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Abstract

The NVIDIA AI City Challenge has been created to ac-

celerate intelligent video analysis that helps make cities

smarter and safer. With millions of traffic video cameras

acting as sensors around the world, there is a significant

opportunity for real-time and batch analysis of these videos

to provide actionable insights. These insights will benefit

a wide variety of agencies, from traffic control to public

safety. The second edition of the NVIDIA AI City Challenge,

being organized as a CVPR workshop, provided a forum to

more than 70 academic and industrial research teams to

compete and solve real-world problems using traffic cam-

era video data. The Challenge was launched with three

tracks — speed estimation, anomaly detection, and vehi-

cle re-identification. Each track was chosen in consultation

with traffic and public safety officials based on the value

of potential solutions. With the largest available dataset

for such tasks, and ground truth for each track, the Chal-

lenge enabled 22 teams to evaluate their solutions. Given

how complex these tasks are, the results are encouraging

and reflect increased value addition year over year for the

Challenge.

1. Introduction

There will be a billion cameras worldwide by 2020. The

NVIDIA AI City Challenge was launched in 2017 to create

datasets that would enable academic and industrial research

teams around the world to advance the state-of-the-art in in-

telligent video analysis for a variety of real-world problems.

The Challenge was inspired by the success of the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [12]

enabling dramatic improvement in object detection, local-

ization and classification for web-scale images.

Despite the existence of some corpora and benchmarks

for video retrieval (e.g., NIST TRECVID [1]), there is a

clear lack of a large scale labeled corpus of high quality

video data for traffic or public safety that would reflect the

scale at which such analysis needs to be executed at in order

to succeed in real-world conditions. We envision intelligent

video analysis to help with several city-scale problems such

as traffic, public safety, crime prevention, efficient resource

utilization, improving the experience of users in large pub-

lic and private spaces such as malls, stadia, train stations,

airports, etc. Traffic and transportation, for example, can

benefit from actionable insights that can be derived from

data captured by street cameras, where the insights can help

understand traffic patterns, adaptively control signaling sys-

tems, monitor infrastructure, and detect incidents in real-

time. In 2017, the inaugural NVIDIA AI City Challenge

[11] focused on the analysis of traffic camera videos at sev-

eral intersections. The challenge task was primarily object

detection, localization and classification using the largest

annotated intersection video corpus created.

To build upon the 2017 challenge, the second edition of

the AI City Challenge (AIC18) focused on three real-world

problems. We decided to take the challenge beyond bound-

ing boxes into metrics and insights that matter to transporta-

tion and traffic agencies like the United States Department

of Transportation. These agencies are in dire need of sys-

tems that can automatically analyze traffic video content.

It is unrealistic for humans to eyeball all the pixels, and
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Figure 1: AIC18 Dataset: example data frames captured at traffic intersections and highways in Iowa and Silicon Valley.

a lack of such systems means that most of these data go

unused. Upon consultation with several traffic and trans-

portation agencies, as well as public safety organizations,

we decided to focus on three tasks (§ 2):

1. Estimating traffic flow characteristics, such as the pre-

cise location and speed of each visible vehicle at any

time.

2. Leveraging unsupervised approaches to detect anoma-

lies caused by crashes, stalled vehicles, etc. This can

be used to get the humans in the loop to pay attention

to meaningful visual information in situations where

timely intervention can save lives.

3. Multi-camera tracking and object re-identification in

urban environments. This is very useful in traffic anal-

ysis as well as identifying and preventing crime. This

also enables users to react to unfolding events as fast

as possible.

We captured intersection and highway data from multi-

ple cities and states for the Challenge (see Figure 1). The

major difficulty in evaluating teams’ performance on these

tasks was coming up with an efficient approach to generate

ground truth. On the one hand, we needed to record and

measure the movement of a number of vehicles when the

data was being captured. On the other hand, we wanted to

avoid having to label every vehicle observed by the cameras.

The approach we took was to create a fleet of control group

vehicles and use their trips to generate the ground truth. On

Jan 20, 2018, we shared the entire dataset with participating

teams, as detailed in § 3.

More than 70 teams originally signed up to participate

in the AIC18 Challenge. Submissions to the three tracks

were due April 5, 2018. By then, a number of teams had

dropped out, due to the complexity of the challenge and

the very short period of time for completing the tasks. We

received multiple submissions from 22 teams. Each team

competed in one or more challenge tracks, as detailed in

Table 1. An on-line evaluation system (§4) was developed

and deployed that allowed teams to submit multiple runs

against each track, allowing them to improve their track per-

formance for a period of 1 week. However, teams were only

allowed to see the performance of other teams when the sub-

mission period ended.

As anticipated, most teams performed well on the vehi-

cle localization and speed estimation task, moderately well

on the anomaly detection task, and really struggled but also

surprised us on the vehicle re-identification task (§ 5). The

re-identification task was deliberately designed to be the

most challenging, especially with the large volume of video

data.

The results of this year’s challenge indicate that we have

made progress year-over-year in moving the bar higher, go-

ing beyond mere bounding boxes around vehicles. We have

also brought teams closer to real-world problems whose so-

lutions will offer significant positive impact for traffic ana-

lytics and public safety.

2. Challenge Setup

The AIC18 Challenge allowed participants to compete

in one or more of the following three tracks. Teams were

required to submit their code for independent verification

before being announced as winners.

Track 1 - Traffic Flow Analysis. Participating teams

were asked to submit results for individual vehicle speeds

in a test set containing 27 HD 1920x1080 videos, each 1-

minute in length. Performance was evaluated based on the

ground truth generated by a fleet of control vehicles (with

accurate GPS tracking) driven during the recording. Eval-

uation for Track 1 was based on the detection rate of the
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Table 1: The 22 participating teams and leaderboard rankings as of April 5, 2018. There are 13 teams competing in Track 1,

7 teams in Track 2, and 10 teams competing in Track 3. Top-2 teams in each track are highlighted in bold.

Team ID Institution Track 1 Track 2 Track 3

4 Vietnam Nat’l Univ. [16] 6

6 Brno Univ. Tech. [14] 8 8

10 Conduent Inc. 9

12 Columbia Univ. [9] 5 7

15 Panasonic, HUST, NTU, CAS [20] 1

18 Univ. Albany SUNY [2] 11 3 4

24 Stevens Inst. Tech. 4

25 Peking Univ. 4

26 San José State Univ [5] 10

28 Peking Univ., Beijing Inst. Tech. 5

31 Hacettepe Univ. 10

37 Nat’l Taiwan Univ. [19] 2

39 CERTH, Maastricht Univ. [4] 13 5

40 Iowa State Univ. [6] 9

41 ULPGC, UNIMORE [10] 6

45 Iowa State Univ. 12

48 Univ. Washington [15] 1 1

53 Univ. Illinois Urbana-Champaign 7

63 Beijing Univ Posts & Telecom. [17] 2

65 Univ. Maryland CP [7] 7

78 UIUC, IBM, SIT [13] 3

79 Beihang Univ., UCAS, USC [3] 2 6 3

control vehicles and the root mean square error (RMSE) of

the predicted control vehicle speeds (§ 4.1).

Track 2 - Anomaly Detection. Participating teams were

asked to submit the anomalies detected in a test set con-

taining 100 video clips, each approximately 15 minutes in

length. The anomalies were either due to car crashes or

stalled vehicles. Regular congestion not caused by any traf-

fic incident was not counted as an anomaly. A multi-car

event (e.g., one crash followed by another crash, or a stalled

car followed by someone else stopping to help) were con-

sidered a single anomaly. More specifically, if an anomaly

occurred while another anomaly was already in progress,

the two counted as a single anomaly. Evaluation for Track 2

was based on anomaly detection performance, measured by

the F1 score, and detection time error, measured by RMSE

(§ 4.2).

Track 3 - Multi-camera Vehicle Detection and Re-

identification. Participating teams were asked to identify

all vehicles that were visible in the camera view at each of 4

different locations in a set of 15 videos, each 30 to 90 min-

utes long. Evaluation for Track 3 was based on detection ac-

curacy and localization sensitivity for a set of ground-truth

vehicles that were driven through all camera locations at

least once (§ 4.3).

3. Dataset

Video data provided for this Challenge has been recorded

by cameras aimed at intersections and along highways in

urban areas, see Figure 1. The AIC18 Dataset consists of

the following video data sources: 1

• Silicon Valley Highways and Intersection Data.

More than 15 hours of HD 1920x1080 data at 30

frames per second captured at multiple locations with

synchronized recording.

• Iowa DOT. More than 24 hours of 800x410 resolution

data at 30 frames per second captured by the Iowa De-

partment of Transportation (DOT) traffic cameras.

To avoid having to manually label and identify each ve-

hicle in the traffic videos, we set up a group of control ve-

hicles. Each volunteer from the control group then drove

through the various intersections and along highways based

on a designed script. Each control vehicle also carried a

smartphone with an application that recorded GPS informa-

tion for the entire journey of the vehicle, thus providing the

1Participants were encouraged to use the data set available

from the SUNY Albany UA-DETRAC benchmark suite http://

detrac-db.rit.albany.edu [18] in case they needed to develop

models for vehicle detection and tracking.
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ground truth for speed and localization. A meticulous and

manual process was used to synchronize the dataset from

the journey diaries on the smartphone application and the

videos in which these vehicles were observed. Ground truth

files were then created for automated evaluation.

The provided re-identification dataset is much more

challenging than some of the conventional re-identification

datasets such as VeRi [8] in the following aspects: (1) There

is a large variation in site locations, including street inter-

sections and highways, with camera positions being sepa-

rated by several miles. (2) The duration of the videos is long

(up to 2 hours), spanning several days of recording. (3) The

resolution of the video does not permit simple license plate

recognition as the primary feature in the re-identification

model. (4) The control vehicles appear in one of several

cameras at least once and possibly multiple times.

The ground truth files contain the bounding box and ac-

curate travel speed of control vehicles in all frames where

they are observed. The bounding boxes of the control ve-

hicles were manually annotated using standard tools. The

travel speed of each control vehicle was recorded once per

second. Instantaneous speed values for each control vehicle

bounding box were assigned using interpolation and cali-

bration.

4. Evaluation Methodology

To allow teams the most possible time to improve their

results and experiment with their algorithms, we developed

an on-line evaluation system that automatically measured

the effectiveness of results for each track upon submission

and stored results in a database. The system returned an

error message if results were not in an acceptable format

or problems were encountered when computing the perfor-

mance scores for each track. Teams were allowed a max-

imum of 5 submissions per day for each track. After the

Challenge submission deadline, teams could see a leader-

board with the best results from each team. The leaderboard

was sorted in decreasing order with respect to the corre-

sponding performance scores.

4.1. Track 1 Evaluation

Performance evaluation in Track 1 is based on the abil-

ity to localize control vehicles and predict their speed, with

speed prediction being the primary concern. As such, the

score for Track 1 (S1), for each participating team, is com-

puted as:

S1 = DR× (1−NRMSEs), (1)

where DR is the detection rate and NRMSEs is the nor-

malized root mean square error of estimated speed in miles-

per-hour (MPH).

The primary task of Track 1 is estimating vehicle speeds.

We compute the speed estimate error as the RMSE of the

ground truth vehicle speed and predicted speed for all cor-

rectly detected ground-truth vehicles. A vehicle is said to

be detected if it was localized in at least thirty-percent of

frames it appeared in. A vehicle is localized if at least one

predicted bounding box exists with intersection-over-union

(IOU) score of τiou = 0.3 or higher relative to the annotated

bounding box for the vehicle. If multiple bounding boxes

with IOU ≥ τiou exist, we consider only the speed esti-

mate from the one with the highest confidence score. To ob-

tain a normalized evaluation score, we calculate NRMSEs

as the normalized vehicle speed RMSE score across all

teams, which is obtained via min-max normalization given

the best speed estimate scores from each team. Specifically,

NRMSEs of team i is the relative speed RMSE perfor-

mance of team i in comparison to all other competing teams,

and is computed as

NRMSEs

i
=

RMSEi −RMSEmin

RMSEmax −RMSEmin

(2)

The detection rate DR is computed as the ratio of the

number of detected ground truth vehicles and the total num-

ber of ground truth vehicles. We expect all control vehicles

to be properly detected. The DR part of the S1 score sim-

ply acts as a penalizing component if some control vehicles

are missed.

4.2. Track 2 Evaluation

Performance evaluation in Track 2 is based on the ability

of a model to detect anomalies, measured by the F1 score,

and the amount of error in detection time, measured by the

RMSE of the time elapsed between the start of the anomaly

and its prediction. Specifically, the Track 2 score (S2), for

each participating team, is computed as

S2 = F1 × (1−NRMSEt), (3)

where the F1 score is the harmonic mean of the precision

and recall of anomaly prediction. Precision is defined as

the ratio of the anomalies correctly identified to the number

of anomalies submitted. Recall is defined as the ratio of the

anomalies correctly identified to the number of ground truth

anomalies. For video clips containing multiple ground truth

anomalies, credit is given for detecting each anomaly. Con-

versely, multiple false alarm submissions in a single video

clip are counted as multiple false alarms. If multiple anoma-

lies are provided within the time span of a single ground

truth anomaly, we consider the one with minimum detec-

tion time error and ignore the rest.

The primary component of the score in Track 2 is the

amount of time elapsed from the onset of an anomaly un-

til its automatic detection by the model. Thus, we com-

pute the detection time error as the RMSE of the ground

truth anomaly start time and predicted anomaly start time
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Table 2: Track 1 Leaderboard. RMSE measures esti-

mated vehicle speed in MPH. #S denotes number of sub-

mission trials.

Team Institute S1 DR RMSE #S

48 UW 1.0000 100.00% 4.096 41

79 BeihangU 0.9162 100.00% 6.041 24

78 UIUC 0.8892 100.00% 6.667 22

24 Stevens IT 0.8813 100.00% 6.849 10

12 ColumbiaU 0.8331 100.00% 7.970 13

4 VietnamUN 0.7924 100.00% 8.914 13

65 UMaryland 0.7654 100.00% 9.541 8

6 BrnoUT 0.7174 81.48% 6.869 22

40 Iowa SU 0.6564 81.48% 8.609 5

26 SJSU 0.6547 100.00% 12.109 7

18 UAlbany 0.6264 85.19% 10.340 11

45 Iowa SU 0.5953 96.29% 12.957 10

39 CERTH 0.0000 88.89% 27.302 4

Table 3: Track 2 Leaderboard. RMSE measures

anomaly detection as seconds from the anomaly start. #S

denotes number of submission trials.

Team Institute S2 F1 RMSE #S

15 Panasonic 0.8649 0.8649 3.6152 24

63 BeijingPost 0.7853 0.8108 10.2369 19

18 UAlbany 0.4951 0.6286 48.3406 9

25 PekingU 0.2638 0.4762 97.5505 11

39 CERTH 0.0640 0.2363 157.2298 12

79 BeihangU 0.0069 0.7567 212.3274 3

12 ColumbiaU 0.0000 0.7692 214.2712 4

for all true positive predictions. We compute NRMSEt as

the normalized RMSE score, showing the relative detection

time error performance of the team compared to all other

teams, as in Eq.(2). We expect all anomalies to be success-

fully detected and penalize missed detections and spurious

ones through the F1 component in the S2 evaluation score.

4.3. Track 3 Evaluation

Performance evaluation in Track 3 is based on tracking

accuracy and localization sensitivity for a set of ground-

truth vehicles that were driven through 4 camera locations

at least once. Specifically, the Track 3 score (S3), for each

participating team, is computed as

S3 =
TDR+ PR

2
, (4)

where TDR is the track detection rate and PR is the local-

ization precision.

TDR is computed as the ratio of correctly identified

ground-truth vehicle tracks and the total number of ground-

truth vehicle tracks. A vehicle track is correctly identified

Table 4: Track 3 Leaderboard. #S denotes number of sub-

mission trials.

Team Institute S3 TDR PR #S

48 UW 0.7106 0.4286 0.9925 22

37 NTaiwanU 0.2861 0.5714 0.0007 20

79 BeihangU 0.0785 0.1429 0.0142 17

18 UAlbany 0.0074 0.0000 0.0147 22

28 PekingU 0.0026 0.0000 0.0052 6

41 UNIMORE 0.0024 0.0000 0.0049 6

53 UIUC 0.0002 0.0000 0.0004 1

6 BrnoUT 0.0001 0.0000 0.0001 11

10 Conduent 0.0000 0.0000 0.0000 1

31 HacettepeU 0.0000 0.0000 0.0000 1

if the vehicle has been localized (IOU ≥ τiou) and asso-

ciated with the same object ID in at least thirty-percent of

the frames containing the ground-truth vehicle in a given

video. PR is the localization precision, which is calculated

as the ratio of correctly localized bounding boxes and the

total number of predicted boxes across all videos. Since

both detection and tracking of the vehicles in question and

precise localization are important in Track 3, the S3 score

is simply computed as the average of TDR and PR.

5. Submission Results

Table 1 summarizes all participating teams and their

challenge results. Out of all 79 registered teams (56 for

Track 1, 53 for Track 2, 61 for Track 3), 22 teams submit-

ted results (13 for Track 1, 7 for Track 2, 10 for Track 3).

5.1. Track 1 Challenge Summary

Most Track 1 methods adopt the tracking-by-detection

paradigm followed by inference of real-world speeds from

pixel distance increments. Thanks to the rapid advancement

of deep neural networks (DNN), teams were able to obtain

very good detection results using some of the latest DNNs,

including YOLO2 (Team 48), DenseNet (Team 79), Mask

R-CNN (Teams 78, 12, 65), and Faster R-CNN (Teams 4,

6, 40, 18, 39). The Mask R-CNN model, in particular, was

able to detect and localize small vehicles with excellent pre-

cision. As seen in Table 2, several leading teams were able

to obtain a DR of 100%, which highlights the strong capa-

bilities of the latest deep learning methods.

For tracking, the IOU score between detector and tracker

boxes was often used for vehicle ID assignment (Teams

4, 18, 26). Tracking methods varied considerably among

teams, relying on, e.g., clustering-based association (Team

48), graph optimization (Team 79), medianflow (Team 78),

and Kalman filtering (Teams 12, 65, 18). Both on-line and

off-line tracking methods were used.

The mapping from tracked vehicle pixels to real-world
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(a) (b)

Figure 2: Highlights of Track 1 methods. (a) Team 48: left: detected vehicles with car types, right: vehicle trajectories

with estimated speed in MPH. (b) Team 78: Vehicle detection using Mask R-CNN.

coordinates is required for speed estimation. Both semi-

automatic camera calibration methods, e.g., relying on esti-

mating the vanishing lines, points and scale (Teams 48, 78,

6), or fully manual methods (Team 18) were used. Several

teams did not rely on calculating the camera projection ma-

trix, and instead estimated the planar homography to com-

pute the projective image warping using image landmarks

(Teams 12, 4, 65, 40) and then estimated the scale. Robust

speed estimation was then obtained using smoothing. Sev-

eral teams made assumptions that vehicles on the highway

traveled at constant speed (Team 48, 4, 26, 18), or followed

a known speed limit (Team 26).

Table 2 summarizes the leaderboard as of Apr 5, 2018 for

the Track 1 challenge. Team 48 was at the top on the board.

Their YOLO2 vehicle detector was trained based on manual

labeling of 4500 frames of Track 1 videos into 8 categories.

Tracking was performed based on a large set of dedicated

designed loss functions, considering tracklet smoothness,

appearance, velocity, and time interval. The explicit clus-

tering of the tracklet assignment, merge, split, and switch

also improved the overall vehicle detection score. Figure 2

shows visual highlights of results from the top teams in the

Track 1 challenge.

5.2. Track 2 Challenge Summary

Test videos in Track 2 are real-world traffic videos

recorded in a wide range of viewpoints, weather, and road

conditions. These issues make it difficult to design general-

purpose anomaly detection methods. Thus, most successful

approaches are based on traffic motion flow analysis (e.g.,

using optical flow) rather than trying to detect and track in-

dividual vehicles. In fact, stalled vehicles mostly occur on

the side of the road. Thus, a region-of-interest (ROI) can be

estimated after traffic lanes are delineated. Teams 15, 18,

and 79 performed lane finding based on optical flow and

background analysis to obtain a refined anomaly ROI. An

event classifier was then applied on the ROI to detect stalled

vehicles across large time windows, using, e.g., ResNet

(Team 15), VGGNet (Team 63), feature histograms (Team

18), or SVM (Team 39). Both the top-2 teams (Teams 15,

63) used Faster R-CNN to detect stalled vehicles.

Table 3 shows the leaderboard for the Track 2 challenge.

Team 15 claimed the top position by using a dual-mode

Figure 3: Highlights of Track 2 methods. Team 15: im-

ages on the left show trajectories in several frames at dis-

tinct times. Curves on the right show estimated vehicle ve-

locity. The stalled vehicle can be easily identified.

(static and dynamic) analysis method that integrates back-

ground modeling, vehicle detection and segmentation using

Mask R-CNN, followed by outlier filtering. Figure 3 shows

highlights of this method.

5.3. Track 3 Challenge Summary

The Track 3 challenge is extremely difficult, since the

vehicle to be (re-)identified can appear anywhere, anytime,

and possibly multiple times in the videos across the 4 sites.

Thus, although a naı̈ve method could rely on brute-force

pairwise comparisons, it would take too long to execute.

The solutions proposed by the teams are much more effec-

tive. They compared vehicles based on tracking, relying on

the whole space-time tracklets (Team 48, 37), or based on

vehicle images, focusing on one image from each tracklet

(e.g., Team 18 selected the image enclosed by the largest ve-

hicle bounding box in each tracklet). Various deep features

are extracted for pairwise re-identification matching, e.g.,

using a fusion of loss functions considering vehicle types,

appearance, and other similarities (Team 48), or based on

the triplet loss (Team 18). Candidate vehicle tuples across

the 4 test sites can be nominated by repeatedly applying and

extending these pairwise matches. Note that while person

re-identification is actively researched, much fewer vehicle

re-identification datasets are available for training the deep

vehicle features. The “VeRi” dataset2 was used for training

by both Teams 37 and 18.

2https://github.com/VehicleReId/VeRidataset
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(a) (b)

Figure 4: Highlights of Track 3 methods. (a) Team 48: the use of license plate matching requires accurate 3D vehicle

modeling, however can greatly improve re-identification. (b) Team 37: re-identification is based on matching space-time

track features.

Table 4 shows the leaderboard for the Track 3 challenge.

Team 48 claimed the leading spot on the board. Their

method incorporated a wide range of loss estimations (e.g.,

1024-dimensional DCNN features based on the GoogLeNet

model trained on CompCar) with a large ensemble of rules

(appearance, license plate recognition, travel time loss, etc.)

that lead to successful re-identification of about half of the

control vehicles. As seen in Table 4, the re-identification

precision of Team 48 was also remarkable. Team 37 per-

formed vehicle detection using the Facebook Detectron

model configured similarly to the ResNet101 model, based

on a feature pyramid network. Deep space-time features

were extracted from the tracks using the ResNet50 model

trained on various datasets. Re-identification was per-

formed using multi-task learning, followed by matching

across multiple cameras. Figure 4 shows highlights of ap-

proaches from the top two teams.

6. Discussion

Based on the results of the 2017 AI City Challenge, we

hypothesized that the community was ready for taking on

higher-level use cases. The 2018 Challenge focused on the

use cases of speed estimation, anomaly detection and vehi-

cle re-identification. The Challenge succeeded in bringing

the computer vision community closer to leveraging traffic

video analysis for real-world traffic and public safety prob-

lems. These real-world problems are not specifically ad-

dressed in most of the existing efforts that we are aware of.

Based on the teams’ submissions, we make the following

observations.

Multiple object tracking (following the tracking-by-

detection paradigm) is yet to mature for problems such as

occlusions. Light-weight, on-line tracking methods are pre-

ferred, however, most current leading methods are com-

plex and off-line (such as the leading method used by

Team 48). Furthermore, the joint problems of multi-camera

multi-object tracking and vehicle re-identification can be re-

solved together, if appropriate deep features can be lever-

aged. Camera calibration or image warping (which requires

a pixel-to-world mapping) is a well-studied topic. Practi-

cal methods such as auto-calibration (Teams 48, 78, 26),

planar homography (Teams 79, 12), affine warping (Teams

65, 40), or even a full site calibration (Team 18) all require

manual initialization, in order to estimate scale from knowl-

edge of world measures. Vehicle speed estimation seems to

be a feasible problem in general, but there is still a wide

spread in RMSE across the various submissions. We ex-

pect vision-based methods to be nearly as accurate as other

speed estimation techniques such as RADAR-based estima-

tion, and be used pervasively in the near future.

Traffic anomaly detection is a difficult problem espe-

cially when no constraining assumptions can be made about

the video quality, illumination and environmental condi-

tions. Some anomalies are easier to describe, whereas oth-

ers may be more complex. Training sets for such anomalies

are also rare. The results we saw this year were therefore

promising given the level of difficulty. We hope to extend

this to several other anomalies such as wrong-lane driving,

illegal turns and traffic light violation, etc. We anticipate

that AI will become a pervasive detection and alerting tool

to the human operators in command and control centers as

the performance on this track improves.

Finally, vehicle re-identification at city-scale is the most

challenging of the three tracks. To the best of our knowl-

edge, this challenge is the first to attempt this task at such

a large scale, across many hours of videos and multiple

sites. We note that machine generated re-identification is

indeed very different from human approaches, which gen-

erally start from determining vehicles types, makes, model,

colors, etc. Fine-grained vehicle model recognition contin-

ues to be an open problem. This challenge will be con-

sidered successful when AI becomes a force multiplier in

public safety cases such as Amber Alert. New frontiers of

visual AI technology can perhaps soon allow public safety

officials to shorten time in forensic investigation through

hundreds of hours of videos across a city.

7. Conclusion

The 2018 NVIDIA AI City Challenge (AIC18) evaluated

the application of state-of-the-art computer vision and deep

learning technologies to real-world traffic analysis prob-

lems, providing insights into understanding the opportuni-

ties and gaps that need to be overcome for the pervasive use

of AI in traffic and public safety solutions. We hope that fu-

ture versions of this challenge continue to push the envelope

of computer vision and deep learning in these solutions.
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