. Hopefully, papers will emerge on the

recovery of coral reefs after the damage from the

2014–2017 GCBE. However, marine heatwaves have

increased in frequency and intensity across the oceans,

increasing heat stress on coral reefs (Eakin et al. 2018b;

Oliver et al. 2018). This has resulted in an increase in the

frequency of severe bleaching from once in every

25–30 yrs in the 1980s to once in 5.9 yrs today (Hughes

et al. 2018b). Given 10–15 year recovery times for fast-

growing corals on the most ideally located, least-disturbed

reefs (Riegl 2002; Baker et al. 2008; Gilmour et al. 2013;

Head et al. 2019), it is far more likely we will witness the

repeat of severe bleaching on most reefs around the world

rather than their recovery.
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