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Abstract

Advances in renewable and sustainable energy technologies critically depend on our ability to 

design and realize materials with optimal properties. Materials discovery and design efforts 

ideally involve close coupling between materials prediction, synthesis and characterization. 

The increased use of computational tools, the generation of materials databases, and advances 

in experimental methods have substantially accelerated these activities. It is therefore an 

opportune time to consider future prospects for materials by design approaches. The purpose 

of this Roadmap is to present an overview of the current state of computational materials 

prediction, synthesis and characterization approaches, materials design needs for various 

technologies, and future challenges and opportunities that must be addressed. The various 

perspectives cover topics on computational techniques, validation, materials databases, 

materials informatics, high-throughput combinatorial methods, advanced characterization 

approaches, and materials design issues in thermoelectrics, photovoltaics, solid state lighting, 

catalysts, batteries, metal alloys, complex oxides and transparent conducting materials. It is 

our hope that this Roadmap will guide researchers and funding agencies in identifying new 

prospects for materials design.

Keywords: density functional theory, materials genome initative, materials design,  

high-throughput methods, energy applications
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1. Introduction

Kirstin Alberi1, Marco Buongiorno Nardelli2  

and Andriy Zakutayev1

1  National Renewable Energy Laboratory, Golden, CO 80401, 

United States of America
2  University of North Texas, Denton, TX, United States of 

America

Advances in renewable and sustainable energy technolo-

gies critically depend on our ability to design materials 

with the optimal properties for each individual application. 

Computational methods have accelerated materials design 

efforts through rapid and comprehensive prediction of mat-

erials stability and properties. A very simplistic metric for 

assessing the rise of computational materials efforts is the 

total number of mat erials that have been ‘predicted’ (which 

does not capture the extent or diversity of the calculated prop-

erties). As schematically shown in �gure 1(a), the number of 

theoretically predicted materials in computational materials 

property databases, including AFLOW, the Open Quantum 

Materials Database and the Materials Project (104–106), 

is now comparable to the number of experimental entries 

in crystallographic databases (∼ 105). Perhaps even more 

importantly, increased accessibility to the computed proper-

ties has also sped up exper imental research and development 

of new functional materials for a wide range of applications. 

Acceleration of materials by design research is evidenced 

by the nearly exponential growth in the number of publica-

tions on materials design, shown in �gure 1(b), where break-

throughs were facilitated by the development of user friendly 

ab initio codes (mid-90s) and automation of these codes to run 

high-throughput computations (>2010). Yet, for all its recent 

successes, the materials by design concept is relatively new 

and has the potential for further expansion and impact.

The purpose of this Roadmap is to present an overview 

of the current state of computational materials prediction 

approaches, corresponding advanced synthesis and charac-

terization methods, and the application of these computa-

tional and experimental techniques to various energy relevant 

technologies. Future challenges and opportunities that must 

be addressed to improve materials by design approaches are 

also discussed. We have asked leading researchers in each 

of these areas to weigh in on these issues and provide their 

perspectives and visions for the advancement of the mat erials 

by design �eld. The covered topics include computational 

techniques, validation of the results, materials databases, mat-

erials informatics, high-throughput combinatorial methods, 

advanced characterization approaches, as well as materials 

design issues in thermoelectrics, photovoltaics, solid state 

lighting, batteries, metal alloys, complex oxides and transpar-

ent conducting materials.

A unifying theme of many of the contributions to this collec-

tion is the need for high-throughput computational and exper-

imental techniques as a foundation for the materials by design 

paradigm, as well as methods to exploit synthesis and manu-

facturing processes for new materials. Nowadays, we possess 

the ability to ef�ciently generate and manage large amounts of 

computational data in open repositories, facilitating access to 

a plethora of calculated properties and functions of millions of 

different materials. Computational efforts that go beyond pre-

dicting the thermodynamic stability of a material and provide 

additional calculations of electronic structure, properties and 

even optical spectra of diverse material systems are becom-

ing increasingly important and valuable. Similar large data 

repositories of exper imentally measured properties are less 

common but would be needed to benchmark and supplement 

the computations. From here, we envision innovative ways to 

interrogate the big data space through data mining, machine 

learning, autonomous systems and arti�cial intelligence tech-

niques. We emphasize that all of these techniques must work 

together to realize the full potential of the materials by design 

approach. Another common theme of several contrib utions to 

this Roadmap is the need for in situ and operando measure-

ment techniques to derive deeper scienti�c insight into mat-

erial synthesis processes.

A simpli�ed example of a materials design process that 

can be used to accelerate materials transfer from computer 

simulations to lab bench and consumer products is illus-

trated in �gure 2. Theoretical challenges range from intelli-

gent optim ization algorithms that predict candidate material 

compositions and structures to the exploitation of the appro-

priate descriptors of functional properties. Experimental 

needs include accelerated synthesis of the most promising 

candidates and advanced characterization of these materials. 

Finally, application requirements involve validation of the 

measured or calculated properties, improved synthesis routes, 

Figure 1. (a) Total number of compounds contained within the 
Inorganic Crystal Structure Database (ICSD) and computational 
databases. These values do not re�ect the extent of the information 
in each entry. (b) The number of publications returned in from 
a Scopus search using query terms ‘materials design’ and 
constraining the search to exclude irrelevant results (e.g. furniture, 
textiles, bridges, etc).

J. Phys. D: Appl. Phys. 52 (2019) 013001
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testing of the materials in devices, and the clear articulation 

of desired materials properties needed for prediction of next 

generation materials candidates in the next cycle.

The resulting Roadmap is broadly divided in two main 

sections on Methods and Applications. In the Methods sec-

tion, we review advances and challenges in three areas: com-

putation of materials properties beyond the current standard, 

novel experimental techniques for materials design and 

discovery, and the curation and use of digital data. In the 

Applications section, we provide a snapshot of the current 

issues and trends in materials design in areas ranging from 

semiconductors to batteries to structural materials. Each 

application may present its own speci�c material design 

challenges to overcome, but the general materials design 

approach is expected to be germane to all of them. Another 

relevant issue is how to rapidly and ef�ciently implement 

such material design approaches at laboratory prototyping 

and even industrial manufacturing scales.

We hope that this Roadmap will provide a concise yet com-

prehensive review of a fast-growing �eld of materials design, 

one that has the potential to shape the global economy and 

human well-being for years to come.

Figure 2. Schematic of the materials by design approach.

J. Phys. D: Appl. Phys. 52 (2019) 013001
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2. Data generation beyond standard DFT  

for high-throughput applications

Marco Buongiorno Nardelli1 and Lubos Mitas2

1  University of North Texas, Denton, TX, United States of 

America
2  North Carolina State University, Raleigh, NC, United States 

of America

Status. The last decade has established that a combination 

of �rst principles theoretical computations in synergy with 

experimental investigation is a powerful foundation for the 

discovery of new materials, new functions, and new design 

concepts in a multi-disciplinary effort that encompasses the 

development of transformative computational tools, unprec-

edented data analysis approaches, and systematic interaction 

with experimental discovery and validation.

All the existing materials property databases derived from 

computation are based on density functional theory (DFT) 

in the local density (LDA) or generalized gradient (GGA) 

approximations. Although the reproducibility of results in 

density functional calculations of solids has by now been 

an established fact [1], much less documented at the scale 

of large materials databases is the veracity of the quanti-

ties that are calculated. Accurate prediction of the electronic 

properties of materials at a low computational cost has been 

a major challenge in ab initio computational materials sci-

ence from the �rst applications of DFT in the early 80s to 

the current advanced high-throughput frameworks. Despite 

the enormous success of DFT in describing many physical 

properties of real systems, the method is crippled by the 

presence of a correlation term that represents the differ-

ence between the true energy of the many-body system of 

the electrons (only formally known) and the approximate 

energy that we can compute. The next step beyond DFT is 

based on GW theory that provides perturbational improve-

ments, in particular for band gaps that are crucial for many 

applications [2].

At present, many-body approaches, such as quantum Monte 

Carlo (QMC) methods, are becoming used more broadly for 

many key energy differences, such as fundamental and opti-

cal gaps, cohesions, energy orderings of various structures 

and defect energetics [3–5]. Very recently, QMC has reached 

even �ner energy scales, such as differences between differ-

ent magn etic states or dissociations of non-covalently bonded 

systems with subchemical accuracy (0.1 kcal mol−1) [3, 6]. For 

reliable description of spectral properties and response func-

tions, the methods of choice are based on dynamical mean 

�eld theory (DMFT) that offers insights beyond perturbative 

corrections and enables one to also study electronic phase 

changes, such as metal–insulator and magnetic transitions. 

Finite temper ature effects that are crucial for functions of real 

materials are often studied by a combination of DFT electronic 

structure and molecular dynamics approaches. Many-body 

alternatives, such as path integral Monte Carlo, are still under 

development and so far have been applied mostly to systems 

with light elements. Despite all of these promising advances, 

databases of tools and calculations from many-body methods 

are basically non-existent at present, as a result of still very 

intense developments and the diversity of ideas that are being 

pursued (see below for very recent progress in this direction).

Current and future challenges. The key to achieving signi�-

cant breakthroughs rests on our ability to ef�ciently integrate 

all the components in a seamless constructive cycle and in 

particular one development of innovative theoretical meth-

ods and tools beyond the state-of-the-art DFT approaches, 

which are fast, robust and amenable to high-throughput (HT) 

computation.

In this respect, we see many distinct but parallel 

requirements:

 1.  The development and validation of novel functionals 

to improve accuracy of traditional DFT; veri�cation of 

data for complex materials systems with strong electron 

localization and correlation; development of novel com-

putational algorithms to evaluate exchange energy in 

hybrid density functional for HT applications.

 2.  The inclusion of methodologies beyond DFT for the 

generation of materials data towards chemical and 

subchemical accuracy, such as QMC and DMFT, which 

are crucial for increasing the accuracy of calculations for 

energetics, as well as spectral properties that are needed 

for building signi�cantly more accurate data sets for both 

equilibrium and non-equilibrium conformations.

 3.  The development of procedures for fast computational 

characterization of materials properties, such as: 

calcul ation of transport (both regular and anomalous) 

properties; development of ef�cient methodologies 

for the simulation of theoretical spectroscopies in the 

broadest energy range and with maximum accuracy and 

high computational ef�ciency.

Figure 3. Performance of ACBN0 for a number of transition 
metal oxides and chalcogenides. In the �gure, we compare the 
experimental band gap with the one obtained by PBE (red), ACBN0 
(green) and HSE or GW (blue). For a complete discussion, see [7].

J. Phys. D: Appl. Phys. 52 (2019) 013001
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 4.  The development of materials modelling and prediction 

software to match the scaling challenges posed by the 

ever-evolving hardware architectures and accelerated 

hybrid computer systems. This effort requires a substanti al 

redesign of software and algorithms to ef�ciently take 

advantage of the increased hardware power.

 5.  Another important direction is expansions of calcul-

ations to nonzero temperatures both by DFT+  molecular 

dynamics approaches, as well as by many-body treat-

ments based on thermal density matrices, such as path 

integral Monte Carlo.

 6.  A further important goal is the many-body treatment of 

spin, spin–orbit effects and relativity in general for heavy 

element materials, including fast characterization of 

phases with topological properties.

Advances in science and technology to meet challenges. A 

key challenge for current DFT is the accurate description of 

materials with strong electron localization and correlation. 

Work to address this challenge and at the same time maintain a 

competitive computational cost must continue beyond the exist-

ing efforts (see, for instance, �gure 3 [7, 8]). There are impor-

tant developments in many-body methods, such as the new 

generation of pseudopotentials from correlated treatments [9], 

second-quantized QMC approaches based on auxiliary �elds 

and/or stochastically sampled excited state expansions, as well 

as �nite temperature many-body calculations [4, 5]. Another 

direction of intense study is the use of stochastic methods for 

responses and time-dependent phenomena both in DMFT and 

QMC approaches. The databases for many-body methods as 

well as for the storage of results from many-body calculations 

have been getting signi�cant attention very recently and several 

initiatives have been formed that aim to establish such reposito-

ries in a systematic open source/open data framework for both 

many-body codes and data for broad use [9].

Concluding remarks. The next leap in building reliable data 

will encompass several important aspects. There is a continuing 

effort to push the limits of accuracy for materials in key direc-

tions: energy differences for systems in equilibrium and non-

equilibrium atomic conformations; explorations of non-ideal 

or composite systems, such as imperfect crystals with defects 

and impurities; 1D and 2D systems on substrates; organic–
inorganic and cluster-based structures. Much better quality of 

data and the inclusion of spin-dependent interactions in many-

body methods is highly important for �ner energy scales, such 

as magnetic, topological or exotic electronic phases and heavy 

atom systems. Materials functions at nonzero temperatures and 

therefore better and more accurate description of many quanti-

ties at �nite temperatures are highly desirable. Almost all 

materials operate in some type of response regime and there-

fore a better understanding of responses and time-dependent 

phenomena is another important goal—systematic description 

of such phenomena for materials is still very dif�cult in gen-

eral. Since materials research is a vast ‘universe’ of phenomena 

and spans a huge range of observed quantities, the diversity of 

approaches is of paramount importance to address all of these 

important challenges.
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3. Computational infrastructures for data 

generation

Anubhav Jain1 and Stefano Curtarolo2,3

1  Energy Storage and Distributed Resources Department, 

Lawrence Berkeley National Laboratory, Berkeley, CA, 

United States of America
2  Duke University, Durham, NC, United States of America
3  Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 

Germany

Status. New materials have historically been designed 

through intuition and experimentation. However, the high 

cost, long times, and manual effort required for experimental 

study have always served as major barriers to this process. 

In the last two decades, however, advancements in theory, 

computing hardware, and numerical algorithms have conv-

erged to provide new simulation-based methods for investi-

gating materials that are fast, cost-ef�cient, and scalable to 

millions of materials. In particular, density functional theory 

(DFT) calculations, which solve the electronic structure of a 

material with few adjustable parameters, are now routinely 

run in a ‘high-throughput’ mode [10] in which researchers 

are able to evaluate thousands or even millions of materials 

on supercomp uters with little intervention (�gure 4). Today, 

there exist several examples in which such computational 

techniques have identi�ed new functional materials that have 

subsequently been con�rmed by experiments [11].

Furthermore, computational data sets can be shared through 

one of several online databases [12], such as the Materials 

Project (www.materialsproject.org) or AFLOWlib (www.

a�ow.org). These resources contain millions of computational 

‘measurements’ of materials properties, such as formation 

enthalpy, electronic band structure, and elastic moduli, that 

can be systematically searched and that are constantly expand-

ing in scope. The ability to rapidly generate reliable materials 

data in this manner improves every year as computing costs 

decrease, theoretical methods to study materials become more 

accurate, and the software to apply these techniques becomes 

more powerful and accessible to a larger audience.

Today, many research groups regularly employ high-

throughput computing to screen materials libraries for func-

tional applications. However, a major opportunity for the 

future is to incorporate techniques from the �elds of data min-

ing and statistical learning to the analysis of materials data. 

The arrival of large-scale computational data generation infra-

structures has created the potential to develop a new science 

of ‘materials informatics’ [13]. It is possible that entirely new 

ways of developing chemical rules and thinking about mat-

erials behaviour will result from the marriage of simulation 

data with machine learning advancements, thereby adding a 

new dimension to the traditional methods of materials design.

Current and future challenges. There exist both fundamental 

and practical challenges in data generation through simula-

tion. For example, developing physical theories that are ame-

nable to computation and that achieve high accuracy across 

mat erials with very diverse electronic structures (such as met-

als, semiconductors, ceramics) is an extremely dif�cult task. In 

this regard, the DFT approach, pioneered by Kohn and Sham, 

and for which Kohn would later receive a Nobel prize, serves 

as a very good starting point. Even simple approximations 

to DFT can produce accurate results across many materials 

classes, with discrepancies in accuracy between computation 

and experiment being as low as a few percent. However, cer-

tain materials classes (such as strongly-correlated systems) and 

certain materials properties (such as excited-state properties, 

e.g. band gap or optical spectrum) are poorly model led with the 

typical DFT approaches. Thus, major research efforts world-

wide are being devoted to developing methods that improve 

the accuracy of the method. For example, frameworks to auto-

mate the QMC method (despite its very high computational 

cost) are now actively being developed and tested [14, 15].

A second fundamental challenge relates to the scaling of 

the computational effort needed for the computation in rela-

tion to the system size in electrons. Today, it is routine to calcu-

late the properties of systems with unit cells of a few hundred 

atoms, but the poor N3 scaling of DFT methods with system 

size means that systems with thousands or tens of thousands of 

atoms are either inaccessible or require specialized treatment. 

DFT methods today are largely limited to systems of low or 

intermediate complexity and approaches to either improve the 

scaling of DFT methods or to ‘glue together’ different model-

ling techniques through multiscale modelling also form a cur-

rent major research topic.

Figure 4. High-throughput computational analysis of binary alloy 
formation as compared with known experimental data. This serves 
an example of how computational data generation can rapidly 
‘map’ a chemical space. Reprinted by permission from Macmillan 
Publishers Ltd: Nature Materials [10], Copyright 2013.

J. Phys. D: Appl. Phys. 52 (2019) 013001
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There also exist important practical considerations that 

must be addressed when generating large amounts of simula-

tion data. For example, one must evaluate the various trade-

offs in computational cost, complexity, and accuracy when 

determining the level of theory at which to perform calcul-

ations. Each simulation that is executed must undergo a 

complex sequence of steps (�gure 5) including generation of 

input �les, execution on specialized supercomputing centers, 

and error handling. Furthermore, many materials properties 

require chaining together dozens of such simulations in work-

�ows with complex dependencies. One must be able to track 

millions of simulations and �les and be able to quickly access 

any result. Here, advancements in software have greatly pro-

gressed in the last decade such that these practical aspects of 

data generation, once a large undertaking, can be handled by 

individual researchers.

Advances in science and technology to meet challenges. A 

summary of the fundamental challenges for DFT calculations 

has been previously covered [16]. Here, we summarize some 

of the major active worldwide efforts in developing computa-

tional data generation frameworks.

The Automated Interactive Infrastructure and Database for 

Computational Science (AiiDA) platform [17], developed by 

the European NCCR-MARVEL collaboration and written in 

Python, is available to researchers as open-source and aims to 

assist researchers with the ADES (automation, data, environ-

ment, sharing) components of data generation. A major bene-

�t of the AiiDA platform is that one can perform rich searches 

over a database of calculation work�ows, thus introspecting 

many features of the computations both programmatically and 

visually.

The Automatic Flow (AFLOW) platform [18], devel-

oped by the AFLOW.org consortium and written in C++ 

and python is available as a free download. AFLOW assists 

users in many aspects of simulations, from generating mat-

erials models (e.g. from common prototypes) to performing 

simulation sequences and correcting errors that occur. This 

all-in-one nature makes many powerful tools and analyses 

available to users and can be used either alone or in combi-

nation with other tools. The AFLOW platform has been used 

to create the AFLOW database accessible at www.a�ow.

org. Several interface libraries are available for using the 

framework in python work�ows. Among them are the sym-

metry analysis (AFLOW-SYM), phonon and thermal trans-

port (AFLOW-APL), disordered analysis (AFLOW-POCC), 

and machine learning automation (AFLOW-ML, a�ow.org/

a�ow-ml). The consortium has also standardized a cloud-

language for complex data analysis and retrieval (AFLUX).

The Atomic Simulation Environment (ASE) library [19], 

�rst developed at Denmark Technical University and written 

in Python, is available to researchers as open-source. It was 

one of the �rst high-level interfaces to simulation software 

and has since expanded to include a host of useful capabili-

ties. ASE can for example help build complex models, such 

as surfaces, and is unique in that it allows interchanging the 

speci�c DFT theory calculator (software) used to perform the 

calculation.

The atomate library [20], developed by the Materials 

Project collaboration and written in Python, is available 

as open-source. The atomate library uses several underly-

ing libraries also developed by the same collaboration (e.g. 

pymatgen, FireWorks, and custodian) to perform a range of 

actions, such as creating sophisticated materials models, man-

aging work�ows on supercomputing centers, and providing 

error correction. Atomate implements many common mat-

erials work�ows and was used to create the Materials Project 

database, available at www.materialsproject.org.

Collectively, these frameworks are greatly expanding the 

audience for computational data generation.

Figure 5. Schematic of some of the steps needed to execute a simulation (top route). Today, the existence of computational data generation 
frameworks essentially makes this process as simple as clicking a button or calling a single function (bottom route).

J. Phys. D: Appl. Phys. 52 (2019) 013001
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Concluding remarks. Advancements in computational data 

generation have provided researchers with a new toolkit and a 

new avenue with which to address materials design problems. 

With a few exceptions, these high-throughput techniques have 

only been applied for about a decade or so and it is likely 

that some of the most important advancements in the �eld are 

yet to come. In particular, addressing fundamental challenges 

in achieving high accuracy and in modelling large, realistic 

systems remain formidable topics for future work. Similarly, 

extracting knowledge from large materials data sets through 

machine learning techniques is still in its infancy. Neverthe-

less, the ability to quickly generate data on a library of mat-

erials of interest and to share these results with collaborators 

worldwide has already changed the way in which many 

researchers, experimentalists and theories alike, are conduct-

ing materials design studies and has led to a new collective, 

collaborative method for applying theory to materials.
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4. Veri�cation and validation for electronic-  

structure databases

Marco Fornari1 and Nicola Marzari2

1  Department of Physics, Central Michigan University,  

Mt. Pleasant, MI 48859, United States of America
2  Theory and Simulation of Materials, École Polytechnique 

Fédérale de Lausanne, 1015 Lausanne, Switzerland

Status. Electronic-structure calculations have had a profound 

in�uence on the development of computational materials sci-

ence, especially thanks to the relative ef�ciency and accuracy 

of density-functional theory (DFT). The ‘Materials Genome 

Initiative’, launched by President Obama in 2011, has given 

worldwide visibility to this effort, and the task of developing 

novel materials has started to leverage queryable databases 

whose content is exploited to accelerate the discovery process. 

Large sets of experimental and theoretical data, built on the 

continuous effort of selected research groups, are now being 

curated, organized, and reconsidered for purposes beyond per-

sonal repositories. Because of their homogeneity in terms of 

format, results from DFT calculations were among the �rst 

data made publicly available to complement or expand exist-

ing databases of experimental crystal structures, such as those 

collected in the Inorganic Crystal Structure Database (ICSD), 

the Crystallographic Open Database (COD), and the Pauling 

File.

To the best of our knowledge, a list of electronic-structure 

databases includes the Materials Project (materialsproject.

org), the Computational Materials Repository (cmr.fysik.

dtu.dk), the Open Quantum Materials Database (oqmd.org), 

the Open Materials Database (httk.openmaterialsdb.se), the 

Theoretical Crystallographic Open Database (www.crystal-

lography.net/tcod), the Materials Mine (www.materials-mine.

com), the NREL Materials Database (materials.nrel.gov), the 

Automatic FLOW repository (a�ow.org), the Materials Cloud 

(materialscloud.org), and the Novel Materials Discovery 

Repository (nomad-repository.eu); these allow, with differ-

ent licenses, to download selected records, or in some cases 

even the entire repository. The records that are accessible are 

usually generated with standard plane-wave pseudo-potential 

electronic structure codes; mostly with VASP (www.vasp.at)  

[21], or more recently with Quantum ESPRESSO (www.

quantum-espresso.org) [22] and other electronic-structure 

codes. They usually include input �les to establish some 

amount of reproducibility for the calculations. Typical quanti-

ties that are reported in the databases are relaxed geometries 

of crystal structures, together with total energies, band struc-

tures, and densities of states.

In most cases, data generation has been performed for 

speci�c projects and the properties included in the mat erials 

records may vary greatly, even within the same repository. 

In addition, due to the speci�c research goals that drove 

the calcul ations, the overall quality of the data has not been 

extensively assessed. It is thus assumed that the data are ‘good 

enough’ for the speci�c research goal, although this approach 

hinders the ability to further use the data in unrelated data 

driven research, and often even the same calculations for the 

same structure performed with the same code can have signi�-

cant discrepancies. In order to force consistent quality among 

the records within a repository, several groups have opted 

to establish what the calculation parameters are that should 

guarantee reliable results across structural and chemical vari-

ations [23]. Other groups have performed systematic testing 

on selected systems aiming to provide stricter transferability 

criteria and improve, for example, the quality of the pseudo-

potential calculations against all-electron data ([1, 24] and 

http://materialscloud.org/sssp/).

In this Roadmap, we touch upon the efforts toward the 

concepts of veri�cation and validation assuming the follow-

ing de�nitions:

 •  Veri�cation efforts are aimed at assessing that the calcul-

ations have been performed correctly, and provide the 

theoretical results that are expected—e.g. there is one 

single theoretical value for the lattice constant of crystal-

line silicon within the LDA approximation to DFT, even 

if no one knows what it is with an accuracy greater than a 

few parts per thousand. This effort comprises establishing 

and assessing the quality of the calculations in terms of 

the input parameters, from energy cutoffs to k-point 

sampling to the convergence thresholds, the presence of 

bugs, approximate numerical methods, and so on. In this 

context, the major and most dif�cult challenges involve 

hidden bugs, and the use of the pseudo-potential approx-

imation.

 •  Validation involves comparing the theoretical calculations 

and experimental measurements in order to quantify the 

predictive value of the theory—for this, one needs also to 

carefully assess, for example, the condition at which the 

comparisons are made (environmental conditions, such as 

temperature, degree of imperfections in the experimental 

sample, the role of quantum nuclear effects not consid-

ered in the theory, etc.).

Current and future challenges. Two main aspects must be 

stressed when discussing the path toward veri�cation: the 

�rst one involves the de�nition of quality standards for the 

calculated quantities, the second focuses on tools needed to 

verify the records already available in the electronic-structure 

databases.

The �rst systematic effort of veri�cation in the world of 

solid-state calculations has been performed by Lejaeghere 

et al [1], which assessed the reproducibility of DFT calcul-

ations of elemental solids across a variety of electronic-struc-

ture codes and different libraries of pseudo-potentials. It is 

noteworthy that this was done more than 50 years after the 

introduction of DFT; the computational chemistry community 

started such an effort much earlier. The variety of the com-

puted properties available in electronic structure databases, 

however, complicates this task. The total energy is the least 

sensitive quantity to numerical errors, thanks to the variational 

principles, and it has already been pointed out that, for exam-

ple, veri�ed band structures may not translate to agreement 

on vibrational properties [25] and that a more careful analysis 

J. Phys. D: Appl. Phys. 52 (2019) 013001

http://www.crystallography.net/tcod
http://www.crystallography.net/tcod
http://www.materials-mine.com
http://www.materials-mine.com
http://www.vasp.at
http://www.quantum-espresso.org
http://www.quantum-espresso.org
http://materialscloud.org/sssp/


Topical Review

11

must be conducted at least when using density-functional per-

turbation theory [26].

Tools to retrieve/compare/assess records in selected elec-

tronic structure data repositories are often available as a dedi-

cated REST application program interface (API); however, 

only recently were search APIs made available to perform 

preliminary veri�cation tasks on a large set of data. Rose et al 

[27] have used their search API to analyse the convergence of 

variable cell relaxation for all the structures contained in the 

ICSD.

Validating theoretical predictions requires synergy with 

experimental databases and, although it has been commonly 

done on single materials, only a few examples of systematic 

comparison are available. Aiming to validate DFT forma-

tion energies, Kirklin et  al [28] have found agreement in 

86% of the 89 cases considered. Toher et  al [29] investi-

gated thermo-mechanical properties, such as bulk and 

shear moduli, Debye temperatures, and Gruneisen param-

eters and assessed the reliability of different computational 

approaches compared with 74 experimentally characterized 

systems (see �gure 6).

Advances in science and technology to meet challenges. Sev-

eral major issues remain: (1) establishing transferable standards 

and protocols to assess the predictive value of electronic-

structure data, (2) further development and implementation of 

software tools for automatic veri�cation, (3) establishing com-

munity test cases ([30] and https://galligroup.uchicago.edu/

Research/hybrid_functionals.php#tables) that contribute to 

develop high-quality standard datasets, (4) building synergies 

between theoretical and experimental databases for validation, 

(5) expanding the number of computed quantities in order to 

facilitate direct comparison with experiments, (6) de�ning and 

computing universally ‘reliability scores’ to provide direct 

information regarding data quality to database users.

A recent and notable effort has been that of the OptiMade 

API, which intends to add a compatibility layer to access data 

from different repositories. Such an effort is still in progress 

but could potentially help to address some of the dif�culties 

in verifying electronic-structure data. The de�nition of valida-

tion protocols is even more dif�cult, since it involves a much 

more diverse universe of techniques, formats, and details.

Concluding remarks. Several independent repositories of 

electronic structure data based on DFT are currently publicly 

accessible. The data contains millions of computed properties 

that can be used for machine learning and more. Veri�cation 

standards, however, are missing, with limited curation of data; 

validation has been rarely addressed and typically on very 

small subsets. This rapidly growing area of research dedi-

cated to veri�cation and validation must be expanded, aiming 

at community de�nitions of accepted standards for accuracy, 

and well-de�ned protocols and tools for the calculations.
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Figure 6. Validation study of the AGL computational method [27] applied to the lattice thermal conductivity and the Debye temperature. 
Theoretical predictions of simpler harmonic properties, such as the Debye temperature, have larger predictive values. The calculations 
of thermal transport coef�cients that must include accurate treatment of the anharmonic contribution provide more scattered results. 
Reproduced with permission from Cormac Toher.
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5. High-throughput (combinatorial) experimental 

methods for materials design/discovery

Ichiro Takeuchi1 and Martin L Green2
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of America
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Status. The high-throughput (combinatorial) approach to 

materials discovery enables synthesis and screening of a large 

number of different alloys or compounds simultaneously. Early 

incarnations of the high-throughput strategy appeared in the 

1960s where co-deposition of thin �lms was used to generate 

composition spreads of ternary metallic alloys and functional 

materials, such as ferromagnets and luminescent materials. 

Despite some success, early efforts did not lead to widespread 

adoption largely because of the lack of tools for rapid charac-

terization, as well as computers and automated measurement 

techniques. High-throughput materials exploration truly came 

of age in the early 1990s following the advent of combinato-

rial chemistry in biochemical �elds and in the pharmaceutical 

arena [31]. The early 90s was also the era when the need for 

rapid, systematic investigation of new materials was �rst rec-

ognized by the materials science community, following the 

discovery of high temperature superconductors. Since then, 

the combinatorial approach has become an accepted method-

ology in almost all areas of materials science [32]. Combi-

natorial catalysis is a large �eld practiced by academic and 

industrial labs alike in tackling a variety of homogeneous and 

heterogeneous catalytic reactions with applications in produc-

tion of chemicals, re�nery operations and environmental pro-

tection [33]. Polymeric materials also represent a vast target, 

including formulations for coating, tissue engineering, and 

polymerization catalysts [34]. While stoichiometric control 

and the search for new compositions with enhanced physical 

properties is the most common mode of combinatorial invest-

igation, microstructure and processing control through �ne-

tuning of myriad synthesis parameters is equally important. 

In the arena of functional materials, the investigation has been 

increasingly focused on energy-related materials, such as bat-

tery electrodes, fuel cell electrolytes, photovoltaic materials, 

and thermoelectric materials [35].

Recent advances in computational materials science and 

data science are an exciting development. Integration of com-

putational and theoretical predictions of materials with the 

experimental combinatorial approach can signal a new chap-

ter in materials discovery, and such efforts are underway in 

multiple fronts.

Current and future challenges. The history of the combinato-

rial approach is paved with a series of technical challenges that 

the community has endured over the years. In the early days, 

the synthesis posed the initial test: is it really possible to make 

hundreds to thousands of compositionally varying samples in a 

single experiment in a controlled manner? The answer depends 

on the topic, synthesis technique, and the extent of composi-

tion variation one attempts to map on a given library. While it 

is enticing to apply the approach to the latest exotic and excit-

ing topics, the cardinal rule is that one needs to be able to reli-

ably synthesize the correct benchmark composition on a corner 

of the combinatorial library. To this end, one needs to criti-

cally evaluate the library design taking into account simultane-

ously achievable ranges of synthesis parameters (composition, 

temper ature, atmosphere, etc) on a library.

The second set of challenges was in the form of high-

throughput screening tools [36]. Because the  high-throughput 

methodology presented a new way to measure materials 

properties, it often required a major instrumentation effort to 

develop new tools for local, rapid and accurate characteriza-

tion on libraries comprised of small quantities of materials. 

Techniques based on scanning probe microscopy (SPM) have 

been effective, and MEMS and electronic device array con-

�gurations have also proven to be powerful platforms [37]. 

For instance, SPM techniques have been used to measure fer-

roelectric properties, magnetic properties, and piezoelectric 

properties. Micromachined cantilever arrays have been used 

for high-throughput detection of martensitic transformation 

for shape memory alloys, hydrogen storage materials, and 

magnetostrictive materials. While some properties, such as 

electrochemical catalysis and the latent heat in caloric mat-

erials, are inherently dif�cult to quantitatively capture by 

high-throughput experimentation, researchers have made 

great strides in streamlining the screening techniques of virtu-

ally all physical and chemical properties [35].

Various types of measurement data, generated from library 

characterization in large quantities, have always presented a 

challenge for the community. In recent years, the issue of how 

to manage (curate and analyze) large, heterogeneous data sets 

has come to the fore. Some national laboratories have taken on 

this challenge and have successfully set up curated databases 

for high-throughput experimentation. Good examples are the 

online data handling systems developed at NIST (https://mgi.

nist.gov/materials-data-curation-system) and NREL (https://

htem.nrel.gov/). Given that there are also now enormous 

amounts of computed materials properties available from 

theor etical work, the situation calls for an integrated approach 

to designing theory-guided combinatorial experiments and 

performing holistic data processing and mining.

Advances in science and technology to meet chal-

lenges. Effective integration of experimental and computa-

tional high-throughput approaches can serve as an engine to 

drive materials discovery in a variety of �elds. In order for 

the integration to be seamless, frequent feedback loops are 

needed between theory and experiment (�gure 7). Combina-

torial experiments can be used to rapidly validate theor etical 

predictions of new compounds within targeted yet broad com-

position ranges. Experimental data, systematically generated 

from libraries, can in turn be used to build new theoretical 

models for further predictions. It would be ideal to have such 

an integrated engine on a �exible data-handling platform, 

which includes a repository containing both experimental and 

computational data. It is also important that the data-handling 
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Figure 8. Combinatorial experimentation and data analysis �ow. (a) X-ray diffraction data are taken from a thin-�lm composition spread 
wafer mapping a ternary (A–B–C) compositional phase diagram created by co-sputtering. The diffraction data are then analyzed using 
cluster analysis to produce a potential structural phase distribution diagram, identifying separated phase regions. (b) The mean shift theory 
(MST) as the machine learning algorithm is applied here: feature vectors are produced for each sample on a combinatorial library. Each 
sample is projected into the feature vector space—shown here as 2D and unitless for ease of visualization, and the feature vector density 
is correlated to an underlying probability density function (PDF) for each ‘hidden’ classi�cation, which in this case are assumed to be two 
separated different phase regions R1 and R2. PDF analysis is performed using MST-based mode detection, and all samples from the same 
PDF are clustered together. Reprinted by permission from Macmillan Publishers Ltd: Scienti�c Reports [39], Copyright 2014.

Figure 7. Integration of high-throughput experimentation and theory. Effective coupling of the experimental and theoretical tracks, both 
carried out in high-throughput manners, can facilitate materials discovery. The key is to have as many connection points between the two 
tracks as possible. We call this coordinated effort the ‘Integrated Materials Discovery Engine’.

J. Phys. D: Appl. Phys. 52 (2019) 013001
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platform has access to a variety of existing literature data-

bases. The goal is to carry out datamining on such legacy 

databases to help delineate composition-structure-property 

relationships, as well as to derive models for predicting new 

compounds which can serve as the basis for designing new 

library experiments [38].

As discussed elsewhere in this article, it is increasingly 

becoming clear that machine learning can play a major role 

in several aspects of this endeavour. Because combinatorial 

experimentation can generate a large amount of data from a 

single library, researchers have been relying on machine learn-

ing to quickly decipher the underlying trends in complex sets 

of data. For instance, unsupervised machine learning can be 

used to rapidly separate a large number of diffraction patterns 

into different clusters (�gure 8). For a composition spread 

library, the clusters nominally correspond to regions of the 

same crystal structures [39]. Machine learning is also actively 

used to streamline the efforts in computational materials sci-

ence. Here, the goal is to quickly identify proxy descriptors 

to simplify the calculations and minimize computational time 

and resources. In this manner, machine learning can be used to 

curtail the amount of expensive and time-consuming ab initio 

simulations, which need to be carried out for a project. There 

are also proposed efforts to use machine reading and machine 

vision to comb through volumes of journal articles in order 

to automatically build databases based on previous literature. 

Proper threading of the results of the various data-centric tasks 

is then crucial for effective operation of the integrated engine 

for materials discovery.

Concluding remarks. High throughput (combinatorial) mat-

erials science started as a natural extension of developments in 

the pharmaceutical industry, but it has evolved into a versatile 

approach applicable to a wide variety of materials systems. 

Because any materials design project requires actual mat erials 

synthesis and validation, high-throughput experimentation 

serves as a sine qua non of any systematic materials discov-

ery and development effort [40]. Moving forward, the key to 

continued success of the integration of the high-throughput 

experimentation and theory is to close the gap through data-

driven activities.
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6. Advanced in situ and synchrotron based  

methods for materials design/discovery

Mercouri Kanatzidis1 and Mike Toney2
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2  SLAC, Menlo Park, CA, United States of America

Status. Exploratory synthesis has been a key strategy in the 

past several decades that has yielded many of the important 

new materials we study and use today. The level of predict-

ability in this admittedly highly successful approach is gener-

ally low because the reaction mechanisms, as well as how and 

when phases form, is not known and are challenging to predict 

within the present theoretical frameworks. In this successful 

‘Edisonian’ paradigm, one predetermines a given set of reac-

tion conditions (e.g. time, temperature, heating, cooling rates) 

and waits for completion to isolate and identify any formed 

compounds. There is a general lack of awareness (‘blind syn-

thesis’) of what has occurred during the reaction and when 

phases form and this hinders our ability to identify and make 

new materials or to devise successful synthetic processes for 

desired and targeted materials. This is particularly pronounced 

for synthesis of metastable compounds which often have very 

desirable functionality, since such phases often appear tran-

siently and unpredictably during a synthesis. As a result, the 

design and synthesis of metastable materials remains largely 

empirical.

Current and future challenges. Recently, a number of new  

in situ based approaches that allow us to ‘see’ all forming 

phases in the course of a variety of synthesis reactions have 

become of interest. The in situ approach uses x-ray diffraction 

to monitor the reaction to capture signatures of new phases as 

they form even when they are transient and short lived. The 

results published so far are very encouraging because entire 

new phases have been observed to form on reactions which 

had been missed in previous investigations on the same sys-

tem. Because all crystalline phases are revealed during the 

reaction in this approach, we call it ‘panoramic synthesis’. For 

example, this approach has been used for �ux reactions, hydro-

thermal growth, and nanoparticle formation [41, 42]. Along 

with these experimental developments, the theory is making 

rapid progress in advancing computationally-driven predic-

tive synthesis of inorganic materials, through concepts such as 

remnant metastability (i.e. during synthesis, metastable phases 

that form as end products are remnants of phases that were 

thermodynamically stable during particle growth) [43].

In the future, it will be a crucial challenge to implement 

complementary panoramic synthesis experimental probes 

(such as Raman spectroscopy, total x-ray scattering and x-ray 

absorption spectroscopy) that can ‘see’ amorphous phases 

which can form important intermediates during synthe-

sis. Likewise, it will be important to augment the structure-

based (diffraction) measurements with local imaging, such 

as electron microscopies (see [44] for an example). These 

efforts should be carefully compared and integrated into 

computationally-driven predictive synthesis both to test and 

re�ne these theories. Finally, expanding panoramic synthesis 

into other spaces (e.g. electrodeposition, hydro- and solvento-

thermal synthesis [45, 46], high pressure synthesis, and rapid 

thermal processing [47]) will broaden the applicability.

Advances in science and technology to meet chal-

lenges. Here, we give two short examples of recent advances 

in the application of panoramic synthesis to illustrate the 

advances that can address the challenges for advanced exper-

imental methods for materials discovery and design.

The �rst illustration of the power of panoramic synthesis 

was in the systems K–Cu–S and K–Sn–S. A schematic of 

the in situ capillary furnace we designed to investigate phase 

formation during �ux reactions is shown in �gure  9. This 

experiment generates x-ray diffraction maps that reveal the 

complex real-time phase relationships in the reaction [48]. 

These experiments revealed surprisingly more phases that had 

been found in conventional reactions. The diffraction patterns 

collected while heating and cooling during this reaction are 

given in �gure 9(a). The panoramic synthesis showed addi-

tional crystalline phases that formed and then disappeared by 

the end of the reaction [48, 49].

First, we see the signatures of the reagent metal and poly-

sul�de phases, but upon heating, low-2θ peaks appear in 

the diffraction data (red region). This real-time information 

(prior to any analysis) clearly shows that ternary K–Cu–S 

phases form early in the reaction, as observed in �gure 9(a). 

Continued heating leads to the disappearance of all Bragg 

peaks (the black region in �gure  9(a)). At this point, the 

formed ternary sul�des have dissolved completely into the 

molten polysul�de salt. After cooling, low angle Bragg peaks 

again showed the presence of ternary phases (green region in 

�gure 9(a)). The structures of the occurring phases are closely 

related and shown in �gure 9(b).

The in-situ monitoring in the reactions of Cu with K2S3 and 

Cu with K2S5 produced not only different phases K3Cu8S6, 

KCu3S2 and K3Cu4S4, but also generated key information of 

when they formed during the course of the reaction, how long 

they lasted and what the �nal product was. If this reaction 

were to be performed ex-situ, no evidence of the formation 

of KCu3S2 and K3Cu4S4 would exist—only K3Cu8S6 would 

remain [50].

Another successful example is the new phases discovered 

using in-situ synchrotron x-ray diffraction studies in the Cs/

Sn/P/Se system [50]. The diffraction data was translated into 

phase fraction versus temperature. Seven known crystalline 

phases were observed to form on warming in the experi-

ment: Sn, Cs2Se3, Cs4Se16, Cs2Se5, Cs2Sn2Se6, Cs4P2Se9, and 

Cs2P2Se8. Six unknown phases were also detected; using the 

in-situ x-ray data as a guide, three of them were isolated and 

characterized ex-situ. These are Cs4Sn(P2Se6)2, α-Cs2SnP2Se6, 

and Cs4(Sn3Se8)[Sn(P2Se6)]2. Cs4(Sn3Se8)[Sn(P2Se6)]2 is 

a 2D compound that behaves as an n-type doped semicon-

ductor below 50 K and acts more like a semimetal at higher 

temperatures.

A second illustration relates to the development of Pt 

nanostructures and shows the power of complementary 
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techniques [44]. The synthesis involved thermal decomposi-

tion of a Pt precursor under a hydrogen atmosphere in the 

presence of a stabilizing agent (at low and high concentra-

tions). Figure 10(a) shows the development of the Pt(1 1 1) 

x-ray diffraction peak area with growth time; for the low 

concentration reaction, this increases approximately lin-

early. However, for the higher concentration these data are 

more complex and allow for the identi�cation of four distinct 

growth regimes (labeled I–IV). Ex-situ transmission electron 

microscopy (TEM) of Pt nanoparticles allow identi�cation 

of the nanoparticles shapes and size, showing a fascinating 

evolution from a compact cubic morphology (I) to quasi-

octapods (II), etched-octapods (III) to porous nanocrys-

tals (IV). From the diffraction and TEM, a detailed growth 

model is developed as illustrated in �gure 10(c). This exam-

ple demonstrates the utility and complementarity of TEM 

and XRD for revealing nanostructure growth mech anisms. 

A future challenge is to develop a predictive capability for 

Figure 9. (a) Phase formation revealed in during in situ reaction monitoring using x-ray diffraction. These data maps of the molten and 
crystalline regions can be constructed to show all crystalline phases formed. (b) Panoramic map of the Cu-K2S3 reaction. New phases form 
on heating, with different phases forming upon cooling. Similarities between phases imply the ability to tailor linkages and topology.

Figure 10. In-situ synthesis of Pt nanostructures (70 °C, 200 kPa H2) at low and high concentrations of stabilizing agent. (a) Time-resolved 
x-ray diffraction; (b) time evolution of area under the Pt(1 1 1) peak with growth stages I–IV denoted. (c) Schematic illustration of proposed 
Pt nanoparticle growth mechanism for stages (I–III). Pt monomers �rst nucleate into cuboctahedral nuclei (I), and then grow into single-
crystalline quasi-octapods (II). Growth of the arms of the quasi-octapods, coupled with selective etching on the edges and centers of facets, 
leads to the formation of etched-octapods (II). These processes continue and transform the nanocrystals to porous nanocrystals.
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nanostructure synthesis—not only phase but also particle 

shape and size.

Concluding remarks. Progress has been made over the past 

decade in developing a rational, predictive understanding of 

exploratory synthesis, but much remains to be accomplished to 

enable extensive applications of this approach. The challenge 

of accelerated and predictable materials discovery will be met 

with increasing success if we can achieve the organization of 

new knowledge coming from these new approaches so it can 

be more effectively taken advantage of. For example, reactivity 

patterns under speci�c reactions conditions may have a gen-

eral scope and could be used to classify reaction and reaction 

types so that they can be used as synthetic tools for materials 

discovery. We have described an in-situ, ‘panoramic synthesis’ 

approach that, when coupled with progress in computational 

predictive synthesis, will help enable the widespread adapta-

tion of predictive synthesis. This will profoundly accelerate the 

discovery and development of new functional materials.
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Status. The objective of materials informatics [51], or 

data-driven materials science, is to use a set of power-

ful tools from data mining, machine learning, and math-

ematical optimization to systematically reveal materials 

 processing-structure-property-performance (PSPP) relations. 

Once uncovered, these PSPP relations can drive the predictive 

discovery and design of novel materials and optimized manu-

facturing processes.

The shift toward data-driven discovery is becoming broadly 

prevalent in modern research and is referred to as the fourth 

paradigm of science [52]. This term, coined by Jim Gray in 

2007, re�ects the historical developments in scienti�c meth-

ods, beginning with empirical science (�rst paradigm), giving 

a rise to theoretical science (second paradigm), enabling com-

putational science (third paradigm), and ultimately paving the 

way for data-driven science. While �elds such as biology have 

embraced the fourth paradigm for some time, it is a compara-

tively new concept in materials science [53].

The rapid ascent of materials informatics coincides with 

the 2011 launch of the US Materials Genome Initiative 

(MGI) [54], which explicitly elevated the role of digital data 

and related software tools in the materials research enter-

prise. Since the MGI announcement, materials informatics 

have driven a series of laboratory discoveries of materials 

and processing routes, in areas ranging from thermoelectrics 

[55] to hydrothermal synthesis [56]. Further, the community 

has seen a rapid increase in research articles wherein vari-

ous materials informatics-based models of PSPP relations are 

constructed.

A generic materials informatics work�ow is shown in 

 �gure 11. The analysis starts with data extraction and preproc-

essing, which is used to identify and select the key comp onents 

of the data set. The reduced data set is further examined for 

relationships between the components of interest. The discov-

ered relationships are utilized to generate the so-called inverse 

and forward models, the former of which can be used to design 

materials with desired properties, whereas the latter are used 

for predictive analytics [53]. Experiments and computer simu-

lations based on theoretical models are used to generate new 

data for the materials databases, thus closing the loop.

Current and future challenges. Below, we describe �ve 

key challenges that hinder broader application of materials 

informatics.

Data heterogeneity and siloing. The datasets characterizing 

materials and their properties are of a diverse nature, come 

from a wide variety of sources (e.g. myriad different exper-

imental and simulation techniques) with different levels of 

accessibility, and are stored in many formats. Materials data 

tend to exist across many scattered ‘small data’ silos, making 

systematic mining more dif�cult.

Lack of consistent metadata. The generation and collection 

of materials data are associated with numerous uncertainties 

and sources of error that may not be easily detectable, making 

the quality of data dif�cult to verify. This issue is frequently 

exacerbated by a lack of metadata necessary for precisely rep-

licating the experiment or a simulation used to obtain the data 

[57].

Inverse materials PSPP models to search materials design 

space. Forward models try to predict the structure of a 

material based on the processing used, properties based on the 

structure, and performance based on properties. On the other 

hand, inverse models aim to determine the material design 

parameters that would yield materials with desired properties 

and performance. In general, the forward modelling problem 

is easier than the inverse problem, yet the inverse problem is 

more relevant for materials discovery.

Novel representations of materials for informatics applica-

tions. Representing materials concepts (e.g. crystal structure, 

chemical composition, or microstructure) as computational 

objects for input to analysis algorithms is an essential prereq-

uisite for materials informatics. An example emerging repre-

sentation strategy is describing materials as networks, which 

could reveal relationships and connections between materials 

and potentially identify multiple materials that have the same 

or similar properties or are otherwise related according to 

some criteria.

Advances in science and technology to meet chal-

lenges. Below, we highlight two particular science and tech-

nology development goals that promise to be fruitful areas of 

exploration for the materials informatics community.

Explicit integration of experimental data, computational data, 

and materials theory to enable multiscale modelling. In the 

well-established integrated computational materials engineer-

ing framework, powerful individual PSPP models have been 

developed over time, but deep integration is lacking between 

these models, experimental results, and established theory. 

Materials informatics are a promising integrator of these var-

ied sources of ‘signal’ on the behavior of materials. This capa-

bility is especially important given the distribution of materials 

data across many small, isolated data silos as described above.

Similarity metrics for materials. One of the central scienti�c 

questions arising in materials informatics is a systematic way 

of determining quantitative metrics characterizing the level of 

similarity between pairs of materials. Addressing this question 

would help advancing methods for understanding PSPP rela-

tions and would enable the use of network analysis techniques 

for exploring both local and global properties of systems of 

materials. The metrics of interest could potentially be derived 

from �rst-principles computations, e.g. based on electronic 

density of states or projections of localized basis sets [58, 59], 

or atomic coordination environments [60]. Then one could rep-

resent the entire space of materials as an extended network of 

interacting entities, where the connections between individual 

materials are based on pairwise similarities in their properties 

derived from �rst principles. This would allow us to take advan-

tage of powerful network analysis methods, which exploit the 
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use of graphs or networks as a convenient tool for modelling 

relations in large datasets. In this general framework, certain 

elements of a dataset of interest are thought of as vertices, and 

the pairwise relations between different elements are described 

by edges, yielding a network representation of the underlying 

complex system. With respect to the materials databases, sev-

eral conceptually different network representations could be 

utilized, which would provide alternative vantage points for 

exploring myriad materials data from a systems perspective. For 

example, clusters in these networks would correspond to mat-

erials with similar properties. Furthermore, one could develop 

optimization models aiming to �nd the best subsets of materials 

according to a given objective function (see �gure 12).

Concluding remarks. Materials informatics are a key enabler 

of the MGI, as well as related international efforts such as 

Japan’s Materials Research by Information Integration Initia-

tive (MI2I), and the faster development of higher-performance 

materials. The focus of this emerging �eld is on algorith-

mic approaches that would advance our understanding of 

processing-structure-property-performance relations. Devel-

oping a cross-disciplinary collaborative culture that would 

allow integrating the experimental, computational and applied 

sides of materials science in developing advanced data min-

ing solutions is essential. De�ning reasonable quantitative 

similarity metrics for pairs of materials could lead to signi�-

cant advances in classi�cation of materials and navigating the 

ever-expanding search space for new materials. The reader is 

referred to recent survey articles [51, 61] for further informa-

tion on advances and challenges in materials informatics.
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Figure 11. Generic materials informatics work�ow.

Figure 12. Network analysis approach in materials informatics. DoS functional are used to de�ne a similarity metric (left), a network is 
constructed based on the considered similarity metric (top right), and structural properties of the resulting network are analysed (bottom 
right).

J. Phys. D: Appl. Phys. 52 (2019) 013001



Topical Review

20

8. Computational prediction and experimental  

realization of new materials

A Zakutayev and S Lany

National Renewable Energy Laboratory, Golden, CO 80401, 

United States of America

Status. The discovery of novel materials and the control of 

their properties are key drivers for technological innovations. 

This observation is particularly true for electronic and opto-

electronic materials, which have fueled the information tech-

nology revolution, and on which the hopes for the advanced 

energy revolution rest. Historically, materials discovery has 

been a serendipitous endeavor. For the past century, mat erials 

chemists have been synthesizing numerous solid-state com-

pounds for different reasons and at different times. Their �nd-

ings are documented in crystallographic databases such as the 

Inorganic Crystal Structure Database (ICSD), and that of the 

International Centre for Diffraction Data (ICDD). While the 

entries in these databases count in the hundreds of thousands, 

surprisingly little other than the crystal structure is known for 

most of these materials. Starting from the crystal structures 

as input, high-throughput �rst principles calcul ations based 

on density functional theory (DFT) and post-DFT methods 

provide an ever-increasing number of calculated properties, 

made available in online databases like https://materialspro-

ject.org/, http://www.a�owlib.org/, http://oqmd.org/, https://

materials.nrel.gov/, and others. High throughout exper-

imental mat erials property databases are also emerging (e.g. 

http://htem.nrel.gov/)

While extensive, the crystallographic databases are by no 

means complete. The availability of synthesis methods and 

preferences of researchers and funding agencies have empha-

sized some chemical spaces over the others, leaving white 

spots where plausible materials may exist but are not presently 

reported. To unearth these ‘missing materials’, computational 

searches are now being performed to predict their structure, 

and accompanying experimental efforts are underway to 

either verify or falsify their stability. Several broad conclu-

sions can be drawn from such studies. First, there is no doubt 

that the search space is vast, considering the combinatorial 

explosion of candidate materials with the number of involved 

elements and their possible ratios. This is especially true when 

including metastable structures and non-stoichiometric com-

positions in materials search. Taking into account this sec-

ond point, it also becomes increasingly clear that the ‘convex 

hull’ criterion (thermodynamic stability with respect to other 

structures and compositions made of the same elements) is 

too narrow to judge whether a potential new material would 

be possible to synthesize. These conclusions re�ect the chal-

lenges faced by materials discovery discussed next.

Current and future challenges. The biggest current challenge 

in systematic materials discovery is the vastness of chemical 

space where materials can occur. In general, a ‘material’ is 

de�ned by its constituent chemical elements, their relative 

composition (stoichiometry), and the atomic structure, which 

can be depicted in 3D as shown in �gure  13. Numerous 

approaches and tools to predict crystal structures from �rst 

principles are available [62], but they are often limited to the 

materials with a small number of elements, to formula units 

with small integer indices, and to unit cells with a small num-

ber of formula units. In fact, stability and properties of real 

materials often depend on the non-ideal structures that can-

not be described by their primitive cells, such as defects or 

disorder, and, ultimately, the meso- and microstructure. One 

theor etical approach to screen for many possible elements is 

to constrain the search to one or a few chemical stoichiom-

etries (e.g. ABX, ABX3, A2BX4, and so forth), and restrict the 

possible structures to all known prototypes (e.g. spinel, oliv-

ine, etc, for A2BX4) [63]. An alternative approach is to select 

a constrained number of elements and structures, and then 

screen many possible low index stoichiometries [64]. To aid 

both of these approaches, simpli�ed stability descriptors [65] 

can help to identify search spaces where new materials are 

likely to be discovered.

One of the biggest future challenges in materials discov-

ery is to go beyond the search for thermodynamic ground 

state compounds. Metastability [43] comes in many �avors, 

including polymorphs, thermochemically unstable materials, 

solid solutions, non-stoichiometric compounds, hierarchical 

and low-dimensional materials. Unlike the case of ground 

states, which are universally de�ned by free energy minimi-

zation, computational discovery of metastable materials can 

no longer be agnostic to the synthesis approach (�gure 14). 

Thus, the synthesizability of the predicted candidate materials 

would have to be emphasized more; alternatively, materials 

searches should be tailored to the capabilities of speci�c syn-

thesis approaches. For example, non-equilibrium synthesis of 

metastable heterostructural semiconductor alloys using physi-

cal vapor deposition methods can be enabled by novel phase 

diagram behavior that is not observed in conventional solid 

solutions [66]. Such materials discovery on a continuous com-

position scale is distinct from the more common search for 

Figure 13. Simpli�ed illustration of the vast multi-dimensional 
materials discovery space, showing different possible elements, 
stoichiometries, and structures.
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discrete stoichiometric compounds, and poses new challenges 

to computational prediction and experimental realization of 

new materials.

Advances in science and technology to meet chal-

lenges. High-throughput experimentation methods can be 

used to quickly cover both chemical space and process param-

eters. For example, the growth of sample libraries with contin-

uous composition spreads and temperature gradients provide 

large amounts of synthesis data from a single deposition. In 

order to connect computational materials predictions to such 

non-equilibrium synthesis techniques, it may be possible to 

map process parameters onto ‘effective’ thermodynamic vari-

ables. For example, effective non-equilibrium chemical poten-

tials accessible during the synthesis can be used to describe 

the formation of thermochemically metastable materials 

[67]. Also, �nite temperature effects must be reconsidered 

in metastable materials. Atomic disorder induced by kinetic 

limitations during growth can be converted into an effective 

temperature [68], which can be much higher than the actual 

temperature. Therefore, such an effective temperature in�u-

ence can be vastly stronger than the free energy contributions, 

e.g. due to atomic vibrations in the thermodynamic equilib-

rium state. Advancing the understanding of how these descrip-

tors vary between different materials and synthesis parameters 

will enable the computational prediction of materials within 

their accessible range of effective thermodynamic variables.

The next step is to de�ne effective kinetic variables that facil-

itate a predictive atomistic modelling of synthesis processes. 

Since metastable materials result from the inhibition of the 

equilibration of certain processes, modelling of synthesis 

requires identi�cation of variables that describe appropriate 

kinetic constraints. For example, it is exper imentally known 

that surface diffusion is usually faster than bulk diffusion 

for thin �lm growth. Creating the corresponding theor etical 

models tailored to this synthesis constraint is facilitated by 

developing problem-speci�c model Hamiltonians with simi-

lar (or ideally higher) accuracy as DFT, allowing an ef�cient 

Monte-Carlo or molecular dynamics sampling for speci�ed 

non-equilibrium descriptors [69]. Experimentally, the devel-

opment of new in situ techniques for monitoring synthesis and 

processing of materials would be an important advance for 

validation of computational models. Using synchrotron radia-

tion, it can be shown that many new metastable phases can be 

present as reaction intermediates and absent from the reaction 

products [48]. The adoption of such in situ techniques on a 

smaller scale in research labs would therefore help to acceler-

ate the discovery of metastable materials.

Concluding remarks. Materials discovery is branching out to 

capture the opportunities of a wide range of different synthesis 

approaches and their capabilities to access a spectrum of meta-

stable materials. The de�nition of ‘materials’ being discovered 

is generalized beyond the Daltonian compositions and the 

corre sponding crystallographic primitive cells. Future material 

discoveries will include metastable compounds, solid solutions, 

defect- and disorder-enabled materials, and low-dimensional 

structures. Furthermore, it remains a great challenge to concur-

rently discover new materials and design their properties. Pre-

dicting and synthesizing new materials is dif�cult enough that 

property calculations and measurements for the discovered 

new materials often come as an afterthought. The truly simul-

taneous search for new materials and their properties may be 

enabled by genetic algorithms and machine learning, if it is 

possible to train them to signi�cant accuracy, and scale them to 

the vast chemical space of mat erials discovery.
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Status. Advancements in multiscale multi-physics computa-

tional materials design have led to the accelerated discovery 

of advanced materials for energy, electronics and engineering 

applications [70]. For many common bulk materials, synthe-

sizing and processing procedures are reasonably well estab-

lished. This also applies to modelling tools that can be utilized 

for the understanding of phenomena occurring in these pro-

cedures. However, theoretical approaches have limited ana-

lytical power for predicting viable synthetic routes towards 

making entirely new materials. The knowledge about growth 

mechanisms, free-energy landscape and dynamics of chemi-

cal and physical processes during synthesis is quite limited. 

This uncertainty is exempli�ed in �gure  15(a) by showing 

multiple pathways for crystallization from the solution, where 

a mechanism of forming bulk crystal depends on the interplay 

between thermodynamic and kinetic factors [71]. Therefore, 

the state-of-the-art in materials design needs to be comple-

mented with substantial efforts in advancing the �eld of  

synthesis design. To increase the predictive ability of material 

synthesizability, it is necessary to de�ne both equilibrium and 

out-of-equilibrium descriptors that control synthetic routes 

and outcomes. The key metrics include free-energy surfaces 

in multidimensional reaction variables space (e.g. activation 

energies for nucleation and formation of stable and metastable 

phases in �gures 15(b) and (c)), composition, size and struc-

ture of the initial and emerging reactants, and various kinetic 

factors, such as diffusion rates of reactive species and the 

dynamics of their collision and aggregation.

Current and future challenges. To identify and quantify key 

descriptors towards predictable synthesis design, it is essential 

to integrate (i) exploratory synthesis and (ii) in-situ process 

monitoring with (iii) computational design of synthetic routes.

 (i)  Challenges of experimental exploratory synthesis are 

associated with the complexity of chemistries and reaction 

routes that depend on the interplay between equilibrium 

and out-of-equilibrium processes. Crystalline material 

growth methods, which span from condensed matter 

synthesis (all-solid-state synthesis and crystallization 

from melt or solution) to physical or chemical deposition 

from vapour (sputtering, e-beam deposition, pulsed laser 

deposition, atomic layer deposition, chemical vapour 

deposition), often proceed at non-equilibrium conditions, 

e.g. in highly supersaturated media, at ultra-high pressure, 

or at low temperature with suppressed species diffusion. 

Identi�cation of chemical evolution reactions and the 

associated physical processes followed by their ‘equi-

librium versus metastable’ classi�cation is extremely 

dif�cult but is an essential step towards assessing material 

synthesizability. An illustration of possible reaction path-

ways to realize stable and metastable states of material is 

illustrated in �gure 15(c), where highly non-equilibrium 

synthetic routes are superimposed on a generalized phase 

diagram [72].

 (ii)  Developing in-situ multi-probe measurements to capture 

important steps along the synthetic route is critical to make 

the synthesis design and its validation more ef�cient. 

For all-solid-state synthesis, it is important to develop 

high spatial and temporal resolution 3D tomographic 

mapping of phase evolution. The same applies for devel-

oping in-line diagnostics for solid growth under extreme 

environ ments, including synthesis in supercritical �uids, 

at extreme pressures, temperatures, photon/radiation 

�uxes or electromagnetic �elds. This is noteworthy since 

real-time multi-probe diagnostics generating massive sets 

of data, which need to be promptly utilized in a closed-

loop-feedback with synthesis, data curation protocols and 

machine learning techniques, need to be advanced.

 (iii)  On the modelling side, the idea of extending computa-

tional material discovery to in-silico synthesis design is 

still in its nascent state. Assessment of equilibrium and 

dynamic key variables for predicting the lowest activa-

tion energies and fastest routes for fabricating targeted 

material remains to be exceptionally challenging. The 

availability of data needed for modelling of new materials 

and processes poses another challenge.

Advances in science and technology to meet chal-

lenges. The challenge of operating in the multidimensional 

space of material fabrication can be addressed by integrating 

exploratory synthesis with multimode dynamic process moni-

toring to de�ne key growth process parameters. Experimental 

synthesis and in-situ measurements should be further inte-

grated with computational tools to enable robust predictive 

synthesis of materials with tailored properties. This uni�ed 

‘experimental/in-situ/in-silico’ synthesis concept is empha-

sized in the Department of Energy report [73] with a focus on 

materials for energy, including experimentally veri�ed design 

of novel thermoelectric and battery mat erials, metal nanopar-

ticle catalysts, and transparent conducting oxides.

To address emerging materials needs, exploratory synthesis 

is focusing more and more on metastable, hybrid, and hierar-

chical structures, such as thin �lm heterostructures, nanoparti-

cle superlattices, and core–shell nanostructures. For example, 

the core–shell nanowire in �gure  16(a) demonstrates how 

thermodynamically favoured phase separation in a GaAsSb 

alloy can be suppressed by strain from the GaAs shell layer 

[74]. Similarly, a metastable rock-salt structure in the SnSe 

thin �lm in �gure 16(b) can be stabilized by depositing it epi-

taxially on a suitable substrate [75].

Advances in in-situ diagnostics include the application of 

multi-probe optical spectroscopies and neutron/x-ray scatter-

ing and diffraction for real-time process monitoring, e.g. for 

crystal growth from melt [42], roll-to-roll solution drying of 

organic photovoltaic �lms, solvothermal synthesis of metal-

organic frameworks, etc. In addition, in-situ scanning probes 
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Figure 15. (a) Crystal growth model, ‘Crystallization by Particle Attachment’ (CPA), shows multiple pathways of crystal growth from 
solution. Unlike a classical monomer-by-monomer growth model (gray curve), CPA operates with higher-order species (black curves) 
and involves the interplay between thermodynamic factors and reaction dynamics. From [71]. Reprinted with permission from AAAS. (b) 
Potential energy pro�le from reactants X and Y to product Z with and without catalyst C. (X…Y)∗ is high-energy transition state, X...Y is a 

metastable product; ∆Gr is the Gibbs energy for the X  +  Y  →  Z reaction; ∆G
C

a
 and ∆Ga are energies for activating transition states with 

and without catalyst C, respectively. (c) Generalized free-energy—pressure phase diagram with superimposed synthetic routes (bold green 
arrows) for obtaining metastable phases. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials [72], Copyright 2002.

Figure 16. (a) GaAsSb semiconductor nanowire with (left) and without (right) GaAs shell. GaAs shell suppresses GaAsSb phase 
segregation, while the alloy without shell decomposes into GaSb-rich (red) and GaAs-rich (light blue) alternating segments. Reprinted 
from [74], Copyright 2017, with permission from Elsevier. (b) Crystal structure of topological insulator SnSe in its metastable rock-salt 
structure, stabilized by low-temperature molecular beam epitaxy on a GaAs substrate. Reproduced from [75]. CC BY 4.0. (c) (Top) The 
energies of the growing nuclei versus the number of atoms, E(n), show how the substrate steers the synthesis from the 3D towards 2D route 
by suppressing the nucleation barrier; (bottom) computed charge density shows how the Ag substrate donates electrons (from pink to blue) 
to the boron layer to stabilize its 2D structure. Reprinted by permission from Macmillan Publishers Ltd: Nature Chemistry [78], Copyright 
2016.
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and electron microscopies can provide direct insight into 

synth etic phenomena with atomic scale resolution [76].

Theory-guided data science has shown great potential for 

discovery and design in diverse scienti�c disciplines [77]. 

A recent example of theory-guided synthesis is shown in  

�gure 16(c): ab initio modelling has predicted a new metasta-

ble allotrope of 2D boron, a.k.a. ‘borophene’, and suggested 

a synthetic route via epitaxial deposition on a metal substrate, 

which was subsequently validated by the experiment [78]. 

Ef�cient in silico synthesis of new materials requires the 

availability of data. A need for reliable data makes the integra-

tion of experiments, computation and theory imperative and 

machine learning and arti�cial intelligence methodologies 

will be needed to �ll modelling and data gaps.

Concluding remarks. Even though the prediction of material 

synthesizability is an extremely challenging task, advances in 

modelling, in-situ measurements and increasing computational 

power will pave the way for it to become a reality. In-silico 

design of advanced materials will have to combine theory 

guided data science with statistical and theoretical computa-

tional methods. However, it is an open question whether it 

will be possible even with the most advanced modelling and 

simulation techniques to predict completely unknown path-

ways for synthesizability. For example, is an additional crystal 

growth route possible other than those shown in �gure 15(a)? 

The development of techniques and tools to propose the most 

ef�cient synthetic pathways will remain one of the major chal-

lenges for predicting new material synthesizability.
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Status. Achieving the widespread use of thermoelectric 

generators for direct heat-to-electricity power conversion 

critically relies on novel, better performing, and less costly 

thermoelectric materials [79, 80]. The vital role that new 

materials play is best witnessed by a recent, nearly three-fold 

improvement in the ef�ciency of thermoelectric generators 

spawned exclusively by the discovery of new materials classes 

(see �gure  17) [81]. As a result, a new research paradigm 

emerged about a decade ago: computational screening of large 

chemical spaces in searching for new and even better thermo-

electric materials. Following the pioneering work of Madsen 

[82], several groups made signi�cant contributions to devel-

oping and applying computational tools to assess the transport 

properties of solids, both charge carrier and heat transport, in 

a manner amenable to high-throughput computational screen-

ing [83–86].

If judged by the number of new and experimentally valid ated 

candidate materials, the success of high-throughput searches 

has been limited so far. This is largely due to (i) the challenges 

associated with predicting transport properties of materials and 

(ii) the slow, serial nature of experimental validation. However, 

a few materials and material classes that have been successfully 

experimentally validated [79, 80] demonstrate the potential of 

computationally guided searches in advancing thermoelectric 

material discovery. These include materials previously not 

anticipated for thermoelectric performance (e.g. n-type Zintl 

compounds), suggesting the power of computation to lift us 

away from our assumptions. Calculations have also passed a 

critical milestone: we are now consistently able to retrospec-

tively discover known materials without explicit exper imental 

input. This success likely stems from the development of com-

bined experimental and computational learning sets that are 

complementary in the properties they address.

To date, computational searches have predominantly 

considered known, previously synthesized materials (i.e. 

Inorganic Crystal Structure Database) with unknown charge 

carrier and phonon transport properties. Venturing into com-

pletely new material systems, including stoichiometric com-

pounds and their alloys as well as the metastable structures, 

has yet to be done on a large scale, but the potential return on 

investment may be worth the effort.

Current and future challenges and opportunities. Similar to 

other material searches, the large search space size, coupled 

with the desire to accurately predict material properties, rep-

resents a signi�cant challenge. As an illustration, �gure  18 

shows how only a very small fraction out of tens of thousands 

of known compounds have actually been experimentally char-

acterized for thermoelectric performance. In combination 

with the complexity of the theory of transport phenomena and 

the required computational resources to quantitatively predict 

the potential for the thermoelectric performance of a single 

material (orders of magnitude more expensive than density 

functional theory), computationally guided searches for new 

thermoelectrics may at �rst seem intractable.

However, the size of the search space also represents the 

biggest opportunity! The vastness of possible chemistries, 

both known and unknown, practically ensures the existence 

Figure 17. Time evolution of the ef�ciency of thermoelectric 
generators (TEG). Recent discoveries of new thermoelectric 
materials have resulted in an almost threefold increase in TEG 
ef�ciency after a 30 year long period of stagnation. [81] 2014 © 
TMS 2014. With permission of Springer.

Figure 18. Relatively few materials have been characterized for 
their thermoelectric performance. About 44 systems (shown in 
color) out of the ~40 000 crystalline, stoichiometric and ordered 
metal–nonmetal compounds (gray) from the inorganic crystal 
structure database (ICSD) have their thermoelectric �gure of merit 
zT reported in the literature (color coded). Reprinted by permission 
from Macmillan Publishers Ltd: Nature Reviews Materials [80], 
Copyright 2017.
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of new, game-changing materials for any given application. 

The problem is then reduced to how to �nd the ‘needle in 

the haystack’ and not whether ‘the needle is in the haystack’, 
which is an important simpli�cation. Second, it is critical to 

note that for the purpose of identi�cation of new promising 

materials, it is suf�cient to estimate relevant properties instead 

of accurately predict their absolute values. Although ideally 

one would prefer the latter, as long as the chemical trends are 

correctly reproduced, the ranking of different materials and 

identi�cation of promising candidates can be reliable. This is 

what actually allows the screening of large chemical spaces 

and is the basis for a number of approaches and/or approx-

imations that have been devised and employed in computa-

tional searches for new thermoelectrics. As a result, a number 

of databases providing predictions of transport properties of 

materials have emerged in the last decade (see [79, 80] and 

the references therein).

The main weakness of all these approaches is the focus on 

intrinsic materials properties and the assumption that semi-

conductors can be doped to a given charge carrier type (n or p)  

and carrier concentration. Many systems are not dopable at 

all and/or exhibit strong doping asymmetry favoring only 

one charge carrier type; thus, incorporating dopability assess-

ment into computational searches is critical. Concerning 

experiments, the serial nature of material synthesis and char-

acterization is another big challenge limiting accelerated 

materials discovery. As the reliability of computational pre-

dictions is largely probabilistic, high-throughput experiments 

are required to accurately assess the success rate of various 

approaches and provide the feedback loop to the theory about 

the feasibility of different approximations that are employed.

Advances in science and technology to meet challenges. In 

relation to predicting/assessing the dopability of materials, the 

good news is that the theory of defects in semiconductors and 

its computational implementations have evolved to a point 

where it is possible to accurately predict both the intrinsic and 

extrinsic defect chemistry and associated doping levels [87]. 

This includes advances in predicting materials stability and 

phase equilibria, which are an integral part of defect calcul-

ations. Moreover, recent successful automation of defect 

calculations [88] demonstrates the maturity of defect theory 

and its potential for large-scale applications. Yet, predicting 

the dopability of semiconductors is still far away from being 

‘black boxed’; it is a relatively tedious process requiring an in 

depth domain knowledge. The solution to these obstacles is in 

revealing deeper relationships between the defect chemistry 

and dopability on one side, and the chemical composition and 

crystal structure on the other. These relationships are pres-

ently either unknown or fairly qualitative.

Concerning the high-throughput experimentation, syn-

thesis techniques are required that yield near-equilibrium 

samples with a form factor appropriate for accurate high 

throughput measurements. Jointly satisfying these require-

ments is presently not achievable with combinatorial thin 

�lm growth; advances in the high throughput synthesis of 

free-standing, dense monoliths would be enabling. Such a 

development would have cross-cutting implications for other 

bulk functional material searches. Given a high throughput 

experimental synthesis infrastructure, challenges remain in 

linking the computational descriptors with the experimental 

observables. For example, defects and dopants that may drive 

electronic and thermal properties are challenging to character-

ize robustly due to their low concentrations. Likewise, scat-

tering sources and strengths are dif�cult to deconvolute from 

transport measurements. Strategies to proceed with while in 

an information-limited regime will thus be critical.

Concluding remarks. Thermoelectric materials discovery 

has come a long way in the last decade, from being guided 

predominantly by intuition and serendipity to the point where 

guidance is complemented by high-throughput calcul ations. 

At this point in time, it is safe to say that the computational 

challenges associated with assessing the potential of semi-

conductors for thermoelectric applications from the intrinsic 

(bulk) materials properties have largely been overcome. The 

remaining (grand) challenge that is still obstructing computa-

tional identi�cation of truly game-changing new thermoelec-

trics is the assessment of dopability of candidate materials. 

Given the maturity and previous success of the defect theory 

and its computational implementations, there is, in our mind, 

little doubt that the dopability of semiconductors will be con-

quered and the true potential of computations in guiding ther-

moelectric materials discovery will be fully realized. More 

nascent is the development of high throughput bulk synthe-

ses to complement these advances in computation. Given an 

effective computational framework coupled to such a high 

throughput synthesis, there is the opportunity for active learn-

ing within a machine learning context to further accelerate 

materials discovery.
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Status. Metal halide perovskites form a large family of 

compounds ranging from small bandgap semiconductors to 

wide bandgap dielectrics [89]. The light-to-electricity conver-

sion ef�ciency of metal halide solar cells now exceeds 22% 

for champion laboratory-scale devices [90]—following pio-

neering efforts on perovskite-sensitized [93, 94] and durable 

solid-state perovskite solar cells [93, 94]—that is comparable 

to mature thin-�lm photovoltaic technologies.

The compositional �exibility of the perovskite ABX3 struc-

ture type allows for the control of chemical and physical prop-

erties over a wide range, including lattice constants, phase 

stability, optical bandgaps, charge carrier con�nement, and 

defect processes. While the prototype hybrid organic-inorganic 

perovskite is methylammonium lead iodide (CH3NH3PbI3), 

the highest performing compounds are multi-component mix-

tures, e.g. (CH3NH3)1−x(CH(NH2)2)xPbI3−yBry [90]. As our 

understanding of the fundamental structure-property relation-

ships of halide perovskites increases, many opportunities arise 

to design novel materials and composites with enhanced prop-

erties, new device architectures with improved performance, 

and to explore alternative application domains including light 

emission, heat conversion, chemical sensing, information 

storage, spintronics, and radiation (γ and x-ray) detectors. The 

halide perovskites represent a vast playground for functional 

materials discovery (see �gure 19 for some examples).

Current and future challenges. The science and technology 

of halide perovskite solar cells has developed rapidly over the 

past decade. These compounds were �rst treated as photoac-

tive dyes deposited on a scaffold of TiO2 [91, 92]. It took time 

to recognise that the materials were themselves semiconduc-

tors with the ability to conduct photogenerated electrons and 

holes. It was then found that they could also conduct ions, 

giving rise to slow hysteresis in the current–voltage response 

of solar cells [95, 96]. Despite a vast literature of thousands 

of publications concerning halide perovskites, there is still a 

large number of outstanding challenges, ranging from under-

standing the fundamental materials properties to physical pro-

cesses on a device scale. These include:

 •  Local crystal structure—there is evidence that the local 

structure of halide perovskites has lower symmetry 

than the average spacegroup symmetry measured using 

standard Bragg diffraction techniques [97]. What is not 

known is the correlation lengths and lifetimes of local 

domains and how they interact with mobile carriers in 

operating solar cells.

 •  Role of ferroelectricity—there is substantial debate 

around the presence of polarisation domains in halide 

perovskites, in part because it is hard to separate lattice 

polarisation from effects due to mobile charges (electrons 

and ions). The literature currently contains many con-

�icting reports.

 •  Point defect engineering—all current solar cells are based 

on an intrinsic (undoped—low carrier concentration) 

perovskite layer with selective electron and hole elec-

trical contacts. There have been no convincing reports of 

(robust) p- or n-doped halide perovskites, which would 

open a wide application space in optoelectronic technolo-

gies.

 •  Extended lattice defects—very little is known about the 

atomic con�gurations and electronic structure of grain 

boundaries, dislocations, interfaces, and surfaces of 

perovskites. Effective passivation of extended defects, 

in particular suppressing interface recombination events, 

could enhance device performance towards the theoretical 

limit of ~30% for bandgap of about 1.6 eV.

 •  Chemical stability and breakdown—many halide per-

ovskites react with oxygen and water. Progress has been 

made with surface treatments [98] and physical encapsu-

lation, but low-cost and robust approaches to achieving 

perovskite devices with long-term stability under realistic 

environments would represent a major breakthrough.

 •  Pb-free compositions—although Pb is a low cost and rela-

tively abundant element, there is motivation for exploring 

element substitution, while maintaining bene�cial pho-

tovoltaic properties. The isoelectronic replacement of Pb 

by Sn or Ge is problematic (reactive M2+ ions), so a route 

of active current investigation is double (mixed metal) 

perovskites, which have stability and electronic issues 

that need to be overcome.

 •  Photophysics of solar cells—in halide perovskites, pho-

togenerated electrons and holes recombine slowly and 

hot states have anomalously long lifetimes. There are cur-

rently con�icting experiments and models, but control of 

Figure 19. Illustration of the materials and device innovation space 
for the halide perovskite family.

J. Phys. D: Appl. Phys. 52 (2019) 013001



Topical Review

28

these processes could be used to realise hot carrier solar 

cells with ef�ciencies beyond the single-junction limit of 

~30% light to electricity.

Advances in science and technology to meet chal-

lenges. For materials synthesis, the thin-�lm deposition 

of halide perovskites is dominated by solution-processing, 

with a growing number of vapour-processing studies being 

reported. The growth of higher quality thin-�lms on a wider 

range of substrates could enable better materials charac-

terisation. In particular, epitaxial hetero-interfaces and 

perovskite homo-interfaces would allow a number of the 

challenges outlined above to be addressed, and the testing of 

new device architectures including all-perovskite p-n junc-

tions, high-ef�ciency tandem solar cells, quantum wells and 

�eld-effect transistors.

Materials theory and simulation have played an important 

role in the understanding of perovskite technologies. The limi-

tations of static band structure calculations on small unit cell 

representations is now recognised. Multi-scale methods are 

required to span the range of length and time scales necessary 

to describe the connection between structural disorder and 

dynamics with electron–hole generation, transport and recom-

bination in solar cells. Furthermore, relativistic effects and 

electron–phonon coupling cannot be ignored; more research 

is required to understand the role of spin–orbit coupling and 

associated Rashba–Dresselhaus effects on the macroscopic 

physical and device behaviour.

Concluding remarks. Halide perovskites represent fertile 

ground for materials exploration. Now that high-ef�ciency 

photovoltaic devices have been realised, there is an opportu-

nity to revisit the intriguing materials science of these com-

pounds. Solving the challenges outlined in this section  will 

require reliable and quantitative data on well-de�ned mat-

erials, with the close collaboration between theory, simulation 

and experiment. An improved understanding of the chemistry 

and physics of halide perovskites is essential to enable ratio-

nal design of new functional materials that can provide similar 

technological breakthroughs.
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Status. Organic semiconductor materials have been the sub-

ject of intense research over more than 20 years because of 

their potentially tuneable properties, ease of processing, abun-

dance and low cost. Many optoelectronic applications are 

based on inorganic semiconductors, but the range of stable 

crystalline semiconductors is limited and the ab initio design 

of new ones is limited by the strong dependence of properties 

on crystal structure and the dif�culty in predicting new crys-

talline materials from an atomistic level. Design of organic 

functional materials, however, can be reduced to consideration 

of the molecular (or monomeric) level and the intermolecular 

interactions. Although the latter do in�uence material behav-

iour, the key optoelectronic properties are typically captured 

by examination of a single molecular unit or pairs of neigh-

bouring units. Organic molecules can be thought of as com-

prised of building blocks that have clear structure-property 

relationships, making rational inverse design possible.

Here, we focus �rst on two applications: organic photo-

voltaics (OPVs) and organic light-emitting diodes (OLEDs). 

Each of these employs π-conjugated molecules, and depends 

on the intermolecular transport and transfer of charge carriers 

and the absorption or emission of light. OPVs are an appeal-

ing alternative to the dominant silicon technology because 

of straightforward fabrication, low cost, low weight, choice 

of colour and device �exibility. Due to these advantages, 

research accelerated during the 2000s (�gure 20); the current 

record for conversion ef�ciency for a single junction OPV is 

over 13% [99], enabled by the recent development of high-

performance organic acceptor materials other than fullerene 

derivatives. OLED research began in the late 1970s and poly-

mer OLED research accelerated in the 1990s after the discov-

ery of electroluminescence from conjugated polymers [100]. 

Blue OLEDs have surged due to the discovery of thermally-

assisted delayed �uorescence, which gives access to higher 

luminescent ef�ciency by allowing both singlet and triplet 

excitons to emit light [101]. OLEDs have recently entered 

consumer markets as energy-ef�cient, high-contrast ratio dis-

play materials. Further advances could lead to cheaper dis-

plays with longer lifetimes. In this Roadmap, we will review 

the experience gained in materials development for OPVs 

and OLEDs and consider how this can assist the design of 

other organic functional materials, including organic redox 

�ow battery (ORFB) electrolytes, organic photocatalysts, and 

organic thermoelectrics.

Current and future challenges. Device ef�ciency (power 

conversion ef�ciency of solar cells and luminous ef�cacy of 

OLEDs) remains a challenge. With OPVs, whilst the design 

rules concerning the energetics of component materials are 

well known, the precise role of and means to control �lm 

microstructure are still poorly understood. Processability of 

organic semiconductors comes at the cost of structural dis-

order and associated disorder in site energies and charge 

transfer rates, penalising ef�ciency [102]. Local ordering can 

bene�t charge transport and pair separation, but can also intro-

duce traps. Phase segregation in binary systems in OPVs is 

critical to performance but is still challenging to control by 

design.

Another persistent challenge in organic semiconductors 

is the operational stability of the device. For instance, OPVs 

have substantially shorter lifetimes than silicon-based photo-

voltaic devices [103]. Instabilities can come from a variety 

of sources, including photo-oxidation, electrochemical stress 

and morphological instabilities of thin �lms (via phase segre-

gation and heterogeneous crystallisation). Samsung cited long 

term stability as a reason for their shift from OLED to QLED 

(quantum dot LED) development for televisions. Stability is 

also an issue in ORFBs, so a strategy that solves the stability 

problem for organic semiconductors may shed light and allow 

for similar methodologies to emerge in related mat erials. 

Overall, stability has been relatively under-researched to date 

compared to other properties and a detailed understanding of 

structure-stability relationships is lacking.

Additionally, scientists and engineers in these �elds need 

to learn more about the nature of chemical space of these mat-

erials. Without constraints, chemical space is massive, esti-

mated to be 1080 for organic molecules. By determining the 

minimum number of starting materials that are needed to cover 

all of the relevant parts of functional materials space, materials 

development efforts can be further focused. By analogy, it has 

been demonstrated that only about 5000 building blocks are 

needed to synthesize ~70% of small-molecule natural prod-

ucts [104]. Researchers in organic functional mat erials need to 

discover the corresponding number for their �eld and the most 

relevant degrees of freedom for their particular properties of 

interest. Determining these properties of chemical space will 

assist in the accelerated, rational development of new mat-

erials that are competitive with inorganic materials.

Advances in science and technology to meet chal-

lenges. Nearly all of the above challenges can be met via 

the ef�cient, rational exploration of chemical space, both 

theor etically and experimentally. We will focus on the case 

of OPVs, but these principles translate to other materials. 

With hindsight, the necessary structural features for some 

OPV properties would have been straightforward to calculate; 

theory is an excellent tool for calculating donor–acceptor (or 

push–pull) structures for low optical gap, electron-poor or 

electron-rich units to control ionization potential and electron 

af�nity, side chain structure and positioning and backbone tor-

sion to control crystallinity, and searching for molecules with 

low conformational phase space to limit energetic disorder.

Other properties, such as mobility or phase separation, 

are harder to predict because of more complex dependence 

of properties on multiple degrees of freedom. Here, mat erials 

identi�cation can be accelerated by identifying intermedi-

ate properties, for example, isotropy in electronic coupling 
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(considering both sign and amplitude) is bene�cial for high 

charge carrier mobilities [105]; calculated solubility param-

eters or molecular-dynamics simulations of binaries [106] 

could help predict phase behaviour. Although such approaches 

could not predict new materials, calculating these more acces-

sible quantities can reduce the design effort by screening 

potential winners from losers. Similarly, identifying the most 

important structural degrees of freedom for a given property 

can reduce the conformational phase space.

Virtual screening methods for organic materials have become 

increasingly useful over the past decade, with large-scale stud-

ies conducted to discover new molecules for OLEDs, OPVs, 

photocatalysts, thermoelectrics and ORFBs [101, 107]. From 

an experimental perspective, accelerating the synthesis and 

characterization can be done through adoption of high-through-

put methods and robotics. Similar to theory, exper imental meth-

ods can also employ advances in machine learning. A platform 

was recently used to optim ize carbon nanotube growth based 

on on-the-�y characterization via Raman spectroscopy [108] 

and highly porous organic materials have been discovered 

aided by computational design [109]. The stability problem, 

in par ticular, needs signi�cantly more characterization data to 

identify decomposition pathways. With this information, such 

pathways could be also screened for virtually. All of these 

advances also need to be underpinned by the adoption of better 

data management standards, where negative results are made 

available to virtual and experimental screening systems.

Concluding remarks. Research in organic semiconductors 

has moved into an era where principles learned from years of 

experiments can be employed by theorists to rationally design 

new materials. Going forward, theorists need to devise new 

techniques to compute more complex properties of organic 

semiconductors. Tighter feedback between experimentalists 

and theorists, aided by the continued development of machine 

learning methods, can accelerate the inverse design of the next 

generation of materials. The lessons learned from research in 

OPVs and OLEDs could also be used in other organic func-

tional materials, including electrolytes for organic redox �ow 

batteries, organic photocatalysts, and organic thermoelectrics.
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Figure 20. A timeline depicting the strategies used in materials development for OPV. As understanding of the relationships between 
material properties and device performance developed, increasingly sophisticated strategies were used to improve device performance. The 
results of years of studies, mostly by trial and error, have produced a set of design principles, many of which are relatively straightforward 
to implement using calculations and which can be used in screening to accelerate the discovery of new materials.
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Status. Solid-state lighting (SSL) exploits electrolumines-

cence processes from semiconductors to produce light more 

ef�ciently than heated �lament or gas sources. White light is 

typically produced by pairing a blue LED with a down-con-

version material, which re-emits absorbed blue photons across 

the rest of the visible spectrum (see �gure  21). Advanced 

approaches can also mix emission from individual red, green, 

blue and amber LEDs [110]. The LEDs and down conversion 

materials must be as ef�cient as possible to maximize energy 

savings, while their emission spectra must be carefully tai-

lored to achieve the desired color temperature of white light, 

as well as render colors suitably based upon the application

Blue and green LEDs are fabricated from InxGa1−xN alloys, 

where indium is added to shift the emission to longer wave-

lengths [110]. InxGa1−xN is a better blue light-emitter compared 

to other semiconductors with similar direct band gap energies, 

as it is relatively tolerant to extended defects. This allows sin-

gle crystal InxGa1−xN device layers to be epitaxially grown on 

substrates with different lattice constants, despite strain-driven 

dislocation formation. Yet, there are drawbacks to this material 

system [111]. When grown on SiC or sapphire substrates, the 

polar axis of InxGa1−xN is aligned along the direction of elec-

tron and hole injection. The resulting piezoelectric �elds set 

up by polarity and strain reduce electron and hole wavefunc-

tion overlap and lower radiative recombination. The addition 

of more indium to InxGa1−xN increases strain, which further 

aggravates these losses and contributes to the low ef�ciencies of 

green InxGa1−xN LEDs. These loss mechanisms can be partially 

suppressed through quantum con�nement (e.g. quantum wells 

or nanowires) or by growing on the non-polar crystal faces of 

bulk GaN substrates. However, such approaches have yielded 

insuf�cient ef�ciency increases at green wavelengths, are too 

costly, or are less practical for mass production.

Commercial red and amber LEDs are fabricated from 

(AlxGa1−x)0.5In0.5P alloys. Since LED ef�ciency is strongly 

affected by dislocations, the In concentration is selected for 

strain-free growth on conventional GaAs substrates. The emis-

sion wavelength is tuned by adjusting the ratio of Al and Ga. 

(AlxGa1−x)0.5In0.5P undergoes a transition between a direct 

and indirect band gap semiconductor at ~2.25 eV (550 nm). 

(AlxGa1−x)0.5In0.5P LEDs with emission wavelengths of 590 nm 

or less have electrons lost to the indirect conduction bands at 

room temperature [112]. These losses extend to longer emis-

sion wavelengths LEDs at higher operation temperatures.

Typical LED down-converting materials are inorganic phos-

phors; insulating hosts that are doped with activator ions whose 

basic properties (e.g. absorption, emission, ef�ciency) are 

de�ned by how the atomic transitions of the activator are modi-

�ed by the interaction with the host lattice. Currently, three 

main activator ions, Ce3+, Eu2+, and Mn4+ are used the most 

often in typical LED phosphors (table 1). The quantum ef�cien-

cies (QEs) of these phosphors are often above 90% across the 

visible color spectrum for blue LED excitation. However, the 

peak wavelengths and linewidths of their emission as well as 

their stability are still factors that can be further improved.

Current and future challenges. InxGa1−xN and 

(AlxGa1−x)0.5In0.5P alloys are the semiconductors of choice 

for visible LEDs in part because they have properties that are 

amenable to both light emission and manufacturing. They are 

highly developed direct band gap semiconductors with tunable 

band gaps, are relatively robust against defect-induced degra-

dation, and are grown on readily available substrates. However, 

the emission ef�ciencies of green, amber and red LEDs remain 

well below that of blue LEDs (see �gure 21) and are limited 

by the fundamental properties of those materials. Small adjust-

ments in material quality, structure or composition alone are 

unlikely to lead to substantial improvements. One path forward 

is to identify alternative semiconductors with properties that 

are better suited to green, amber or red emission and that meet 

several design criteria. The semiconductor must have a high 

emission ef�ciency under high injection or elevated operating 

temperatures. Device layers should be grown on conventional, 

cost-effective substrates with low defect densities using scal-

able deposition techniques. Finally, they should be resilient 

against degradation for extended LED lifetimes.

Semiconductors that have recently been considered for 

LEDs include direct band gap AlxIn1−xP, II–IV–N alloys, hal-

ide perovskites and GaN1−xAsx [113–116]. These materials 

are in various stages of development, ranging from theor etical 

predictions to full device demonstrations, and it is not yet 

known if any will offer performance breakthroughs. Materials 

discovery and synthesis efforts should focus on understanding 

the advantages and disadvantages of different classes of semi-

conductors in the context of the design criteria outlined above.

Current phosphors have enabled suf�cient ef�cacy and 

color quality for the widespread acceptance of LEDs for 

lighting and displays. Increasing luminaire ef�cacy to  >200 

Figure 21. Emission spectra for phosphor-converted (pc) and color-
mixed (cm) LEDs. The wallplug ef�ciencies of blue, green, amber 
and red LEDs (dotted lines) and luminous eye response curve 
(shaded area) are also shown.
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lumens per watt (lm W−1) requires the development of high-

ef�ciency, stable, narrow linewidth down-converter mat-

erials that emit at speci�c red, amber and green wavelengths  

[117, 118]. Semiconductor quantum dots offer narrow band 

emission that may be tuned to desired wavelengths to improve 

ef�cacy, but reliability and European Union Regulation on 

Hazardous Substances (RoHS) compliance have been barriers 

to adoption. Continued ef�cacy improvements for high color 

rendering LEDs therefore require new phosphor composition 

development for ions (i.e. Eu2+, Mn4+) that could give narrow 

linewidth emission. Narrow band emission from the red phos-

phor in particular minimizes spillover into longer wavelengths 

where the human eye response falls off rapidly. There is some 

correlation of crystal structures and luminescence properties to 

phenomenological understanding of phosphor properties [119, 

120], but these phenomenological models have limitations in 

their application to new phosphor discovery. Commercial imple-

mentation of new LED phosphors also needs to meet multiple 

requirements beyond absorption and emission. New phosphors 

require QEs greater than 90%, and their ef�ciency and color 

cannot change signi�cantly over system life. This optimization 

requires additional composition and process steps including 

choosing appropriate starting materials, determining nominal 

stoichiometry, and optimizing processing conditions. Trial-and-

error screening experiments are followed by optimization using 

designed experiments once the key factors have been determined. 

The success of these optimization steps is usually the difference 

between successful and unsuccessful phosphor development, 

and takes up the largest portion of time and cost for phosphor 

development [121]. As an example, �gure 22 shows reliability 

improvements through process optimization in K2SiF6:Mn+4, a 

narrow line-width, red emitting LED phosphor (GE TriGain™). 

These results illustrate the importance of the development phase 

after simply identifying a promising material candidate.

Advances in science and technology to meet challenges.  

Tools for high-throughput computational screening have and will 

continue to aid in the search for new light-emitting and down-

conversion materials. Semiconductor crystal structures and 

electronic band structures can already be calculated with a high 

degree of accuracy, but advances are still needed in our ability 

to predict tolerances to defects, Auger recombination rates and 

other parameters that affect radiative recombination ef�ciency. 

This will be enabled by improvements in our understanding of 

radiative loss mechanisms. On the phosphor side, advances are 

needed in the computation of phosphor crystal structures, excited 

states in heavy lanthanide ions and defect chemistries. Improved 

understanding in these areas will help to categorize basic phos-

phor properties and pinpoint new phase space in which to search 

for promising materials. Identi�cation of loss and degrada-

tion mechanisms in phosphors will also help to guide material 

development and optimization strategies to improve performance 

and reliability. Once the most promising LED and phosphor can-

didates are identi�ed, it will likely require substantial resources 

to fully develop and evaluate their potential experimentally. Syn-

thesizing new materials can be challenging, particularly if it must 

involve non-standard epitaxial growth conditions or new reaction 

routes. Advances in tools for materials fabrication and character-

ization will therefore also be important to this effort.

Concluding remarks. While commercial white SSL solutions 

are approaching ef�cacies of 200 lm W−1, opportunities exist 

to improve the ef�ciency of SSL through improved material 

design and optimization. Identi�cation of new emitting mat-

erials, either active semiconductors or down-converters for 

blue LEDs, offer a direct route to realizing maximal ef�ciency 

gains. A combined approach of theoretical prediction and 

exper imental development could accelerate materials discov-

ery and optim ization for implementation into future lighting 

systems and displays. This acceleration can be further enhanced 

in combination with the current trend towards lower drive cur-

rent densities in LED packages to produce more ef�cient, high 

color quality SSL solutions with improved reliability.
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Figure 22. Accelerated reliability testing of phosphors using 
high intensity blue excitation. The industry standard green-
emitting Y3Al5O12:Ce3+ (YAG:Ce) is compared to a GE TriGain™ 
K2SiF6:Mn4+ red-emitting phosphor whose synthesis and 
composition have been optimized relative to a typical K2SiF6:Mn4+ 
phosphor. The timescale for these accelerated measurements is 
proprietary information, however, these tests can accelerate phosphor 
degradation by  >100  ×  versus typical medium-power LEDs.

Table 1. Typical activator ions, their relevant transitions, and representative compositions for phosphors used in blue LEDs.

Activator  
ion

Absorption transition 
for blue light Emission transition

Representative compositions  
and emission color

Ce3+ 4f1 (2F5/2)  →  5d1 5d1  →  4f1(2F7/2,
2F5/2) Y3Al5O12:Ce3+ (green–yellow)

Eu2+ 4f7  →  4f65d1 4f65d1  →  4f7 (Sr,Ca)AlSiN3:Eu2+ (orange and red) β-SiAlON:Eu2+ (green)

Mn4+ 3d3 (4A2)  →  3d3 (4T2) 3d3 (2E)  →  3d3 (4A2) K2SiF6:Mn4+ (red)
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14. Chemistry materials: catalysts
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Status. Tailoring the design of a material for a speci�c func-

tion is particularly important in catalysis, including thermal, 

electro-, and photo-catalysis. For the present discussion on 

materials design, as opposed to reaction design, we focus 

on heterogeneous catalysts, for which the most universally 

important fundamental properties are the binding energy of 

reactant, intermediate, and product molecules on the catalyst 

surface along with the respective reaction barriers. Advances 

in computational chemistry and computing have made calcul-

ations of the binding energies rather automated [122], with 

recent advancements in machine learning-based error correc-

tion making even computationally-inexpensive algorithms 

suf�ciently accurate to design catalysts. Modern theory-based 

computational algorithms have been tailored for speci�c reac-

tions and operating conditions, in particular where binding 

energies and reaction barriers can be modulated via multi-

body interactions, dynamic variations in the reaction environ-

ment, and catalyst surface dynamics under operation [124]. 

Broadening the catalyst design framework from a binding 

site to a catalyst system will enable materials to achieve the 

activity of the ultimate catalysts, enzymes, while providing 

the longevity required for deployment in energy, commodity 

chemical, etc, industries [125].

Current and future challenges. A primary challenge in the 

improvement of catalyst design lies in the traditional dis-

connect between computational chemistry and catalysis 

experiments, where the former excels at a molecule-level 

understanding but struggles to model the full catalyst system 

and the latter typically produces a net reaction rate with lim-

ited ability to decompose it into elementary steps. Catalysts 

that perform multi-step reactions, such as oxygen evolution 

and reduction, CO2 reduction to hydrocarbons and oxygen-

ates, and N2 reduction to ammonia, comprise some of the 

most widely designed catalysts now and in the foreseeable 

future. The recent proliferation of so-called scaling relation-

ship theory for such reactions predicts that catalysts with a 

single active site will generally be limited in their catalytic 

activity [126], which is troubling given that traditional cata-

lyst design focuses on identi�cation and optimization of such 

a site. The resulting stagnation in identi�cation of transfor-

mative catalysts further motivates the expansion of catalyst 

design to consider more complex and dynamic catalysts, for 

example, through incorporation of variability in computa-

tional modelling (�gure 23) [123].

The biggest future challenge in catalyst design lies in 

the integration of data science, machine learning, and arti�-

cial intelligence in computational and experimental catalyst 

exploration. As noted above, machine learning has emerged in 

catalyst design primarily as an accelerator for computational 

work [127], and while challenges remain in deeper integration 

of machine learning and theory, the grander challenge lies 

in the utilization of machine learning to provide data-driven 

identi�cation of the underlying catalyst properties that give 

rise to an observed reaction rate. That is, a given catalyst 

performance measurement, even when combined with thor-

ough compositional and structural characterization, typically 

cannot identify a reaction mechanism or design principle 

for improving the catalyst. By consolidating a broad collec-

tion of composition-structure-activity relationships in a data 

model, new catalyst understanding and design avenues may 

be unveiled. In the present ‘big data’ era where loads of data 

are used to provide a black box prediction tool, the relatively 

small adoption of machine learning in catalyst design is some-

what understandable as the community neither has the requi-

site data to train such models nor the appetite for data models 

that cannot ‘explain’ the underlying science. As arti�cial 

Figure 23. (Left) Generalized coordination numbers of ontop sites 
on a truncated octahedron and (right) and CO oxidation activity 
of a 2.8 nm Pt particle used in Monte Carlo modelling of catalytic 
activity, which highlights the complexity of identifying and 
designing catalytic sites. Reprinted with permission from [123]. 
Copyright 2017 American Chemical Society.

Figure 24. Atomic resolution in-situ scanning tunneling 
microscope image of CO dissociation on a Co catalyst, which 
highlights the complexity and evolution (even on the 1 h time scale) 
of heterogeneous catalysts. Reprinted with permission from [122]. 
Copyright 2015 American Chemical Society.
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intelligence research begins to dissect the big data black box 

and as new algorithms are designed to utilize known proper-

ties of materials, the power of machine learning in catalyst 

design can be fully realized.

Advances in science and technology to meet challenges. The 

recent advent of in-situ and operando techniques has greatly 

enhanced experiment-driven catalyst understanding, which 

largely provides additional characterization of the catalyst 

surface or near-surface under operating conditions (�gure 24) 

[128]. Such data helps relate the computer models of mat erials 

to the experimental catalyst but does not suf�ciently bridge 

the gap between molecular-level calculations and reaction 

rates. Approaches for further bridging the theory-experiment 

gap include atomic resolution scanning probe characteriza-

tion that does not alter the catalysis, computational modelling 

techniques that simulate experimental observables to enable 

more direct comparison, and multi-scale computational tech-

niques that provide quantum mechanics-level accuracy in 

many-atom systems. The detection of partial-monolayer reac-

tion intermediates offers perhaps the best means of (in)vali-

dating a computational model, and continued development of 

the associated spectroscopic techniques, in particular, infrared 

spectroscopy and synchrotron-based electron spectroscopy 

techniques, are needed to realize this goal in both thermal and 

electro-catalysis. These experimental advancements indirectly 

enhance materials design by providing the requisite data from 

which hypothesis-driven catalyst modi�cations or new catalyst 

designs can be derived. To enable direct, more ab initio cata-

lyst design, computational modelling must incorporate new 

strategies for bridging time and space scales. Single crystals 

transforming absolutely pure reactants are useful model sys-

tems, and extending design to deployable catalysts requires 

modelling of materials defects, chemical impurities, and the 

evolution of catalysts over years of operation, which typically 

implies on the order of 108 ‘turnovers’ or catalyst cycles.

For the emerging challenge of integrating machine learning 

in catalyst design, the road to success is less well de�ned, with 

one certainty being that new algorithms will need to combine 

the state of the art in machine learning with the constraints and 

concepts of catalysis science. To enable algorithm develop-

ment and deploy such algorithms, substantial advancements to 

the catalyst community’s data infrastructure are also needed, 

as well as experimental methods that can rapidly respond to 

new catalyst predictions [129]. On both of these fronts, the 

combinatorial and high throughput materials science com-

munity as well as the small molecule and biological chem-

istry communities offer a wealth of best practices that can be 

adapted as necessary to accelerate the adoption of machine 

learning in materials design for catalysis [40].

Concluding remarks. Transformative advancements in 

materials design for catalysis hinge upon further integra-

tion of theory and experiment as well as interdisciplinary 

engagement of arti�cial intelligence and the data science 

community. The combination of techniques can enable a sort 

of divide and conquer approach to creatively adapt existing 

capabilities into new materials design paradigms that harness 

the complexity of catalyst systems for multi-step reactions. 

A recent illustrative example in photoelectrocatalyst design 

involves integration of several theory and experiment steps 

to discover classes of materials that respond to new design 

concepts [130]. Here, the pro�ciency of theoretical model-

ling of a materials’ bulk electronic structure was combined 

with ef�cient experimental assessment, with the more gen-

eral concept being that different approaches can tackle dif-

ferent aspects of catalyst design as long as the compilation 

of techniques appropriately captures the complexity of the 

multi-step catalytic processes that are increasingly important 

to industry and society.
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15. Materials for Li-ion batteries
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Status. Advanced battery technology has become one of the 

core technologies to support a mobile, clean and sustainable 

society in the next few decades. Lithium batteries have been used 

widely in portable electronic products, electrical vehicles and 

energy storage devices for wind and solar power, because of their 

high voltage, high speci�c energy density, rapid recharge capa-

bility, and wide working temperature range [131]. The advances 

of battery techniques are always going to go with the develop-

ment of new materials. For example, lithium-rich layered oxide 

materials have been considered as an ideal positive electrode in 

high-energy-density lithium-ion batteries [132], and the nano 

silicon-based anodes as alternative materials show reversible 

capacities of 380–2000 mAh g−1 [133]. The indisputable fact is 

that the discovery of advanced materials and rational design play 

key roles in battery research. To speed up the upgrading of the 

chemical materials in lithium batteries, high-throughput tech-

niques, including high-throughput simulations, synthesis and 

measurement, have been applied to the discovery of new battery 

materials. Data mining and machine learning have been intro-

duced to bene�t the understanding of the big data obtained from 

high-throughput techniques, which provide opportunities for 

further exploration of the structure-property relationship of bat-

tery materials and to discover new materials. On the other hand, 

by comparing the theoretical results or model predictions with 

the myriad experimental data, the sources of error and uncer-

tainty in battery research can be captured, which in turn help us 

to build better theor etical models or investigating apparatus. The 

mutual promotion of the above aspects shown in �gure 25 is 

expected to accelerate the discovery of candidate compounds in 

the future and shorten the invested time and money, not only for 

lithium batteries, but also for other new types of energy storage 

devices, like Na, Zn, Mg, Al batteries, etc.

Current and future challenges. The high-throughput calcul-

ation work �ow has been established based on density func-

tional theory simulations [134, 135], and the combination of 

calculation methods in different accuracy levels [136] has been 

proposed to speed up the scanning process of new materials. 

The former has been applied to scanning the inorganic crystal 

structure database for candidate electrode materials with high 

voltage and capacitance [137]. Using ideas originating from the 

latter method, a new superionic conductor has been proposed 

[138]. To achieve battery devices with higher energy density 

and safety, inorganic solid electrolytes are expected to replace 

liquid electrolytes in the next generation lithium batteries [139]. 

The application of solid electrolytes may avoid problems of 

leakage, vaporization, decomposition and side reactions found 

in the conventional lithium-ion batteries. However, �nding 

solid electrolytes with excellent performance is still a demand-

ing task, since the comprehensive physical description between 

structures and ionic conductivity is still not easy to grasp. 

Similar problems exist in the discovery of other battery mat-

erials. For example, suitable electrode materials with long-term 

stability require a small volume change ratio during lithium ion 

insertion and extraction [140]. However, the percentage of the 

volume change varies from material to material because of the 

complicated origins of the cell variation, which leaves huge 

obstacles for us to discover low-strain electrodes. As an inte-

grated system, the performance of the battery not only relates to 

the properties of the individual components but also is strongly 

affected by the interactions among them. One typical case is 

that the interface between the electrode and electrolyte seri-

ously impacts the stability, rate and cycle-life of the batteries. 

Therefore, looking for favorable combinations of the comp-

onents in the battery is extremely crucial. The details and key 

factors in optimizing these interactions are still in development 

and remain a major challenge for the design and matching of 

battery materials. In general, extending the understanding of the 

basic scienti�c problems in battery systems is the main research 

issue on the way to discovery new lithium battery materials.

Advances in science and technology to meet challenges. To 

meet the above-mentioned challenges, advances in both sci-

ence and technology are urgent. Figure  26 exhibits the goal 

of battery techniques and the methods that need to be devel-

oped in the near future. On the one hand, designing delicate 

prototypes to understand the basic scienti�c phenomena in 

batteries by high-throughput experiments and simulations 

is a conventional but ef�cient research mode. With the help 

of advanced measurement and analytical tools, more exqui-

site microstructures and evolution processes can be revealed, 

which will clarify the failure mechanism of lithium batteries 

and direct the discovery of new battery materials. On the other 

hand, designing an automatic screening and prediction work-

�ow with suf�cient accuracy and ef�ciency is essential. For 

each part of the battery, the electrode, electrolyte, additive, col-

lector, etc, it is necessary to meet more than one requirement 

to ensure the excellent performance of the whole device. It is 

better for a high-voltage cathode to show high-capacitance and 

good conductivity. Similarly, fast ionic conductivity and a wide 

electrochemical window are both necessary prerequisites for 

electrolyte materials. Thus, screening and predicting tools for 

multiple objectives must be created. Aside from the advances 

addressed above, data science and technology also have to be 

developed for material design. It is recognized that machine 

learning techniques and big data methods will play an increas-

ingly important role in solving the relationships between mat-

erial properties and complex physical factors in a statistical 

way, which builds the basis for material design, and vice versa. 

However, material informatics is still an emerging �eld with 

problems like the lack of data standards, the diversity of mat-

erial types, and even the con�ict of research culture, etc. Data 

management speci�c to battery materials should be developed 

and the descriptors suitable for them should be explored.

Concluding remarks. Rational design of lithium battery mat-

erials is highly desirable in the near future. Because of the 

complex structure-property relationships of ionic conductivity, 

volume change, electrode/electrolyte interfaces, etc, successful 
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cases of designing new battery materials are still scarce. Advances 

in the development of high-throughput techniques and material 

informatics will bring more ef�cient research and provide new 

opportunities to solve the above problems, which will deepen our 

understanding of the basic scienti�c questions in battery �elds 

and accelerate the discovery of materials for lithium batteries and 

other new types of energy conservation devices.
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Figure 25. The development mode of new material design in lithium batteries by means of high-throughput techniques and data sciences.

Figure 26. The developing roadmap of lithium batteries in the near future.

J. Phys. D: Appl. Phys. 52 (2019) 013001



Topical Review

37

16. Multifunctional metallic alloys
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Status. Metallic alloys have been of crucial importance 

to humankind since the bronze age and will continue to be 

a critical material class, enabling new capabilities, applica-

tions and products. The advantages of metallic alloys are their 

frequently good mechanical properties like high strength and 

plasticity (ductility, toughness), which are hard to achieve in 

other material classes. In multifunctional alloys, these favor-

able mechanical properties are combined with additional 

functional properties (electrical, magnetic, optical, etc.). 

Multifunctionality is frequently related to reversible phase 

transformations. Compositional complexity of alloys has usu-

ally increased from binary to multinary systems, often cur-

rently involving more than 10 elements, with compositions 

�nely tuned to speci�c applications. Examples of such com-

positionally complex alloys are steels, superalloys and metal-

lic glasses. Whereas these alloys are typically based on one 

element (Fe, Ni, Co, Al, Mg, …), recently multi-principal 

element alloys (MPEA) have also attracted interest, as they 

promise a mostly unexplored search space for the discovery 

of new alloys with interesting properties [141]. Whereas a sin-

gle-phase constitution is crucial for semiconductors, metallic 

alloys are typically multiphase materials, and the properties of 

the alloys can be tailored by controlling microstructure using 

processing. The phase constitutions, their distribution and vol-

ume fractions in the alloy can be used to adjust properties (e.g. 

a tough matrix phase with a strengthening precipitate phase). 

Further advances in metallic alloys are gained by developing 

alloys which combine good mechanical properties with fur-

ther functionalities. For high-temperature alloys, for example, 

the formation of a protective oxide scale can lead to a func-

tional property: resistance against corrosion. New or improved 

(multi)functionalities need to be developed to realize metallic 

materials for future applications. Whereas in bulk applications 

of metals, mechanical properties are dominant, in thin �lm 

applications, they are less important, i.e. even materials which 

would be too brittle for bulk applications can be used in thin 

�lms. This opens up the �eld of intermetallic compounds with 

(multi)functional properties, which are frequently not ductile, 

into the scope of new thin �lm mat erials. Such materials com-

prise magnetic alloys, shape memory alloys, magnetic shape 

memory alloys, thermoelectric alloys, magneto- and elasto-

caloric alloys, etc. Such classes of (multi)functional metallic 

materials can be explored by combinatorial and high-through-

put thin �lm methods to enable the design, discovery and 

optim ization of materials based on the acquired knowledge.

Current and future challenges. A current and future challenge 

is the design and discovery of new compositionally complex 

metallic alloys, i.e. ternary to quinary systems and beyond, 

either based on a principal element or as MPEA, with inter-

esting mechanical and functional properties. Additionally, the 

in�uence of impurity elements on the properties of multinary 

alloys should be studied. Complex metallic alloys, character-

ized by extraordinary large unit cells, is another area for new 

discoveries [142]. Generally, it is necessary to overcome reli-

ance on serendipitous discoveries (e.g. NiTi) and use com-

binatorial and high-throughput methods, both computational 

and experimental, to identify, verify and then optim ize new 

metallic alloys in a more ef�cient way. However, this is chal-

lenging, as the largest fraction of elements in the periodic 

table  are metals, which leads to an almost unlimited search 

space, even if the selected elements are restricted to those 

which are earth abundant and sustainable. Computational 

approaches [143, 10] for the high-throughput prediction of 

possibly (meta)stable alloys with interesting properties can 

help in this regard to select a few ten to hundred appealing 

candidates out of hundreds of thousands of possibilities, 

which then can be assessed (veri�cation/falsi�cation of pre-

dictions) with high-throughput experimental methods. How-

ever, these calculations are frequently limited to the intrinsic 

properties and suf�ciently precise and validated exper imental 

data for the calculations are often lacking. A further chal-

lenge, next to principal stability and the possibility to fabri-

cate new materials, is to master extrinsic properties such as the 

microstructural diversity. For an identical composition, many 

microstructures are often possible, e.g. from nanocrystalline 

to microcrystalline, from amorphous to single- or multi-phase 

crystalline structure, all of which in�uence the properties of 

the alloy. Another challenge is to screen thin �lm libraries 

for ductility and, what is more, how �ndings from large scale 

thin �lm materials library explorations could be transferred to 

the bulk scale, i.e. how new ductile (multi)functional metallic 

alloys could be ef�ciently identi�ed. Examples of correlative 

thin �lm-bulk studies can be found in [144–146].

Advances in science and technology to meet challenges. For 

the advancement of the discovery and design of multinary 

alloys, several technologies need to be further developed. 

Whereas combinatorial deposition methods for thin �lm mat-

erials libraries are now well-established, the further automa-

tization and speed advances of high-quality characterization 

methods need to be continued to enable better high-through-

put characterization. An important methodology to be devel-

oped is ‘combinatorial processing’ to address the challenge of 

microstructural complexity. For this, gradient and step heater 

concepts for both the formation and annealing of thin �lms 

have been introduced [147]. A high-throughput processing 

approach for the identi�cation of new metallic glasses with 

thermoplastic formability was performed by parallel blow 

forming of co-deposited thin-�lm libraries on micromachined 

substrates [148]. Furthermore, it would be worthwhile to 

develop schemes where materials libraries would not be only 

characterized for one property, but rather comprehensively for 

‘all’ functional properties. Another necessary advancement 

is related to the development of materials in systems. This is 

because it is not suf�cient to only develop a material by itself; 

rather it has to be developed in a system, which means it has 

to provide functionality in connection with adjacent materials 

and environments. Here, interface properties play a key role. 
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Furthermore, if the fabrication and characterization of mat-

erials libraries leads to the discovery of new phases, the chal-

lenge arises for an accelerated identi�cation of these phases. 

Here, advanced electron diffraction methods in transmission 

electron microscopy (TEM) (combination of automated dif-

fraction tomography with precession electron diffraction) 

could help, if the materials of interest can be grown to a suf-

�ciently large grain size [149]. A novel accelerated explora-

tion approach for temperature- and environment-dependent 

phase evolution in compositionally complex materials has 

been introduced by Li et al [150]: combinatorial processing 

platforms are created by co-deposition of multinary thin �lms 

on nanoscale tip arrays forming many identical nanoscale 

‘reactor volumes’ allowing for fast diffusion and reaction and 

immediate observation of the product phases by the atomic-

scale analysis methods atom-probe tomography and TEM. 

This allows for an accelerated mapping of the phase space of 

multinary metallic alloys. Another challenge is the develop-

ment of materials data science, research data management, and 

materials informatics, e.g. machine learning for data-guided 

experimentation. Finally, visualization of compositions and 

properties in complex multinary materials systems is dif�cult 

but necessary. Thus, new software tools have to be developed 

which will lead to the establishment of functional phase or 

existence diagrams (including metastable phases) for multi-

nary alloys for the future design of materials.

Concluding remarks. The success story of metallic alloys 

will be continued by applying computational and experimental 

combinatorial and high-throughput methods for the discovery 

and optimization of new multinary compositions. If the new 

materials are developed from the start with regards to their 

functionality within a system, i.e. with regards to the inter-

faces which are formed between materials in a system, faster 

development of materials from their discovery over optim-

ization to incorporation into a product could be achieved.
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Status. Over the last few decades, complex oxides (materials 

with multiple cations and oxygen) have been a central research 

focus because of their wide range of properties and applica-

tions. Leveraging an ability to manipulate the charge, lattice, 

orbital, and spin degrees of freedom, scientists have explored 

a range of exotic, and potentially useful, phenomena including 

superconductivity, magnetism, colossal magnetoresistance, 

ferroelectricity, multiferroism, relaxor behaviour, ionic con-

ductivity, piezoelectricity, and many more. Such ‘functional’ 
materials (i.e. materials that can transmit or convert energy 

(e.g. electrical, thermal, mechanical, etc) for useful purposes 

(e.g. information transfer, sensing, energy production, posi-

tioning, etc)) [151, 152], underpin our ability to address a range 

of salient technological challenges, including how we process 

and store information, sense and understand the world around 

us, produce energy, and more [153]. Ferroic mat erials, includ-

ing those which are ferroelectric, magnetic, ferroelastic, and/

or multiferroic, continue to receive considerable interest due 

to their �eld-switchable stable spontaneous order param eters 

(electric polarization, magnetic moment, strain), which are 

strongly coupled to the thermal and mechanical responses of 

the material (�gure 27). The search for, discovery of, and utili-

zation of these materials has been made possible by important 

advances in theoretical and computational approaches, mat-

erials synthesis, and characterization techniques. Functional-

oxide research has enabled the realization of new materials 

and the development of new functionality in existing materials. 

These research insights are fed back into the design process, 

including massively parallel design of new oxide materials and 

heterostructures. The advanced state of synthesis and charac-

terization confers unprecedented control of materials chemis-

try and structure, and this will ultimately lead to the creation 

of new states of matter and phenomena. Recent innovations 

include new single-phase materials, close juxtapositions of 

competing or complementary functionalities, and orchestra-

tion of emergent responses on many length and time scales. 

Here, we highlight some of the most important recent advances 

in terms of materials design and discovery, understanding, and 

characterization for functional materials while looking to the 

future for what might lie on the horizon for this community.

Current and future challenges.

Advanced computation and data storage.  There is great 

interest in moving beyond �eld-effect transistors and Bool-

ean operation, and functional oxides can lead that revolution 

by providing negative capacitance, piezotronics, tunnel junc-

tions, and spintronics. In addition, neuromorphic computing 

architectures (designed to emulate neuron function) require 

materials exhibiting multiple and addressable microstates 

and the ability to evolve continuously in response to voltage-

current stimuli [154]. Ferroic materials are promising because 

of their intrinsic non-volatility and fast switching, but limited 

progress has been made towards deterministic multi-state 

functions. There is likely to be growing interest in designing 

and controlling ferroics in ways that will enable low-power 

and multi-state operation in this regard.

Energy conversion and efficiency. Societal energy needs 

make the development of more ef�cient energy conversion 

a compelling research challenge. Ferroic systems have great 

potential in this �eld. For example, ferroelectric photovoltaics 

host the bulk photovoltaic effect, where a ‘shift current’ [155] 

and asymmetrically scattered ‘ballistic current’ [156] cause 

excited carriers to move in a speci�c direction determined by 

the polarization; it can even give rise to photovoltages that 

exceed the bandgap and break Shockley–Queisser limits for 

ef�ciency. Others explore ferroic materials for novel waste-

heat energy conversion as thermoelectrics or via pyroelectric 

energy conversion, for low-power, solid-state cooling via the 

electro- and magneto-caloric effects [157], vibrational energy 

conversion applications, and much more, and as active or sup-

porting materials for catalysts.

Sensing and communications. The Internet of Things (IoT) 

and its acquisition of ever-increasing datasets drives a need for 

new abilities to sense, communicate, and interact with comp-

onents in many aspects of life. Functional materials will play 

vital roles in sensors, energy harvesting/remote power genera-

tion, data storage and transmission, and much more. Materials 

that are compatible with advanced healthcare monitoring (in 

and ex vivo) will be of particular interest. Ferroic materials 

provide a foundation for such applications, since one mat erials 

class provides all these functions—sensing, energy genera-

tion, energy storage, communications, etc—while being both 

chemically inert and stable. The future of communications—in 

particular, the advent of higher-frequency 5G technologies—
will also likely drive materials innovation to achieve aggres-

sive design requirements. Microwave communication bands 

are becoming increasing congested; agile, tunable materials 

with high quality factors will be essential to meeting the needs 

of commerce, defence, and other applications.

Advances in science and technology to meet challenges.

High-throughput materials discovery.  The Materials 

Genome Initiative [158] ignited high-throughput discovery of 

functional materials [159]. A central driver is the optimization 

of descriptors that can be rapidly calculated to identify novel 

materials and phenomena. Experimentalists must also develop 

ways to rapidly produce and characterize an ever-widening set 

of candidate materials. Advances in the discovery of complex 

oxides portend the dramatic expansion of known or predicted 

functional materials (�gure 28) [160].

The materials-data nexus. Modern computational and exper-

imental probes have led to orders-of-magnitude increases in 

the volume, variety, veracity, and velocity of materials research 
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Figure 27. Adapted Heckmann diagram showing a range of functional responses possible in ferroic materials together with a table of 
excitations, responses, and the named effects. The �gure explores connections between purturbations stress (σ), electric �eld (E), 
temperature (T), and magnetic �eld (H) and responses strain (ε), polarization (P), entropy (S), and magnetization (M). Reproduced with 
permission from [153]. © Materials Research Society 2016.

Figure 28. Combining high-throughput computation (in this case, density-functional theory approaches) with tools of advanced synthesis 
(epitaxial strain on a range of substrate orientations), researchers are now able to explore not only many materials in equilibrium, but 
increasingly large design-parameter spaces in the search for high-performance functional materials. This work shows predictions of the 
evolution of polarization in known and candidate polar materials with strain and �lm orientation. Such approaches can provide novel routes 
to the identi�cation of not only novel new materials, but also new phases and features of interest in existing or known materials. In this 
way, the �eld can greatly expand the range of materials of use for a variety of applications. Reproduced �gure with permission from [160], 
Copyright 2017 by the American Physical Society.
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data. High-dimensional, high-resolution data sets make direct 

extraction of physically-relevant information challenging. 

Brute-force approaches, wherein models or �tting functions 

are used to extract parameters of predetermined signi�cance, 

fail when the data have unknown variety, veracity, or arrive 

with high velocity. Addressing data challenges will require 

the adoption of statistical tools including machine learning 

to identify data correlations, trends, clusters, and anomalies. 

Melding traditional physical sciences with new data-intensive 

approaches offers transformational opportunities to simplify 

the transition from data to scienti�c insight.

Managing emergent behaviours. A driver of new functional-

ity will be the harnessing of phenomena on length scales other 

than the material dimensions. Prominent examples include 

polar nanoregions in relaxor ferroelectric alloys and topological 

defects, such as magnetic or electric skyrmions. These phenom-

ena break conventional relationships between order parameters 

and stimuli, and the acquisition of a deep understanding of 

these may hold the key to a new generation of smart materials.

New modes of synthesis. A key to advancing material func-

tionality will be new strategies for controlling chemistry and 

structure. In particular, ‘defect’ control—deterministic pro-

duction of speci�c types, concentrations, and locations—
could enable a watershed in the design and discovery of new 

physics and emergent function. This new approach posits that 

defects, long considered deleterious to properties, can now be 

viewed positively as a tool to enable elegant manipulation of 

the local balance of charge, lattice, orbital, and spin degrees of 

freedom. This could induce new properties and effects. Such 

routes are particularly amenable to complex oxides, which 

naturally host larger defect concentrations. Recasting the role 

of defects will provide a pathway to new emergent properties 

and could lead to unprecedented material responses.

Concluding remarks. Modern functional ceramics are a 

critical part of everyday life. In the near future, their roles in 

advanced electronics, sensing, energy transduction, commu-

nications, and other areas seem poised for strong growth. The 

key to this impact lies in the multi-functional and agile nature 

of the responses of these materials and their ability to accom-

plish in one material what might otherwise require many. It is 

envisioned that these materials will continue to be explored in 

non-traditional communities and as replacements for traditional 

materials because of the multi-functionality, adaptability, and 

robustness to operation in harsh environ ments. At the same 

time, this added function comes at the cost of added complexity 

in controlling those materials to elicit the desired properties. 

Advances in computational and experimental methodologies 

are now poised to revolutionize our understanding of these 

materials and their deployment in breakthrough applications.
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Status. Transparent conducting materials (TCMs) are de�ned 

by high electrical conductivity approaching that of a metal-

lic compound (conductivity σ  >  104 S cm−1), with the high 

transmission of photons in the visible or near infrared range 

of the electromagnetic spectrum (transmission T  >  80%). The 

unique combination of these two features makes TCMs essen-

tial components of modern optoelectronic devices [161], such 

as (a) transparent electrodes for �at panel displays includ-

ing touch screens, (b) transparent electrodes for photovoltaic 

cells, (c) smart windows, (d) transparent thin �lms transistors, 

and (e) light emitting diodes and lasers. The �rst TCM thin 

�lm was reported by Badeker [162] in 1907, more than 100 

years ago, and was based on CdO. Afterwards, more TCOs, 

such as SnO2, In2O3, ZnO, and their alloys, including amor-

phous alloys, have been discovered and are utilized in our 

daily life [163, 164]. All of these materials can be thought 

of as very-heavily-doped wide-band-gap n-type semiconduc-

tors. Figure 29 shows characteristic re�ection (R), transmis-

sion and absorption (A) spectra for a TCO thin �lm where the 

transmission is cut off on the short wavelength side by the 

intrinsic band gap absorption and on the long wavelength side 

by the carrier-concentration-dependent onset of absorption, 

due to conduction-band-electron plasma oscillations. We will 

refer to such materials, where the material itself is both trans-

parent and conducting, simply as TCMs. In contrast, a second 

very different class of transparent conductors has emerged 

where porous nanoscale networks or grids of highly conduct-

ing wires yield an overall low sheet resistance on a macro-

scopic scale, along with high optical transmission due to the 

large openings between the wires [165]. Such transparent con-

ducting networks have been made using both carbon nano-

tubes or metal nanowires, with silver nanowires versions now 

seeing limited commercialization for touch screen displays. 

Often, the nanoscale conducting network is embedded in a 

metal oxide or other matrix to improve both opto-electronic 

functionality and mechanical strength. Accordingly, we will 

refer to this second class as composite transparent conductors 

(c-TCs). Figure 30 compares the optical transmission spectra 

for a silver nanowire-based c-TC with that for a conventional 

n-type TCO.

At present, the vast majority of TCMs are still n-type TCOs. 

The most important n-TCO used today is tin doped indium 

oxide, In2O3:Sn [166, 167], typically called indium-tin-oxide 

or ITO. ITO along with high-indium content amorphous In–
Zn–O are the dominant transparent electrode materials for �at 

panel displays, the application which represents the largest 

annual value for the TCO thin �lm industry, but also greatly 

contributes to the rising cost of In metal. Therefore, it is still 

signi�cant to improve the conductivity–transmission (C/T) 

performance of the existing TCOs, or develop the new TCMs 

or c-TCs that are less expensive (i.e. indium free), non-toxic, 

have easily-tailored interface and high C/T properties and are 

easily fabricated.

Current and future challenges. To improve the σ/T perfor-

mance of TCOs, it is essential to simultaneously maximize 

the conductivity σ and optical transmission in the visible 

(VIS) spectrum. Achieving the high electrical conductivity 

(σ  =  neµ where e is the elementary charge) asks for increas-

ing the carrier concentration n (electrons or holes), or carrier 

mobility µ as much as possible. Stoichiometrically perfect 

TCOs (In2O3, SnO2, …) basically have no free carriers due 

to the large band gap (Eg  ⩾  3 eV). Therefore, unintentional or 

intentional defects along with extrinsic dopants have a critical 

role in optimizing the carrier concentration. To achieve the 

high VIS transmission (T  =  1  −  R  −  A), one should reduce 

the re�ection (R) and absorption (A). The low VIS absorption 

requires TCMs have a large optical band gap (E
opt
g   >  3 eV), 

which is related to the materials with large and direct funda-

mental band gaps or forbidden dipole transition near the band 

edges [168].

Nowadays, all the commercial TCOs are of the n-type 

because it is easy to achieve the high concentration (n ~ 1021) 

by the substitutional doping, such as Sn doped In2O3 (ITO), Al 

doped ZnO (AZO), F doped SnO2 (FTO), and so on. Further, 

the conduction band minimum of TCOs derives from delo-

calized cation s orbitals, which ensures n-type TCOs have a 

relatively high mobility. However, so far there are no com-

mercial p-type TCOs, which seriously hinders the applica-

tions of transparent semiconductors because of the absence 

of the bipolar transistors and diodes without the p-n junctions. 

Achieving high-conductivity p-type TCOs is a big challenge 

for the oxides, because the valence band maximum of oxides 

is dominated by the very low-energy and localized oxygen p 

orbital, which causes the formation of deep acceptor level and 

poor hole mobility. Experimentally, beyond equilibrium hole 

Figure 29. Optical re�ection, transmission and absorption spectra 
for an Al-doped ZnO TCO �lm. The plasma wavelength (λp) which 
varies with carrier concentration is indicated with an arrow.
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doping levels approaching 1021/cm−3 have been achieved in 

p-type TCOs using non-equilibrium growth methods, such as 

sputtering. However, the conductivity remains low (σ of order 

102 S cm−1 or less) due to low mobility and the materials are 

generally not very transparent. In the space of amorphous 

materials, the key challenge for n-type a-TCMs is to �nd 

high-conductivity indium-free materials, whereas for p-type 

materials, it is still just to �nd high-conductivity materials. For 

c-TC materials, there are challenges in the area of using metal 

nanowires beyond just silver to reduce reactivity, including 

the use of alloy compositions or protective layers as well as 

wide open opportunities to tune the application speci�c func-

tionality of c-TCs through the choice of the matrix materials.

Advances in science and technology to meet challenges. As 

discussed before, to improve the conductivity of the TCMs, 

one should either increase the carrier concentration or the 

mobility, especially for the p-type TCMs, of which both 

quantities are far below the standard for commercial applica-

tions. To achieve this, the following strategies may be valu-

ably considered: (i) increase defect solubility by ‘defeating’ 
bulk defect thermodynamics using non-equilibrium growth 

methods, such as extending the achievable chemical poten-

tial through molecular doping or raising the host energy using 

surfactant; (ii) reduce the defect ionization energy level by 

designing shallow dopants or dopant complexes, including 

transition metal doping, co-doping, multivalence-impurity 

doping, etc, and (iii) increase the carrier mobility by modi-

fying the host band structure near the band edges. Because 

increasing the carrier density can also lead to an increase in the 

visible absorption and possible re�ection, whereas increasing 

the mobility has less bad effects, one of the best strategies is 

relying on the band structure engineering to increase carrier 

mobility without affecting the optical properties much to real-

ize high performance TCMs.

At present, ITO is one of the best TCM materials with 

both high conductivity and excellent optical transmission. 

However, due to the scarcity and high price of In, develop-

ing and searching new TCMs that are cheap, non-toxic, and 

have a similar conductivity or even higher than that of ITO has 

been in great demand in recent years. A practical and feasible 

strategy is that based on the established general guidelines, 

we can use materials by design to search new materials with 

high transparency and low carrier effective mass, thus good 

conductivity, including p-type transparent conductors and 

non-oxide transparent conductors [169]. The effective appli-

cation of materials by design approaches to the discovery and 

development of improved amorphous materials remains a big 

challenge due largely to both the underlying challenges in 

computational physics for amorphous materials and the exper-

imental challenges in adequately characterizing amorphous 

materials to provide the feedback to theory that is so critical 

for materials by design. To advance the composite transparent 

conductors through the use of materials by design will require 

the bridging of length scales to couple materials by design 

with integrated computational materials science and engineer-

ing approaches to develop a functional predictive capability 

for topologically complex multi-component systems. Finally, 

to actually impact real world technologies and needs, the pre-

dicted target materials must be able to be made, which leads 

to the newly emerging challenge of theory-guided predictive 

synthesis [170].

Concluding remarks. With the expected increasing use of 

TCM reliant consumer electronics and energy technolo-

gies, there will continue to be a need for TCMs with ever 

increasing performance and decreasing cost made using 

sustainable materials. Speci�c materials development needs 

include high performance indium-free n-type TCOs and 

p-type TCMs with qualitatively better performance than are 

currently available. There is likely to be great opportunities 

for materials development in non-oxide and mixed anion 

material systems as well as amorphous materials. Finally, 

the alternative approach of c-TCs based on porous nanoscale 

conducting networks is wide open for further development. 

Materials by design methods can accelerate this materials 

advancement and, likewise, the relevance here of amorphous 

materials and composite materials will push the advance-

ment of materials by design.
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Figure 30. Comparison of transmission spectra for a Al-doped ZnO 
thin �lm TCO with that of a Ag-NW/ZnO composite transparent 
conductor (c-TC). Insets: left—schematic electronic structure of a 
n-type TCO; right—image of a AgNW/ZnO c-TC.
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