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Abstract

The world’s coral reefs are being degraded, and the need to reduce local pressures in order

to offset the effects of increasing global pressures is now widely recognised. This study

investigates the spatial and temporal dynamics of coral cover, identifies the main drivers

of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef

(GBR). Based on the world’s most extensive time series data on reef condition (2258 surveys

of 214 reefs over 1985 – 2012), we show a major decline in coral cover from 28.0% to 13.8%

(0.53% yr−1), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by

crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42% and 10%

of the respective estimated losses, amounting to 3.38% yr−1 mortality. Importantly, the

relatively pristine northern region showed no overall decline. The estimated rate of increase

in coral cover in the absence of cyclones, COTS and bleaching was 2.85% yr−1, demonstrating

substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase

at 0.89% yr−1, despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS

populations, by improving water quality and developing alternative control measures, could

prevent further coral decline and improve the outlook for the GBR. Such strategies can

however only be successful if climatic conditions are stabilised.

Introduction

There is increasing concern about the progressive degradation of the world’s coral reefs

(1; 2; 3). Major anthropogenic risk factors include mortality and reduced growth of the reef-

building corals due to their high sensitivity to rising seawater temperatures, ocean acidifica-

tion, water pollution from terrestrial runoff and dredging, destructive fishing, over-fishing,

and coastal development (4). These anthropogenic risks interact with other large-scale acute

disturbances, especially tropical storms and population outbreaks of the coral-eating crown-

of-thorns starfish Acanthaster planci (COTS), which may also increase in frequency and

intensity in response to human activities (5; 6).

Regional policies cannot protect coral reefs from global-scale risks due to climate-change

associated heat stress and intensifying tropical storms. Efforts are therefore shifting towards

management of other local and regional anthropogenic pressures, in order to strengthen reef

resilience (7; 8; 9). However, assessment of the likely effectiveness of reductions of local

anthropogenic pressures requires a sound understanding of the processes that determine the

ecosystem trajectories.

The Great Barrier Reef (GBR) represents a particularly relevant case study to investigate

ecosystem trajectories and potential mitigation, as it is the world’s largest coral reef ecosys-

tem, containing ∼3000 individual coral reefs within an area of 345,000 km2. Its outstanding

universal values were recognised by World Heritage listing in 1981. GBR reefs have been

classified as the world’s least threatened (4) due to their distance from the relatively small
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human population centers, and strong legal protection (10; 11). Local anthropogenic dis-

turbances (e.g. destructive fishing, industrial and urban pollution, tourism overuse, anchor

damage, vessel groundings and oil spills) have had minor adverse effects on the GBR to

date. Fishing, although intense near the coast and urban centers, is banned in 33% of the

GBR and is regulated elsewhere (11). Nonetheless, the GBR has been subject to severe

disturbances, including COTS outbreaks, mass coral bleaching and declining growth rates of

coral due to increasing seawater temperatures, terrestrial runoff, tropical cyclones and coral

diseases (2; 3; 12; 13; 14). The runoff of soils, fertilizers and pesticides from agricultural

and coastal development has significantly affected inshore coral reefs (12; 15; 16; 17), and

has likely increased COTS outbreak frequencies (5; 18). Conclusions of scientific studies

on the condition of the GBR, based on different data sets and various time periods, have

ranged from evidence for fluctuations from localised disturbances (13; 14) to ecosystem-wide

declines (1; 2).

The objectives of this study were three-fold: (1) to investigate spatial patterns and temporal

dynamics of coral cover for the whole GBR, (2) to identify the main causes of coral mortality

by combining field estimates of coral cover with observed and modelled environmental data,

and (3) to assess the capacity of reefs to recover in the absence of various disturbances, and to

estimate future coral cover given levels of disturbance remain similar to those of 1985–2012.

The study is based on 2258 reef surveys from 214 different reefs over 27 years (Fig. 1A)

by the AIMS Long-Term Monitoring Program using a standardised manta-tow sampling

protocol (19). Estimated trends and forecasts of coral cover were made for the whole GBR

and separately for three sub-regions, namely: (1) the remote northern region (11.9 – 15.4◦S),

which is sparsely inhabited and only lightly altered by human activities, (2) the central

region (15.4 – 20.0◦S), which has more intense agriculture and grazing, and a progressively

developed coastline, and (3) the southern region (20.0 – 23.9◦S), where inshore reefs are under

pressure from coastal development and agricultural runoff, but where offshore reefs receive

protection due to their greater distance from the coast (Fig. 1A). This regionalisation helped

identify different reef trajectories and effects of disturbances along the >2000 km long GBR.

Results

Coral cover averaged 22.9% over the 214 reefs and 27 years, and spatial variation was strong,

with highest values in the far northern (>35%) and southern GBR (>30%), and lowest on

central inshore reefs (<20%) (Fig. 1A). The cover on individual reefs ranged from 1.50% to

79.7% across space and time (Fig. 1B).

Coral cover data were analysed using logistic regression models. All models included random

effects of reefs and a continuous auto-regressive structure over time for each reef. The first

analyses consisted of a purely temporal model comprising a smoothed trend for the whole

GBR, and for each region separately. For the whole GBR this showed that from 1985 to

2012, mean coral cover declined non-linearly from 28.0% (95% CI = (26.6, 29.4)) to 13.8%
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(12.4, 15.3) (Fig. 2A); a total decline of 14.2% (0.53% yr−1). This is equivalent to a loss of

50.7% of the initial cover. Two thirds of that decline has occurred since 1998, the current

rate of decline is 1.51% yr−1, and from 2006 – 2012 the rate of decline has consistently been

>1.4% yr−1 (Fig. 2A). Fitting similar models to the three regions showed that temporal

trends varied between them (Figs. 2BCD), with consistent cover of ∼24% in the North, a

non-linear decline from 26.4% to 14.1% in the Center, and a recent severe decline from 37.4%

to 8.2% in the South. Overall, cover increased on 32.2% and declined on 67.8% of the 214

reefs (Fig. 1A).

The effects of three main forms of acute disturbances, namely observed COTS densities,

modelled maximum wind speeds of 34 tropical cyclones, and mass coral bleaching in 1998

and 2002, were estimated by adding them to the temporal logistic model. These analyses

were conducted for the whole GBR, and for each region separately (Fig. 1). Disturbances

due to COTS, cyclones and bleaching occurred frequently from 1985 to 2012, with only

3 of the 214 reefs remaining impact-free. COTS were observed on 31.8% of reef visits,

cyclones had affected reefs in the 18-month window before 46.0% of visits, and the two mass

bleaching events had affected reefs in the 2-year window before 9.2% of visits. For the GBR

as a whole, there were cyclical effects due to COTS, but no evidence of increasing levels

of mortality from disturbance across years (Fig. 2E). The presence of COTS at the active

outbreak density of one COT per 200 meter manta tow gave an estimated coral mortality of

5.48% yr−1 (SE=0.66%) for a reef with 20% coral cover. Cyclonic winds of 40 ms−1 resulted

in a mean mortality of 7.36% (0.78%) cover, and bleaching lead to a mean mortality of 3.11%

(0.55%) cover at 20% coral cover.

The estimated coral cover profiles strongly reflected the patterns of disturbance over time,

both overall and for each region (Figs. 2A –H). The remote northern region had relatively

low mortality to COTS and cyclones, and cover was stable excepting a slight decline due to

bleaching from 1998 – 2003. In the central region, mortality was high for most years, except

for a low-disturbance period in the early 1990s, during which reefs showed strong recovery.

The southern region also had substantial mortality due to COTS and experienced the greatest

impacts from cyclones, especially in the period 2009 – 2012. Losses from bleaching were

negligible in this region.

The mean annual reef mortality was estimated for each of the three forms of disturbance

(Figs. 2E –H, Table 1) for 1985 – 2011 since the 2012 disturbance data were incomplete. For

the whole GBR, COTS, cyclones and bleaching accounted for mortality of 1.42, 1.62 and

0.34% yr−1 (42%, 48% and 10%) respectively, giving a mean total mortality of 3.38% yr−1.

Given the estimated rate of decline of 0.53% yr−1 for 1985 – 2012, the estimated net growth

of coral cover was 2.85% yr−1 for coral cover of 20%, and indicates the potential for recovery

given disturbances can be reduced. This estimate can be interpreted as a lower bound of

the growth of coral cover since this rate of decline does not take into account any losses due

to other agents (e.g. reduced calcification due to thermal stress and ocean acidification, and

diseases).

The observed coral cover profiles (Fig. 2A-D) and estimates of growth and mortality due to
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the three forms of disturbance (Table 1) enable us to infer future trends in coral cover. For

example, if mean coral cover of the GBR continues to decline from the current 13.8% at its

mean rate of 0.53% yr−1 for 1985 – 2012, then cover will be 10.0% (SE = 1.7%) by 2022.

This assumption may however be over-optimistic since the rate of decline from 2006 – 2012

has consistently been substantially higher at ∼1.45% yr−1 (Fig. 2A), and based on that rate,

estimated coral cover would be only 5.1% (1.2%) by 2022. For the northern, central and

southern regions, the mean rates of coral cover decline are -0.19%, 0.47% and 1.12% yr−1

respectively, and by 2022, estimated coral cover would be 24.5% (3.1), 10.7% (2.1) and 0.04%

(0.02). The last of these estimates is clearly unreliable due to the influence of the unusually

extreme cyclone activity in the last three years.

The rates of coral growth, mortality and disturbances (Table 1) can also be used to assess

the likely effects of intervention to restore coral cover and changes in coral cover due to

changes in patterns of disturbance. For example, in the absence of COTS, the mean coral

cover decline of 0.53% yr−1 would become an increase of 0.89% yr−1, and in the absence of

cyclones an increase of 1.09% yr−1. Projecting these recoveries to 2022 gives estimated mean

coral cover of 22.8% (2.4%) and 25.3% (2.9%), representing increases of >50% relative to

current coral cover. However, if coral cover declines at the 2006 – 2012 rate of 1.45% yr−1,

then in the absence of COTS and cyclones, estimated coral cover in 2022 would be 14.0%

(1.8%) and 15.7% (2.2%) respectively, representing negligible recoveries of 0.2% and 1.9%.

Discussion

This study has shown a major decline in hard coral cover from 28.0% to 13.8% (0.53% yr−1)

over 27 years, based on data derived from a single program of methodologically consistent

surveys. This loss of over half of initial cover is of great concern, signifying habitat loss for

the tens of thousands of species associated with tropical coral reefs. The rate of decline has

also increased substantially and has averaged ∼1.45% yr−1 since ∼2006. Both the overall

and more recent rates of decline are higher than previous estimates (13; 14) that were either

based on time series that ended in 2005 (14), or covered a shorter period (1995 – 2009) and

surveyed far fewer reefs using a different survey method (13). The disturbance data for COTS

or cyclones show periodic and random fluctuations, but no systematic long term variation

over the 27 year observation period, and given that GBR coral cover was likely higher than

28% prior to 1985 (2), the decline in coral cover may have started long before then.

This study suggests the GBR is on a similar trajectory to reefs in the Caribbean, where coral

cover has declined by ∼1.4% yr−1 (cf. 1.51% yr−1 for the GBR current rate of decline) from

∼55% in 1977 to ∼10% today (20; 21). Importantly however, the processes leading to decline

differ for the two systems. Caribbean reefs do not have COTS or other similarly effective coral

predators. In contrast, the rapid decline in coral cover in the Caribbean has been attributed

to a combination of coral diseases and storms, together with a phase shift from coral to algal

dominance due to the loss of all major groups of herbivores from over-exploitation, diseases,
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and possibly elevated nutrient run-off (20; 21; 22). Such prominent role of coral diseases has

not been observed on the GBR to date (13), nor are there indications for a phase shift to

algal dominance, as macroalgal dominance is restricted to nutrient-enriched inshore areas,

and herbivorous fishes face insignificant fishing pressure (12; 23).

One commonality between both systems is that disturbances, especially from tropical storms,

are a major driver of coral cover, and more acute disturbances affect reefs today compared

with 50 – 100 years ago. Cyclone intensities are increasing with warming ocean temperatures,

although projected increases are greater for the northern than southern hemisphere (6). The

recent frequency and intensity of mass coral bleaching is of major concern, and is directly

attributable to rising atmospheric greenhouse gases (3). To date, the GBR has lost fewer

corals to bleaching and diseases than many other regions in the world (13; 24), but bleaching

mortality will almost certainly increase in the GBR given the upward trend in temperatures

(25).

Water quality is a key environmental driver for the GBR. Central and southern rivers now

carry five to nine-fold higher nutrient and sediment loads from cleared, fertilised, and ur-

banised catchments into the GBR compared to pre-European settlement (16). Global warm-

ing is also increasing rainfall variability (26), resulting in more frequent intense drought-

breaking floods that carry particularly high nutrient and sediment loads (16; 18). River

runoff of nutrients and sediments directly affect about 15% of reefs (12; 16). On these reefs,

coral cover does not directly depend on water quality (17), however reefs exposed to poor wa-

ter clarity and elevated nutrient concentrations show significant increases in macroalgal cover

and reduced coral species richness and recruitment (12; 17). There is also strong evidence

that water quality affects the frequency of COTS outbreaks in the central and southern GBR

(5; 18). Survival of the plankton-feeding larvae of COTS is high in nutrient enriched flood

waters, whereas few larvae complete their development in seawater with low phytoplankton

concentrations. Models have shown that the frequency of COTS outbreaks on the GBR has

likely increased from one in 50 – 80 years prior to European agricultural nutrient runoff, to

the currently observed frequency of one in ∼15 years (5).

Coral cover depends not only on mortality from acute disturbances, but also on rates of

growth. Rates of coral calcification on the GBR and many other reef systems around the

world have declined by 15 – 20% since ∼1990 due to increasing thermal stress (27; 28). With

our conservative estimate for coral cover growth of 2.85% yr−1 this translates into a decline

in cover of 0.44 – 0.57% yr−1, equivalent to 29 – 38% of the current 1.51% yr−1 coral cover

decline. Due to other causes of coral losses such as disease, that are unaccounted for in our

model, true coral cover growth will likely be higher than 2.85%, and hence the estimated

losses due to reduced calcification are also likely higher than 0.44 – 0.57%.

Without significant changes to the rates of disturbance and coral growth, coral cover in the

central and southern regions of the GBR is likely to decline to 5 – 10% by 2022. The future

of the GBR therefore depends on decisive action. While world governments continue to

debate the need to cap greenhouse gas emissions, reducing the local and regional pressures

is one way to strengthen the natural resilience of ecosystems (7; 9). Our analyses show
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that, in the absence of cyclones, COTS and bleaching, the estimated rate of increase in

coral cover was 2.85% yr−1, demonstrating substantial capacity for recovery of reefs. In the

absence of COTS alone, coral cover could increase by 0.89% yr−1 despite ongoing losses due

to cyclones and bleaching. Reducing COTS populations by improving water quality and

developing alternative control measures, could prevent further coral decline and improve

the outlook for the GBR in the short term. In the longer term, success of this strategy

requires stabilisation of global temperatures to prevent additional losses due to bleaching

and cyclones. Intervention to control COTS populations have been rejected in the past

when their effects on coral cover, and the link of COTS outbreaks to water quality, were less

understood. In 2003, Australian governments committed to improving water quality in the

GBR Lagoon (15). However, this study shows that more decisive measures to improve water

quality are needed, which specifically target COTS larval survival in the high risk central

region where population outbreaks originate. The recent re-emergence of COTS outbreaks in

that region adds to the urgency to also evaluate additional scientific solutions to controlling

COTS populations.

In conclusion, coral cover on the GBR is consistently declining, and without intervention

will likely fall to 5 – 10% within the next 10 years. Mitigation of global warming and ocean

acidification is essential for the future of the GBR. Given such mitigation is unlikely in the

short term, there is a strong case for direct action to reduce COTS populations and further

loss of corals. Without intervention, the GBR may lose the biodiversity and ecological

integrity for which it was listed as a World Heritage Area.

Material and Methods

Coral cover and densities of COTS were surveyed around the perimeter of entire reefs with

the manta tow technique (19) by the AIMS Long Term Monitoring Program between 1985

and 2012. The number of tows per reef varied from three to 325. Data were reef-averaged,

and reefs with less than 5 surveys in the 27 year sampling period were excluded. The final

data consisted of 2258 reef surveys from 214 different reefs, comprehensively covering the

GBR.

The maximum wind speed and the number of hours with wind speeds at or exceeding gale-

force (>17 ms−1) were estimated for each 4 km grid cell within the GBR for each of the 34

tropical cyclones during the 27 year observation period. Meterological data were provided

by the Australian Bureau of Meteorology and by Knapp et al. (29). Surface winds were

calculated for each cell as 10-minute maximum wind speeds for every hour of each storm.

Maximum cyclone winds averaged 32.8 ms−1 (range: 17.9 – 55.7 ms−1) and the mean duration

of exposure to gales was 12.6 hrs (range: 1 – 95 h).

Estimates of coral bleaching in 1998 and 2002 were based on aerial surveys conducted on

∼650 reefs along >3000 km flying paths during the height of each of the two coral mass-

bleaching events (30). Nearest neighbour analysis was used to predict whether or not survey
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reefs that were not covered by the aerial surveys did bleach. Other known bleaching events

had few or incomplete records and were not included in this work.

Logistic regression models were used for all analyses. The response for all models was reef-

averaged proportional coral cover, p, and all analyses were weighted by the number of tows

per reef. In addition to the fixed predictors, random effects of reefs and continuous auto-

regressive errors were included. The latter better captured the relationships of observations

across time within reefs compared with other options such as random smooth or linear

temporal effects for each reef. All model estimates are expressed as percentage coral cover

rather than proportions for ease of interpretation. These estimates involve rates of change

of coral cover with covariates such as time or environmental drivers. For the logistic model,

these rates vary as dp/dx ∝ p (1− p), where x denotes the covariate. Thus, on the observed

scale, effect sizes are largest when p = 0.5, and shrink as p → 0 or p → 1. In all cases, effect

sizes are estimated at 20% coral cover (close to the overall mean observed coral cover) unless

otherwise stated.

The first group of analyses modelled temporal change in coral cover, and how that change

varied in the northern, central and southern sections of the GBR. The second group of

analyses included the effects of the environmental drivers (COTS, cyclones and bleaching)

in addition to the temporal and spatial effects. For all analyses, the smoothness of temporal

trends was estimated using natural splines and generalised cross-validation (31). From the

latter analyses we extracted the environmental effects, and then reconstructed temporal

change under various scenarios such as absence of COTS or absence of all environmental

drivers. The modelling approach used in this work can thus provide forecasts of the likely

effects of management practices such as COTS control, and/or estimates of likely effects of

consequences of future climate change such as more frequent cyclones or bleaching events.

Two issues were considered prior to the use of the environmental predictors in the analyses.

First, the environmental predictors were measured or generated in different ways. COTS

were counted in situ at the same time and place that coral cover was observed. Conversely,

cyclone and bleaching data were interpolated from GBR-wide spatial-temporal models, and

are thus less likely to represent true conditions at the reefs across space and time. It thus

follows that, for the same given strength of relationship between response and predictor,

these spatially modelled data are likely to under-estimate effect sizes than those based on

observed in situ data. Second, the effects of the environmental predictors on coral cover is

likely to occur either later than the time of observation (e.g. bleaching) or over a window

of time. To optimise prediction, it was necessary to find the best temporal window for

each predictor and integrate these effects across the window. For each series of COTS on

each reef, we used both the abundance at the time of observed cover and that from the

preceding survey. For the two cyclone measures, maximum speed and duration, and for

bleaching, the optimum time window over which to average values was found by searching

through a limited collection of window widths and times of onset relative to the time of

survey. For cyclones, only maximum wind speed was found to be an effective predictor, and

it predicted best when based on the 1.5 years preceding the observation of coral cover. For
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the two bleaching events, the optimum window was 2 years duration prior to the coral cover

observation. Additionally, predictors were transformed to linearize the relationships between

the log-odds of proportional coral cover and the predictors; COTS abundances were fourth

root transformed and cyclone measures were square root transformed.

Spatial mapping of estimated data values were used to illustrate the distributions of coral

cover and the predictors. Relative distance across and along the GBR were used as spa-

tial coordinate system, rather than longitude and latitude, since the former provide more

accurate spatial estimates.

The R statistical software package (32) was used for all data analyses.
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Figure 1: Coral cover on the Great Barrier Reef (GBR). A: Map of the GBR with colour
shading indicating mean coral cover averaged over 1985 – 2012. Points show the locations of
the 214 survey reefs in the northern, central and southern regions, and their color indicates
the direction of change in cover over time. B: Boxplots indicate the percentiles (25%, 50%
and 75%) of the coral cover distributions within each year and suggests a substantial decline
in coral cover over the 27 years.

Figure 2: Temporal trends in coral cover (A –D) and annual mortality due to COTS, cyclones
and bleaching (E –H) for the whole GBR and the northern, central and southern regions
over the period 1985 – 2012 (N=number of reefs). Panels A –D show the trends in coral
cover, with blue lines indicating estimated means (±2SEs) of each trend. In panels E –H,
the composite bars indicate the estimated mean coral mortality for each year, and the sub-
bars indicate the relative mortality due to COTS, cyclones and bleaching. The periods of
decline of coral cover in A –D reflect the high losses shown in E –H.

Table 1:
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Table 1: Estimated rates (% yr−1) and standard errors (SE) of (A) decline, growth and total
mortality of coral cover, and (B) total coral mortality partitioned between COTS, cyclones
and bleaching. All rates are based on 20% coral cover and are averaged over 1985 – 2011.
Results are presented for the whole GBR and for the northern, central and southern regions.

GBR North Center South

A Decline 0.53 (0.08) 0.11 (0.14) 0.44 (0.08) 1.04 (0.16)
Growth 2.85 (0.26) 2.07 (0.44) 2.78 (0.26) 2.34 (0.52)
Total mortality 3.38 (0.19) 2.18 (0.35) 3.22 (0.18) 3.38 (0.44)

B COTS mortality 1.42 (0.17) 0.77 (0.25) 1.54 (0.24) 1.59 (0.27)
Cyclone mortality 1.62 (0.22) 1.05 (0.23) 1.29 (0.14) 1.75 (0.32)
Bleaching mortality 0.34 (0.08) 0.36 (0.13) 0.39 (0.09) 0.04 (0.11)
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