
The 21-cm bispectrum as a probe of non-Gaussianities due to 
X-ray heating

Article  (Published Version)

http://sro.sussex.ac.uk

Watkinson, Catherine A, Giri, Sambit K, Ross, Hannah E, Dixon, Keri L, Iliev, Ilian T, Mellema, 
Garrelt and Pritchard, Jonathan R (2019) The 21-cm bispectrum as a probe of non-Gaussianities 
due to X-ray heating. Monthly Notices of the Royal Astronomical Society, 482 (2). pp. 2653-2669. 
ISSN 0035-8711 

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/87321/

This document is made available in accordance with publisher policies and may differ from the 
published  version or from the version of record. If you wish to cite this item you are advised to 
consult the publisher’s version. Please see the URL above for details on accessing the published 
version. 

Copyright and reuse: 
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable, the material 
made available in SRO has been checked for eligibility before being made available. 

Copies of full text items generally can be reproduced, displayed or performed and given to third 
parties in any format or medium for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge, provided that the authors, title and full bibliographic 
details are credited, a hyperlink and/or URL is given for the original metadata page and the 
content is not changed in any way. 

http://sro.sussex.ac.uk/


MNRAS 482, 2653–2669 (2019) doi:10.1093/mnras/sty2740

Advance Access publication 2018 October 13

The 21-cm bispectrum as a probe of non-Gaussianities due

to X-ray heating

Catherine A. Watkinson ,1‹ Sambit K. Giri ,2 Hannah E. Ross ,2,3

Keri L. Dixon ,3,4 Ilian T. Iliev ,3 Garrelt Mellema 2 and Jonathan R. Pritchard1

1Department of Physics, Blackett Laboratory, Imperial College, London, SW7 2AZ, UK
2Department of Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
3Astronomy Centre, Department of Physics & Astronomy, Pevensey III Building, University of Sussex, Falmer, Brighton, BN1 9QH, UK
4New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE

Accepted 2018 September 29. Received 2018 September 19; in original form 2018 August 7

ABSTRACT

We present analysis of the normalized 21-cm bispectrum from fully-numerical simulations

of intergalactic-medium heating by stellar sources and high-mass X-ray binaries (HMXBs)

during the cosmic dawn. Ly-α coupling is assumed to be saturated, we therefore probe the

nature of non-Gaussianities produced by X-ray heating processes. We find the evolution of

the normalized bispectrum to be very different from that of the power spectrum. It exhibits

a turnover whose peak moves from large to small scales with decreasing redshift, and corre-

sponds to the typical separation of emission regions. This characteristic scale reduces as more

and more regions move into emission with time. Ultimately, small-scale fluctuations within

heated regions come to dominate the normalized bispectrum, which at the end of the simula-

tion is almost entirely driven by fluctuations in the density field. To establish how generic the

qualitative evolution of the normalized bispectrum we see in the stellar + HMXB simulation

is, we examine several other simulations – two fully numerical simulations that include quasi-

stellar object (QSO) sources, and two with contrasting source properties produced with the

semi-numerical simulation 21CMFAST. We find the qualitative evolution of the normalized

bispectrum during X-ray heating to be generic, unless the sources of X-rays are, as with QSOs,

less numerous and so exhibit more distinct isolated heated profiles. Assuming mitigation of

foreground and instrumental effects are ultimately effective, we find that we should be sensi-

tive to the normalized bispectrum during the epoch of heating, so long as the spin temperature

has not saturated by z ≈ 19.

Key words: methods: statistical – intergalactic medium – dark ages, reionization, first stars –

cosmology: theory.

1 IN T RO D U C T I O N

One of the priorities of modern astrophysics is to try and understand

the first stars and galaxies, as well as their subsequent evolution. The

formation of luminous sources drastically changed the properties

of the Universe. For example, radiation from such sources ionized

the hydrogen and helium in the Inter-Galactic Medium (IGM), ulti-

mately causing the Universe to transition from being largely neutral

to almost entirely ionized. This phase transition is generally referred

to as the epoch of reionization (EoR). Remnants of stars, such as

black holes and neutron stars, will also produce X-rays that impor-

tantly will heat the neutral IGM. Simulations suggest that the IGM

⋆ E-mail: catherine.watkinson@gmail.com

transitioned from adiabatically cooling with the background cos-

mological expansion, to become universally heated. This transition

is often referred to as the epoch of heating (EoH). Loeb & Furlan-

etto 2013 provide a comprehensive overview of both the EoR and

EoH.

The details of sources during the EoH are uncertain, there is

indication that dominant sources of X-rays will be high-mass X-

ray binaries (HMXBs) and active galactic nuclei (AGNs), with the

hot interstellar medium contributing to the soft end of the X-ray

spectrum (Mineo, Gilfanov & Sunyaev 2012b). It is not currently

known how much each will ultimately contribute at high-z. AGNs

are the dominant contributor to the X-ray budget at lower redshift,

but their abundance is seen to rapidly reduce beyond z = 3 (Fan et al.

2001; Lehmer et al. 2016), although mini-quasars could still be a

major contributor at high redshifts (Madau et al. 2004; Volonteri &

C© 2018 The Author(s)
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Gnedin 2009). However, it is likely that HMXBs will be the main

contributor based on the fact that in low-redshift galaxies (in the

absence of AGN) they dominate the X-ray production (Fabbiano

2006), and that their abundance (in contrast to AGN) is seen to

increase with redshift (Gilfanov, Grimm & Sunyaev 2004; Mirabel

et al. 2011; Mineo, Gilfanov & Sunyaev 2012a). Simulations also

suggest that the very first generation of Population III stars predom-

inantly formed in binary, or multiple systems (Turk, Abel & O’Shea

2009; Stacy, Greif & Bromm 2010).

In order to establish which of these scenarios is true (or in-

deed if other heating sources might have contributed), we need

observational constraints. It is the hope that high-z observations

of the 21-cm line of neutral hydrogen will provide a wealth of

information about the EoH (as well as the EoR). The Cosmic Mi-

crowave Background (CMB) will interact with any neutral hydro-

gen in its path to us, and by looking at fluctuations in the CMB

at the frequencies associated with the 21-cm interaction at differ-

ent redshifts, we can (in principle) make 21-cm maps and learn

about the evolution in the properties of neutral hydrogen with

time.

The observable for the 21-cm line is the offset of the brightness

temperature1 (δTb) relative to that of the CMB (Tcmb) (Field 1958,

1959; Madau, Meiksin & Rees 1997),

δTb =
Ts − TCMB

1 + z
(1 − e−τν0 ),

≈ 27
Ts − TCMB

Ts

xHI(1 + δ)

[

H (z)/(1 + z)

dvr/ dr

]

×
(

1 + z

10

0.15

�mh2

)1/2 (
�bh

2

0.023

)

mK. (1)

This depends on the cosmological parameters: the Hubble parameter

H (z) = 100 h, the matter (�m), and baryon (�b) density parameters

(where �i = ρ i /ρc and ρc is the critical density required for flat

universe). For the analysis performed in this paper, we will adopt

a 	CDM with σ 8 = 0.80, h = 0.70, �m = 0.27, �	 = 0.73,

�b = 0.044, and ns = 0.96. These values are consistent with the

values adopted by the simulations of Ross et al. (2017) analysed

in this work and WMAP 7 (Komatsu et al. 2010). Note that unless

otherwise stated, the analysis in this paper is done on the mean-

subtracted brightness temperature, i.e. δTb − 〈δTb〉.
More important to our discussion here is the dependence of the

brightness temperature on density δ, the neutral fraction xH I (which

together measure the amount of neutral-hydrogen gas present and

so provide sensitivity to the EoR), and the spin temperature Ts

(which measures the relative distributions of electrons over the two

levels associated with the 21-cm transition). Stars produce copi-

ous amounts of Ly -α radiation, which is incredibly efficient at

coupling Ts to the thermal temperature of the gas Tk. Once Ly -

α coupling is complete, the spin temperature provides a probe of

the thermal history of the Universe. However, the spin temperature

will saturate as Ts ≫ TCMB and so the brightness temperature can

lose sensitivity to fluctuations in the gas temperature if it gets very

high.

1Intensity Iν is usually described in terms of a brightness temperature Tb,

defined such that Iν = B(Tb), where B(T) is the Planck black-body spectrum –

well approximated by the Rayleigh–Jeans formula at the frequencies relevant

to reionization studies.

The first generation of 21-cm radio interferometer, such as

LOFAR,2 MWA3, and PAPER,4 have been taking data for several

years now, and we are at last starting to see these instruments place

some upper bounds on the 21-cm power spectrum (e.g. Paciga et al.

2011; Dillon et al. 2014; Ali et al. 2015; Pober et al. 2015; Beardsley

et al. 2016 and Patil et al. 2017). There is also indication from the

global experiment EDGES5 (which is a single antenna experiment

observing the mean evolution of the 21-cm signal, rather than at-

tempting to constrain 21-cm fluctuations across the sky) that some

form of coupling followed by heating is occurring in the redshift

range 15 < z < 21 (Bowman et al. 2018). However, the inferred

cosmological signal is far more extreme than expected, and exhibits

an unexpected flat evolution over a large range of redshifts. If true,

new physics beyond our standard models is required to explain this

signal (Bowman et al. 2018).

Given then the challenging nature of the observation (strong fore-

grounds and ionospheric effects, both of which are observed with a

beam that changes with frequency, must be mitigated), confirmation

from an independent experiment is needed before we can be con-

fident of the result. Hills et al. (2018) also find that the EDGES fit

requires extremely unphysical foreground and ionospheric param-

eters, casting doubt on the EDGES result. It is therefore important

that we do not put all our eggs in the exotic-physics basket and

continue in parallel, as we do in this paper, to consider models

consistent with our current fiducial astrophysical framework.

The current generation of radio interferometers will not be able

to observe the EoH over the EDGES redshift range (although it is

still hoped that one or more may make a statistical detection of the

EoR, and MWA could, in principle, provide statistical constraints

of the EoH at z < 16). It is expected that the next generation such

as HERA6 and the SKA7 will allow us to observe the EoH.

It has been seen from simulations that the signal will be highly

non-Gaussian during both the EoH and the EoR (Iliev et al. 2006;

Mellema et al. 2006; Watkinson & Pritchard 2014; Watkinson et al.

2015; Watkinson & Pritchard 2015; Shimabukuro et al. 2016; Ma-

jumdar et al. 2017). As such, it is important that we look to statis-

tics other than the power spectrum, which can only fully describe a

Gaussian field. This paper studies the bispectrum, which is sensitive

to non-Gaussianities in a map, as measured from the fully numerical

EoH simulations of Ross et al. (2017) and Ross et al. (2018). We

focus on their X-ray + Stellar simulation, as low-redshift observa-

tions indicate that HMXBs are most likely to be the dominant X-ray

source out of all the observed sources; we will refer to this simu-

lation as HMXB in the remaining part of this paper. We will also

compare with simulations that include some level of contribution

from X-rays generated by AGN [or Quasi-stellar object (QSO)];

throughout, we will refer to these as the HMXB + QSO and QSO

simulations (Ross et al. 2018).

In Section 2, we review the numerical N-body + ray tracing

simulations that we analyse here. In Section 3, we discuss the inter-

pretation of the bispectrum. In Section 4, we define the normalized

bispectrum, a version of bispectrum, which has been normalized

so as to remove the amplitude component. Note that we discuss

2The LOw Frequency ARray – http://www.lofar.org/.
3The Murchison Wide-field Array – http://www.mwatelescope.org/.
4The Precision Array to Probe Epoch of Reionization – http://eor.berkeley

.edu/.
5The Experiment to Detect the Global EoR Signature – http://loco.lab.asu.e

du/edges/.
6The Hydrogen Epoch of Reionization Array – http://reionization.org/.
7The Square Kilometre Array – http://www.skatelescope.org/.

MNRAS 482, 2653–2669 (2019)
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other common normalizations options in the Appendix. In Sec-

tion 4, we also present our findings that the normalized bispectrum

from the HMXB simulation exhibits a turnover at high redshifts, the

scale associated with which corresponds to the typical separation

of emission regions. In Section 5, we will consider how consistent

this qualitative evolution of the normalized bispectrum is across

other simulations. We consider a totally different type of simulation

by studying the normalized bispectrum from the semi-numerical

simulation 21CMFAST as well as the HMXB + QSO and QSO

simulations. We find that the qualitative evolution is the same for

all but the QSO simulation. This simulation differs in that its heated

profiles are more distinct, driven by isolated sources and so imprint

a second and stronger turnover corresponding to the typical size

of heated regions. In Section 6, we show that if foregrounds can

be mitigated, the bispectrum should be detectable over the redshift

range that the simulations we consider predict the EoH occurred.

Finally, we conclude this work in Section 7.

2 N U M E R I C A L S I M U L AT I O N S O F X - R AY

H E AT I N G

2.1 N-Body simulations

The underlying cosmic structures are obtained using a high-

resolution N-body simulation run with CUBEP3M code (Harnois-

Déraps et al. 2013). The simulation follows 40003 particles in a

(244 Mpc/h)3 volume and resolves haloes down to the Jeans mass

for H II (109 M⊙). For more details on this N-body simulation, see

Dixon et al. (2016).

2.2 Sources

Our sources always form in dark matter haloes. Haloes above the

Jeans mass for H II (∼109 M⊙ ≤ M) are resolved, so we identify

these directly from the N-body simulation. In addition, haloes with

masses below this but greater than the minimum mass at which

atomic line cooling of primordial gas is efficient (108 M⊙<M

<109 M⊙) are added using a subgrid model (Ahn et al. 2015).

Source models are summarized below:

Stellar sources: Stellar sources are assumed to form within dark-

matter haloes with luminosities proportional to their host halo’s

mass, and have a blackbody spectra of 50 000 K, similar to that of

O and B stars. These softer sources do not contribute to heating, so

are only important for correctly including ionizations.

HMXBs: As they consist of binaries of stars and stellar remnants,

HMXBs exist in stellar populations. Hence, these sources trace

dark-matter distribution, with their luminosities proportional to the

host halo’s mass. For more details on the implementation of these

sources, see Ross et al. (2017).

QSOs: We assume that QSOs are much rarer sources that have

varying luminosities uncorrelated with the mass of their host haloes.

We assign QSOs randomly to haloes with M > 109 M⊙. The num-

ber of QSOs and their luminosities are calculated by using an ex-

trapolation of the low-redshift luminosity function from Ueda et al.

(2014), but with a shallower co-moving density evolution. In doing

so, we assume more QSOs than Ueda et al. (2014), motivated by

the uncertainty surrounding high-redshift QSO populations and for

maximal effect (e.g. Giallongo et al. 2015; Parsa, Dunlop & McLure

2018). To mimic the variability of observed QSOs, these sources

are assigned a new luminosity every 11.5 Myr. QSOs live in a given

halo for 34.5 Myr, which is consistent with current estimates (e.g.

Borisova et al. 2016; Khrykin, Hennawi & McQuinn 2017). The

simulations analysed here use a spectral index of −0.8 and do not

include any UV contribution. For more details on these simulations,

see Ross et al. (2018).

2.3 Radiative transfer

The radiative transfer (RT) is calculated using C2-RAY code

(Mellema et al. 2006) that was updated to accommodate multifre-

quency RT in order to correctly model the effects of hard radiation

(Friedrich et al. 2012). Three such simulations are analysed in this

work: one with both stellar and HMXB sources (HMXB); another

with stellar, HMXB, and QSO sources (HMXB + QSO); and one

with stellar and QSO sources (QSO). The stellar component and

underlying cosmic structures are identical in all simulations. The

density is smoothed on to an RT grid of size 2503.

H II regions can be unresolved in our simulations, particularly

for individual weak sources. These will appear as partially ionized

cells in the simulation, with a kinetic temperature that is averaged

between the hot, ionized gas phase and the colder, neutral one. Using

the average Tk of these cells yields a δTb higher than the true value.

Such cells require special treatment for calculating the correct δTb

as discussed in Ross et al. (2017) and Ross et al. (2018).

3 INTERPRETTI NG THE 21-CM BI SPECTRUM

The bispectrum is defined as

(2π)3B(k1, k2, k3)δD(k1 + k2 + k3) = 〈�(k1)�(k2)�(k3)〉, (2)

and is the Fourier pair to the three-point correlation function, which

measures excess probability as a function of three points in real

space.

When we calculate the bispectrum, we are probing the degree to

which structure in our real map is coherent with the three waves

defined by the three k vectors (k1, k2, k3) that form a closed tri-

angle in equation (2). Fig. 1 shows a real-space plot of (from top

to bottom) three 2D waves associated with an equilateral configu-

ration; i.e. with three different ki forming a closed triangle, each

with |ki | = 0.5 Mpc−1 (see the left black triangle illustrated in the

top panel of Fig. 2). For the purposes of visual clarity, each wave-

form’s amplitude is offset in the z-axis relative to their true mean

of zero. At the very bottom, we show their interference pattern, i.e.

what kind of structure they combine to form in real-space. In other

words, the top three waveforms are the Fourier components of the

bottom wave pattern, or data set. This equilateral wave combina-

tion creates above-average spherically symmetric concentrations of

signal in 2D, of radius roughly corresponding to π/(2 |k|) (see the

bottom panel of Fig. 2). In 3D, these concentrations of signal extend

into filaments with a circular cross-section.

Lewis (2011) provides a really nice discussion of what certain

bispectrum configurations correspond to in real-space. As well as

the equilateral configuration, Lewis (2011) considers the flattened

and squeezed limits. Flattened triangles have a large angle between

k1 and k2, so that at the most extreme angles k3 ∼ k1 + k2, i.e. k3

is much larger than k1 and k2 (see the bottom-right green triangle

illustrated in the top panel of Fig. 2). This is somewhat similar to the

equilateral in that the combination of such modes form a resultant

signal that is concentrated along filaments in 3D; however, for the

flattened configuration, these filaments have an ellipsoidal cross-

section, rather than circular as for the equilateral configuration. For

very large angles, these filaments tend towards planes. At the other

extreme, squeezed triangles have a very small angle between k1 and

k2, so that k3 is very small in comparison (see the top-right blue

MNRAS 482, 2653–2669 (2019)
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2656 C. A. Watkinson et al.

Figure 1. Visualization of (from top to bottom) three different 2D wave-

forms in real space (whose amplitude provides a third dimension). These

correspond to a set of three k-vectors (each with |k| = 0.5 Mpc−1) that form

an equilateral triangle. Note the amplitude of these three waves is offset by

40, 30, and 20 (from top to bottom). The interference pattern of these three

waveforms is plotted at the bottom. Such a combination of modes produces

a regular series of circularly-symmetric above-average concentrations of

signal separated by less concentrated below-average regions of signal. For

3D waveforms, these condensed above-average regions of signal will be

long filaments with a circular cross-section.

Figure 2. Top: Visualization of three extremes of triangle configuration that

may be considered when measuring the bispectrum. Bottom: Illustration

of how the radius (R) of features and the clustering properties (via their

separation D) correspond to wavenumber k.

triangle illustrated in the top panel of Fig. 2). This combination

results in a modulation of the larger scale mode on the smaller

scale modes, see Lewis (2011) for an illustration of this type of

configuration.

When we calculate the bispectrum, we first Fast Fourier Trans-

form (FFT) our data set, in doing so we essentially convolve three

such waves with our data and average the combination to produce

the three different δ(ki) corresponding to whatever triangle config-

uration we are probing. We then multiply these three δ(ki) together

to get our bispectrum estimate. The bispectrum is thus sensitive to

whether structure in the data is in or out of phase with the three

Fourier waves associated with the FFTs. The sign of the bispec-

trum is therefore sensitive to whether the data contains above or

below-average concentrations of signal. A positive bispectrum tells

us there are concentrations of above-average signal surrounded by

below-average regions. A negative bispectrum tells us that there are

concentrations of below-average regions of signal surrounded by

above-average regions of signal (Lewis 2011).

A real 21-cm map is unlikely to exhibit such distinct structures

as discussed above, instead the topology of the map will result in

a non-zero bispectrum for a range of triangle shapes, with its sign

depending on whether the bispectrum is driven by above or below-

average concentrations of signal. It will be the relative amplitudes

of the bispectrum between different triangle configurations that will

provide some information as to the nature of structure within the

data set. For example, the bispectrum will have greatest amplitude

for the equilateral configuration on a given scale if,

(i) the signal is concentrated in clumps that follow the filaments

of the equilateral interference pattern to some degree, and/or;

(ii) the distribution is such that the signal filaments are also sep-

arated by a similar scale to the filaments in the equilateral interfer-

ence pattern. Like the separation D of the two yellow ellipses in the

bottom plot of Fig. 2 for which k = 2π/D;

(iii) the bispectrum for the equilateral configuration at a given

scale will be further boosted if signal is concentrated in clumps

of similar shape and size to the circular cross-section of the fila-

ments corresponding to the equilateral interference pattern. Like the

yellow ellipse in the bottom plot of Fig. 2 for which k = 2π/(4 R).

The bispectrum will be a more noisy statistic to measure than the

power spectrum (as we will see later for Gaussian noise the bispec-

trum covariance is connected to the triple product of the noise power

spectrum, see also Yoshiura et al. 2015), and is also challenging to

visualize (given that it is a function of two k vectors rather than just

one). We therefore restrict our analysis to the spherically averaged

bispectrum in the discussion that follows. Whenever the bispectrum

is measured from gridded data, a binwidth of at least one pixel must

be allowed on each triangle side. Therefore, we never probe the

bispectrum of a perfectly defined triangle; we instead measure the

average bispectrum for a selection of different (but very similar) tri-

angles. We choose to further bin the bispectrum in order to reduce

sampling noise in the statistic. For all equilateral configurations, we

bin over cos(θ ) ± 0.05, where θ is the angle in radians between k1

and k2. As well as the equilateral configuration, we consider config-

urations where k2 = N k1 (for which we restrict ourselves to integer

factors of N). The bispectra for these configurations are presented

as a function of θ/π radians and are binned over θ ± 0.1 radians.

For both binning choices, we have checked that this binning choice

produces a bispectrum consistent with the unbinned calculations.

We use the FFT bispectrum algorithm described in Watkinson,

Majumdar & Pritchard (2017) to measure the bispectrum, this pro-

vides a very fast way to measure the bispectrum (for 250 pixels

MNRAS 482, 2653–2669 (2019)
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Figure 3. Top: Average brightness temperature as a function of redshift for

the HMXB simulation. Middle: Fraction of pixels in emission (fraction in

absorption is shown in the thin-dashed line) Bottom fraction of pixels that

are (1) at the saturated limit (Ts ≫ Tcmb), (2) still cooling adiabatically, and

(3) heated but not yet saturated. The green line marks the redshift at which

heating is commencing in the simulation and the orange the point at which

the map passes into emission (on average).

per side, our code takes <2 s per binned triangle configuration on

a Macbook pro with 2.9 GHz Intel Core i5 using 16 threads). We

refer the reader to Watkinson et al. (2017) and references therein

for details of this algorithm.

4 THE BISPEC TRU M DUE TO X-RAY

H E AT I N G A S D R I V E N BY H M X B s

In this section, we will discuss the bispectrum as measured from

the HMXB simulation during X-ray heating. Throughout this dis-

cussion, we will make reference to several plots that summarize the

progress of heating in the HMXB simulation. In Fig. 3, we show

the brightness-temperature evolution (top); the fraction of pixels in

Figure 4. Top: The HMXB’s 1D histogram for every redshift (colour bar

represents the log of the probability to highlight the PDF tails). It is at

17.85 < z < 20.00 that the most cold pixels are wiped out by the formation

of heating sources, at this point the bispectrum starts to gain amplitude with

a shape close to that seen at 17.85. Bottom: PDFs of characteristic size of

emission regions for all redshifts, the colour bar describes dP/dR.

emission and absorption (middle); and the fraction of saturated (i.e.

with Ts ≫ Tcmb), unheated, as well as those that are heated but not

yet saturated (bottom) for the HMXB simulation. We do not show

the ionized fraction as it never reaches more than a few per cent

throughout the simulation, and any ionization is concentrated in

the very hottest regions, and therefore has minimal impact on our

discussion (Ross et al. 2017). We have marked on these plots when

heating commences in the simulation with the green dotted line and

when the simulation transitions into emission (on average) with an

orange dotted line.

Also useful for tracking the progress of heating is the probability

density distribution (PDF) of the brightness temperature at different

redshifts.8 We therefore plot the log of the brightness–temperature

PDF in Fig. 4. Since the bispectrum is measuring the coherence

between the above and below-average δTb regions and the waves

associated with the three modes under consideration, we also plot

the probability distribution of the characteristic radius of above-

average δTb regions in the bottom plot of Fig. 4 (measured by

binarizing the maps by above and below-average δTb regions and

using the mean-free-path method of Mesinger & Furlanetto 2007, in

which randomly seeded trajectories are traced through the datacube

8The PDF of the brightness temperature is generated from the unsmoothed

datacubes.

MNRAS 482, 2653–2669 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
2
/2

/2
6
5
3
/5

1
2
9
1
5
0
 b

y
 U

n
iv

e
rs

ity
 o

f S
u
s
s
e
x
 u

s
e
r o

n
 1

7
 O

c
to

b
e
r 2

0
1
9



2658 C. A. Watkinson et al.

until a phase transition is met using Monte Carlo methods). Again,

each row corresponds to the PDF at a different redshift. We see that

there is an evolution from small to large above-average δTb regions

over the range 17.21 ≤ z ≤ 14.70 and then a reduction over the

range 14.70 ≤ z ≤ 13.22.9

4.1 The normalized bispectrum for equilateral configurations

We have studied several common normalizations for the bispectrum

(see the Appendix for details) and find that both the raw bispectrum

B(k1, k2, k3) (with units of mK3 Mpc6) and the dimensionless bis-

pectrum (k1, k2, k3)2/(2π2) B(k1, k2, k3) (which despite its name

retains units of mK3) exhibit regimes in which the amplitude flips

from strongly positive to strongly negative (and vice versa). This

occurs as the contribution to the statistic from non-Gaussianity gets

very small so that it fluctuates about zero and combines with a strong

non-zero bispectrum amplitude due to contributions from the power

in the map. It is common in large-scale structure studies to normal-

ize out the contribution of the power spectrum to the bispectrum

by instead plotting Q(k1, k2, k3) = B(k1, k2, k3)/[P (k1) P (k2) +
P (k1) P (k2) + P (k1) P (k3)], which does suppress the sign fluctua-

tions in the bispectrum. However, if data is not without units (as is

the case for 21-cm data which has units of mK, so that Q(k1, k2, k3)

has units of mK−1), then Q(k1, k2, k3) retains a contribution from

the power spectrum, the degree of which is scale-dependent. The

Q(k1, k2, k3) statistic is therefore not appropriate for use outside of

large-scale structure studies. We have detailed our findings in the

Appendix for the curious reader and to support comparison with

other studies of the 21-cm bispectrum made in the main text.

It is more common in signal processing and time-series analysis

to use the following normalization first defined by Brillinger &

Rosenblatt (1967),

B(k1, k2, k3) =
B(k1, k2, k3)

√
P (k1) P (k2) P (k3)

, (3)

which isolates the contribution from the non-Gaussianity to the

bispectrum, by normalizing out the amplitude part of the statistic

(Hinich & Clay 1968; Kim & Powers 1978; Hinich & Messer 1995;

Hinich & Wolinsky 2005). Brillinger & Rosenblatt (1967) argue that

B(k1, k2, k3) is the correct normalization choice for the bispectrum.

B has units of
√

V , we therefore instead consider the dimensionless

quantity,

b(k1, k2, k3) =
B(k1, k2, k3)

√

(k1 k2 k3)−1 P (k1) P (k2) P (k3)
. (4)

This statistic is directly proportional to the ensemble average of the

three phases associated with k1, k2, and k3; see Eggemeier & Smith

(2017). We will concentrate on this normalization for the rest of this

paper and refer to it as the normalized bispectrum throughout.

We first plot the equilateral normalized bispectrum as a function

of redshift for a selection of k scales; see the top panel of Fig. 5. It is

very clear from comparing this to the corresponding power spectra

in the bottom plot of Fig. 5, that the normalized bispectrum is

providing us with new information that is not possible to infer from

the power spectrum alone. The bispectrum peaks at increasingly

high redshifts with increasing scale (decreasing k); compare in the

top plot the purple line (k = 0.99 Mpc−1 – small scale – which peaks

at z ∼ 15) with the orange dotted line with stars (k = 0.05 Mpc−1

9The characteristic sizes of the below-average δTb regions evolve with red-

shift in a very similar way to the above-average δTb regions.

Figure 5. Top: Equilateral spherically averaged normalized bispectrum

measured from the mean-subtracted HMXB simulation as a function of

z for various k scales. Bottom: Corresponding spherically averaged power

spectrum. Each scale peaks at a different redshift and for most scales the

normalized bispectrum starts to grow from z = 20. The scales associated

with the strongest non-Gaussianity (seen at z = 17.22) start increasing from

the beginning of the simulation.

– large scale – which peaks at z ∼ 18). The power spectrum, on the

other hand, has more of a turnover feature on small scales (e.g. the

purple line k = 0.99 Mpc−1) that rapidly drops off to smaller scales

at z < 18 and then exhibits a peak for larger scales at z ∼ 16; this

is particularly evident in the orange dotted line with stars (k = 0.05

Mpc−1).

In Fig. 6, we plot the spherically-averaged normalized bispectrum

for the equilateral configuration as a function of k for a selection

of redshift (for the equivalent plot of the power spectrum, see the

bottom plot of Fig. A2 in the Appendix). We see that the normalized

bispectrum starts to grow around the time that heating kicks in, and

is maximized at z = 17.22 (see the blue dot–dashed line in Fig. 6)

when the fraction of unheated pixels is approaching 0 per cent, (refer

to the bottom plot of Fig. 3), i.e. z = 17.22 coincides with the point

at which most of the simulated volume has experienced some level

of heating.10 After z = 17.22, the normalized bispectrum drops

in amplitude with redshift. The normalized bispectrum exhibits a

turnover whose peak shifts to smaller scales with reducing redshift

until z = 15.60 (see the purple solid line, blue dot–dashed line,

10Note that Fig. 3 only provides an estimate of the unheated pixels based on

the brightness temperature corresponding to the theoretical adiabatic kinetic

temperature.
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The 21cm bispectrum due to X-ray heating 2659

Figure 6. The evolution of the spherically averaged normalized bispectrum

with k for equilateral configurations of k vectors for the HMXB simulation.

The vertical dotted line corresponds to the characteristic separation of emis-

sion regions as measured by granulometry. These lines correspond to from

left to right z = 17.85, 17.22, 16.63, 15.60, 14.29 with colours following the

legend’s redshift relation. We see that there is clearly a correlation between

this scale and the position of the peak of the turnover in the bispectrum.

Note that rise in small-scale non-Gaussianity as driven by the density field

wipes out the turnover feature (see the orange dotted line with stars and the

red dot–dashed line with triangles).

green dotted line with triangles, and the yellow-dashed line with

circles in Fig. 6).

Between 17.85 < z < 20, the shape of the bispectrum is very

similar in shape to that at z = 17.85, but with a smaller amplitude,

which decreases with increasing redshift. This is evident from/at the

yellow-dashed line with circles in Fig. 5, which shows the evolution

of k = 0.21 Mpc−1 with z. As can be seen from the top panel of

Fig. 4, which shows the brightness–temperature log PDF for each

redshift, it is around z = 17.85 that the most cold regions (overdense

regions in which sources are yet to form) are starting to be wiped out

by the formation of the first stars in these regions.11 As more heated

regions switch on, the level of coherence in the map (and so to the

degree of non-Gaussianity) will increase on the scales associated

with the typical separation of sources (which at early times will

coincide with the separation of saturated regions).

As well as a turnover that shifts to smaller scales (larger k), there

is also an increase in the small-scale bispectrum with decreasing

redshift. By z = 14.29, the normalized bispectrum exhibits a mono-

tonic increase (from roughly zero on large scales/small k) linearly

towards smaller scales (see the orange dotted line with stars in

Fig. 6).

The growth in small-scale non-Gaussianity with decreasing red-

shift is most easily seen in the plots of the equilateral bispectrum

as a function of redshift (the top panel of Fig. 5). We see that the

small-scale (large-k) bispectrum starts increasing from z = 20 (see

the purple solid line in Fig. 5) that coincides with the point at which

heating is becoming notable (see the green-dashed line on Fig. 3).

The small-scale (large-k) normalized bispectrum then peaks at z ∼
15 (as the map passes into emission; see the orange-dashed line in

11In these simulations, overdense regions in which stars have yet to form

are the coldest regions as the signal is in absorption and a large overdensity

will make the signal more extremely negative as δT b(x) = (1 + δ) 〈(1 −
Tcmb/Ts)〉. Of course, in reality such regions would likely be shock heated

and this is an effect that should be studied in the future.

Fig. 3), before starting to drop in amplitude. By the end of the sim-

ulation, the heating has saturated the spin temperature, and as we

will see in Section 4.3, the non-Gaussianity is driven by fluctuations

in the density field.

This increase in small-scale structure power occurs as a back-

ground of X-rays heat regions with below-average kinetic temper-

ature, located away from the centre of heated regions. This reduces

the contrast between the hottest and coldest regions. Early on, non-

Gaussianities will therefore be driven by the larger-scale features

in the map, e.g. the distribution of the extremely hot regions rela-

tive to the cold. As the contrast between such features is reduced,

the small-scale fluctuations (modulating the large-scale brightness-

temperature fluctuations) will have increasing influence. This can

be seen in the maps of the HMXB simulation shown in Fig. 7 for

(from left to right) z = 15.60, 14.29, 13.56. We also see this, at some

level, in the PDF plots of Fig. A1, this shows how the typical size of

above-average δTb regions shrink beyond z = 15.13 and ultimately

return to the same scale as it was prior to heating (in this simulation,

Ly -α coupling is assumed to be complete and so the density field

drives the non-Gaussianity in the maps prior to heating).

4.2 Synthetic datacubes to relate the normalized bispectrum

to physical properties of heated regions

In Section 4.1, we have shown that there is an evolving feature in

the normalized bispectrum that must connect with some physical

features in the HMXB simulation. There are two main contributions

to the bispectrum in such simulations, one comes from the clustering

of hot regions and the other comes from the profile shape of features,

as per our discussion of what features various triangle configurations

correspond to in Section 3 and Fig. 2. This concept is similar to

the Halo model (see Cooray & Sheth 2002 for a review), where the

power spectrum, bispectrum, and other higher-order polyspectra can

be analytically calculated by considering the contribution of halo

clustering and halo profile to the non-Gaussianity as independent.

This assumption of independence is less appropriate to the EoH

as heated profiles are not as isolated from one another as they are

for dark-matter haloes, they instead overlap and combine to form a

complex topology of heated regions.

We can attempt to better understand what drives the bispectrum of

HMXB by creating synthetic datacubes that isolate certain physical

features in the original simulations. First, we make binary maps from

the HMXB simulation that are 1 in regions that are in absorption,

and 0 in regions that are in emission. The motivation for such a

cut is to isolate the most heated regions in our datacubes. We then

use the granulometry method (see Kakiichi et al. 2017 for details

on this method) to get a measure of the typical separation D of the

emission regions at different redshifts.12

In Fig. 6, we overplot k = 2π/D with dotted vertical lines, using

the redshift–colour relation defined by the legend. These lines cor-

respond to the wavenumber one would expect to be associated with,

a wave that would be coherent with the distribution of such hot re-

gions. There is clearly a positive correlation between the separation

of emission regions and the turnover in the normalized bispectrum.

This implies that the bispectrum is boosted on the scales due, at

12We do not use the mean-free path method of Mesinger & Furlanetto (2007)

to measure the typical separation of saturated regions, as emission regions

are quite small and at many redshifts quite isolated, therefore the mean-free-

path method would return a size distribution biased towards scales larger

than those in which we are interested.
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2660 C. A. Watkinson et al.

Figure 7. Slices taken from the HMXB simulation at z = 15.60, 14.29, 13.56 from left to right when the respective average brightness temperatures in

the maps are T b = −42.03, 12.86, 23 mK. White depicts regions with mean brightness temperature, blue highlights below-average δTb regions, and red the

above-average δTb regions; the colour bar is the brightness temperature in mK. As the background brightness temperature increases, the above-average δTb

regions become less spherically symmetric as they fragment into smaller less spherical regions, therefore the equilateral bispectrum will become less strong

relative to the other configurations with decreasing redshift.

least in part, to the clustering of the most hot regions in the HMXB

datacubes.

Such a measure of separation cannot tell us about the coherence

in the distribution of emission regions. We therefore make zero-

separated synthetic datacubes in which pixels belong to one of two

phases. Phase 1, in which pixels associated with emission regions

in the HMXB datacubes are randomly assigned brightness tem-

peratures by sampling from a Gaussian distribution (whose mean

and variance is measured from the corresponding subset of pixels

in the HMXB datacubes). Similarly for phase 2, all other pixels

are randomly assigned a δTb by sampling from a Gaussian dis-

tribution (whose mean and variance are set by the distribution of

the subset of pixels that are in absorption in the corresponding

HMXB datacube). In such synthetic maps, the only sources of non-

Gaussianity are the size of regions in each phase and the relative

distribution of such regions. We refer to this synthetic data set as zero

separated.

The thick lines in the top plot of Fig. 8 shows the normalized

equilateral bispectrum measured from zero-separated synthetic dat-

acubes for a reflective range of z. We have also included the normal-

ized bispectrum from HMXB for reference (thin lines, the colour of

which correspond to the redshifts in the legends). We see that the

bispectrum from the synthesized datacube also exhibits a turnover,

but over a fixed range of scales. For all z plotted, the normalized

bispectrum exhibits a broad peak over 0.2 < k < 0.7 Mpc−1 with

a narrow spike at k = 0.4 Mpc−1; i.e. we see no evolution of the

turnover to smaller scales with redshift. Therefore, whilst there will

be some contribution to the amplitude of the bispectrum, primarily

between around 0.2 < k < 0.7 Mpc−1, from the distribution and

size of the most hot regions, this cannot be the only driver of the

evolution we are seeing in the bispectrum. Clearly, the details of

the heating profiles surrounding the most hot regions in the map

must play a major part in driving the correlation we see between

the typical separation of the most heated regions and the scales of

maximal non-Gaussianity.13

We have already considered the typical size of above-average

δTb regions in Fig. 4, and we see a characteristic size that is con-

13Note we also have considered the separation of saturated regions. The

bispectrum from such fields looks very similar to that of the zero-split

synthetic datacube.

Figure 8. Comparison of the equilateral spherically averaged b(z) of the

HMXB (thin lines) to that of a synthetic repainted datacube (thick lines),

whose pixels are divided into two independent phases based on the pixel

values in the original HMXB datacubes. Top: Phase 1, where all pixels that

correspond to δTb ≤ 0 in the HMXB simulation are randomly assigned

brightness temperatures from a Gaussian distribution (with same mean and

variance as the equivalent subset of pixels in the HMXB simulation), and

phase 2 where pixels that correspond to δTb ≥ 0 in HMXB are also randomly

assigned brightness temperatures using the mean and variance as the equiv-

alent subset of pixels from HMXB. The turnover is seen at a roughly fixed

scale at all z in the zero-separated synthetic map, therefore the turnover that

evolves to smaller scales in the HMXB simulation cannot solely be driven

by clustering. Bottom: Phase 1 where pixels that are below the average in

the HMXB simulation are randomly assigned a temperature by sampling

a Gaussian distribution according to the statistics of below-average pixels

in the HMXB simulation; and phase 2 as in phase 1 but for below-average

pixels. We see that the scales over which b(z) rises moving from smallest k

(largest scales) to larger k (smaller scales) roughly correlate with the scale of

a similar turnover in the bispectrum of the mean-separated synthetic maps.

MNRAS 482, 2653–2669 (2019)
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The 21cm bispectrum due to X-ray heating 2661

Table 1. Terms used to understand the contribution of the underlying fields,

i.e. δ and Ts, to the evolution of the 21-cm bispectrum during the EoH.

δ = (ρ − ρ)/ρ Density

δψ = (ψ − ψ)/ψ Inverse of spin temperature, where

ψ = TCMB

Ts

δx = (δ ψ − δ ψ)/δ ψ Cross-product of ψ and δ

stant (of order 10 Mpc), then increases from z = 17.22 to z =
14.7 and decreases again until z = 13.22 it settles back to the

same characteristic scale as at z > 17.22, at which point it be-

comes roughly constant (again of order 10 Mpc) with decreasing

redshift. So, it is not immediately obvious that we can make a

connection with the characteristic size of above-average δTb re-

gions and the scales that exhibit maximal non-Gaussianity in b(z).

But as discussed with such measures of characteristic size, we ig-

nore the level of coherence in the distribution of the regions of

interest. So, we again use synthetic datacubes to try and probe the

coherence in the size and distribution of above and below-average

δTb regions. To do so, we again split a separate set of synthetic

datacubes into two phases, one consisting of pixels that are above-

average δTb in the HMXB simulation, and another consisting of

pixels that are below-average in the HMXB simulation. Pixels that

belong to each phase are again randomly assigned brightness tem-

peratures from a Gaussian so that the mean and variance of each

phase is the same as that of the two corresponding subsets of pix-

els in the HMXB simulation. We refer to this synthetic data set as

average-separated.

We plot the equilateral spherically averaged normalized bispec-

trum as measured from such average-separated synthetic datacubes

with thick lines in the bottom panel of Fig. 8. Again, we plot the

corresponding HMXB bispectra (thin lines using the same redshift–

colour relation as in the legend). There is a turnover in the bis-

pectra from these average-separated synthetic datacubes that corre-

spond to the scale of the large-scale edge of the turnovers seen in

the HMXB ’s normalized bispectrum; i.e. the scale at which the

normalized bispectrum is seen to start increasing (as we move

from small k to large k). We therefore conclude that both the

size and distribution of the above-average δTb regions define the

large-scale edge of the turnover we see in the normalized δTb

bispectrum.

4.3 Contribution of the density, spin-temperature, and their

cross-terms

To try and gain further intuition as to what is driving the evolution

of the 21-cm bispectrum during X-ray heating, we can break the

bispectrum down into contributions from bispectra of the two fields

that drive the brightness temperature during the EoH, namely the

density field and spin–temperature field (we assume the neutral

fraction is 1 throughout). Because we can expand δTb = T0 (1 −
Tcmb/Ts + δ − δ Tcmb/Ts), we can write

δT T = δTb − δTb = T0

(

δ − δx ψ δ − δψ ψ
)

, (5)

where δ is the matter overdensity, δψ is the field contrast of ψ =
Tcmb/Ts, the cross-field contrast is given by δx = (δ ψ/δ ψ − 1),

and T0 = 27 [(�b h2)/0.023]
√

[0.15/(�m h2)] [(1 + z)/10.0] mK.

These variables are summarized in Table 1 for ease of refer-

ence. With this breakdown of δT T in hand, we can expand the

21-cm equilateral bispectrum as (dropping explicit mention of k

Figure 9. Spherically averaged normalized bispectrum as a function of k

with the density, spin temperature, and their cross-product contributions

for the equilateral configuration, for from top to bottom z = 17.22, 15.60,

14.29 and for the HMXB simulation. The brightness–temperature bispectrum

is shown with the solid purple line. During the early stages of heating, the

cross-product field has a lot of influence on the equilateral bispectrum mainly

through 〈δx δ2
ψ 〉 (yellow-dashed line w/circles in the top and middle panels)

and 〈δ2
x δψ 〉 (orange–dotted line w/ stars in the top panel). At later times, the

density field comes to dominate over the cross terms through 〈δ3〉 (orange-

dotted line w/stars in the bottom panel) and 〈δ2 δψ 〉 (yellow-dashed line

w/circles in the bottom panel).

dependence for clarity)

T
3 〈δT δT δT 〉 = T 3

0

{

〈δ δ δ〉 − 3 (ψ δ) 〈δ δ δx〉 − 3 ψ 〈δ δ δψ 〉

+ 3 (ψ δ)2 〈δ δx δx〉 + 6 (ψ δ) ψ 〈δ δx δψ 〉

+ 3 (ψ)2 〈δ δψ δψ 〉 − (ψ δ)3 〈δx δx δx〉

− 3 (ψ δ)2 ψ 〈δx δx δψ 〉 − 3 (ψ δ) (ψ)2 〈δx δψ δψ 〉

− (ψ)3 〈δψ δψ δψ 〉
}

. (6)

In Fig. 9, we plot the spherically averaged normalized bispec-

trum for the brightness temperature along with the contributions

from δ, Ts, and their cross-product field as described in Table 1 and

MNRAS 482, 2653–2669 (2019)
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2662 C. A. Watkinson et al.

equation (6). We only explicitly plot a selection of the most domi-

nant of these at any given redshift and plot the collective contribution

from the rest of the terms together. Fig. 9 shows from top to bottom

z = 17.22, 15.6, 14.29.

For most of the simulation, the normalized bispectrum is domi-

nated by fluctuations in the spin temperature 〈δ3
ψ 〉 (blue dot–dashed

lines) and to a lesser extent by the cross-bispectra of the density

and spin temperature 〈δ δ2
ψ 〉 (green–dotted line w/triangles). In the

HMXB simulation, it is sources in the more dense regions that pro-

duce heating, and so the spin temperature and the density field

will be positively correlated. As a result, the ψ and δ will be an-

ticorrelated and above-average heated regions will correspond to a

below-average ψ . As we see the 〈δ3
ψ 〉 (blue dot–dashed lines; note

we plot −〈δ3
ψ 〉) is indeed negative as in ψ the non-Gaussianity is

coming from concentrations of below-average ψ regions in a more

diffuse above-average ψ background. In contrast, the contribution

from 〈δx δ2
ψ 〉 (which is dominant at early times) is positive; see the

yellow dashed line w/circles in the top and middle panels (noting

that we plot −3〈δx δ2
ψ 〉). This means that at the point when the con-

tribution from the spin temperature is most strong (which occurs

at z = 18.54 in the HMXB simulation when the contrast between

the most hot and the most cold regions is at its most extreme – see

Fig. 4), the brightness–temperature bispectrum is suppressed by the

contribution of 〈δx δ2
ψ 〉 opposing that from the spin temperature. The

bispectrum therefore peaks slightly later than one might naively ex-

pect from an argument based on the contrast between extreme cold

regions and extreme hot regions being maximal and so boosting the

degree of non-Gaussianity.

As the background of X-rays heats up the cooler areas, and more

and more regions become saturated (at which point they basically

follow the fluctuations in the density field), the influence of the

cross-products reduces. This is most clearly seen in the reduction

in the contribution of 〈δx δ2
ψ 〉 (yellow-dashed line w/circles) relative

to the other contributing terms between the top panel and middle

panels of Fig. 9. The 〈δ3
x〉 (orange-dashed line w/stars in the top

panel) is also one of the more influential terms at early times.

As the influence of the cross-products decreases, the influence of

fluctuations in the density field on the normalized bispectrum in-

creases (mostly on smaller scales). This can be seen in the relative

increase in the influence of 〈δ δ2
ψ 〉, seen by tracking the green-dotted

line with triangles from the top to bottom panels of Fig. 9. The influ-

ence of 〈δ2 δψ 〉 also starts to have influence during the mid-phases

of heating (orange-dashed line w/triangles in the middle panel).

Towards the end of heating, the density field starts to dominate,

see 〈δ2 δψ 〉 (yellow-dashed line with circles in the bottom panel)

and 〈δ3〉 (orange-dashed line w/triangles in the bottom panel). By

the end of the simulation (not shown), the density field drives the

normalized bispectrum through 〈δ2 δψ 〉 and 〈δ3〉.
We have marked the typical separation of emission regions with

the vertical blue dotted line. The turnover is more prominent in the

normalized bispectrum of 〈δ3
ψ 〉 (blue dot–dashed lines) than it is

in the brightness–temperature bispectrum (purple solid lines), and

the correlation between the typical separation and this turnover is

also more clear. The middle panel of Fig. 9 shows nicely how this

turnover is ultimately suppressed by the increasing domination of

small-scale structure in the density field.

Note that at later times, equation (6) overestimates the true bis-

pectrum. This is because the influence of the neutral fraction (which

we have assumed to be totally negligible in deriving equation 6) can

no longer be ignored. However, as is clear from comparing the true

brightness–temperature normalized bispectrum (purple solid line)

with equation (6) (thin purple dot–dashed line), at this stage ion-

izations simply damp the amplitude of the bispectrum, rather than

qualitatively alter it.

4.4 The normalized bispectrum for isosceles configurations

Until this point, we have focused on the equilateral configuration,

but of course, this is just one of many possible configurations of

triangle that may be formed by three k vectors. We therefore con-

sider the isosceles configuration in this section. We focus on the

isosceles, as other configurations we looked at during our studies

for this paper were qualitatively quite similar.

Early in the heating process the most heated regions are con-

centrated around sources and are quite symmetric in their profile

shapes due to the long mean-free path of X-rays. The most ex-

treme hot regions will therefore follow the underlying filamentary

structure of the cosmic web, whilst exhibiting a level of spheri-

cal symmetry. We therefore expect the normalized bispectrum to

be maximal for configurations close to equilateral during the early

phases of the heating process. This can be seen at z = 17.85 (purple

solid line), z = 17.22 (blue dot–dashed line), and z = 16.63 (green

dotted line with triangles) in the three panels of Fig. 10. These plots

show the spherically averaged normalized isosceles bispectra for a

range of k3 (defined by the angle θ between k1 and k2) for k2 =
k1 = 0.2 Mpc−1 (top), k2 = k1 = 0.5 Mpc−1 (middle), and k2 = k1 =
1.0 Mpc−1 (bottom). Whilst the map is in absorption, configurations

that are close to equilateral, i.e. θ ≈ π/3 radians, have the largest

bispectrum. Note also from this plot, that similar to the normal-

ized equilateral bispectrum, the normalized isosceles bispectrum

has maximum amplitude at z = 15.60 on small scales (large k) (see

the yellow dotted line with circles in the bottom plot of Fig. 10),

and at z = 17.22 on large scales (see the blue dot–dashed line in the

top plot of Fig. 10). Of course, as multiple HMXB sources drive a

given heated region, there will be deviation from spherical symme-

try in the heated features of the map, and so we would also expect

a strong bispectrum from flattened triangle configurations. This is

seen in Fig. 10 in which a positive normalized bispectrum persists

as the k triangle is flattened by an increasing angle between k1 and

k2.

As the background brightness temperature rises, and the small-

scale structure starts driving the bispectrum, the spherical sym-

metry of heated profiles becomes less of a dominant feature and

there will be more non-Gaussianity coming from ellipsoidal pro-

files, even plane-like features. This is, for example, seen at z = 15.6

(yellow-dashed line with circles) in Fig. 10, where the normalized

bispectrum becomes roughly flat for most angles (it even increases

to larger angles at k = 0.2 Mpc−1), but still drops off at the smaller

angles, θ < 0.2π radians. After the map moves into emission, the

normalized bispectrum exhibits a U shape on small scales (reminis-

cent of what is seen in the reduced bispectrum of the density field).

This can be seen at z = 14.29 (orange-dotted line with stars) in the

bottom plot of Fig. 10.

5 C ONSI STENCY OF QUALI TATI VE

E VO L U T I O N O F T H E N O R M A L I Z E D

BI SPECTRU M ACROSS VARI OUS

SI MULATI ONS OF X-RAY H EATI NG

HMXB is but one simulation, and as with all simulations, it makes

certain assumptions regarding the nature of the dominant sources

of heating and their spectra. As the parameter space for the EoH

remains wide open, we will now briefly consider how generic the

features we see in the HMXB bispectrum are to other simulations.

MNRAS 482, 2653–2669 (2019)
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The 21cm bispectrum due to X-ray heating 2663

Figure 10. Normalized bispectrum as a function of angle between k1 and

k2 for a range of redshifts for the isosceles configuration, i.e. where k1 = k2.

Top: k1 = k2 = 0.2 Mpc−1; middle: when k1 = k2 = 0.5 Mpc−1; and bottom

when k1 = k2 = 1.0 Mpc−1. Here, we show results for the mean-subtracted

HMXB simulation. The general trends of the normalized bispectrum as a

function of redshift we see in the equilateral configuration are the same

on a variety of scales. Whilst the large-scale details of the distribution

and shape of heated profiles dominate the signal, we see a peak around

the equilateral configuration. This is due to heating sources following the

filamentary structure of the underlying dark matter field and heating profiles

being roughly symmetrical around sources.

First, we consider what happens when AGNs (aka QSOs) are

allowed to contribute to the X-ray heating budget, as per the HMXB

+ QSO and QSO simulations described in Section 2.2. We show

the equilateral normalized bispectrum for these two simulations in

the top and middle panels of Fig. 11. The top panel is from HMXB

+ QSO simulation; the normalized bispectrum of this simulation

exhibits a very similar turnover feature shifting to smaller scales

with decreasing redshift. However, there are differences, the heating

process kicks in earlier and produces a large bispectrum at k ∼

Figure 11. Normalized bispectrum for the equilateral configuration from

the HMXB + QSO simulation (top), QSO simulation (middle), and toy

simulation (bottom). In the HMXB + QSO simulation, we see a similar

feature of a turnover moving from large to small scales as in HMXB. The

amplitude is much bigger at early times than in HMXB as the heated profiles

from QSO’s are very spherically symmetric. The QSO simulation (middle)

does not exhibit a turnover that correlates with the typical separation of

emission regions (marked with the dotted vertical lines for, from left to right,

z = 15.13, 13.56, 12.60, 12.32). The toy simulation has randomly scattered

Gaussian heated profiles designed to roughly reproduce the properties of

QSO. The turnover we see in the toy simulation’s bispectrum (bottom) is

very similar to that seen in QSO (middle), which indicates that the shape and

size of the heating profiles around QSOs is a major driver of this feature,

with clustering playing a subdominant role.

0.07 Mpc−1, which maximizes at z = 18.54 (when the contrast

between the hottest and coldest pixels is maximized in HMXB). The

amplitude is greater than it is in the HMXB simulation, which is to

be expected as QSOs produce a more spherically symmetric heated

profile (note that because of this, the equilateral configuration also

has a much larger normalized bispectrum relative to that of other

configurations). Another difference is the boost in non-Gaussianity

MNRAS 482, 2653–2669 (2019)
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2664 C. A. Watkinson et al.

Figure 12. Slices taken from the QSO simulation during a similar regime where the background brightness temperature is increasing. Corresponding from

left to right to z = 15.13, 13.56, 12.32 and T b = −196.42,−153.41,−103.77 mK. The heated profiles around quasars are more well-defined in comparison

with those of the HMXB simulation. QSO sources are also fewer, more isolated, and generate more spherically symmetric heating profiles.

at k ∼ 0.07 Mpc−1 seems to persist to lower redshifts, which must be

driven by the distribution of QSO heating profiles. The contribution

of the QSO distribution and profile shape quickly gets washed out

by the HMXB heating profiles. The bispectrum therefore drops in

amplitude from z = 18.54 and then by z = 17.22, looks very similar

to the HMXB bispectrum.

The normalized bispectrum of the QSO simulation (see the mid-

dle panel of Fig. 11) exhibits more isolated heated regions with very

spherically symmetric profiles around each QSO (see the maps in

Fig. 12). We therefore would not necessarily expect that it would

exhibit the same qualitative bispectrum evolution as the HMXB

simulation. Indeed, the spherically averaged equilateral normalized

bispectrum of the QSO simulation is quite different and it is there-

fore useful to compare it with that of the HMXB simulation. Instead

of a single turnover, there is a multimodality to the bispectrum,

dominated by an early turnover at k ∼ 0.07 Mpc−1 (similar to that

seen in the HMXB + QSO simulation, but with a lower amplitude).

Later, the bispectrum becomes dominated by a turnover at smaller

scales, peaking around k ∼ 0.4 Mpc−1. There does not seem to be a

clear correlation between the typical separation of emission regions

(shown with the vertical-dashed lines in Fig. 11) and the features we

see in the QSO simulation, as was the case for the HMXB simulation.

It is not possible to say how much of the non-Gaussianity we see

in the QSO simulation comes from the distribution of heated pro-

files and how much from the profile shapes. We therefore look at the

bispectrum for randomly distributed QSO-like heating profiles, by

constructing a toy model in which spin–temperature profiles around

randomly distributed sources are modelled as Gaussian. This pro-

duces a brightness–temperature profile that is qualitatively similar

to model B for mini-QSO in Ghara, Choudhury & Datta (2015).

Before populating a datacube with source profiles, every pixel is as-

signed a fixed background spin temperature in line with the lowest

brightness temperatures seen in the QSO simulation (assuming a

mean density and fully neutral IGM). We then randomly distribute

Gaussian spin–temperature profiles, sampling the σ of the profile

from a triangular function (whose mode and maximum are chosen

to reproduce the most common-sized and maximal δTb profiles we

observe in the QSO simulation). We set the minimum of our trian-

gular selection function to σ = 0, and choose a mode and maximum

σ to produce an above-average δTb profiles with a mode of R = 7

Mpc and maximum R = 12.5 Mpc. Note that we did not tweak these

values at all to tune the resulting bispectrum. The number of sources

was fixed so that at z = 13.55 the average brightness temperature

in the toy datacube matched the original QSO simulation. We find

that despite merely rising the background brightness temperature

to produce a toy datacube at z = 12.32, the mean brightness tem-

perature of the toy (δTb = −111.96 mK) matches well with QSO

(δTb = −103.77 mK).

We show the normalized bispectrum for z = 12.32 from such

a toy model in the bottom panel of Fig. 11. Note we do not plot

other redshifts, because the Ts profiles are quite narrow and so, for

the range of redshifts we consider in this section, raising the back-

ground brightness temperature does little in changing the size of

the resulting Ts profile size, i.e. the bispectrum is unchanging with

redshift. This turnover in the bispectrum over a fixed scale range

with increasing background brightness temperature is consistent

with what we see in the QSO bispectrum, once the source number

has reached a point at which there are QSOs in most halos (see the

yellow-dashed line with circles, the orange dotted line with stars,

and the red dot–dashed line with upturned triangles in the middle

panel of Fig. 11). We can see that this regime (where the turnover

becomes fixed in scale) is associated with the source number be-

coming roughly constant by simply comparing the middle map of

Fig. 12 (z = 13.56; yellow dashed-line with circles) with the left

map (z = 15.13; green dotted line with triangles) and right map

(z = 12.32; red dot–dashed line with upturned triangles). The left

map has fewer heated regions than the other two (which look very

similar despite being ∼50 mK apart in their mean brightness tem-

peratures), and these are on average bigger than those seen at the

lower redshifts.

Whilst the turnover in the toy model peaks at the same scales

as that in QSO, it is much sharper and on small scales falls off to

negative amplitude on larger k (i.e. on small scales under-densities

are driving the bispectrum). Therefore, we conclude that the bis-

pectrum we see in the QSO simulation must be sensitive to both

the profile size and the distribution of profiles, with the scale at

which the late-time bispectrum peaks corresponding to the bubble

profile size. The reason we do not see such sensitivity to a profile

size so clearly in the HMXB simulation is because the profiles are

less well-defined and do not exhibit a strong characteristic scale

(compare the HMXB maps in Fig. 7 with the QSO maps in Fig. 12).

Next, we check whether the features we see in the normalized

bispectrum from HMXB are seen in semi-numerical simulations. To

do so we utilize one of the most popular semi-numerical simula-

tions of the EoH and reionization – 21CMFAST [we refer readers

to Mesinger, Furlanetto & Cen (2011) for details on this code].

We have measured the equilateral bispectrum from two contrast-

ing 21CMFASTsimulations, namely the faint galaxies and bright

MNRAS 482, 2653–2669 (2019)
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The 21cm bispectrum due to X-ray heating 2665

Figure 13. Normalized bispectrum for the equilateral configuration, for z =
15.40, 14.46, 13.86, 13.00, 11.43 when xHI = 1.00, 0.99, 0.99, 0.98, 0.95 in

the Faint Galaxies 21CMFAST simulation. We see a qualitatively very similar

evolution during the EoH as seen in the HMXB with a turnover associated

with the typical separation of region δTb > 0. Reionization commences

before this simulation reaches a stage at which it the bispectrum is driven

solely by the density field.

galaxies simulations from Greig & Mesinger (2017). The simula-

tions we consider were generated for another project and so have

similar, but not identical, resolution (200 pixels per 300 Mpc side).

Fig. 13 shows the equilateral normalized bispectrum as a func-

tion of k, we only show the faint galaxies simulation for the sake of

brevity.14 In both simulations, we see qualitatively similar evolution

of the normalized bispectrum seen in Fig. 6; i.e. a positive turnover

forming on large scales (small k) during the early stages of heating,

which then drops in magnitude as it shifts to smaller scales with re-

ducing redshift. This turnover again correlates well with the typical

separation of emission regions during this phase (which are again

overplotted with dotted lines whose colour–redshift relation agrees

with that of the legend). The faint galaxies and bright galaxies mod-

els were chosen by Greig & Mesinger (2017) to create contrasting

simulated data sets for 21CMMC parameter studies, which suggests

that such features should be qualitatively generic so long as X-rays

sources are hosted by most star-forming haloes, as the case with

HMXBs.

Neither 21CMFAST simulations reach a stage at which we see

the monotonic increase in the normalized bispectrum with k associ-

ated with the late phases of the heating process when the influence

of the density field on the bispectrum is becoming substantial. It is

very likely that this is because in both 21CMFAST models, reion-

ization has started before the stage at which this feature in the

HMXB simulation sets in. As seen by Majumdar et al. (2017), the

bispectrum becomes negative over a range of scales once reioniza-

tion commences, we also see similar behaviour in the normalized

14The 21CMFAST normalized bispectrum is much smoother with k than

that of the HMXB simulation, despite the fact we used the same binning

for both bispectra analysis. This likely stems from fundamental differences

in the way semi-numerical and numerical codes operate. Seminumerical

codes average over the density field on varying scales in order to perform

the integrals associated with coupling and heating, as well as to numerically

apply the Furlanetto, Zaldarriaga & Hernquist (2004) excursion-set model

for reionization. It is easy to see how statistics from such an approach would

be less ‘noisy’ than a fully numerical simulation.

bispectrum from the 21CMFAST simulations we have considered

when the ionized fraction becomes substantial. We defer analysis

of the normalized bispectrum during the EoR to future work as the

focus of this work is the EoH.

Shimabukuro et al. (2016) have also studied the bispectrum dur-

ing the EoH and reionization as predicted by 21CMFAST. However,

it is hard to compare their results with our HMXB analysis, as they

do not provide the brightness–temperature evolution of the seminu-

merical 21CMFAST simulation that they analyse. The statistic they

use is also different from ours. In our paper, we use only the real

part of the FFTed signal in calculating our bispectrum. This is be-

cause we use the FFT estimator of Watkinson et al. (2017) with real

FFTs, and so our bispectrum is forced to be real. This is reasonable

as the imaginary term will cancel out in any binned calculation

of the bispectrum. On the other hand, Shimabukuro et al. (2016)

measure abs[B(k)] =
√

Re[B(k)]2 + Im[B(k)]2, which is not tech-

nically speaking the bispectrum, even if you were to include the

imaginary contribution. Their fig. 1, which plots the equilateral

k6/(2π) abs[B(k)] with k, looks quite different to k6/(2π)2 B(k)

from the HMXB simulation (provided in the bottom panel of our

Fig. A1 in the Appendix). The amplitude of their statistic varies with

redshift, but does not vary much with scale at a given redshift (i.e.

the bispectrum is flat) except for one redshift at which it exhibits a

monotonic increase with k.

6 D ETECTA BI LI TY OF THE BI SPECTRU M

We have shown that the bispectrum should contain valuable infor-

mation unavailable from the power spectrum; however, it is also

more difficult to detect. Therefore, for the remainder of this pa-

per, we will examine the detectability of the features discussed in

preceding sections of this paper.

There will likely be residuals in 21-cm data sets after calibration

and foreground removal, and we will consider the impact of these

on the bispectrum in future works. But in the absence of consensus

on the best methods for mitigating foregrounds and instrumental

effects, we feel it is reasonable, for the purposes of this work, to

consider a best-case scenario where the noise on the bispectrum is

due solely to instrumental noise and sample variance.

Instrumental noise is Gaussian and so has a bispectrum of zero.

The covariance of the noise bispectrum is however not zero and

therefore contributes to the error �NB(k1, k2, k3) on our measure-

ment of the bispectrum. For a Gaussian field, it is possible to write

the covariance of its bispectrum BN as

Cov [BN(k1, k2, k3) BN(k1, k2, k3)] = [�NB(k1, k2, k3)]2

= k3
f

s123

V123

P (k1) P (k2) P (k3), (7)

where kf = 2π/L is the fundamental k scale, V123 ≈
8.0π2 k1 k2 k3 (s kf)

3 is the number of fundamental triangles in units

of k3
f , s kf is the bin width, and s123 = 1, 2, 6 for general, isosce-

les, and equilateral triangle configurations, respectively (see Scoc-

cimarro et al. 1998; Scoccimarro, Sefusatti & Zaldarriaga 2004;

Liguori et al. 2010). This is a convenient way to measure the noise

on the bispectrum, as it allows us to us to utilize existing power-

spectrum error-estimation pipelines.

We can also use equation (7) to estimate the error contribution

from sample variance �Bsv a statistical error deriving from the

limited sample volume of any observation. This sample variance is

generally assumed to be Gaussian when estimating power spectrum

MNRAS 482, 2653–2669 (2019)
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2666 C. A. Watkinson et al.

errors and the error due to this is taken to be proportional to the

21-cm power spectrum.

Mondal, Bharadwaj & Majumdar (2016) show that the non-

Gaussianity of the signal must be taken into account when cal-

culating the sample variance error on the 21-cm power spectrum

during reionization (see also Mondal et al. 2015a and Mondal,

Bharadwaj & Majumdar 2015b). There is therefore strong motiva-

tion to perform similar studies into the sample–variance error on

the bispectrum. However, for the purposes of this work, where we

are simply after an order of magnitude approximation, the Gaussian

approximation to the sample–variance covariance will suffice.

We use TOOLS21CM to generate noise cubes in Fourier space,

sample using the uv footprint of SKA-LOW and natural weighting,

and then measure the power spectrum.15
TOOLS21CM uses the noise

and telescope models of Giri, Mellema & Ghara (2018) who assume

SKA-LOW will be composed of a total of 512 antenna with a

diameter of Dstat = 35 m, with 224 randomly distributed in a core

of radius 500 m. The rest of the antenna are arranged in 48 clusters

(each with 6 randomly placed stations) lying on a three-arm spiral

with a total radial extent of 35 km from the core centre. We refer the

reader to Ghara et al. (2017) and Giri et al. (2018) for details on this.

We assume a total integration time of 1000 h and a bandwidth of

8 MHz. We calculate the box length L that would correspond to the

survey volume (which we calculate using COSMOCALC16), assuming

that the FoV of SKA is �FoV = λ2/Dstat.

We calculate the error on the bispectrum due to sample vari-

ance according to equation (30) of Mondal et al. (2015b) [which is

equivalent to equation (9) in Mellema et al. 2013], i.e.

Psv(k) =
(2π)2 P (k)2

L3 k2 s kf

. (8)

Our total error on the bispectrum is then given by �B =
�BN + �Bsv. However, we need the error on b(k1, k2, k3) =
B(k1, k2, k3)/

√

(k1 k2 k3)−1P (k1) P (k2) P (k3). In principle, there

are correlated errors on the power spectrum that we should

worry about, but as long as the error is dominated by

the bispectrum, then we can approximate �b(k1, k2, k3) =
�B/

√

(k1 k2 k3)−1P (k1) P (k2) P (k3) (Scoccimarro et al. 2004).

Note that we have checked that error calculation on the bispec-

trum as calculated using equation (7) is consistent with the noise

bispectrum sensitivity calculations of Yoshiura et al. (2015). How-

ever, our errors are slightly larger on smaller scales which is to be

expected as the number of core antenna we assume is roughly half

that used by Yoshiura et al. (2015) to be in keeping with the latest

SKA design specifications.

Fig. 14 shows the normalized bispectrum from the early (z =
17.85), mid (z = 16.63), and late (z = 13.22) stages of the heat

process. We have overplotted shaded regions that correspond to the

normalized–bispectrum noise error for each redshift. On top of the

binning over cos(θ ) ± 0.05 as done in the rest of this paper we bin the

statistic further in k (see the figure caption for binning details). Note

that the normalization step masks the usual trend of error magnitude

getting stronger with redshift, instead highlighting the detectability

that connects to the amplitude of the signal as much as to the noise

level itself. We find that, if foreground and instrumental effects are

successfully mitigated, we should have sensitivity to the bispectrum

at k < 0.6 Mpc−1, the gradient and amplitude evolution in this k

15tools21cm maybe downloaded from here https://github.com/sambit-giri/t

ools21cm.
16http://cxc.harvard.edu/contrib/cosmocalc/

Figure 14. Normalized bispectrum for the equilateral configuration for z =
17.85, 16.63, 13.22. This has been binned using bin edges in k/Mpc−1 of

bin edges [0.04, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.8, 1.2, 1.8, 2.5]. The noise

error at each redshift is depicted by the shaded regions. If foregrounds

and instrumental effects can be mitigated, we should have good sensitivity

to the bispectrum at k < 0.6 Mpc−1. Note the normalization masks the

appearance of the noise getting stronger with redshift, instead highlighting

the detectability of the signal.

range would provide us with valuable information about the timing

and nature of heating. Importantly, it is in these early stages and at

these scales that the impact on the bispectrum of including QSOs on

top of HMXBs is most predominant. We therefore conclude that the

21-cm bispectrum should provide a valuable tool for understanding

the properties of stars and galaxies, even during the EoH. As shown

in Watkinson & Pritchard (2015), the skewness should also provide

a useful probe of the EoH. Given that reality will likely make

detecting the bispectrum harder than we find here, it is likely that

the skewness will have a role to play in combination with the power

spectrum and bispectrum.

7 C O N C L U S I O N S

In this paper, we have presented analysis of the 21-cm normalized

bispectrum from fully numerical simulations of the EoH, assuming

that the only source of X-rays is HMXBs. In the associated Ap-

pendix, we have also shown that our choice of bispectrum normal-

ization is the best option for analysing 21-cm data. We have found

that if HMXB-like X-ray sources drive heating, then the equilateral

bispectrum will be strongest in amplitude compared to other con-

figurations and will exhibit a turnover that shifts from large to small

scales with reducing redshift. We find that the scale at which this

turnover peaks is correlated with the typical separation of emission

regions. It is clear from our analysis that the bispectrum is driven by

a complex interplay between the shape and size of heated profiles

and their distribution. Cross-terms between the density field and

spin temperature dominate at early times reflecting this complex in-

terplay. As X-rays heat the cooler regions of the maps, small-scale

substructure in the heated regions start to dominate the 21-cm bis-

pectrum, introducing more power on smaller scales than on large.

Ultimately, by the end of the simulation, fluctuations in the density

field totally dominate the 21-cm bispectrum.

We consider how generic the qualitative evolution of the bispec-

trum is by analysing two contrasting seminumerical simulations.

We observe very similar qualitative behaviour as in the numerical

simulation in which HMXBs dominate the evolution. We also con-

sider how the bispectrum is changed if QSOs are included into the

MNRAS 482, 2653–2669 (2019)
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numerical simulation, providing a second source of X-rays. At early

times, the presence of QSOs produces a stronger equilateral bispec-

trum, but still exhibits a turnover that shifts to smaller scales with

decreasing redshift. By the mid-phases of the heating process, its

normalized bispectrum is indistinguishable from that of the HMXB

simulation. By analysing a third numerical simulation in which only

QSOs provide X-ray radiation, we show that the bispectrum will

look quite different than it would if HMXBs (or a similarly wide-

spread source of X-rays) drive heating. At early times, clustering

of sources introduces a large-scale turnover feature. This drops in

amplitude as the contrast between the most hot and the most cold

regions decrease and is replaced by a turnover that is driven by the

typical size of the heated profiles surrounding the heating sources.

We consider the observability of the bispectrum with phase-1 of

SKA-LOW and find that, assuming foregrounds and instrumental

effects are effectively mitigated, we should be able to detect the

bispectrum during the EoH at k < 0.6 Mpc−1. Measuring the bis-

pectrum should therefore provide a major boost to the information

available from the power spectrum alone. Further work is required

to get a better handle on the effect of sample variance and other

complications to observing statistics such as the bispectrum, e.g.

calibration and foreground removal residuals, and beam effects.
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Harnois-Déraps J., Pen U.-L., Iliev I., Merz H., Emberson J., Desjacques V.,

2013, MNRAS, 436, 540

Hills R., Kulkarni G., Meerburg P. D., Puchwein E., 2018, preprint (arXiv:

1805.01421)

Hinich M., Messer H., 1995, IEEE Trans. Signal Process., 43, 2130

Hinich M. J., Clay C. S., 1968, Rev. Geophys., 6, 347

Hinich M. J., Wolinsky M., 2005, J. Stat. Plan. Inference, 130, 405

Iliev I. T., Mellema G., Pen U.-L., Merz H., Shapiro P. R., Alvarez M. A.,

2006, MNRAS, 369, 1625

Kakiichi K. et al., 2017, MNRAS, 471, 1936

Khrykin I., Hennawi J., McQuinn M., 2017, ApJ, 838, 96

Kim Y. C., Powers E. J., 1978, Phys. Fluids, 21, 1452

Komatsu E. et al., 2011, ApJS, 192, 18

Lehmer B. D. et al., 2016, ApJ, 825, 7

Lewis A., 2011, J. Cosmol. Astropart. Phys., 10, 1475

Liguori M., Sefusatti E., Fergusson J. R., Shellard E. P. S., 2010, Adv.

Astron., 2010, 64

Loeb A., Furlanetto S. R., 2013, The First Galaxies in the Universe. Princeton

Univ. Press, Princeton, NJ

Madau P., Meiksin A., Rees M. J., 1997, ApJ, 475, 429

Madau P., Rees M. J., Volonteri M., Haardt F., Oh S. P., 2004, ApJ, 604, 484

Majumdar S., Pritchard J. R., Mondal R., Watkinson C. A., Bharadwaj S.,

Mellema G., 2017, MNRAS, 476, 4007

Mellema G., Iliev I. T., Pen U.-L., Shapiro P. R., 2006, MNRAS, 372, 679

Mellema G. et al., 2013, Exp. Astron., 36, 235

Mesinger A., Furlanetto S. R., 2007, ApJ, 669, 663

Mesinger A., Furlanetto S. R., Cen R., 2011, MNRAS, 411, 955

Mineo S., Gilfanov M., Sunyaev R., 2012a, MNRAS, 419, 2095

Mineo S., Gilfanov M., Sunyaev R., 2012b, MNRAS, 426, 1870

Mirabel I. F., Dijkstra M., Laurent P., Loeb A., Pritchard J. R., 2011, A&A,

528, A149

Mondal R., Bharadwaj S., Majumdar S., Bera A., Acharyya A., 2015a,

MNRAS, 449, L41

Mondal R., Bharadwaj S., Majumdar S., 2015b, MNRAS, 456, 1936

Mondal R., Bharadwaj S., Majumdar S., 2016, MNRAS, 464, 2992

Paciga G. et al., 2011, MNRAS, 413, 1174

Parsa S., Dunlop J. S., McLure R. J., 2018, MNRAS, 474, 2904

Patil A. H. et al., 2017, ApJ, 838, 65

Pober J. C. et al., 2015, ApJ, 809, 62

Ross H. E., Dixon K. L., Iliev I. T., Mellema G., 2017, MNRAS, 468, 3785

Ross H., Dixon K., Ghara R., Iliev I., Mellema G., 2018, preprint (arXiv:

1808.03287)

Scoccimarro R., 2000, ApJ, 544, 597

Scoccimarro R., Colombi S., Fry J. N., Frieman J. A., Hivon E., Melott A.,

1998, ApJ, 496, 586

Scoccimarro R., Couchman H. M. P., Frieman J. a., 1999, ApJ, 517, 531

Scoccimarro R., Sefusatti E., Zaldarriaga M., 2004, Phys. Rev. D, 69, 1550

Shimabukuro H., Yoshiura S., Takahashi K., Yokoyama S., Ichiki K., 2016,

MNRAS, 468, 1542

Stacy A., Greif T. H., Bromm V., 2010, MNRAS, 403, 45

Turk M. J., Abel T., O’Shea B., 2009, Science, 325, 601

Ueda Y., Akiyama M., Hasinger G., Miyaji T., Watson M., 2014, ApJ, 786,

104

Volonteri M., Gnedin N. Y., 2009, ApJ, 703, 2113

Watkinson C. A., Pritchard J. R., 2014, MNRAS, 443, 3090

MNRAS 482, 2653–2669 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
2
/2

/2
6
5
3
/5

1
2
9
1
5
0
 b

y
 U

n
iv

e
rs

ity
 o

f S
u
s
s
e
x
 u

s
e
r o

n
 1

7
 O

c
to

b
e
r 2

0
1
9

http://dx.doi.org/10.1088/0004-637X/802/1/8
http://dx.doi.org/10.1088/0004-637X/809/1/61
http://dx.doi.org/10.3847/1538-4357/833/1/102
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.3847/0004-637X/830/2/120
http://dx.doi.org/10.1038/nature25792
http://dx.doi.org/10.1016/S0370-1573(02)00276-4
http://dx.doi.org/10.1103/PhysRevD.89.023002
http://dx.doi.org/10.1093/mnras/stv2887
http://dx.doi.org/10.1093/mnras/stw3249
http://dx.doi.org/10.1146/annurev.astro.44.051905.092519
http://dx.doi.org/10.1086/324111
http://dx.doi.org/10.1109/JRPROC.1958.286741
http://dx.doi.org/10.1086/146653
http://dx.doi.org/10.1111/j.1365-2966.2012.20449.x
http://dx.doi.org/10.1086/161913
http://dx.doi.org/10.1086/423025
http://dx.doi.org/10.1093/mnras/stu2512
http://dx.doi.org/10.1093/mnras/stw2494
http://dx.doi.org/10.1051/0004-6361/201425334
http://dx.doi.org/10.1111/j.1365-2966.2004.07450.x
http://dx.doi.org/10.1093/mnras/sty1786
http://dx.doi.org/10.1093/mnras/stx2118
http://dx.doi.org/10.1093/mnras/stt1591
http://arxiv.org/abs/1805.01421
http://dx.doi.org/10.1109/78.414775
http://dx.doi.org/10.1029/RG006i003p00347
http://dx.doi.org/10.1016/j.jspi.2003.12.022
http://dx.doi.org/10.1111/j.1365-2966.2006.10502.x
http://dx.doi.org/10.1093/mnras/stx1568
http://dx.doi.org/10.3847/1538-4357/aa6621
http://dx.doi.org/10.1063/1.862365
http://dx.doi.org/10.3847/0004-637X/825/1/7
http://dx.doi.org/10.1086/303549
http://dx.doi.org/10.1086/381935
http://dx.doi.org/10.1093/mnras/sty535
http://dx.doi.org/10.1111/j.1365-2966.2006.10919.x
http://dx.doi.org/10.1007/s10686-013-9334-5
http://dx.doi.org/10.1086/521806
http://dx.doi.org/10.1111/j.1365-2966.2010.17731.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19862.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21831.x
http://dx.doi.org/10.1093/mnrasl/slv015
http://dx.doi.org/10.1093/mnras/stv2772
http://dx.doi.org/10.1111/j.1365-2966.2011.18208.x
http://dx.doi.org/10.1093/mnras/stx2887
http://dx.doi.org/10.3847/1538-4357/aa63e7
http://dx.doi.org/10.1088/0004-637X/809/1/62
http://dx.doi.org/10.1093/mnras/stx649
https://arxiv.org/abs/1808.03287
http://dx.doi.org/10.1086/317248
http://dx.doi.org/10.1086/305399
http://dx.doi.org/10.1086/307220
http://dx.doi.org/10.1103/PhysRevD.69.103513
http://dx.doi.org/10.1093/mnras/stx530
http://dx.doi.org/10.1111/j.1365-2966.2009.16113.x
http://dx.doi.org/10.1126/science.1173540
http://dx.doi.org/10.1088/0004-637X/786/2/104
http://dx.doi.org/10.1088/0004-637X/703/2/2113
http://dx.doi.org/10.1093/mnras/stu1384


2668 C. A. Watkinson et al.

Watkinson C. A., Pritchard J. R., 2015, MNRAS, 454, 1416

Watkinson C. A., Mesinger A., Pritchard J. R., Sobacchi E., 2015, MNRAS,

449, 3202

Watkinson C. A., Majumdar S., Pritchard J. R., 2017, MNRAS, 472, 2436

Yoshiura S., Shimabukuro H., Takahashi K., Momose R., Nakanishi H., Imai

H., 2015, MNRAS, 451, 266

APPEN D IX: OTHER BISPECTRU M

N O R M A L I Z AT I O N S

Throughout this paper, we have focused on what we call the ‘normal-

ized bispectrum’, but there are several other normalization choices

for the bispectrum. We will use this appendix to illustrate why we

find the normalized bispectrum to be the best choice for 21-cm

analysis, mainly because it suppresses random flips in sign when

the data are close to non-Gaussianity by removing the contribution

of the power spectrum to the bispectrum amplitude.

In cosmology, it is common to consider either the raw bispectrum

B(k1, k2, k3), the reduced bispectrum defined as

Q(k1, k2, k3) =
B(k1, k2, k3)

[P (k1) P (k2) + P (k1) P (k2) + P (k1) P (k3)]
, (A1)

or the dimensionless bispectrum (k1, k2, k3)2/(2π2) B(k1, k2, k3)

(e.g. Scoccimarro et al. 1999; Shimabukuro et al. 2016; Majum-

dar et al. 2017).

We plot the spherically averaged raw bispectrum B(k) of the

HMXB simulation for the equilateral configuration, which is shown

in the top plot of Fig. A1. The bispectrum of the brightness–

Figure A1. Top: Spherically averaged B(k) with k for the equilateral config-

uration of k vectors for the HMXB simulation. Bottom: As top, but including

a normalization factor of k6/(2π2) to B(k). Vertical dotted lines correspond

to the scales associated with characteristic radius of above-average δTb

regions as measured by the mean-free-path method.

Figure A2. Top: Spherically averaged reduced bispectrum with k for the

equilateral configuration of k vectors for the HMXB simulation. Bottom:

Power spectrum from the same simulation. Q(k) retains a scale-dependent

contribution from the power spectrum, especially relevant on larger

scales.

temperature field has units of mK3 Mpc6. In the bottom plot

of Fig. A1, we have normalized out the volume dimension of

the statistic by instead plotting the dimensionless bispectrum

(k1, k2, k3)2/(2π2) B(k1, k2, k3) (with units of mK3). The first thing

to note about both these statistics is that they exhibit wild fluctu-

ations from positive to negative amplitude at certain redshifts and

scales; see the red dot–dashed line with inverted triangles for k <

0.2 Mpc−1 and the orange-dotted line with stars at k < 0.15 Mpc−1

in both plots of Fig. A1. This occurs, as the contribution to the

statistic from non-Gaussianity is oscillating around zero. There is

then a strong non-zero amplitude coming from the power in the

maps. If more excessive binning is used, these flips in sign can pro-

duce spurious features in the statistic. It is for this reason that we

strongly advocate the use of the normalized bispectrum described

in the main part of this paper, as it isolates the contribution due

to non-Gaussianity in the bispectrum and therefore does not suffer

from such artificial features.

Comparing the raw bispectrum with the dimensionless bispec-

trum, we see that the monotonic drop from large (small k) scales

to small (large k) is ultimately due to dimension rather than any-

thing physical in the map.17 A similar evolution from high am-

plitude at large k to low amplitude at small k in the raw B(k)

17The prefactor in the (k1, k2, k3)2/(2π2) B(k1, k2, k3) normalization de-

rives from the spherically averaging the bispectrum. The area under this

function is connected to the skew as a function of d lnk.
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is seen in the plots of Majumdar et al. (2017), who study the

spherically averaged raw bispectrum during reionization. During

reionization, it is the ionized regions (therefore below-average δTb

regions) that introduce non-Gaussianities beyond that from the

density field, and so the EoR bispectrum is negative on many

scales. During the EoH, we find that the bispectrum is positive;

this tells us that it is the heated regions, i.e. the regions that are

above-average δTb, which are introducing non-Gaussianity to the

maps.

There is some sense from the evolution in the large-scale power

of k6/(2π2) B(k) (see the turnover evolving in the bottom plot of

Fig. A1) that there is some characteristic scale in the HMXB sim-

ulation that gets bigger and then smaller with decreasing redshift.

We saw a similar evolution in scale as seen in Fig. 4, where we

plot the PDF of the characteristic radius of above-average δTb re-

gions. However, if we translate the mean of these PDFs to k-scales

k = 2π/(4 R) and mark these on to the bottom plot of Fig. A1

(vertical-dotted lines whose colour defines the redshift), we see that

there is not a clear cut connection with the features seen in this

statistic, even qualitatively.

Q(k1, k2, k3) is motivated by large-scale structure studies

as work on non-linear perturbation theory predicted that the

density–field bispectrum should exhibit non-Gaussianities such that

Btree(k1, k2, k3) = 2 F2 (k1, k2) P (k1) P (k2) + cyc., where the ker-

nel F2 (k1, k2) is derived from the equations of motion for gravita-

tional instabilities [to second order, or tree level – see Scoccimarro

(2000) for the full expression]. As such, Qtree(k1, k2, k3) is time and

(approximately) scale-independent (Fry 1984; Scoccimarro 2000)

for the density field. We refer the curious reader to Bernardeau et al.

(2001) (and references therein) for more details of perturbation

theory and its predictions.

The motivation for measuring Q(k1, k2, k3) from the brightness-

temperature field is less clear cut. If we could measure the di-

mensionless brightness–temperature, i.e. δT = (T − T )/T , then it

would obviously be useful to identify when the bispectrum of the

brightness–temperature is being driven solely by the density field.

However, we measure the dimensional brightness–temperature, i.e.

(T − T ), and so Q(k1, k2, k3) is no longer dimensionless, it instead

has units of inverse brightness temperature (mk−1 for the high-z 21-

cm signal). This temperature dependence is particularly confusing

during the EoH, as the temperature will become very small as the

field passes into emission, and therefore Q(k1, k2, k3) can blow up

during this phase due to division by very small numbers. Also, be-

cause of the brightness–temperature dependence of the 21-cm Q(k),

a contribution from the power spectrum remains in the statistic, the

level of which is scale-dependent. This is seen by comparing the

top plot of Fig. A2 in which we plot the equilateral Q(k) versus k

for various redshifts with the bottom plot that shows P(k) versus

k for the same redshifts. There is an evidence of a turnover that

shifts from large to small scales; however, on larger scales, it is not

possible to concretely connect this with any physical scales in the

map. It is also clear that the drop in large-scale Q(k) is strongly

correlated with the increase in the power spectrum with decreasing

redshift.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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