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Abstract

A seismic network was installed in the Helsinki capital region of Finland to monitor the re-

sponse to a ∼6 km deep geothermal stimulation experiment in 2018. We present initial results

of multiple induced earthquake seismogram and ambient wavefield analyses. The used data

are from parts of the borehole network deployed by the operating St1 Deep Heat company,

from surface broadband sensors and 100 geophones installed by the Institute of Seismology,

University of Helsinki, and from Finnish National Seismic Network stations. Records collected

in the urban environment contain many signals associated with anthropogenic activity. This

results in time- and frequency-dependent variations of the signal-to-noise ratio of earthquake

records from a 260 m deep borehole sensor compared to the combined signals of 24 co-located

surface array sensors. Manual re-locations of ∼500 events indicate three distinct zones of in-

duced earthquake activity that are consistent with the three clusters of seismicity identified by

the company. The fault plane solutions of 14 selected ML0.6−1.8 events indicate a domi-

nant reverse-faulting style, and the associated SH radiation patterns appear to control the first-

order features of the macroseismic report distribution. Beamforming of earthquake data from

six arrays suggests heterogeneous medium properties, in particular between the injection site

and two arrays to the west and south-west. Ambient noise cross-correlation functions recon-

struct regional surface wave propagation and path-dependent body wave propagation. A 1-D

inversion of the weakly dispersive surface waves reveals average shear wave velocities around

3.3 km/s below 20 m depth. Consistent features observed in relative velocity change time se-

ries and in temporal variations of a proxy for wavefield partitioning likely reflect the medium

response to the stimulation. The resolution properties of the obtained data can inform future

monitoring strategies and network designs in this and similar tectonic environments.
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1 Introduction

Subsurface resource production including mining, shale gas and hydrocarbon extraction,

CO2 sequestration, and deep geothermal energy capture interact with the ambient stress field.

The earthquakes or other types of deformation that occur in response to these stress changes

on preexisting or newly created cracks, faults, or weak zones provide important information

on in-situ reservoir processes. If such activities occur in proximity to infrastructure or criti-

cal facilities the associated ground shaking or subsidence patterns can pose a nuisance or threat.

A seismic network underpins the data acquisition, processing, analysis, and decision making

chain in these geoengineering contexts. The properties of the network govern the resolution

and thus quality of the estimated reservoir characteristics and the ability to mitigate potential

unwelcome scenarios.

Networks deployed around Enhanced Geothermal System (EGS) sites [Majer et al., 2007;

Evans et al., 2012; Grigoli et al., 2017] vary substantially in size and in the number of bore-

hole and surface stations, sensor types, number of components (1-C or 3-C), telemetry, and

the number of station operators, where the evolving network anatomy generally reflects the

project stage [Bohnhoff et al., 2018]. The injection depths in igneous rock volumes vary com-

monly between 3.6 km as in the Cooper basin, Australia [Baisch et al., 2015], and 9.1 km at

the scientific drilling project KTB, Germany [Baisch et al., 2002]. Surface sensors are typi-

cally installed within a radius of two [Baisch et al., 2002; Dorbath et al., 2009] to five [Baisch

et al., 2015] times the reservoir depth around the stimulation site, but induced earthquakes have

also been studied using data collected hundreds of kilometers away by stations that were not

specifically deployed for a stimulation project [Deichmann and Giardini, 2009; Diehl et al.,

2017; Grigoli et al., 2018; Ellsworth et al., 2019]. The borehole sensor depths are either shal-

low, such as the 80 m to 120 m deep sensors around Insheim and Landau, Germany [Vaster-

ling et al., 2017; Küperkoch et al., 2018], or deep like the 300 m to 4700 m deep sensors around

the Basel, Switzerland, reservoir [Häring et al., 2008].

Interesting extensions to these general trends include mini surface arrays [Sick and Joswig,

2017] and downhole arrays [Hofmann et al., 2019] for improved detection capabilities, dense

networks for high-resolution imaging [Lehujeur et al., 2017], but also single-station methods

for long-term seismicity analysis [Herrmann et al., 2019]. Various ownership and accessibil-

ity lead to analyses based on different data subsets, notably in the case of large and contro-

versial events such as the M3.5 and M5.5 events in Basel [Häring et al., 2008; Deichmann
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and Giardini, 2009] and Pohang, South Korea [Grigoli et al., 2018; Kim et al., 2018; Ellsworth

et al., 2019].

Here we discuss the anatomy and data features of a network consisting of 3-C borehole

and surface stations deployed in an urban environment to monitor the response to the 2018

EGS stimulation in the capital region of Helsinki, Finland. Many of the seismic network el-

ements used in previous cases are combined in the deployment including the deep borehole

string, the single borehole sensors, regional and local broadband and short period surface sta-

tions, and three arrays with 4 and 25 stations each. The diverse network components and the

overall dense instrumentation facilitate a wide range of analysis techniques for an improved

resolution of the processes associated with the unprecedented stimulation of a ∼6 km deep

competent bedrock unit below a major population center. For example, the high-quality earth-

quake records obtained in the absence of a dissipating sedimentary layer allow for systematic

tests of the frequency and noise level dependent performances of borehole stations and sur-

face arrays that can inform future acquisition strategies around natural laboratories. Data col-

lected by the less frequently used surface arrays can be used to test and develop alternative

processing tools based on beamforming or backprojection concepts for improved event detec-

tion and localization. More generally, the configuration provides data to advance event based

and ambient noise based approaches for complementary imaging, monitoring, and reservoir

characterization.

In this note we discuss properties of the obtained records with a focus on data from the

temporary deployment of 100 short period instruments. We provide an overview of initial re-

sults based on induced earthquake seismogram (Section 5) and ambient noise (Section 6) pro-

cessing that together demonstrate the potential of the collected dataset to underpin a diverse,

comprehensive, multi-faceted stimulation response analysis.

2 The stimulation

From 4 June to 22 July 2018 (day of year 155 to 203) the operating St1 Deep Heat com-

pany stimulated a geothermal reservoir at 6.1 km depth to support local district heating [Kwiatek

et al., 2019]. During the 49 days of the experiment about 18000 m3 water was injected in five

stages that were meant to stimulate five different sections of rock in a hole-upward sequence.

The drilling site is situated on the campus of the Aalto University in Otaniemi, Espoo, the neigh-

boring city west of Helsinki, southern Finland (Figure 1a). The exceptional depth of the bore-

hole is required due to the comparatively shallow geothermal gradient in the Fennoscandian
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Shield. The temperature at the bottom of the hole was estimated to be 130◦C, compared to

the 160◦C, 190◦C, and 270◦C at 3.6 km, 5 km, and 9.1 km depth estimated in Soultz-sous-

forêts, France [Dorbath et al., 2009], Basel [Häring et al., 2008], and the KTB [Baisch et al.,

2002].

The operation-stopping magnitude limit of the the employed Traffic Light System (TLS)

[Ader et al., 2019] was ML2.1. The tuning of the pumping parameters [Kwiatek et al., 2019]

limited the magnitude of the largest induced event to 1.8, which occurred during Stage 4 on

8 July 2018 at 17:36:37 UTC. The pumping strategy was guided by the model of Galis et al.

[2017] and followed a cyclic protocol with inactive periods to allow the induced hydraulic en-

ergy to dissipate. The observed scaling between maximum magnitude and injected volume was

found to be compatible with the model predictions [Kwiatek et al., 2019]. After the limit-exceeding

M3.4, M3.5, and M5.5 earthquakes induced by the Basel [Häring et al., 2008], St. Gallen,

Switzerland [Diehl et al., 2017], and Pohang [Ellsworth et al., 2019] stimulations, the mitiga-

tion of the induced earthquake magnitudes constitutes an intriguing showcase for future stim-

ulation protocols.

3 The network

The operator deployed 24 3-C borehole seismometers to monitor the induced seismic-

ity in real-time and for the reservoir characterization [Ader et al., 2019; Kwiatek et al., 2019].

A satellite network consisting of 12 seismometers with 500 Hz sampling rate is installed be-

tween 240 m and 1150 m depth at distances between 0.6 km and 8.2 km around the wellhead

(black stations in Figure 1a). A 2 kHz sampling 12-level vertical borehole array is installed

between 2200 m and 2650 m depth in the OTN-2 well 10 m offset from the main 6.4 km long

OTN-3 well [Kwiatek et al., 2019]. The operator deployed further a 14-station accelerometer

network in the area for the TLS operation [Ader et al., 2019] and several microphones to study

seismo-acoustic phenomena. Data from the 12 single borehole sensors have been transmitted

to the Institute of Seismology, University of Helsinki (ISUH), as part of a regulatory agree-

ment with the city of Espoo, and are used here. Continuous borehole station recording started

in April 2018. Data acquisition and transfer after the stimulation was interrupted during the

2018−2019 winter months due to insufficient power supply generated by the solar panels.

The ISUH routine analysis uses broadband data collected by the Finnish National Seis-

mic Network (FNSN) and selected stations in the neighboring countries (Figure 1b). The used

FNSN stations sample at 250 Hz and 100 Hz. ISUH deployed five 250 Hz sampling Nano-
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metrics Compact 3-C broadband sensors HEL1 to HEL5 between September 2016 and Febru-

ary 2017 within a 10 km radius around the well head (blue stations in Figure 1a) to monitor

the EGS seismicity independently and at times when the boreholes stations are not operational.

An EGS stimulation allows the observation and investigation of seismic phenomena on

the intermediate scales between laboratory and tectonic boundary scales in a partially controlled

in-situ environment. Here, the “downtown Finland” location puts further emphasis on the re-

search community’s ability to properly inform and educate the public based on independent

analysis. To meet this mission ISUH installed a temporary network within 6 km around the

wellhead consisting of nominally 100 4.5-Hz 3-C geophones from the Geophysical Instrument

Pool Potsdam (GIPP) that were connected to DATA-CUBE3 recorders (red stations in Figure

1a; hereafter referred to as cubes or cube stations). Two sensors were deployed at 13 km and

16 km distance to the east to collect data for ground motion attenuation estimates. The sta-

tions operated for 106 days between 7 May and 20 August 2018 (day 127 to 232). The GIPP

instruments were deployed with built-in GPS, with the gain set to 16, and the sampling rate

set to the maximum of 400 Hz. The stations recorded data continuously on 16 or 32 GB SDHC

cards.

The 100 cube stations were organized in three large arrays consisting of nominally 25

stations, three small 4-station arrays, and ten single stations. The large arrays were installed

in suburban, undeveloped, mostly tree-covered areas. The sensors were generally placed in the

thin top soil layer that covers the ubiquitous bedrock outcrops. The array that was originally

installed at the water tower location southwest to the hole was relocated after two weeks to

the 1.3 km distant Toppelund site because of persistent vandalism. Reorganization associated

with the relocation led to the final 25, 24, and 23 sensor configurations in the Seurasaari (SS),

Elfvik (EV), and Toppelund (TL) arrays, respectively.

The cubes were powered by D-cell batteries. 50 stations in two large arrays used the in-

ternal 2-cell solution. The other stations were equipped with external 8-battery boxes. The de-

ployment consumed ∼2200 D-cells that were changed in an interval of 7−10 days or ∼30 days.

The acquisition and maintenance benefited from the unusual warm and dry weather conditions

[Sinclair et al., 2019]. Data were downloaded and cleared from the SDHC cards in the field

in ∼35 day intervals. The collected data volume between May and August 2018 is 280 GB

from the 12 borehole sensors, 80 GB from the 5 HEL and the 3 closest FNSN stations, and

3.7 TB from the cubes [Hillers et al., 2019a]. The geophone locations were estimated with a

hand-held GPS device. After the stations had been recovered in August 2018, we revisited the
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sites of the six arrays and measured the locations using a high-precision Trimble GNSS sys-

tem. Here we use the initial estimates.

4 Geological setting and data features

The bedrock of Finland belongs to the Fennoscandian Shield, which is a part the East

European Craton [Lahtinen, 2012]. The Helsinki capital region is located within the Uusimaa

belt [Kähkönen, 2005] in the Southern Finland Subprovince of the Palaeoproterozoic Svecofen-

nian domain [Nironen, 2017]. The stimulation site is located 10 km and 20 km away from two

major Svecofennian crustal shear structures, the NE-SW trending Porkkala-Mäntsälä fault to

the NW and the N-S trending Vuosaari-Korso fault to the E, which cut through a belt of folded

and sheared volcanic and sedimentary sequences [Pajunen et al., 2008]. The crustal structure

around the study area reflects the multistage accretionary and orogenic history of present-day

southern Finland [Lahtinen et al., 2005], and the granites, gneisses, schists, and amphibolites

in the deployment area exhibit abundant small-scale lineaments, joints, faults, and fractures

[Elminen et al., 2008]. This bedrock is only locally covered by a few meters thick layer of glacial

deposit or soil.

The absence of a sedimentary layer implies a high transparency for seismic waves, and

the low attenuation in the crystalline rocks leads to earthquake seismograms with high signal-

to-noise ratio (SNR). The weak dissipation leads to discernable signals of the largest induced

ML1.8 event at distances exceeding 400 km (Figure 2a). Similarly, low-magnitude events yield

high-quality records at local distances (Figures 2b−2d). It follows from the urban network en-

vironment that seismic records during working hours contain signals of the frequent explo-

sions that are associated with many infrastructure projects (Figure 2e). Overall, the diurnal and

weekly anthropogenic activity pattern leaves a clear signature in the recorded data (Figures

2e−2g).

5 Seismicity analysis

5.1 Event sets

ISUH compiled four different subsets of the many thousands of induced earthquakes,

but although we find that the manually revised results from routine processing tools are com-

patible with the industrial solutions [Kwiatek et al., 2019], the application of modern automated

methods [Holtzman et al., 2018; Ross et al., 2018; Bergen et al., 2008] appears inevitable to

fully unlock the information contained within the collected data volumes.
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Set 1 consists of ∼2900 automatically detected events that possibly include anthropogenic

sources such as explosions. These are detected with a Short Term Average over Long Term

Average (STA/LTA) algorithm that is adapted from the ISUH routine analysis of FNSN data

and data from the neighboring countries [Kortström et al., 2018] (Figure 1b). The algorithm

is applied to data from the 12 borehole stations, 5 temporary surface stations HEL1 to HEL5,

and the 3 closest permanent FNSN stations MEF, NUR, and PVF at 25 km, 37 km, and 69 km

distance. Modified detection parameters include the five bandpass filter ranges (4−10, 10−

25, 20− 40, 60− 90, 70− 140 Hz) from which the lower, central, and upper three are ap-

plied to data recorded at 100 Hz, 250 Hz, and 500 Hz, respectively.

Set 2 consists of the revised 490 largest events of Set 1. Automatically picked P wave

and S wave arrivals are manually refined by ISUH analysts. The magnitudes are estimated us-

ing a Finnish local magnitude scale [Uski and Tuppurainen, 1996] and are in the ML−0.8 to

1.8 range. The earthquake hypocenters displayed in Figure 3a are computed from the revised

arrival times using a standard linear least-squares algorithm. The P wave and S wave veloc-

ities are 6200 m/s and 3620 m/s, and the vP /vS ratio is 1.71. These are the values of the top-

most 15 km thick layer of the 1-D regional crustal velocity model [Kortström et al., 2018] and

may thus not optimally describe the local conditions, although they are not too different from

the values in the top 8 km of the multi-layer model used by Kwiatek et al. [2019].

Set 3 is a subset of Set 2 and consists again of the 203 largest events for which man-

ual P and S picks from the 100 cube stations have been added to the magnitude and location

estimation (Figure 3b).

Set 4 consists of 14 selected ML0.6−1.8 events for which we estimated the focal mech-

anism (Figure 3b) using manually determined polarity estimates from data from the St1, HEL,

and cube networks and the three closest FNSN stations. The data set contains the six largest

events (ML ≥ 1.4) and eight smaller (ML0.6 − 1.3) events that were selected from all ar-

eas of the stimulated volume using the initial Set 2 locations.

5.2 Locations of induced seismicity

The 490 Set 2 earthquake locations indicate three distinct different-sized groups of earth-

quake activity that are centered laterally on the SW-NE trending deep borehole section (Fig-

ure 3a). These groups are consistent with the three clusters of the industrial solutions [Kwiatek

et al., 2019]. The deepest cluster containing most events is located around the bottom of the

open hole at ∼5900 m depth. The overall smaller catalog size compared to Kwiatek et al. [2019]
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controls the lower resolution of the central and shallow clusters around ∼5500 m and ∼4900 m

depth below and above the casing shoe, respectively, that Kwiatek et al. [2019] resolve as elon-

gated in the N110◦E direction of the maximum horizontal stress. The Set 2 events are mainly

located above the hole. And although the centroid of the biggest cluster in the Set 3 events

based on the additional cube data (Figure 3b) is located 150−200 m deeper, it appears still

100− 200 m shallower compared to the position found by Kwiatek et al. [2019] (their Fig-

ure 3b). These variations are likely caused by different inversion and data processing strate-

gies and velocity models.

Using data from the 12 St1, 5 HEL, and 3 FNSN stations, the RMS absolute location

uncertainty for the Set 2 events is ∼78 m (Lat/Lon/Depth 38 m/38 m/56 m) at an azimuth gap

of ∼59◦, compared to the bootstrap-derived 2σ relative precision of 66 m for 95% of the re-

located events in Kwiatek et al. [2019]. Including the cube data with the restriction of one sen-

sor per array reduces the formal error estimate to ∼53 m (27/25/39) with an azimuth gap of

∼34◦. Using all cubes for Set 3 further reduces this to ∼20 m (11/11/14) as the configura-

tion becomes dominated by the three large arrays. Overall, the Set 2 and Set 3 event locations

and the resolution of three clusters is significantly more consistent with the double-difference

relocations in the “refined industrial catalog” of Kwiatek et al. [2019] compared to the real-

time solutions discussed by Ader et al. [2019].

The color-coded timing in Figure 3 indicates the simultaneous activation of the three clus-

ters during each of the five stimulation phases—an unintended aspect of the response that high-

lights the limits of controllability of subsurface fluid flow. The results are thus overall com-

patible with the findings of Kwiatek et al. [2019] who concluded based on a multiple larger

event database that a preexisting “distributed fracture network” was activated instead of a “promi-

nent, single, large fault”.

5.3 Surface and borehole data quality

At the Elfvik location 1.5 km NW of the injection site (Figure 1) the 24-sensor EV ar-

ray and the 260 m deep borehole station are installed within 250 m horizontal distance. This

proximity allows us to assess the earthquake data quality of stacked surface records compared

to borehole data which can inform decisions on future monitoring network designs [Bohnhoff

et al., 2018] in hard-rock environments.

As with the beamforming discussed below we apply a time shift to the bandpass-filtered

vertical component array records of induced earthquakes to optimize the waveform stack as-
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sociated with each event. In a possible (near) real-time analysis, an average delay can be ap-

plied to the continuous waveforms that is estimated from the reservoir-array configuration. We

discuss results obtained with two bandpass filter ranges (10−35, 60−90 Hz) that are simi-

lar to those used in the STA/LTA analysis. For each of the 134 events—the subset of Set 3

that was available at the time of the implementation—we create N different stacks consist-

ing of k randomly drawn seismograms from the 24 available records, where k ranges from 1

to 24 (abscissa in Figures 4a, 4b). We limit N to 12650, which is the number of possible com-

binations for k = 4 from (nominally) n = 25 different options, i.e., the binomial coefficient,

and was chosen to trade-off sample size and computational load. For k < 4 the number of

unique stacks combined from the database of 24 records per event is less than 12650. Towards

larger k the number of unique combinations increases and then decreases again; N > 12650

for 4 ≤ k ≤ 21 and N = 1 for k = 24.

The P wave SNR is estimated using the 0.2 s STA following the STA/LTA trigger (sig-

nal) and the LTA in the 5 s long window preceding the trigger (noise). This SNR estimate is

scaled by the similarly obtained SNR at the borehole station. Figure 4a displays a typical re-

sult from a ML0.4 event recorded at 24 surface sensors. The color range indicates the distri-

bution of scaled SNRs associated with each k. Again, for k = 1, 24 values are obtained and

binned; for k = 24, only one stack is possible. In between, the systematic shift towards higher

values implies that a random stack will increase the SNR with respect to the borehole signals.

An average below unity means that the borehole waveforms are less noisy than the surface record

stacks. However, the dashed line indicates there frequently exists a stacked combination of seis-

mograms that yield better signal quality compared to the borehole waveforms. The surface de-

ployment can thus yield similar, sometimes even better, signal-to-noise ratios of individual and

of stacked seismograms. This conclusion is supported by a similar analysis of spectral SNR

amplitudes in the 2 − 175 Hz range of 1.5 s long earthquake recorded at the two sites. We

emphasize that this result depends strongly on the frequency band and the noise level, i.e., time

of the day and weekday, and there is a large variability across different events. This variabil-

ity prevents an explicit recommendation for a borehole sensor or a minimum number of sta-

tions in a surface array.

We assess the average station quality using this random-stack database. Figure 4c in-

dicates the relative frequency in percent that each station contributes to the 100 of the 12650

stacks with the lowest SNR values using 10 − 35 Hz filtered data. Figure 4c shows the re-

sults averaged over the 134 events, and Figure 4d the distribution for the largest ML1.8 event.
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The stacks are obtained with a constant, event-independent time shift. The color distribution

clearly indicates a north-south gradient of the obtained data quality proxies. The east-west trend-

ing boundary between y = 0 m and y = −20 m coincides with a ∼5 m high ridge of the

former quarry at the EV array site. To its north is a consistently thicker vegetation mat that

may be responsible for weaker coupling and hence lower data quality. A generally similar north-

south pattern is obtained for the opposite end member analysis. Whereas contributions to the

100 stacks with the highest SNR from the ML1.8 event data are highly compatible, the ag-

gregate 134 event percentages are more normally distributed around a mean 40−50% con-

tribution.

5.4 Fault plane solutions

Focal mechanisms have been calculated for the 14 Set 4 events (Table 1, Figure 3b) us-

ing FOCMEC [Snoke, 2003]. This utilizes P wave polarities, S wave to P wave amplitude ra-

tios, take-off angles, and station azimuths to determine best-fitting double-couple solutions us-

ing a grid search. The first motion polarity and amplitude of P waves are measured on ver-

tical component seismogram and amplitudes of SV waves and SH waves on the radial and trans-

verse component. Data from stations identified to be near nodal planes, noisy or of reversed

polarity, are excluded from the grid search. Amplitude measurements are limited to the broad-

band surface HEL and FNSN stations. This limitation avoids the many data at short source-

station distances where the amplitude ratios are very sensitive to variations in the hypocen-

ter location. The P wave and S wave take-off angles are calculated from the velocity model

described in Section 5.1. We tested several variations of this model and found that the differ-

ences in the obtained solutions were insignificant.

The grid searches generally result in a well constrained set of reverse-faulting solutions

that match the polarity and amplitude observations. In contrast, the only strike-slip solution

(No. 10 in Figure 3b and Table 1) is less reliable as it requires allowance for three polarity

errors. The fact that five of the six largest and eight other arbitrarily chosen events are all char-

acterized by a similar reverse-faulting mechanism suggests that this faulting style plays an im-

portant role in the reservoir response. These findings motivate a more complete analysis of full

moment tensor solutions that account for non-double-couple such as tensile opening compo-

nents indicative of hydrofracturing [Miller et al., 1998; Ross et al., 1999; Goertz-Allmann and

Wiemer, 2013; Martı́nez-Garzón et al., 2017] to better resolve the evolving time and space de-

pendent faulting styles in response to the stimulation. Given the large number of temporary
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stations installed around the project site, the centers of the focal spheres are well sampled. For

future deployments we learn that stations in the 10−20 km distance range would extend the

polarity data towards the edges of the sphere, and hence yield yet better constrained solutions.

The 110 − 135◦ direction of the maximum horizontal compression SHmax [Heidbach

et al., 2016] implies that faults optimally oriented in the strike-slip regime at 6 km depth [Kwiatek

et al., 2019] would be sub-vertical and striking NW-SE to NNW-SSE [Kaisko, 2018]. This ori-

entation is consistent with a set of local fault surface traces [Elminen et al., 2008] and it is also

compatible with the majority of the strike angles S1 in Table 1. However, only the poorest con-

strained focal mechanism has the expected strike-slip properties, with an optimally oriented

sinistral steeply dipping plane. All other solutions indicate reverse faulting along NNW-SSE

striking sinistral or NNE-SSW dextral fault planes, where the associated dip angles range from

shallow to moderate. This means that for the largest events, the water injection reactivated a

set of pre-existing subsidiary shear fractures or faults associated with the NW-SE trending fault

zones that favor reverse motion in the local stress field. The reactivated faults predominantly

accommodate shortening and may accommodate horizontal shear as tensile fracturing proceeds

parallel to the SHmax orientation [Gischig and Preisig, 2015].

5.5 Macroseismology and public response

Observations of ground shaking can be reported using the macroseismic questionnaire

of ISUH. The reports obtained online since the early 2000s reflect the overall low level of nat-

ural seismicity in the study area [Kortström et al., 2016]. The reports are mostly associated

with local low-magnitude earthquakes—seven events with magnitudes between 1.1 and 2.6 oc-

curred in the past 50 years within 50 km of Helsinki—, regional and global earthquakes, ex-

plosions, cryoseisms, and supersonic aircrafts [Mäntyniemi et al., 2017]. The high rate of in-

duced earthquakes represents thus a new phenomenon that led to more frequent macroseismic

reporting which documents the effects of small-magnitude induced seismic events on residents.

ISUH collected a total of 220 responses during the stimulation. The induced events were

consistently observed up to distances of 7−8 km and occasionally at greater distances. For

comparison, the natural ML2.6 event in March 2011 led to around 750 reports from locations

within a 50 km radius. The number of reports appears to scale exponentially with magnitude

[Ader et al., 2019]. Less than ten reports typically follow events with ML < 1.7, whereas

ISUH collected 83 reports associated with the largest ML1.8 (Figure 5). Responses to four

of the largest induced events (events 8, 9, 12, 13 in Table 1) with magnitudes in the ML1.6−
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1.8 range contribute to more than 60% of the reports, where 38% were related to event 12 and

15% to event 13. The anthropogenic activity pattern modulates the observation and response

threshold. The ML1.4 event 11 on Thursday 5 July, 10:01 local time, passed almost unnoticed,

whereas effects associated with the ML1.8 event 12 on Sunday 8 July, 20:36 local time, were

widely reported.

Several respondents reported that they had been observing ground vibrations many times

during some weeks before submitting their questionnaire. However, the times of these events

were not specified, which challenges an overall assessment of how many induced earthquakes

were observed by the general public. Figure 5 distinguishes reports on heard disturbances—

that were typically described as thunder- or blast-like—from combined shaking and sound sen-

sations. These sound observations indicate that seismic wave energy around the lower limit

of the audible frequency range couples locally to the atmosphere [Tosi et al., 2000]. The trans-

mission of energy at frequencies that cause a variety of sensations is reflected in the reports

as difficulty to describe the character and origin of the phenomena.

Whereas the observations collected by ISUH cover a range of attitudes towards the ex-

perienced disturbances, the online response system maintained by the operator collected only

feedback with a positive attitude [Ader et al., 2019]. We learned that groups in access-restricted

social media discussed the observed phenomena, and that a timely outreach and research sys-

tem can benefit from access to and activity on such platforms. Diverse outlets need to be an-

alyzed to obtain a more complete view on the public response and attitude.

The zonation to the NW and to the NE of the EGS site that characterizes the spatial dis-

tribution of the ML1.8 reports (Figure 5) is likely governed by the SH radiation pattern of the

thrust faulting mechanism. The patterns shown in Figure 5 are the absolute values of the the-

oretical radiation factors for SH, P, and SV waves at the surface. Attenuation is not accounted

for. We highlight the multiple reports from residents of buildings that are constructed on the

outcropping bedrock in Munkkivuori and adjacent areas (Figure 5), where events repeatedly

disrupted nighttime sleep; these neighborhoods are located in the direction of the strongest SH

radiation.

We conclude that the main features of the public response pattern are, fundamentally,

controlled by the tectonic situation, i.e., by the radiation pattern of reverse faults that are ac-

tivated by the fluid injection. Secondary geological or societal effects such as variations in the

propagation medium and local soil properties, the population density, or the affinity to report
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the phenomena likely explain the variable density of points in areas that experience similar

radiation pattern controlled ground motions.

5.6 Beamforming

Compared to the networks associated with previous stimulation experiments, a central

aspect of the 2018 Espoo/Helsinki deployment is the array of arrays, in particular the three

∼25-station arrays. In addition to the discussed event data quality patterns (Figure 4) the ar-

rays facilitate antenna analysis methods [Brenguier et al., 2016; Chmiel et al., 2016] that can

resolve the local propagation and provide complementary, independent constraints on medium

properties and in turn on earthquake source properties. We demonstrate this by applying a time-

domain delay-and-sum plane-wave beamforming approach to P waves of six Set 3-events with

magnitudes between 1.1 and 1.8 recorded at the six arrays. The vertical component records

were filtered between 2 Hz and 30 Hz and analyzed in a 1.05 s-long window around the man-

ually picked arrivals. Here we upsample the 400-Hz sampled records by a factor of ten, but

the first-order observations shown in Figure 6 obtained from data of a ML1.4 event that oc-

curred 19 July 2018 are not sensitive to this choice.

The results shown in the slowness domain indicate that the sidelobes in the beamformer

outputs are muted, even for the 4-station arrays. The obtained propagation directions indicated

by the arrows in the slowness plots varies as we change the main processing parameters, no-

tably the frequency range and the sampling rate. Results at EV show the greatest sensitivity,

which we attribute to the close distance, the consequently near-vertical incidence, and the to-

pography variations at the site. In contrast, beams obtained from the SS array are consistently

very robust. In this example only six traces from the SS array were available. The results from

the six analyzed events show consistently that the local propagation at the RS array to the W

and at the TL array to the SW are not compatible with a homogeneous medium between source

volume and array sites.

To locate the origin of the excited energy we project the beamformer output at each ar-

ray along the maximum beam power to the surface. We then build the average beamformer

output [Chmiel et al., 2016]. Again, for homogeneous conditions, the resulting distribution shown

in Figure 6 would indicate a focus area that coincides with the earthquake hypocenter loca-

tion obtained from the travel-time data. The obtained average distribution does peak near the

hypocenter estimate, which demonstrates the overall applicability of the technique and the un-
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derlying model assumptions. At the same time, however, the beamformer features also show

that these assumptions are too simplistic to accurately constrain the source location.

A range of extensions to the approach here can increase the consistency of the location

estimates. This includes the consideration of the array topography [Bokelmann, 1995] and curved

instead of plane wavefronts [Kiser and Ishii, 2017], using improved cube locations obtained

with the Trimble system, removing the array response from the beam patterns [Picozzi et al.,

2010; Gal et al., 2016], and applying beamforming simultanously to data from more than one

array [Krüger et al., 1993]. The likely remaining inconsistencies have to be accounted for by

improved 3-D velocity models that will also help to better constrain the locations obtained with

travel-time based techniques. Array-derived lapse time and frequency dependent variations in

the propagation can also inform about scattering time and length scales [Vernon et al., 1998;

Anache-Ménier et al., 2009] that are essential observables for ambient noise based imaging and

monitoring techniques.

6 Noise based imaging and monitoring

Empirical Green’s functions estimated from cross-correlations of ambient noise records

have been used to construct a detailed 3-D velocity model around the Soultz-sous-forêts and

Rittershoffen sites, France [Lehujeur et al., 2017], to monitor and image a post shut-in defor-

mation episode at the Basel EGS [Hillers et al., 2015], and to study the gas kick dynamics at

the St. Gallen stimulation [Obermann et al., 2015]. Here we discuss the properties of noise

cross-correlations in the 0.5−8 Hz frequency range obtained from the network records. We

estimate an average 1-D shear velocity model based on surface wave dispersion measurements

(Section 6.1) and show initial estimates of the relative velocity change variations in the stim-

ulation period (Section 6.2).

We process data between days 130 and 230. We removed the instrument response from

the data obtained from the borehole sensors, broadband stations, and the cubes. Waveforms

in 1-h segments are whitened between 0.2 Hz and 20 Hz, clipped at three times the standard

deviation of the amplitude distribution in each window, band-pass filtered, cosine-tapered, down-

sampled to 50 Hz, and cross-correlated. The full stacks are used for imaging, and daily stacks

of the hourly correlations are used for monitoring. The full 9-C stacks are rotated from the

ZNE to the ZRT system.

Band-pass filtered ZZ, ZR, RZ, and RR noise correlations exhibit a propagating Rayleigh

wave between 0.5 Hz and 8 Hz (Figures 7a−7c). The TT data show an equally clear Love wave
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(Figures 7d−7f). The move-out patterns imply a propagation speed around 3 km/s. This high

value and the weak dispersion reflect the properties of the shallow bedrock. Correlations at

frequencies above 1 Hz exhibit a high level of fluctuations before the surface wave arrivals,

which we attribute to the anthropogenic noise sources within the network.

In the 2−8 Hz range we notice a strongly dispersive wave train that travels in a SE-

NW direction from the SS to the EV array (Figure 7g). The strong dispersion is likely con-

trolled by the sensitivity of the high-frequency waves to the material deposited at the bottom

of the shallow Laajalahti and Maarinlahti bay. The asymmetric amplitudes suggest the city of

Helsinki to the E of the arrays is the dominant source region. Between the TL array and the

PJ array we resolve a P wave that propagates in the SSW-NNE direction with ∼6 km/s (Fig-

ures 7h, 7i). A similar arrival of a wave traveling in the opposite direction can be seen at neg-

ative correlation lapse times. However, the signal strength at positive lag times is reduced when

waveforms are lag time averaged, which indicates azimuthally variable excitation.

6.1 Imaging

We apply a fundamental mode group velocity dispersion or frequency-time analysis to

lag time averaged correlation functions associated with surface station pairs to estimate av-

erage 1-D shear wave velocity models from the Rayleigh and Love waves. The approach fol-

lows Zigone et al. [2015] and Hillers and Campillo [2018] and employs a 0.3 amplitude thresh-

old of logarithmically stacked ZZ, ZR, RZ, and RR Rayleigh wave dispersion maps, and a dis-

tance to wavelength ratio threshold of three. The resulting pair-wise dispersion curves are then

averaged (Figure 8a). Rayleigh wave data support the estimate of a network average disper-

sion curve between 0.5 Hz and 6 Hz. Figure 8a shows that the distribution branches above 3 Hz,

which implies that a 2-D lateral inversion can resolve velocity variations on the order of 10%

across the study area. The Love wave dispersion curves are well resolved above 1 Hz.

We use the GEOPSY analysis software [Wathelet, 2008] that uses the Sambridge [1999]

neighborhood algorithm to estimate 1-D shear velocity vS profiles from the network averages.

The number of layers has to be defined, and the algorithm then searches for combinations of

the layer thickness and the constant body wave velocities, density, and Poisson’s ratio in each

layer. Here we do not constrain vS and couple vP to vS . We process Rayleigh and Love wave

dispersion data separately to assess the consistency of the solutions. Figures 8b, 8c and 8d,

8e display the density functions constructed from ensembles of 2500 layered vS(z) models

associated with a 2-layer and a 5-layer parametrization.
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The 2-layer vS(z) models (Figure 8d) show that the velocities are reduced only in the

top few tens of meters to about one third of the underlying half-space values. The low-velocity

layer estimated from Rayleigh waves is with 30 m about twice as thick as the Love wave based

estimate. If the number of parameters are increased in the 5-layer models, the topmost low-

velocity structures tend to be distributed across a depth range that reaches twice as deep—to

about 60 m and 20 m—as in the 2-layer models. At the same time, the vS distributions sug-

gest that a wider range of multi-layer solutions can fit the data. In contrast, the vS values be-

low 50 m depth of ∼3400 m/s are consistently well constrained by the relatively non-dispersive

propagation speeds of both surface wave types. Lower vS velocities around 1000 m/s in the

topmost few tens of meters can be associated with properties of the weathered granitic rocks.

The results reflect the absence of a consistent attenuating low-velocity sedimentary layer in

the study area, although thin deposits of softer material accumulates in topographic depres-

sions.

6.2 Monitoring

For an initial application of passive monitoring techniques we focus on two sets of sta-

tions consisting of the 6 nearest borehole stations to the site and of 18 surface stations within

a 3 km radius around the well bottom, where five stations each from the EV and SS arrays

are used. To estimate seismic velocity changes dv/v we apply the time domain stretching and

the Moving Window Cross Spectral (MWCS) techniques [Lobkis and Weaver, 2003; Clarke

et al., 2011] to correlation coda waveforms in a 5−25 s window at negative and positive lapse

times. The long window ensures that the obtained estimates are robust but likely average over

lapse time dependent dv/v changes governed by systematically varying surface wave and body

wave contributions [Obermann et al., 2016]. The reference waveform is the stack of correla-

tion functions from the analysis period, days 145 to 230. To improve the quality of the wave-

forms we stack correlations over ±1 day and apply an SVD-based Wiener filter [Moreau et al.,

2017; Hillers et al., 2019b] with the dimensions five days and five samples. To assess if dv/v

estimates are spurious or resolve genuine medium changes we consider spectral power on the

vertical V and combined horizontal channels H , and the spectral partition ratio H2/V 2 as a

proxy for the WS-to-WP energy density ratio in a diffusion regime [Shapiro et al., 2000], as

markers of wavefield properties [Hillers et al., 2019b].

Time series of dv/v below 0.5 Hz show systematic differences between component pairs

involving the E component which suggests insufficient wavefield randomization and hence weak
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scattering. Two main signals are identified in the 9-C averaged dv/v time series at frequen-

cies above 0.5 Hz (Figures 9a, 9b). The strongest signal at 1−5 Hz is likely associated with

the stimulation. It evolves over a period of ∼50 days. The velocity reduction appears to start

during the first and second stimulation phase and has its maximum during the fourth phase

before it recovers rapidly during the fifth phase. This is superimposed on the second—spurious—

signal, the weekly periodicity, that is strongest for the results obtained with the stretching method

applied to surface station data. This weekly rhythm (Figures 2f, 2g, 9a) reflects the anthro-

pogenic excitation pattern and the associated changes in the wavefield anatomy that is also re-

flected in the spectral power proxies. Note that the ±1 day stacking and the SVD-based Wiener

filter average over the observed daily H and V variations.

Several indicators imply that the significant dv/v change reflects the medium response

to the stimulation. These indicators are that none of the visually inspected wind speed, tem-

perature, precipitation, and atmospheric pressure records (not shown) suggest an external driv-

ing mechanism; in the 1−5 Hz range the amplitude of the stimulation signal is significantly

larger than the spurious weekly variations; the overall similarity of stretching- and MWCS-

based results, and of results obtained with surface and borehole station data; the fact that the

amplitude of the signal is larger at low frequencies which suggests that the strongest medium

change is not near the surface. The spectral power estimates do contain signatures of the in-

duced seismicity (Figure 9c), but the associated variations are not compatible with the observed

dv/v pattern.

The overall stability of the H2/V 2 marker observed at most stations also supports the

inferred relation between the dv/v signal and medium changes. An interesting exception are

the H2/V 2 estimates at the OTRA borehole and HEL2 surface stations, which are both lo-

cated next to the stimulation site (Figure 1a). The ratios show very strong variations that are

similar to the dv/v change pattern. However, the same dv/v time series are obtained if we

exclude data from these stations, which implies that the velocity change estimates are not bi-

ased. In this case the H2/V 2 changes, too, reflect perturbations of the medium, compatible

with the dv/v observations, where the strongly increasing H2/V 2 ratio can be explained with

an accumulating water content that reduces the P wave speed, since WS/WP ∝ 2v3
P
/v3

S
[Shapiro

et al., 2000].

These results warrant an in-depth analysis including the imaging of the evolving medium

changes using the full data set. The stimulation data and seismicity patterns can be used to

calibrate modern imaging approaches based on scattered wavefields [Blondel et al., 2018; Ober-
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mann et al., 2019], but ultimately these techniques are expected to yield independent, comple-

mentary observations of the fluid-rock interactions that possibly unfold aseismically.

7 Conclusions

The development and acceptance of carbon-neutral deep geothermal energy exploration

depends critically on a science-based safe implementation near the consumer. After magni-

tude limit-exceeding earthquakes prohibited the continuation of projects in several cases, the

2018 EGS stimulation in Espoo/Helsinki, southern Finland, constitutes an encouraging case

that benefited from a combination of favorable geological and stress conditions and the ap-

plication of a physics-based stimulation protocol [Kwiatek et al., 2019]. We discussed prop-

erties and data features of the network that covered the stimulation. An asset the 2018 Espoo/Helsinki

deployment is the combination of different network elements such as the borehole sensors, re-

gional and local broadband and short period surface stations, and various array configurations.

Such network elements were used in previous experiments, but the simultaneous deployment

around the stimulation of a ∼6 km deep competent bedrock unit now allow systematic res-

olution tests of established methods and signal processing tools that are typically not routinely

applied in an EGS context. Our overview of results obtained from induced earthquake and am-

bient noise analyses demonstrate the potential of the collected dataset to underpin the appli-

cation of diverse approaches for extensive research on the stimulation response. Key obser-

vations from our initial analyses include the dominant anthropogenic footprint in the data, the

variable quality of array earthquake records compared to colocated borehole data, the reverse

faulting style of the largest events, the consistency of the SH radiation pattern with feedback

from the population, the structural heterogeneity suggested by the beamformer outputs, sur-

face and body wave propagation reconstructed from the ambient field, and the signatures in

wavefield partitioning and in seismic velocity change time series that reflect the medium re-

sponse to the stimulation. The resolution power of these and pending results should inform

future deployment strategies around natural laboratories in general, but particularly acquisi-

tions throughout the Fennoscandian Shield in the context of reservoir stimulation to maximize

the operational and scientific gain from an EGS.

8 Data and resources

Data from the 12 single borehole sensors have been transmitted to the Institute of Seis-

mology at the University of Helsinki (ISUH) as part of a regulatory agreement with the city
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of Espoo. They have not been released to the public. Data from the 12-level vertical borehole

array, the accelerometers, and the microphones are proprietary and cannot be released to the

public. Seismograms from the FNSN, the stations in the surrounding countries, and the five

temporary monitoring stations (HEL1 to HEL5) are openly available and can be obtained by

request. The 100 short period sensors and the DATA-CUBE3 loggers were provided by the

Geophysical Instrument Pool Potsdam (GIPP) under the grant 201802. The standard GIPP mora-

torium period applies. The data can be accessed after August 31 2022 from the GIPP repos-

itory [Hillers et al., 2019a]. Technical information and software for translating the proprietary

data format into MSEED are provided by the GIPP through its webpages. Some figures were

made using The Generic Mapping Tools [Wessel et al., 2013].
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by T. Veikkolainen, L. Tuomi, T. Korja, I. Suomi, M. Nordman, M. Bilker-Koivula, and
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No. Date Time Lat Lon z ML S1 D1 R1 S2 D2 R2 Paz FG TG

UTC [◦] [◦] [km] [◦] [◦] [◦] [◦] [◦] [◦] [◦] [◦] [◦]

1 20180605 10:56:18 60.190 24.834 5.4 0.6 311 46 54 177 54 121 66 85 44

2 20180606 01:39:59 60.193 24.838 5.8 0.8 343 39 64 195 56 110 92 36 20

3 20180607 20:42:12 60.193 24.838 5.9 1.0 351 36 54 212 62 113 106 37 23

4 20180609 05:42:16 60.190 24.830 4.9 1.1 326 51 43 206 58 132 87 30 16

5 20180611 05:26:49 60.191 24.834 5.6 1.3 153 53 65 12 44 120 81 31 19

6 20180620 00:13:04 60.194 24.841 6.2 1.3 0 38 65 211 56 108 108 55 28

7 20180620 17:39:15 60.194 24.843 6.1 1.1 324 38 47 194 63 118 84 35 28

8 20180620 23:27:15 60.193 24.841 6.1 1.6 334 42 51 202 59 120 91 39 20

9 20180629 04:02:45 60.194 24.843 6.3 1.7 151 56 53 25 48 132 87 36 23

10 20180630 06:53:08 60.194 24.839 6.0 1.4 148 74 12 55 79 163 102 35 22

11 20180705 07:01:56 60.193 24.842 6.1 1.4 161 48 63 19 48 117 90 32 25

12 20180708 17:36:37 60.192 24.842 6.1 1.8 332 41 65 184 54 110 80 34 20

13 20180716 17:26:03 60.196 24.837 6.1 1.8 328 31 71 171 61 102 72 35 23

14 20180808 15:58:15 60.192 24.841 6.0 1.1 331 41 41 208 64 124 94 36 23

Average of 13 reverse mechanisms 334 43 57 197 56 117

Table 1. Parameters of the obtained double-couple source mechanisms. No: Event number. z: Depth. ML:

Local magnitude. S1, D1, R1, S2, D2, R2: strike, dip, and rake angles of the two possible fault planes. Paz:

Azimuth of the P-axis or maximum horizontal compression. FG: Maximum azimuth gap between the stations

providing data. TG: Take-off angle gap among the impulsive polarity data.
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Figure 1. (a) Map of the stations in the Helsinki metropolitan region. Black circles indicate the 12 borehole

stations. Blue circles indicate the 5 broadband HEL stations. Red symbols indicate locations of the 100 cube

stations. The orange ‘×’ symbol marks the injection site, and the black line indicates the borehole trajectory.

The gray square to the west of the TL array indicates its initial location before it was relocated. The insets

show the geometry of the arrays at locations Elfvik (EV), Pajamäki (PM), Seurasaari (SS), Poliisin kesäkoti

(PK), Toppelund (TL), and Rudolf-Steiner school Espoo (RS). (b) Finnish national network and stations

in neighboring countries used in the routine analysis. The red encircled cross at 25◦E, 60◦N indicates the

location of Helsinki.

Figure 2. Vertical component data examples. (a) Records from the largest induced event from selected

stations in Figure 1b. (b)−(d) 2−30 Hz filtered seismograms of a ML1.4 event recorded at 20 stations of the

(b) Elfvik, (c) Seurasaari, (d) Toppelund array. Traces are aligned on the picked P wave arrival. (e) 21 days

long section of 0.2 Hz highpass filtered data recorded at the broadband station HEL1. The stimulation and

the induced seismicity started on day 155. (f)−(g) Spectrograms of data recorded by the (f) Elfvik borehole

station ELFV and by (g) sensor EV00 from the colocated array. The spectral power range is linear and scaled

to the maximum in (g). Colorbar applies to (f) and (g).
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Figure 3. Induced earthquake locations in map view (left column) and cross section along the orientation of

the open hole section (right column). (a) 490 Set 2 events. (b) 203 Set 3 events including the 14 Set 4 events

for which fault plane solutions were estimated. The numbers above the focal mechanisms correspond to Table

1. Colors follow Kwiatek et al. [2019] and correspond to the different stimulation phases. Events are plotted

in reverse order of occurrence.

Figure 4. Signal-to-noise ratio (SNR) evolution as a function of stack length. (a) and (b) show distributions

of SNR of vertical component P wave seismograms from a daytime ML0.4 event recorded at the Elfvik EV

array for an increasing number of array stations scaled by the SNR at the colocated ELFV borehole station for

(a) 10 − 35 Hz and (b) 60 − 90 Hz. Values grater than unity imply the SNR is higher for the surface record

stacks. The dashed line indicates the maximum SNR for each number of stations, i.e., the line delineates

small values for the density (below) from zero (above) (white area below the line indicate small values; white

area above the line indicate zero). (c) and (d) show EV array station quality estimates. The colors indicate

how often seismograms from a station contributed to 100 out of 12650 random stacks per event that have low

P wave SNR estimates. Green and red colors indicate stations that provide on average high- and low-quality

waveforms. (c) Aggregate statistics from the 134 largest events. (d) Statistics associated with the largest

ML1.8 event.

Figure 5. SH wave radiation pattern of the largest induced event. Absolute values are shown. Filled and

open circles correspond to locations from which felt and heard disturbances were reported. Locations are by

street address. The white ellipse indicates Munkkivuori and adjacent neighborhoods. The solid and dashed

contours correspond to the P wave and SV wave radiation patterns shwon in the insets. Values are scaled by

the maximum in each distribution.

Figure 6. P wave beamforming results of a ML1.4 event. The six slowness domain plots show the beam-

former results centered on the locations of the corresponding arrays. Small black arrows point to the maxi-

mum beamformer output. The large colored distribution indicates the horizontal average built from the six

solutions. Gray lines indicate the array dependent 0.95 quantile of the mapped distributions. The black con-

tour delimits the high-probabilty area of the obtained average solution. The white circle is the hypocenter, and

the symbols in the background correspond to the stations shown in Figure 1a.
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Figure 7. (a)−(c) ZZ noise correlations between arrays show Rayleigh wave propagation in three fre-

quency bands (0.5 − 2, 1 − 4, 2 − 8 Hz). (d)−(f) The same for Love wave propagation in TT noise correla-

tions. The dashed line indicates a speed of 3 km/s. Gray and black lines indicate individual and array-average

correlations. The correlations are lag time averaged over negative and positive lag times. (g) Highly dispersive

surface wave train in the ZZ correlations between SS and EV arrays. The same frequency bands as in (a)−(c)

apply. (h) 1−4 Hz ZZ correlation gather between TL and PM arrays. (i) Particle motion of the P wave and

Rayleigh wave highlighted in (h).

Figure 8. Rayleigh wave (top) and Love wave (bottom) dispersion analysis. (a) Distribution of observed

dispersion curves. The network average indicated by the white line is inverted for the 1-D shear wave ve-

locity profile. (b) Distribution of dispersion curves from the 1000 best models using the 2-layer and (c) the

5-layer parametrization. (d) Distribution of 1000 best 1-D shear wave velocity profiles obtained with the

2-layer and (e) the 5-layer parametrization. The distributions in (d) and (e) in the halfspace peak at 3420 m/s

and 3420 m/s for the Rayleigh waves, and at 3300 m/s and 3340 m/s for the Love waves, respectively. The

colorbar applies to all panels.

Figure 9. Frequency-dependent daily relative velocity change dv/v time series obtained with the (a)

stretching and (b) MWCS method. Surface and borehole average results are offset for clarity. The grey lines

are the solutions omitting data from the OTRA station. (c) Low, medium, and high quantiles of daily vertical

and horizontal component energy estimates in the 1−5 Hz range. Data are averaged over all stations used

in the dv/v analysis. Energy levels are on a log-scale before the 100 day median was subtracted. (d)−(e)

1−5 Hz partition ratios H2/V 2 at (d) surface and (e) borehole sensors. The distributions in (d) and (e) are

from the HEL2 and OTRA stations. The black lines show the maximum likelihoods for data from the HEL3

and LEPP stations for comparison. The ‘binary’ appearance is controlled by the bin width. The sampling

frequency is two samples per day. The dashed lines indicate the five stimulation stages.
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