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ABSTRACT

We present the result of a decomposition of the 2dFGRS galaxy overdensity field into
an orthonormal basis of spherical harmonics and spherical Bessel functions. Galax-
ies are expected to directly follow the bulk motion of the density field on large
scales, so the absolute amplitude of the observed large-scale redshift-space distor-
tions caused by this motion is expected to be independent of galaxy properties. By
splitting the overdensity field into radial and angular components, we linearly model
the observed distortion and obtain the cosmological constraint Ω0.6

m
σ8 = 0.46± 0.06.

The amplitude of the linear redshift-space distortions relative to the galaxy overden-
sity field is dependent on galaxy properties and, for L∗ galaxies at redshift z = 0,
we measure β(L∗, 0) = 0.58± 0.08, and the amplitude of the overdensity fluctuations
b(L∗, 0)σ8 = 0.79 ± 0.03, marginalising over the power spectrum shape parameters.
Assuming a fixed power spectrum shape consistent with the full Fourier analysis pro-
duces very similar parameter constraints.

Key words: large-scale structure of Universe, cosmological parameters

1 INTRODUCTION

Analysis of galaxy redshift surveys provides a statistical
measure of the surviving primordial density perturbations.

These fluctuations have a well known dependency on cos-
mological parameters (e.g. Eisenstein & Hu 1998), and can
therefore be used to constrain cosmological models. The use
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of large scale structure as a cosmological probe has acquired
an increased importance in the new era of high precision cos-
mology, which follows high-quality measurements of the cos-
mic microwave background (CMB) power spectrum (Ben-
nett et al. 2003; Hinshaw et al. 2003). The extra information
from galaxy surveys helps to lift many of the degeneracies
intrinsic to the CMB data and enhances the scientific poten-
tial of both data sets (e.g. Efstathiou et al. 2002; Percival
et al. 2002; Spergel et al. 2003; Verde et al. 2003).

In this paper we decompose the large-scale structure
density fluctuations observed in the 2dF Galaxy Redshift
Survey (2dFGRS; Colless et al. 2001;2003) into an orthonor-
mal basis of spherical harmonics and spherical Bessel func-
tions. In Percival et al. (2001; P01) we decomposed the
partially complete 2dFGRS into Fourier modes using the
method outlined by Feldman, Kaiser & Peacock (1994). In
a companion paper (Cole et al. 2004; C04) we analyse the
final catalogue using Fourier modes. In P01 and C04, the
Fourier modes were spherically averaged and fitted with
model power spectra convolved with the spherically aver-
aged survey window function. Redshift-space distortions de-
stroy the spherical symmetry of the convolved power and
potentially distort the recovered power from that expected
with a simple spherical convolution. Analysis of mock cat-
alogues presented in P01 and a detailed study presented in
C04 showed that, in spite of these complications, cosmologi-
cal parameter constraints can still be recovered from a basic
Fourier analysis.

However, a decomposition into spherical harmonics and
spherical Bessel functions rather than Fourier modes distin-
guishes radial and angular modes, and enables redshift-space
distortions to be easily introduced into the analysis method
(without the far-field approximation, Kaiser 1987), as well
as allowing for the effects of the radial selection function
and angular sky coverage (Heavens & Taylor 1995; HT).
The down-side is that Spherical Harmonics methods are,
in general, more complex than Fourier techniques and are
computationally more expensive. This is particularly appar-
ent when only a relatively small fraction of the sky is to be
modelled, as the observed modes are then the result of a
convolution of the true modes with a wide window function.
For nearly all sky surveys (e.g. IRAS surveys), correlations
between modes are reduced, and the window is narrower
leading to a reduced computational budget.

Consequently, a number of Spherical Harmonics decom-
positions have been previously performed for the IRAS sur-
veys. The primary focus of much of the earlier work was
the measurement of β(L, z) ≡ Ωm(z)0.6/b(L, z), a measure
of the increased fluctuation amplitude caused by the lin-
ear movement of matter onto density peaks and out from
voids (Kaiser 1987). Here Ωm(z) is the matter density and
b(L, z) is a simplified measure of the relevant galaxy bias. See
Berlind, Narayanan & Weinberg (2001) for a detailed study
of β(L, z) measurements assuming more realistic galaxy bias
models.

For the IRAS 1.2-Jy survey, HT and Ballinger, Heavens
& Taylor (1995) found β ∼ 1 ± 0.5 for fixed and varying
power spectrum shape respectively, and similar constraints
were also found by Fisher, Scharf & Lahav (1994), Fisher
et al. (1995). However, Cole, Fisher & Weinberg (1995)
found β = 0.52 ± 0.13 and Fisher & Nusser (1996) found
β = 0.6± 0.2 for the 1.2-Jy survey using the quadrupole-to-

monopole ratio for the decomposition of the power spectrum
into Legendre polynomials. No explanation for the appar-
ent discrepancy between these results has yet been found,
although we note that the results are consistent at approxi-
mately the 1-σ level if the large errors are taken into account
for the Spherical Harmonics decompositions.

The IRAS Point Source Catalogue Redshift Survey
(PSCz; Saunders et al. 2000) has also been analysed using a
Spherical Harmonics decomposition by a number of authors
(Tadros et al. 1999; Hamilton, Tegmark & Padmanabhan
2000; Taylor et al. 2001) who found β ∼ 0.4. More recently,
Tegmark, Hamilton & Xu (2002) presented an analysis using
spherical harmonics to decompose the first 100k redshifts re-
leased from the 2dFGRS and found β = 0.49 ± 0.16 for the
bJ selected galaxies in this survey, consistent with the ξ(σ, π)
analyses of Peacock et al. (2001) and Hawkins et al. (2003).
The measured β constraints are expected to vary between
samples through the dependence on the varying galaxy bias.
For example, by analysing the bispectrum of the PSCz sur-
vey Feldman et al. (2001) found a smaller large-scale bias
than a similar analysis of the 2dFGRS by Verde et al. (2002).

In addition to the linear distortions, random galaxy mo-
tions within galaxy groups produce the well known Fingers-
of-God effect where structures are elongated along the line-
of-sight. These random motions mean that the observed
power is a convolution of the underlying power with a narrow
window. The observed power therefore depends on the form
of this window and the amplitude of the velocity dispersion
as a function of scale.

The 2dFGRS and Sloan Digital Sky Survey (SDSS;
Abazajian et al. 2004) cover sufficient volume that it is
now possible to recover information about the shape of the
power spectrum in addition to the redshift-space distor-
tions (P01; C04; Tegmark, Hamilton & Xu 2002; Tegmark
et al. 2003a). However, the decreased random errors (cos-
mic variance) of these new measurements means that sys-
tematic uncertainties have become increasingly important.
In particular, galaxies are biased tracers of the matter dis-
tribution: the relation between the galaxy and mass density
fields is probably both nonlinear and stochastic to some ex-
tent (e.g. Dekel & Lahav 1999), so that the power spectra
of galaxies and mass differ in general. Assuming that the
bias tends towards a constant on large scales, then we can
write Pg(k) = b2Pm(k), where subscripts m and g denote
matter and galaxies respectively. For the 2dFGRS galaxies,
although the average bias is close to unity (Lahav et al.
2002; Verde et al. 2002), the bias is dependent on galaxy
luminosity (Norberg et al. 2001; 2002a; Zehavi et al. 2002
find a very similar dependence for SDSS galaxies), with
〈b(L, z)/b(L∗, z)〉 = 0.85+0.15L/L∗ where the bias b(L, z) is
assumed to be a simple function of galaxy luminosity and L∗

is defined such that MbJ − 5 log10 h = −19.7 (Norberg et al.
2002b). Because average galaxy luminosity is a function of
distance, this bias can distort the shape of the recovered
power spectrum (Tegmark et al. 2003a; Percival, Verde &
Peacock 2004).

In this paper we decompose the final 2dFGRS catalogue
into an orthonormal basis of spherical harmonics and spher-
ical Bessel functions and fit cosmological models to the re-
sulting mode amplitudes. To compress the modes we adopt
a modified Karhunen-Loève (KL) data compression method
that separates angular and radial modes (Vogeley & Szalay
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1996; Tegmark, Taylor & Heavens 1997; Hamilton, Tegmark
& Padmanabhan 2000; Tegmark, Hamilton & Xu 2002). We
also include a consistent correction for luminosity-dependent
bias that includes the effect of this bias on both the mea-
sured power and fitted models. We have performed two fits
to the recovered modes. First we measured the galaxy power
spectrum amplitude, b(L∗, 0)σ8 and the linear infall ampli-
tude, β(L∗, 0) for a fixed power spectrum shape. We then
considered fitting a more general selection of cosmological
models to these data.

A detailed analysis of the internal consistency of the
2dFGRS catalogue with respect to measuring P (k) was per-
formed using a Fourier decomposition of the galaxy density
field and is presented in C04. This analysis included looking
at the effect of changing the calibration, maximum redshift,
weighting, region, and galaxy colour range considered. This
work is not duplicated using our decomposition technique,
and we instead refer the interested reader to that paper.
Tests presented in this paper are primarily focused on the
analysis method, although we consider the effect of the cat-
alogue calibration in Section 6.

The layout of this paper is as follows. In Section 2 we de-
scribe the 2dFGRS catalogue analysed, and in Section 3 we
consider mock catalogues used to test our analysis method.
A brief overview of the methodology is presented in Sec-
tion 4. A full description of the Spherical Harmonics method
used is provided in Appendix A. The results are presented
for both the 2dFGRS and mock catalogues in Sections 5.2
& 5.3. A discussion of various tests performed is given in
Section 6. We conclude in Section 7.

2 THE 2dFGRS CATALOGUE

In this work, we consider the final 2dFGRS release cata-
logue. However, the formalism adopted is simplified if we
consider a catalogue with a selection function that is sepa-
rable in radial and angular directions (see Appendix A for
details of the formalism). There are two complications in
the 2dFGRS catalogue that cause departures from such be-
haviour (as discussed in Colless et al. 2001;2003).

(i) The photometric calibration of the UKST plates from
which the 2dFGRS sample was drawn and the extinction
correction have been revised after the initial sample selec-
tion. Because revision of the galaxy magnitudes and the an-
gular magnitude limit are required, this means that the sur-
vey depth varies across the sky.

(ii) Due to seeing variations between observations, the
overall completeness varies with apparent magnitude with
a form that depends on the field redshift completeness. This
is characterized by a parameter µ, with the varying com-
pleteness given by cz(m,µ) = 0.99[1 − exp(m − µ)] (Colless
et al. 2001).

Rather than adapt the formalism, we have chosen to use
a reduced version of the 2dFGRS release catalogue with a
window function that is separable in radial and angular di-
rections. These issues were also discussed with reference the
100k release catalogue by Tegmark, Hamilton & Xu (2002)
whose method also required a sample with window func-
tion and weights separable in radial and angular directions.
Correcting for these effects is relatively straightforward, if

Table 1. Limiting extinction-corrected magnitudes, numbers of
galaxies, and assumed radial selection-function parameters for
each of the two 2dFGRS regions modelled. The parameters con-
trolling the radial distribution are defined by Eq. 1.

region Mlim Ngal zc b g

SGP 19.29 84824 0.130 2.21 1.34
NGP 19.17 57932 0.128 2.45 1.24

a little painful as we have to remove galaxies with valid
redshifts from the analysis. First we need to select a uni-
form revised magnitude limit at which to cut the catalogue.
Galaxies fainter than this limit are removed from the re-
vised catalogue, as are galaxies that were selected using an
actual magnitude limit that was brighter than the revised
limit. Selecting the revised magnitude limit at which to cut
the catalogue is a compromise between covering as large an
angular region as possible (resulting in a narrow angular
window function), covering as large a weighted volume as
possible (reducing cosmic variance), or retaining as many
galaxies as possible (reducing shot noise). However, we can
model variations in the angular window function and, in
Percival et al. (2001), we showed that the 2dFGRS sam-
ple is primarily cosmic variance limited. We therefore chose
the magnitude limit to maximize the effective volume of the
survey.

The random fields, a number of circular 2-degree fields
randomly placed in the low extinction regions of the south-
ern APM galaxy survey were excluded from our analysis, in
order to focus on two contiguous regions with well-behaved
selection functions. These two regions of the survey, one near
the north galactic pole (NGP) and another near the south
galactic pole (SGP) were analysed separately, and optimiza-
tion of the magnitude limit was performed for each region
independently. The resulting limits are given in Table 1. In
order to correct for the magnitude dependent completeness,
we removed a randomly selected sample of the bright galax-
ies in order to provide uniform completeness as a function
of magnitude.

The redshift distribution of each sample was matched
using a function of the form

f(z) ∝ zg exp

[

−
(

z

zc

)b
]

, (1)

where the parameters zc, b & g were calculated by fitting to
the weighted (Eq. A5) redshift distribution, calculated in 40
bins equally spaced in z. These resulting parameter values
are given in Table 1, and the redshift distributions are com-
pared with the fits in Fig. 1. In addition to the radial and
angular distributions of the sample, we also need to match
the normalization of the catalogue to the expected distribu-
tion. We choose to normalize each catalogue by matching
∫

drn̄(r)w(r), where n̄(r) is the expected galaxy distribu-
tion function and w(r) is the weight applied to each galaxy
(Eq. A5), for reasons described in Percival, Verde & Peacock
(2004).
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4 W.J. Percival et al.

Figure 1. Redshift distribution of the reduced galaxy catalogues
for the two regions considered (solid circles), compared with the
best fit redshift distribution for each of the form given by Eq. 1.
The magnitude limit adopted for each sample is given in each
panel.

3 THE MOCK CATALOGUES

As a test of the Spherical Harmonics procedure adopted, we
have applied our method to recover parameters from the 22
LCDM03 Hubble Volume mock catalogues available from
http://star-www.dur.ac.uk/~cole/mocks/main.html

(Cole et al. 1998). These catalogues were calculated using
an empirically-motivated biasing scheme to place galaxies
within N-body simulations, and were designed to cover the
2dFGRS volume. We have applied the same magnitude and
completeness cuts to these data, as applied to the 2dFGRS
catalogue (Section 2). In order to allow for slight variations
between the redshift distribution of the mocks and the 2dF-
GRS catalogue, we fit the redshift distribution of the mock
catalogues independently from the 2dFGRS data. Because
we adopt the magnitude limits used for the 2dFGRS data,
the NGP and SGP regions in the mock catalogues have dif-
ferent redshift distributions and these are fitted separately.
For simplicity, we assume a single expected redshift distribu-
tion for each region for all of the mocks, calculated by fitting
to the redshift distribution of the combination of all of the
mocks. The number of galaxies in each catalogue is sufficient
that the model of f(z) only changes slightly when consider-
ing either catalogues individually, or the combination of all
22 catalogues. This change is sufficiently small that it does
not significantly alter either the recovered parameters from
the mock catalogues or their distribution.

We use these mock catalogues in a number of ways. By
comparing the average recovered parameters and known in-
put parameters of the simulations, we test for systematic
problems with the method. In fact, we did not analyse the
2dFGRS data until we had confirmed the validity of the

method through application to these mock catalogues. We
test our recovery of the linear redshift-space distortion pa-
rameter β(L∗, z) by analysing mocks within which galaxy
peculiar velocities were altered (Section 6.7). Additionally,
we use the distribution of recovered values to test the con-
fidence intervals that we can place on recovered parameters
(Section 5.4).

4 METHOD OVERVIEW

The use of Spherical Harmonics to decompose galaxy sur-
veys dates back to Peebles (1973), and is a powerful tech-
nique for statistically analysing the distribution of galaxies.
The formalism used in this paper is based in part on that de-
veloped by HT and described by Tadros et al. (1999). How-
ever, there are some key differences and extensions, which
warrant the full description given in Appendix A. In this
section we outline the procedure for a non-specialist reader.

The galaxy density field was decomposed into an or-
thonormal basis consisting of spherical Bessel functions and
spherical harmonics. In general, we refer to this as a Spher-
ical Harmonics decomposition. As in P01 & C04, we de-
composed the density field in terms of proper distance and
therefore needed to assign a radial distance to each galaxy.
For this, we adopted a flat cosmology with Ωm = 0.3 and
ΩΛ = 0.7. The dependence of the recovered power spectrum
and β(L∗, z) on this “prior” is weak, and was explored in
P01. We assume a constant galaxy clustering (CGC) model,
where the amplitude of galaxy clustering is independent
of redshift, although it is dependent on galaxy luminosity
through the relation of Norberg et al. (2001) given in Eq. A1.
This relates the clustering amplitude of galaxies of luminos-
ity L to that of L∗ galaxies, and by weighting each galaxy
by the reciprocal of this relation, we correct for luminosity-
dependent bias.

The Spherical Harmonics decomposition of the mean
expected distribution of galaxies is then subtracted, calcu-
lated using a fit to the radial distribution and an angular
mask (this was modelled using a random catalogue in the
Fourier analyses of P01 & C04). This converts from a de-
composition of the density field to the overdensity field.

In the Fourier based analyses of P01 and C04, we mod-
elled the observed power spectrum. In the analysis presented
in this paper we instead model the transformed overdensity
field. The expected value of the transform of the overdensity
field for any cosmological model is zero by definition. Conse-
quently, apart from a weak dependence on a prior cosmolog-
ical model hard-wired into the analysis method, the primary
dependence on cosmological parameters is encapsulated in
the covariance matrix used to determine the likelihood of
each model.

The primary difficulty in calculating the covariance ma-
trix for a given cosmological model is correctly accounting
for the geometry of the 2dFGRS sample. This results in a
significant convolution of the true power, and is performed
as a discrete sum over Spherical Harmonic modes in a com-
putationally intensive part of the adopted procedure. To first
order, the large-scale redshift-space distortions are linearly
dependent on the density field, and we can therefore split
the covariance matrix into four components corresponding
to the mass-mass, mass-velocity and velocity-velocity power
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spectra (cf. Tegmark, Hamilton & Xu 2002; Tegmark et al.
2003a) and the shot noise. This is discussed after Eq. A31
in Appendix A. The velocity component of the covariance
matrix is dependent on matter density field rather than the
galaxy density field, and we include a correction for the lin-
ear evolution of this field. For this we assume that Ωm = 0.3
and ΩΛ = 0.7 although the resulting covariance matrix is
only weakly dependent on this “prior”.

We include the contribution from the small-scale ve-
locity dispersion of galaxies by undertaking an additional
convolution of the radial component of these matrices. We
choose to model scales where the small-scale velocity dis-
persion does not contribute significantly to the overdensity
field, and demonstrate this weak dependence in Section 6.5.

The transformation between Fourier modes and Spher-
ical Harmonics is unitary, so each Spherical Harmonic mode
corresponds directly to a particular Fourier wavelength.
Within our chosen decomposition of the density field, there
are 86667 Spherical Harmonic modes with 0.02 < k <
0.15 h Mpc−1, and it is impractical to use all of these modes
in a likelihood analysis as the inversion of an 86667 × 86667
matrix is slow and may be unstable for a problem such as
this. The modes were therefore compressed, leaving 1223
& 1785 combinations of modes for the NGP and SGP re-
spectively. The data compression procedure adopted was
designed to remove nearly degenerate modes, which could
cause numerical problems, and to optimally reduce the re-
maining data. The compressed data, and the corresponding
covariance matrices are then combined to calculate the like-
lihood of a given model assuming Gaussian statistics.

Only ∼ 5% of the computer code used in the PSCz anal-
ysis of Tadros et al. (1999) was reused in the current work, as
both revision of the method and a significant speed-up of the
process were required to model the 2dFGRS. In particular,
the geometry of the 2dFGRS sample means that the con-
volution to correct for the survey window function requires
calculation for a larger number of modes than all-sky sur-
veys such as the PSCz, and the method consequently takes
longer to run. Because of this revision, the method required
thorough testing, both by analysing mock catalogues and by
considering the specific tests described in Section 6.

5 RESULTS

Results are presented for the 2dFGRS catalogue described
in Section 2, and for the mock catalogues described in Sec-
tion 3. Parameter constraints were derived fitting to modes
with 0.02 < k < 0.15 h Mpc−1, the range considered in P01.
Because the Spherical Harmonics method includes the ef-
fects of the small-scale velocity dispersion and uses a non-
linear power spectrum, we could in principle extend the fit-
ted k-range to smaller scales. However, our derivation of the
covariance matrix is only based on cosmic variance and shot
noise. No allowance is made for systematic offsets caused by
our modelling of small-scale effects (velocity dispersion, non-
linear power and a possible scale-dependent galaxy bias).
Consequently, it is better to avoid regions in k-space that
are significantly affected by these complications, rather than
assume that we can model these effects perfectly. Addition-
ally, the number of modes that can be analysed is limited
by computation time and the large-scale k-range selected

includes most of cosmological signal and follows Gaussian
statistics.

The Spherical Harmonics method involves a convolution
of the window and the model power over a large number of
modes (Eq. A22). For a fixed power spectrum shape, the
covariance matrix can be written as a linear sum of four
components with different dependence on b(L∗, 0)σ8 and
β(L∗, 0). It is straightforward to store these components and
these parameters can be fitted without having to perform
the convolution for each set of parameters. In Section 5.2
we consider a fixed power spectrum shape, and present re-
sults fitting b(L∗, 0)σ8 & β(L∗, 0) to the 2dFGRS and mock
catalogue data.

In an analysis of the power spectrum shape, separate
convolutions are required for each model P (k). This would
be computationally very expensive, but can be circumvented
by discretising the model P (k) in k and performing a single
convolution for each k-component. In Section 5.3 we fit to
the power spectrum shape, assuming a step-wise P (k) in this
way. First, we describe the set of models to be considered.

5.1 Cosmological parameters

A simple model is assumed for galaxy bias, with the galaxy
overdensity field assumed to be a multiple (the bias b[L, 0])
of the present day mass density field

δ(L, r) = b(L, 0)δ(mass, r), (2)

at least for the survey smoothed near our upper wavenum-
ber limit of 0.15 h Mpc−1. In the constant galaxy cluster-
ing model, the redshift dependence of b(L, z) is assumed to
cancel that of the mass density field so that δ(L, r) is in-
dependent of redshift. Although galaxy bias has to be more
complicated in detail, we may hope that there is a “linear
response limit” on large scales: those probed in the analysis
presented in this paper. In the stochastic biasing framework
proposed by Dekel & Lahav (1999), the simple model corre-
sponds to a dimensionless galaxy-mass correlation coefficient
rg = 1. Wild et al. (2004) show that the correlation between
δ(L, r) from different types of galaxies have rg > 0.95.

Modelling the expansion of the density field in spheri-
cal harmonics and spherical Bessel functions is dependent
on the linear redshift-space distortions parameterized by
β(L∗, z) ≃ Ωm(z)0.6/b(L∗, z), a function of galaxy luminos-
ity and epoch. The evolution of this parameter is dependent
on that of the matter density Ωm(z) and the galaxy bias
b(L∗, z). These effects are included in the method and are
considered in Sections A1 & A4. The recovered expansion
is also dependent on the velocity dispersion σpair and model
assumed for the Fingers-of-God effect (see Section 6.5).

We parameterise the shape of the power spectrum
of L∗ galaxies with the Hubble constant h in units of
100 kms−1 Mpc−1, the scalar spectral index ns, and the
matter density Ωm through Ωmh and the fraction of matter
in baryons Ωb/Ωm. The contribution to the matter budget
from neutrinos is denoted Ων . The matter power spectrum
is normalized using σ8, the present day rms linear density
contrast averaged over spheres of 8 h−1 Mpc radius.

The shape of the power spectrum to current precision
is only weakly dependent on h, and only sets a strong con-
straint on a combination of Ωb/Ωm, Ωmh, Ων and ns. In
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6 W.J. Percival et al.

Figure 2. Likelihood contours for the recovered b(L∗, 0)σ8 and β(L∗, 0) assuming a fixed ΛCDM power spectrum shape. Solid lines in
the top row show the recovered contours from the 2dFGRS, while the bottom row gives the average recovered contours from the ΛCDM
mock catalogues. Contours correspond to changes in the likelihood from the maximum of 2∆ lnL = 2.3, 6.0, 9.2. These values correspond
to the usual two-parameter confidence of 68, 95 and 99 per cent. The open circle marks the ML position, while the solid circle marks the
true parameters for the mock catalogues. The crosses give the ML positions for the 22 mock catalogues. Note that on average 57% of the
crosses lie within the 2∆ lnL = 2.3 contour for the NGP and SGP mock catalogues. The chosen modes are not independent, although
they are orthogonal, so we cannot assume that lnL has a χ2 distribution. See Section 5.4 for a further discussion of the confidence
intervals that we place on recovered parameters. The dashed lines plotted in the upper panels give the locus of models with constant
redshift space power spectrum amplitude (see text for details).

this paper, we only consider the very simple model of a con-
strained flat, scale-invariant adiabatic cosmology with Hub-
ble parameter h = 0.72, and no significant neutrino con-
tribution Ων = 0. We show that this model is consistent
with our analysis, as it is with recent CMB and LSS data
sets (e.g. Spergel et al. 2003; Tegmark et al. 2003b). Ad-
ditionally, we use Ωb/Ωm & Ωmh to marginalise over the
shape of the power spectrum when considering β(L∗, 0) and
b(L∗, 0)σ8, and marginalise over 0 < Ωb/Ωm < 0.4 and
0.1 < Ωmh < 0.4. Given the precision to which the shape
of the power spectrum can be constrained, there is an al-
most perfect degeneracy between Ωb/Ωm, Ωmh and ns. For
ns 6= 1, to first order in ns, our best-fit values of Ωb/Ωm

and Ωmh would change by 0.46(ns − 1) and 0.34(1 − ns)
respectively.

5.2 Results for fixed power spectrum shape

In this Section we fit β(L∗, 0) and b(L∗, 0)σ8 to the data as-
suming a concordance model power spectrum with Ωmh =
0.21, Ωb/Ωm = 0.15, h = 0.72 & ns = 1, consistent with
the recent WMAP results (Spergel et al. 2003), and close
to the true parameters of the Hubble volume mocks. Like-
lihood contours for b(L∗, 0)σ8 and β(L∗, 0) are presented
in Fig. 2 for the 2dFGRS and mock catalogues. The pri-
mary degeneracy between these parameters arises because
b(L∗, 0)σ8 is a measure of the total power, combining radial
and angular modes. Increasing β(L∗, 0) beyond the best-fit

value increases the power of the model radial modes, requir-
ing a decrease in the overall power to approximately fit the
data. In order to show that this degeneracy corresponds to
models with the same redshift-space power spectrum ampli-
tude, the dashed lines in Fig. 2 show the locus of models
with the same redshift-space power spectrum amplitude as
the maximum likelihood solution. Here, the redshift-space
and real-space power spectra, represented by Ps and Pr, are
assumed to be related by

Ps = (1 +
2

3
β +

1

5
β2)Pr. (3)

However, we still find tight constraints with b(L∗, 0)σ8 =
0.81±0.02 and β(L∗, 0) = 0.57±0.08. In fact, in Section 5.3
we marginalise over a range of model power spectra shapes
and show that these constraints are not significantly ex-
panded when the shape of the power spectrum is allowed
to vary.

5.3 Results without prior on the power spectrum

shape

In Fig. 3 we present likelihood contours for Ωmh and Ωb/Ωm

assuming a ΛCDM power spectrum with fixed ns = 1.0, and
marginalising over the power spectrum amplitude b(L∗, 0)σ8

and β(L∗, 0). Apart from the implicit dependence via Ωmh,
there is virtually no residual sensitivity to h, so we set it
at the Hubble key project value of h = 0.72 (Freedman
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Figure 3. Likelihood contours for Ωmh and Ωb/Ωm assuming a ΛCDM power spectrum with h = 0.72 and ns = 1.0. We have
marginalised over the power spectrum amplitude and β(L∗, 0). Solid lines in the top row show the recovered contours from the 2dFGRS,
while the bottom row gives the average recovered contours from the ΛCDM mock catalogues. Contours correspond to changes in the
likelihood from the maximum of 2∆ lnL = 1.0, 2.3, 6.0, 9.2. In addition to the contours plotted in Fig. 2, we also show the standard
one-parameter 68 per cent confidence region to match with figure 5 in P01. The open circle marks the ML position. As in P01, we find a
broad degeneracy in the (Ωmh, Ωb/Ωm) plane, which is weakly lifted with a low baryon fraction favoured for the 2dFGRS data. These
parameter constraints are less accurate than those derived in C04 as we use less data, and we limit the number of modes used. ML
positions for the 22 mock catalogues are shown by the crosses. It can be seen that a number of the mock catalogues have likelihood
surfaces that are not closed, with the ML position being at one edge of the parameter space considered. However, these mocks all follow
the general degeneracy between models with the same P (k) shape.

Figure 4. As Fig. 2, but now marginalising over the power spectrum shape as parameterized by Ωmh and Ωb/Ωm. As can be seen,
allowing for different power spectrum shapes only increases the errors on b(L∗, 0)σ8 and β(L∗, 0) slightly. The relative interdependence
between the power spectrum shape and b(L∗, 0)σ8 and β(L∗, 0) is considered in more detail in Fig. 5.
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Figure 5. Contour plots showing changes in the likelihood from
the maximum of 2∆ lnL = 1.0, 2.3, 6.0, 9.2 for different parameter
combinations for the combined likelihood from the 2dFGRS NGP
and SGP catalogues, assuming a ΛCDM power spectrum with h =
0.72 and ns = 1.0. There are four parameters in total, and in each
plot we marginalise over the two other parameters. The primary
degeneracy arises between Ωmh and Ωb/Ωm, and corresponds to
similar power spectrum shapes. b(L∗, 0)σ8 is also degenerate with
Ωmh, although β(L∗, 0) is independent of the power spectrum
shape.

et al. 2001). Contours are shown for the recovered likelihood
calculated using the NGP & SGP catalogues and from the
combination of the two. We present the measured likelihood
surface from the 2dFGRS catalogue and the average likeli-
hood surface recovered from the mock catalogues. For both
the 2dFGRS and the mocks, there is a broad degeneracy be-
tween Ωmh and Ωb/Ωm, corresponding to models with simi-
lar power spectrum shape. This degeneracy is partially lifted
by the 2dFGRS data, with a low baryon fraction favoured.
Fig. 4 shows a similar plot for b(L∗, 0)σ8 and β(L∗, 0),
marginalising over the power spectrum shape (parameter-
ized by Ωmh and Ωb/Ωm). Although this increases the size
of the allowed region, the increase is relatively small, and we
find β(L∗, 0) = 0.58 ± 0.08, and b(L∗, 0)σ8 = 0.79 ± 0.03.

For the 2dFGRS catalogue, we present likelihood sur-
faces for all parameter combinations in our simple 4 pa-
rameter model in Fig. 5. This plot shows that there is a
degeneracy between b(L∗, 0)σ8 and Ωmh (as discussed for
example in Lahav et al. 2002). However, β(L∗, 0) appears to
be independent of the power spectrum shape.

5.4 Confidence intervals for parameters

Although the modes used are uncorrelated because of the
Karhunen-Loève data compression (Section A7), they are
not independent, and we cannot assume that lnL has a χ2

distribution. However, we can still choose to set fixed con-
tours in the likelihood as our confidence limits and simply
need to test the amplitude of the contours to be chosen.
Luckily, we have 22 mock catalogues from which we can
estimate confidence intervals. For b(L∗, 0)σ8 and β(L∗, 0),
with a fixed power spectrum, 57 % of the data points lie
within the 2∆ lnL = 2.3 average contour for the NGP
and SGP mock catalogues. Marginalising over the power
spectrum shape leaves 54% within the contour, 84% with
2∆ lnL < 6.0, and 100 % with 2∆ lnL < 9.2. However, for
power spectrum shape parameters Ωmh and Ωb/Ωm, 77%
have 2∆ lnL < 2.3, all but one have 2∆ lnL < 6.0, and this
mock has 2∆ lnL < 9.2.

Given the limited number of simulated catalogues, this
is in satisfactory agreement. We note that the mocks were
drawn from the Hubble Volume simulation (Evrard et al.
2002), and are consequently not completely independent.
However, given that the numbers of mocks within the ex-
pected confidence intervals are close to those expected for
independent Gaussian random variables, we feel justified in
using the standard χ2 intervals for our quoted parameters.

6 TESTS OF THE METHOD

In the Fourier based analysis of P01 and C04, the expected
variation in the measured power is only weakly dependent on
the cosmological parameters and a fixed covariance matrix
could therefore be assumed. In the analysis presented in this
paper, the transformed density field is modelled rather than
the power, and the likelihood variation due to cosmology is
completely modelled using the covariance matrix – indeed, it
is the variation of the covariance matrix that alters the likeli-
hood and allows us to estimate the cosmological parameters.
Consequently, we need to perform an inversion of this matrix
for each cosmological model to be tested (an N3 operation).
For a fixed power spectrum shape, the variation in the in-
verse covariance matrix with b(L∗, 0)σ8 and β(L∗, 0) is small
and we can use a iterative trick (described in Section A8) to
estimate the covariance matrix using an N2 operation. The
covariance matrix obviously varies more significantly when
we allow the cosmological parameters to vary more freely
and the shape of the power spectrum changes. A full ma-
trix inversion is then required for each model tested. This
is computationally intensive and consequently the specific
tests presented in this Section are based around recovering
b(L∗, 0)σ8 and β(L∗, 0) for a fixed P (k) shape.

In Figs. 6 & 7 we present recovered likelihood surfaces
calculated with various changes to our method. These plots
demonstrate tests of our basic assumptions and of our im-
plementation of the Spherical Harmonics method.

6.1 mock catalogues

In addition to the 2dFGRS results presented in Figs. 2, 3
& 4, we also plot contours revealing the average likelihood
surface determined from the 22 mock catalogues described
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Figure 6. Likelihood contour plots as in Fig. 2, but now designed
to test the Spherical Harmonics method. The different rows cor-
respond to models with: (1.) power spectrum shape correspond-
ing to linear rather than non-linear model. (2.) 1/completeness
weighting for galaxies so that the weighted angular mask is uni-
form over the area of the survey. (3.) No luminosity-bias correc-
tion.

in Section 3. The average surface is used so the 2dFGRS
and mock contours are directly comparable. For b(L∗, 0)σ8

and β(L∗, 0) we also give the recovered parameters and er-
rors from the average likelihood surface. These numbers can
be compared with the expected values b(L∗, 0)σ8 = 0.9 and
β(L∗, 0) = 0.47. Crosses in these plots show the maximum
likelihood positions calculated from each of the mock cata-
logues, while the open circle gives the combined maximum
likelihood position, and the solid circles shows the expected
values. We see that the recovered value of β(L∗, 0) is slightly
higher than expected. However, we will show in Section 6.7
that the recovered value of β(L∗, 0) changes in a consistent
way following changes in the peculiar velocities calculated
for the galaxies in each mock. Furthermore, we show that
there is no evidence for a systematic offset in the recovered
β(L∗, 0), which we would expect to vary with the peculiar

Figure 7. Likelihood contour plots as in Fig. 2, but now de-
signed to test the effect of the Fingers-of-God correction applied.
The different rows correspond to models with: (1.) no Fingers-of-
God correction applied. (2.) an exponential model for the prob-
ability distribution caused by the Fingers-of-God effect (Eq. 5)
with σpair = 400 km s−1. (3.) a Gaussian model the probability

distribution (Eq. 6) with σpair = 400 km s−1. (4.) a model with
exponential distribution for the correlation function (Eq. 7) with
σpair = 400 kms−1.

velocities. The true value of b(L∗, 0)σ8 is recovered to suffi-
cient precision.

6.2 Non-linear power assumption

Although the width of the window function means that the
modes are dependent on the real-space power spectrum at
k > 0.2 h Mpc−1, this dependence is weak compared with
the dependence on the low-k, linear regime (this is shown in
Fig. A1). The likelihood calculation used in Eq. A43 relied
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on the transformed density field having Gaussian statistics.
While this is expected to be true in the linear regime, on
the scales of non-linear collapse this assumption must break
down. Although the modes must deviate from Gaussianity,
we consider the change in shape of the power as a first ap-
proximation, and use the fitting formulae of Smith et al.
(2003) to determine the model power. In order to test the
significance of this, we consider the effect of replacing the
non-linear power in the model (Eq. A40) with the linear
power. In fact, this has a relatively small effect on the re-
covered power spectrum amplitude and β(L∗, 0) as shown
in Fig. 6.

6.3 Completeness weighting

We have tried two angular weighting schemes for the galax-
ies. The default weights do not have an angular component,
and are simply the radial weights of Feldman, Kaiser & Pea-
cock (1994) given by Eq. A5. For comparison we have also
tried additionally weighting each galaxy by 1/(angular com-
pleteness), so the weighted galaxy density field at a given r
is independent of angular position (i.e. it is uniform over
the survey area). This weighting simplifies the convolution
of the model power to correct for the angular geometry of
the survey (Eq. A22 & A27), and comparing results from
both schemes therefore tests this convolution. The down-
side of such a weighting is the slight increase in shot noise.
Results calculated with this weighting scheme are presented
in Fig. 6, and can be compared with the default in Fig. 2: no
significant difference is observed between the two schemes.

6.4 Luminosity-dependent bias

As described in Section A1, we adopt a constant galaxy
clustering (CGC) model for the evolution of the fluctuation
amplitudes across the survey, and correct for the expected
luminosity dependence of this amplitude by weighting each
galaxy by the reciprocal of the expected bias ratio to L∗

galaxies (as suggested by Percival, Verde & Peacock 2004).
The expected bias ratio assumed, given by Eq. A1, was cal-
culated from a volume-limited subsample of the 2dFGRS by
Norberg et al. (2001). In Fig. 6, we fit models that do not
include either this luminosity-dependent bias correction, or
the evolution correction for β(L, z). This likelihood fit mea-
sures β(Leff , zeff), which is now a function of the effective
luminosity Leff and effective redshift zeff of the survey. For
the complete survey, examining the weighted density field
gives that Leff = 1.9L∗ and zeff = 0.17. However, we cannot
be sure that the Spherical Harmonics modes selected will
not change these numbers.

In fact, fitting to the data gives β(Leff , zeff) = 0.59±0.08
and b(Leff , zeff)σ8(zeff) = 0.87 ± 0.02. In order to compare
these values with our results that have been corrected for
luminosity-dependent bias, we have to consider a number
of factors. For the CGC model,the change in the measured
power spectrum amplitude should only arise from the galaxy
luminosity probed. The effective luminosity of the sample is
∼ 1.9L∗, which gives an expected bias of 1.13 (using Eq. A1).
The observed offset in amplitude is 1.08, perhaps indicating
that, for the chosen modes, Leff < 1.9L∗. Within the CGC
model, β(Leff , zeff) is expected to be related to β(L∗, 0) by

β(Leff , zeff) =
Ωm(zeff)0.6

Ωm(0)0.6
D(zeff)

b(L∗, 0)

b(Leff , 0)
β(L∗, 0), (4)

which gives β(1.9L∗, 0.17) ∼ β(L∗, 0) for a concordance cos-
mological model as the different factors approximately can-
cel. In fact, we measure no significant difference between
β(Leff , zeff) and β(L∗, 0).

6.5 Fingers-of-God correction

In this Section we test the assumed scattering probability
that corrects distance errors induced by the peculiar veloc-
ities of galaxies inside groups. This probability was used to
convolve the model transformed density fields using the ma-
trix presented in Eq. A10. We compare models with expo-
nential and Gaussian forms, and a model that corresponds to
an exponential convolution for the correlation function (this
corresponds to the model advocated by Ballinger, Peacock
& Heavens 1996; Hawkins et al. 2003)

pe(r − y) =
1√
2σv

exp

[

−
√

2 |r − y|
σv

]

, (5)

pg(r − y) =
1√

2πσv

exp

[

− (r − y)2

2σ2
v

]

, (6)

pb(r − y) =
2
√

2

σv
K0

[

−
√

2

σv
(r − y)

]

. (7)

σv is the one-dimensional velocity dispersion, related to
the commonly used pairwise velocity dispersion by σpair =√

2σv. Kn is an nth-order modified Bessel function derived
as the inverse Fourier transform of the root of a Lorentzian
(Taylor et al. 2001).

The Fingers-of-God effect stretches structure along the
line-of-sight, whereas large-scale bulk motions tend to fore-
shorten objects. Although these effects predominantly oc-
cur on different scales, there is some overlap, and if the
Fingers-of-God effect is not included when modelling the
data, the best-fit value of β(L∗, 0) is decreased slightly. In
this case, the best-fit model interpolates between the two ef-
fects, as demonstrated in Fig. 7, where we present the best-
fit β(L∗, 0) with and without including the Fingers-of-God
correction.

In the results presented in Fig. 2, we assumed an expo-
nential distribution for the distribution function of random
motions with σpair = 350 kms−1 for the 2dFGRS catalogue
and σpair = 500 km s−1 for the mock catalogues. We have
tried a number of different values of 0 < σpair < 500 kms−1

and find only very small variation in the best-fit β(L∗, 0),
as expected because we have chosen modes that peak for
k < 0.15 h Mpc−1, where the finger-of-god correction is
small. To demonstrate this, in Fig. 7 we present results cal-
culated using Eqns. 5, 6 & 7 with σpair = 400 kms−1 for
both the 2dFGRS and mock catalogues. We also compare
with the effect of not including any correction for the small-
scale velocity dispersion. Little difference is seen in the re-
covered values of β(L∗, 0), adding weight to the hypothesis
that the Fingers-of-God correction is not important for our
determination of β(L∗, 0).

In the ξ(σ, π) analyses of the 2dFGRS presented in Pea-
cock et al. (2001), Madgwick et al. (2003) and Hawkins
et al. (2003) a strong degeneracy was revealed between
the Fingers-of-God and linear redshift-space distortions. Al-
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though such a degeneracy is also present in the results from
our Spherical Harmonics analysis, it is weak compared with
the ξ(σ, π) results. The difference is due to the scales anal-
ysed – the correlation function studies estimated the clus-
tering strength on smaller scales where the Fingers-of-God
convolution is more important. Because the Fingers-of-God
effect has less effect in our analysis, we are less able to con-
strain its amplitude, and therefore assume a fixed value mo-
tivated by the ξ(σ, π) analyses, rather than fitting to the
data.

6.6 2dFGRS catalogue calibration

Outwith this Section we consider the 2dFGRS release cata-
logue and corresponding calibration. In order to test the de-
pendence of our results on the catalogue calibration, in this
Section we report on the analysis of a different version of the
catalogue with revised calibration. In the release catalogue
(Colless et al. 2003; http://www.mso.anu.edu.au/2dFGRS/)
the 2dFGRS photographic magnitudes were calibrated us-
ing external CCD data from the SDSS Early Data Release
and ESO Imaging Survey (EIS) (Colless et al. 2003; Cross
et al. 2003). Overlaps between the photographic plates al-
low this calibration to be propagated to the whole survey.
In this section we instead calibrate each plate without the
use of external data. The magnitudes in the final released
catalogue, bfinal

J and magnitudes, bself
J , resulting from this

self-calibration are assumed to be related by a linear rela-
tion

bself
J = aselfb

final
J + bself , (8)

where the calibration coefficients aself and bself are allowed
to vary from plate to plate. To set the values of these cal-
ibration coefficients two constraints are applied. First on
each plate we assume that the galaxy luminosity function
can be represented by a Schechter function with faint-end
slope α = 1.2 and make a maximum likelihood estimate of
M∗. The value of M∗ is sensitive to the difference in bself

J

and bfinal
J at around bJ = 17.5 and the number of galax-

ies on each plate is such that the typical random error on
M∗ is 0.03 magnitudes. Second we compare the number of
galaxies, N(z > 0.25), with redshifts greater than z = 0.25
with the number we expect, Nmodel(z > 0.25), based on
our standard model of the survey selection function. The
value of Nmodel(z > 0.25) depends sensitively on the survey
magnitude limit and so constrains the difference in bself

J and
bfinal
J at bJ ≈ 19.5. By demanding that on each plate both

N(z > 0.25) = Nmodel(z > 0.25) and M∗ − 5 log h = 19.73
we determine aself and bself . This method of calibrating
the catalogue is extreme in that it ignores the CCD cali-
brating data (apart from setting the overall zero point of
M∗ − 5 log h = 19.73). A more conservative approach is to
combine the external calibration with the internal one and
determine aself and bself by a χ2 procedure that takes ac-
count of the statistical error on M∗, the expected variance
on N(z > 0.25) given by mock catalogues and the errors
on the calibrating data. Unless the errors on the CCD cal-
ibration are artificially inflated this results in a calibration
very close to that of final release. Thus we believe that the
difference between the results achieved with self-calibrated
catalogue and the standard final catalogue represent an up-

per limit on the effects attributable to uncertainty in the
photometric calibration.

For the Spherical Harmonics analysis method, we need
to cut the 2dFGRS catalogue so that the radial distribution
of galaxies is independent of angular position (this catalogue
reduction was described in Section 2). Changing the magni-
tude limit at which to cut the catalogue changes the angular
mask for the reduced sample as angular regions that do not
go as faint as the chosen limit are removed. Rather than opti-
mize the magnitude limit at which to cut the self-calibrated
catalogue, we instead resample the revised catalogue using
the old mask. A magnitude limit was then chosen to fully
sample this angular region and give a radial distribution that
is independent of angular position. This procedure avoided
the computationally expensive recalculation of angular ma-
trices (see Appendix A). However, the radial galaxy distribu-
tion and total number of galaxies were different from those
in our primary analysis, and a revised radial component of
the covariance matrix was required.

Revised parameter constraints on β(L∗, 0) and
b(L∗, 0)σ8 are presented in Fig. 8, which can be directly
compared with the upper panels in Fig. 2. An incorrect cali-
bration would lead to a resampling of the complete 2dFGRS
catalogue (described in Section 2) that would not produce
a catalogue with radial galaxy distribution independent of
angular position. This would lead to an increase in the am-
plitude of the observed angular fluctuations. Given that we
split the fluctuations into an overall power spectrum and an
additional component in the radial direction caused by lin-
ear redshift space distortions, an artificial increase in angular
clustering would manifest itself as an increase in b(L∗, 0)σ8,
coupled with a decrease in β(L∗, 0)b(L∗, 0)σ8, which controls
the absolute amplitude of the linear redshift-space distor-
tions. In fact this is exactly what is observed when compar-
ing results from the release and self-calibration catalogues
(Figs. 2 & 8), suggesting that the self-calibration procedure
introduces artificial angular distortions into the reduced cat-
alogue. The dashed lines in Fig. 8 show the locus of models
with redshift-space power spectrum amplitude (calculated
from Eq. 3) at the maximum likelihood (ML) value. Com-
paring the relative positions of the ML points in Figs. 2
& 8 shows that changing the catalogue calibration moves
the maximum likelihood position along this locus, without
significantly changing the redshift-space power amplitude.
Catalogue calibration and selection represents the most sig-
nificant potential source of systematic error in our analysis.

6.7 Testing β(L∗, 0) using mock catalogues

For each galaxy in the mock catalogues, we know the rela-
tive contributions to the redshift from the Hubble flow and
peculiar velocity. Consequently, we can easily increase or
decrease the amplitude of the redshift space distortions to
mimic catalogues with different cosmological parameters. In
Fig. 9 we plot the recovered power spectrum amplitudes and
β(L∗, 0) from catalogues created by increasing or decreasing
the peculiar velocity by 50% from the true value. Obviously,
this changes both the linear redshift space distortions and
the Fingers-of-God, and consequently we fit to these data
assuming a revised σpair. If we neglected to do this, the av-
erage recovered β(L∗, 0) would vary from the true value by
less than 50 %, as assuming the wrong value of σpair has the
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Figure 8. Likelihood contours for the recovered b(L∗, 0)σ8 and β(L∗, 0) assuming a fixed ΛCDM power spectrum shape as in Fig. 2, but
now calculated having revised the calibration of the 2dFGRS catalogue. Details of the revised calibration are presented in Section 6.6.

effect of damping the change in the recovered β(L∗, 0). How-
ever, because the linear redshift space distortions are dom-
inant on the scales being probed in our analysis, we would
still see a change in the correct direction. For these cata-
logues, we find that altering the peculiar velocities results
in a consistent change in the recovered β(L∗, 0), showing
that our likelihood test is working well.

In Fig. 9 we also show the recovered parameter con-
straints from mocks catalogues with no redshift space dis-
tortions. Here, we fitted to these data assuming that there
was no Fingers-of-God effect, and see that we recover for
β(L∗, 0) consistent with 0 for each catalogue.

7 SUMMARY AND DISCUSSION

The Spherical Harmonics analysis method of HT and Tadros
et al. (1999) has been extended and updated to allow for
surveys that cover a relatively small fraction of the sky. Ad-
ditionally, a consistent approach has been adopted to model
luminosity-dependent bias and the evolution of the matter
power spectrum. We assume a constant galaxy clustering
model for the redshift region 0 < z < 0.25 covered by the
2dFGRS survey, in which, although the matter density field
does evolve, the galaxy power spectrum is assumed to re-
main fixed. Galaxy bias is also assumed to be a function of
luminosity, and we correct for the effect that this has on the
recovered power spectrum.

The revised method has been applied to the complete
2dFGRS catalogue, resulting in tight constraints on the am-
plitude of the linear redshift space distortions. Because the
method still requires a survey with selection function sepa-
rable in radial and angular directions, we have to use a re-
duced version of the final 2dFGRS catalogue. Additionally,
we are forced to compromise on the quantity of data (num-
ber of modes) analysed, although we have tried to perform a
logical and optimized reduction of the mode number. These
considerations mean that we do not obtain the accuracy of
the cosmological constraints from the shape of the galaxy
power spectrum obtained in our companion Fourier analy-
sis (C04). This reduction in accuracy primarily results from
the decrease in the catalogue size. In particular, the anal-
ysis is cosmic variance limited and most of the discarded
galaxies were luminous and therefore at high redshift where
they trace a large volume of the Universe. However, from the

Spherical Harmonics method we do obtain power spectrum
shape constraints Ωb/Ωm < 0.21 as shown in Fig. 3 and, for
fixed Ωb/Ωm = 0.17, we find Ωmh = 0.20+0.03

−0.03 , consistent
with previous power spectrum analyses from the 2dFGRS
and the SDSS.

We have also modelled the overdensity distribution in
22 LCDM mock catalogues, designed to mimic the 2dFGRS.
By presenting recovered parameters from these catalogues,
we have shown that any systematic biases induced by the
analysis method are at a level well below the cosmic vari-
ance caused by the size of the survey volume. In particular,
it should be emphasized that these mocks include a real-
istic degree of scale-dependent bias, to reflect the known
difference in small-scale clustering between galaxies and the
nonlinear CDM distribution (e.g. Jenkins et al. 1998). We
have additionally used these catalogues to test the errors
placed on recovered parameters and find that assuming a
χ2 distribution for lnL provides approximately the correct
errors. The tests presented, considering the NGP and SGP
separately, using the mocks, and varying parts the analy-
sis method were designed to test our Spherical Harmonics
formalism and the assumptions that go into this. In partic-
ular, we do not test the 2dFGRS sample for internal consis-
tency, for instance splitting by redshift or magnitude limit,
although we do find consistent parameter estimates from
the northern and southern parts of the survey. A more com-
prehensive set of tests is presented in C04, using Fourier
methods to decompose the density field.

By considering a revised 2dFGRS catalogue calibration,
we have examined the effect of small systematic magnitude
errors on our analysis. Such errors artificially increase the
strength of the angular clustering, leading to an increase
in the best-fit b(L∗, 0)σ8 and a corresponding decrease in
β(L∗, 0). We have shown that the revised catalogue tested
produces such a change in the recovered parameters, there-
fore providing evidence in favour of the release calibration.
The calibration method and its effect will be further dis-
cussed in C04. Here, we simply note that the systematic
error in β(L∗, 0) and b(L∗, 0) from catalogue calibration is
of the same order as the random error.

The strength of the Spherical Harmonics method as ap-
plied to the 2dFGRS lies in measuring the linear redshift-
space distortions, and fitting the real-space power spectrum
amplitude. Consequently we are able to measure β(L∗, 0) =
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Figure 9. Likelihood contour plots as in Fig. 2, but now designed
to test our recovery of β(L∗, 0) using the mock catalogues. The
different panels correspond to: 1. the standard catalogues with
peculiar velocities calculated directly from the Hubble Volume
simulation. Here the true value of β(L∗, 0) is 0.47. 2. the contri-
bution to the galaxy redshifts from the peculiar velocities has been
increased by 50 %. Here, we assume σpair = 750 km s−1. Without
this correction, β(L∗, 0) would increase by less than 50%. We ex-
pect β(L∗, 0) = 0.71, shown by the solid circle. 3. as 2, but now de-
creasing the redshift contribution by 50 %. σpair = 250 kms−1 is
assumed, and we expect β(L∗, 0) = 0.24. 4. recovered parameters
from real space catalogues, calculated assuming that σpair = 0.
Obviously, we expect to recover β(L∗, 0) = 0.0.

Figure 10. Likelihood contour plots for the combined NGP +
SGP 2dFGRS catalogue as in Fig. 5 compared with best fit pa-
rameters from WMAP (Bennett et al. 2003; Spergel et al. 2003).
The constraint on the characteristic amplitude of velocity fluctu-

ations from the 1-year WMAP data is σ8Ω0.6
m = 0.44±0.10, which

is shown in the left panel by the thick solid line, with 1σ errors
given by the dotted lines. In the right panel, the solid circle shows
the best-fit parameter values of Ωmh = 0.20 & Ωb/Ωm = 0.17.
As can be seen, the constraints resulting from the 2dFGRS power
spectrum shape and the linear distortions are consistent with the
WMAP data.

0.58 ± 0.08, and b(L∗, 0)σ8 = 0.79 ± 0.03 for L∗ galaxies at
z = 0, marginalising over the power spectrum shape. This
result is dependent on the constant galaxy clustering model
and on the bias-luminosity relationship derived by Norberg
et al. (2001), and covers 0.02 < k < 0.15 h Mpc−1. Our
measurement of β(L∗, 0) is derived on larger scales than the
ξ(σ, π) analyses of the 2dFGRS presented in Peacock et al.
(2001) and Hawkins et al. (2003), and scale-dependent bias
could therefore explain why our result is slightly higher than
the numbers obtained in these analyses.

Tegmark, Hamilton & Xu (2002) performed a similar
spherical harmonics analysis of the 100k release of the 2dF-
GRS. As in the analysis presented here, they also required
a catalogue that was separable in radial and angular direc-
tions, and cut the 100k release catalogue to 66050 galaxies.
From these galaxies, they measured β(Leff , zeff) = 0.49 ±
0.16, consistent with our result (see Section 6.4 for a discus-
sion of the conversion between β(Leff , zeff) and β(L∗, 0)).
Our result not only allows for luminosity-dependent bias

c© 0000 RAS, MNRAS 000, 000–000
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and evolution, it also uses over twice as many galaxies as
the Tegmark, Hamilton & Xu (2002) analysis.

On large-scales, galaxies are expected to directly trace
the bulk motion of the density field, so the absolute ampli-
tude of the observed redshift-space distortions caused by this
motion is expected to be independent of galaxy properties.
This assumption has been tested empirically by considering
the mean relative velocity of galaxy pairs in different sam-
ples (Juszkiewicz et al. 2000; Feldman et al. 2003). Rather
than fitting β(L∗, 0), the relative importance of the lin-
ear redshift-space distortions compared with the real-space
galaxy power spectrum, we can instead fit the absolute am-
plitude of these fluctuations. This results in the cosmological
constraint Ω0.6

m σ8 = 0.46 ± 0.06.

The relatively high power of σ8 compared to Ωm in this
constraint means that an additional constraint on Ωm pro-
vides a tight constraint on σ8. For example, fixing Ωm = 0.3
gives σ8 = 0.95± 0.12 (∼ 15% error), while fixing σ8 = 0.95
gives Ωm = 0.3± 0.08 (∼ 26% error). We note that our con-
straint is approximately 1σ higher than a recent combination
of weak-lensing measurements that gave σ8 ≃ 0.83 ± 0.04
for Ωm = 0.3 (Refregier 2003). Additionally, combining the
weak-lensing constraint with our measurement of b(L∗, 0)σ8

suggests that b(L∗, 0) ∼ 0.9 in agreement with the analyses
of Lahav et al. (2002) & Verde et al. (2002). Similarly, com-
bining our measurement of β(L∗, 0) with recent constraints
on Ωm (such as those derived by Spergel et al. 2003) suggests
that b(L∗, 0) ∼ 0.9, and we see that we have a consistent pic-
ture of both the amplitude of the real-space power spectrum
and linear redshift-space distortions within the concordance
ΛCDM model.

A comparison of our results with parameter constraints
from WMAP is presented in Fig. 10. In this paper, we do
not attempt to perform a full likelihood search for the best-
fit cosmological model using the combined 2dFGRS and
WMAP data sets. Instead, we simply consider the consis-
tency between the WMAP data and our measurements of
the 2dFGRS. In Fig. 10 we plot the WMAP constraint on
Ω0.6

m σ8 as derived in Spergel et al. (2003), compared with our
constraints on β(L∗, 0) and b(L∗, 0)σ8. WMAP obviously
tells us nothing about b(L∗, 0), so there is a perfect degener-
acy between these parameters. However, the constraints are
seen to be consistent. In fact our constraint is a significant
improvement on the WMAP constraint, primarily because
of the uncertainty in the optical depth to the last scattering
surface, parameterized by τ .

Because h = 0.72 is fixed in the simple cosmological
model assumed to parameterise the power spectrum shape,
the horizon angle degeneracy for flat cosmological models
(Percival et al 2002; Page et al. 2003) is automatically lifted.
The position of the first peak in the CMB power spec-
trum therefore provides a tight constraint on Ωm.In fact,
given this simple model, the constraints on Ωm and Ωb/Ωm

from WMAP are so tight that we chose to plot a point to
show them in Fig. 10, rather than a confidence region. How-
ever, had we considered a larger set of models in which h
was allowed to vary, then an extra constraint is required
to break the horizon angle degeneracy even for the WMAP
data (Page et al. 2003). In this paper we provide a new cos-
mological constraint by measuring the strength of the lin-
ear distortions caused by the bulk flow of the density field
mapped by the final 2dFGRS catalogue.
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APPENDIX A: METHOD

The Spherical Harmonics method applied to the 2dFGRS in
this paper has a number of significant differences from the
formalisms developed for the IRAS surveys (Fisher et al.
1994;1995; HT; Tadros et al. 1999). The revisions are pri-
marily due to the complicated geometry of the 2dFGRS sur-
vey (whereas the IRAS surveys nearly covered the whole
sky), although we additionally apply a correction for vary-
ing galaxy bias, dependent on both galaxy luminosity and
redshift. For these reasons we provide a simple, complete
description of the formalism in this appendix. Note that
throughout we use a single Greek subscript (e.g. ν) to rep-
resent a triplet (e.g. ℓν ,nν ,mν), so the spherical harmonic
Yν(θ, φ) ≡ Yℓνmν

(θ, φ) and the spherical Bessel functions,
jν(s) ≡ jℓν

(kℓνnν
s). −ν is defined to represent the triplet

(ℓν ,−mν ,nν). We also adopt the following convention for co-
ordinate positions: r is the true (or real space) position of
a galaxy, s is the observed redshift space position given the
linear in-fall velocity of the galaxy. s

′ and r
′ correspond to

s and r including the systematic offset in the measured dis-
tance caused by the small-scale velocity dispersion of galax-
ies within larger virialised objects.

A1 Galaxy bias model

As in Lahav et al. (2002), we adopt a constant galaxy clus-
tering (CGC) model for the evolution of galaxy bias over
the range of redshift covered by the 2dFGRS sample used in
this analysis (0 < z < 0.25) i.e. we assume that the normal-
ization of the galaxy density field is independent of redshift,
for any galaxy luminosity L. We also assume that the rela-
tive expected bias r̂b(L) of galaxies of luminosity L relative
to that of L∗ galaxies is a function of luminosity

r̂b(L) =

〈

b(L, z)

b(L∗, z)

〉

= 0.85 + 0.15
L

L∗

, (A1)

and that this ratio is independent of redshift. This depen-
dence is implied by the relative clustering of 2dFGRS galax-
ies (Norberg et al. 2001).

In the analysis presented in this paper, the galaxy bias
is modelled using a very simple linear form with the mean
redshift-space density of galaxies of luminosity L given by

ρ(r′) = ρ̄(r′) [1 + b(L, 0)δ(mass, r′)] (A2)

= ρ̄(r′) [1 + r̂b(L)δ(L∗, r
′)] , (A3)

where δ(mass, r′) is the present day mass density field, and
δ(L∗, r

′) is the density field of galaxies of luminosity L∗,
which is assumed to be independent of epoch.

The galaxy bias model described above was used to cor-
rect the observed galaxy overdensity field, enabling measure-
ment of the shape and amplitude of the power spectrum of
L∗ galaxies. Following the CGC model, we do not have to
correct the recovered clustering signal for evolution, pro-
vided that we wish to measure the galaxy rather than the
mass power spectrum. However, because galaxy luminosity
varies systematically with redshift, we do need to correct for
luminosity-dependent bias, and we do this in a way analo-
gous to the Fourier method presented by Percival, Verde
& Peacock (2004), by weighting the contribution of each
galaxy to the measured density field by the reciprocal of the
expected bias ratio r̂b(L) given by Eq. A1.

In the following description of the formalism, we only
consider galaxies of luminosity L. Without loss of general-
ity, this result can be expanded to cover a sample of galaxies
with different luminosities by simply summing (or integrat-
ing) over the range of luminosities (as in Percival, Verde &
Peacock 2004).

A2 The Spherical Harmonic formalism

Further description of the Spherical Harmonics formalism
may be found in Fisher et al. (1994; 1995), HT and Tadros
et al. (1999). Expanding the density field of the redshift-
space distribution of galaxies of luminosity L in spherical
harmonics and spherical Bessel functions gives

ρν(L, s′) = cν

∫

d3s′
ρ(L,s′)

r̂b(L)
w(s′)jν(s′)Y ∗

ν (θ, φ), (A4)

where w(s′) is a weighting function for which we adopt the
standard Feldman, Kaiser & Peacock (1994) weight

w(s′) =
1

1 + ρ̄(s′)〈P (k)〉 . (A5)

Here, ρ̄(s′) is the mean galaxy redshift-space density for all
galaxies, 〈P (k)〉 is an estimate of the power spectrum, and
s

′ is the 3D redshift-space position variable. Note that, to
simplify the procedure, we do not use luminosity-dependent
weights as advocated by Percival, Verde & Peacock (2004).
cν are normalization constants, and ρ(s′) is the galaxy
redshift-space density. For a galaxy survey, ρ(s′) is a sum of
delta functions and the above integral decomposes to a sum
over the galaxies.

The inverse transformation is given by

ρ(L,s′)

r̂b(L)
w(s′) =

∑

ν

cνρν(L, s′)jν(s′)Yν(θ, φ). (A6)

Adopting the set of harmonics with

d

dr
jν(r)

∣

∣

∣

rmax

= 0, (A7)
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(i.e. with no boundary distortions at rmax = 706.2 h−1 Mpc),
the normalization of the transform requires cν to satisfy

c−2
ν =

∫

dr j2
ν(r)r2. (A8)

A3 Small-scale velocity dispersion correction

We have applied the correction (described by HT) for the
effect of the small-scale non-linear peculiar velocity field
caused by the random motion of galaxies in groups. Because
we are only interested in the large-scale linear power spec-
trum in this paper, the exact details of this correction are
not significant (this is discussed further in Section 6.5). The
effect of the velocity field is to smooth the observed overden-
sity field along the line-of-sight in a way that is equivalent
to convolving with a matrix Sνµ:

(δr′)ν =
∑

µ

Sνµ(δr)µ, (A9)

where

Sνµ = cνcµ∆K
ℓν ,ℓµ

∆K
mν ,mµ

×
∫∫

p(r − y)jµ(r)jν(y) rdr ydy. (A10)

Here ∆K is the Kronecker delta function, and p(r−y) is the
one-dimensional scattering probability for the velocity dis-
persion. Models for p(r−y) are given in Eqns. 5, 6, & 7, and
the choice of model is discussed further in Section 6.5. Note
that this formalism assumes that the induced dispersion is
not a strong function of group mass.

A4 Modelling the transformed density field

The correction for luminosity-dependent bias given by
Eq. A1 is a function of galaxy properties, not the measured
galaxy position. The galaxy density multiplied by this bias
correction is therefore conserved with respect to a change in
coordinates with number conservation implying

d3
s

′
ρ(L,s′)

r̂b(L)
= d3

r
′
ρ(L, r′)

r̂b(L)
. (A11)

The dependence of the redshift distortion term lies in
the weighting and spherical Bessel functions and, following
HT, we expand to first order in ∆r′ ≡ s′ − r′,

w(s′)jν(s′) ≃ w(r′)jν(r′) + ∆r′
d

dr

[

w(r′)jν(r′)
]

. (A12)

Using the Poisson equation to relate the gravitational
potential with the density field,

∆r′lin = Ωm(z[r′])0.6 ×
∑

ν

1

k2
ν
cνδν(mass, r′)

djν(r′)

dr
Yν(θ, φ), (A13)

where δν(mass, r′) is the transform of the mass over-density
field. Because the linear redshift-space distortions are a func-
tion of the mass over-density field, they are independent of
galaxy luminosity. However, this means that they are ex-
pected to grow through the linear growth factor D(z), nor-
malized to D(0) = 1, within the CGC model. This and the

redshift dependence of Ωm(z)/Ωm(0) are calculated assum-
ing a concordance model. We can now rewrite these distor-
tions in terms of the transformed density field of galaxies of
luminosity L∗

∆r′lin =
Ωm(z[r′])0.6

b(L∗, 0)
D(z[r′]) ×

∑

ν

1

k2
ν
cνδν(L∗, r

′)
djν(r′)

dr
Yν(θ, φ). (A14)

Defining

β(L∗, 0) ≡
Ωm(0)0.6

b(L∗, 0)
, (A15)

reduces this expression to

∆r′lin = β(L∗, 0)
Ωm(z[r′])0.6

Ωm(0)0.6
D(z[r′])

∑

ν

1

k2
ν
cνδν(L∗, r

′)
djν(r′)

dr
Yν(θ, φ). (A16)

Including a correction for the local group velocity vLG ,
assumed to be 622 kms−1 towards (B1950) RA = 162◦,
Dec = −27◦ (Lineweaver et al. 1996; Courteau & van den
Bergh 1999), gives

∆r′ = ∆r′lin − vLG · r̂′ . (A17)

The local group velocity correction has a very minor effect
on the results presented in this paper, but was included for
completeness.

For galaxies of luminosity L, transforming the density
field gives

ρ(L, r′) = ρ̄(L, r′) ×
[

1 +
∑

ν

cνδν(L, r′)jν(r′)Yν(θ, φ)

]

, (A18)

where ρ̄(L, r′) is the observed mean density of galaxies of
luminosity L in the survey. In fact, the mean number of
galaxies as a function of the redshift-space distance ρ̄(L, s′)
is more easily determined than ρ̄(L, r′). It would be pos-
sible to reformulate the Spherical Harmonics formalism to
use ρ̄(L, s′) by separating the convolution of the window
from the linear redshift-space distortion correction. Given
the relatively small effect that the coordinate translation
r

′ → s
′ has on ρ̄(L, r′), we have instead chosen to use the

original HT formalism with ρ̄(L, r′) ≃ ρ̄(L, s′) as measured
from the survey. Converting from δν(L, r′) to consider the
fluctuations traced by L∗ galaxies gives

ρ(L, r′) = ρ̄(L, r′) ×
[

1 +
∑

ν

cν r̂b(L)δν(L∗, r
′)jν(r′)Yν(θ, φ)

]

, (A19)

and we see that when we combine Eqns. A4, & A19 to de-
termine ρ(L,r′) as a function of 〈δν(L∗, r

′)〉, the factors of
r̂b(L) in both of these Equations will cancel.

Combining Eqns. A4, A9, A12, A17 & A19 gives

Dν ≡ ρν(L, r′) − ρ̄ν(L, r′) − ρν(LG, r′) (A20)

=
∑

µ

(Φνµ + β(L∗, 0)Vνµ) δµ(L∗, r
′) (A21)
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=
∑

µ

∑

η

(Φνµ + β(L∗, 0)Vνµ) Sµηδη(L∗, r) (A22)

where the mean-field harmonics are defined as

ρ̄ν(L, r′) = cν

∫

d3r′
ρ̄(L, r′)

r̂b(L)
w(r′)jν(r′)Y ∗

ν (θ, φ), (A23)

the local group contribution is given by

ρν(LG, r′) = cν

∫

d3r′(vLG · r̂′)
ρ̄(L, r′)

r̂b(L)
×

d

dr

[

w(r′)jν(r′)
]

Y ∗

ν (θ, φ), (A24)

and the Φ and V matrices are defined as

Φνµ = cνcµ

∫

d3r′ρ̄(L, r′)w(r′)jν(r′)jµ(r′) ×

Y ∗

ν (θ, φ)Yµ(θ, φ), (A25)

and

Vνµ =
cνcµ

k2
µ

∫

d3r′
ρ̄(L, r′)

r̂b(L)

Ωm(z)0.6

Ωm(0)0.6
D(z) ×

d

dr′

[

w(r′)jν(r′)
] d

dr′
jµ(r′)Y ∗

ν (θ, φ)Yµ(θ, φ). (A26)

Assuming that the mean observed density field
ρ̄(L, r′) = ρ̄(L, r′)M(θ, φ) and the weighting w(r′) =
w(r′)w(θ, φ) can be split into angular and radial compo-
nents, then the 3D integrals required to calculate the Φ and
V matrices have the same angular contribution

Wνµ =

∫

dθ dφ w(θ, φ)Y ∗

ν (θ, φ)M(θ, φ)Yµ(θ, φ), (A27)

where M(θ, φ) is the sky mask of the survey. This therefore
only needs to be calculated once.

The effect of the survey geometry (matrix Φνµ) is in-
dependent of the luminosity-dependent bias correction: the
1/r̂b(L) factor in Eq. A4 was designed to cancel the offset in
δ(L, r′) (Eq. A3). Note that we have included the redshift
evolution part of β(L∗, z) in Eq. A26, and in the calculation
performed, so that we fit the data with β(L∗, 0). Ignoring
this correction gives a measured β(L∗, z) approximately 10%
larger than β(L∗, 0), because it corresponds to an effective
redshift ∼ 0.17.

A5 Construction of the covariance matrix

In this Section we only work with the real space position, and
all overdensities correspond to L∗ galaxies. For simplicity, we
therefore define δµ ≡ δµ(L∗, r

′). We also define

Ψνµ ≡
∑

η

(Φνη + β(L∗, 0)Vνη) Sηµ, (A28)

so that Eq. A22 becomes

Dν =
∑

µ

Ψνµδµ. (A29)

The real and imaginary parts of Dν are given by

ReDν =
∑

η

(ReΨνηRe δη − ImΨνηIm δη) (A30)

ImDν =
∑

η

(ImΨνηRe δη + ReΨνηIm δη) . (A31)

From Eqns. A28 & A29 it can be seen that, for a single
mode, the expected value 〈ReDνReDµ〉 or 〈ImDνIm Dµ〉
can be split into three components dependent on β(L∗, 0)

n

with n = 0, 1, 2.
Given the large number of modes within the linear

regime, rather than estimating the covariances of all modes,
we reduce the problem to considering a number of combina-
tions of the real and imaginary parts of Dν . We will discuss
how we optimally chose the direction of the component vec-
tors in the space of all modes in Section A7. Suppose the re-
vised mode combinations that we wish to consider are given
by

D̂a =
∑

ν

Er
aνReDν +

∑

ν

Ei
aνIm Dν . (A32)

Note that in this Equation a does not represent a triplet
of ℓ,m, & n, but is instead simply an index of the modes
chosen. Using Equations A30 & A31, we can decompose into
multiples of the real and imaginary components of δ

D̂a =
∑

η

(

Υr
aηRe δη + Υi

aηIm δη

)

, (A33)

where

Υr
aη =

∑

ν

(

Er
aνRe Ψνη + Ei

aνIm Ψνη

)

(A34)

Υi
aη =

∑

ν

(

Ei
aνRe Ψνη − Er

aνIm Ψνη

)

. (A35)

The expected values of 〈D̂aD̂b〉 are then

〈D̂aD̂b〉 =
∑

η

∑

γ

〈(Υr
aηRe δη + Υi

aηIm δη) ×

(Υr
bγRe δγ + Υi

bγIm δγ)〉. (A36)

Assuming a standard Gaussian density field, the double sum
in Eq. A36 can be reduced to a single sum using the following
relations

〈Re δνIm δµ〉 = 0 (A37)

〈Re δνRe δµ〉 =
[

∆K
ν,µ + (−1)mν ∆K

ν,−µ

] P (kν)

2
(A38)

〈Im δνIm δµ〉 =
[

∆K
ν,µ − (−1)mν ∆K

ν,−µ

] P (kν)

2
, (A39)

where the ∆K
ν,−µ terms arise because δν obeys the Hermi-

tian relation δ∗ν = (−1)mν δ−ν . These terms are only impor-
tant for geometries that lack azimuthal symmetry, such as
the 2dFGRS and are less important for the PSCz survey.
The dependence on P (k) follows because the transforma-
tion from the Fourier basis to the Spherical Harmonics basis
is unitary and the amplitude of the complex variable is un-
changed. Using these relations, Eq. A36 reduces to

〈D̂aD̂b〉 =
∑

η

P (kν)

2

[

Υr
aηΥr

bη + Υi
aηΥi

bη

+(−1)mη Υr
aηΥr

b−η − (−1)mη Υi
aηΥi

b−η

]

. (A40)

This equation gives the geometrical component of the co-
variance matrix resulting from the mixing of modes caused
by the survey geometry and large-scale redshift-space distor-
tions. Note that, by substituting Eqns. A28, A34 & A35 into
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this equation we could split the geometric part of the covari-
ance matrix into 3 components with varying dependence on
β(L∗, 0). This is actually the case in our implementation of
the method so we only have to calculate these three compo-
nents once for any value of β(L∗, 0).

In addition, there is a shot noise component which can
be calculated by the methods of Peebles (1973). This term
enters into the above formalism because the density field
ρ(L, s′) in Eq. A4 is actually the sum of a series of delta func-
tions, each at the position of a galaxy. The expected value
of 〈DµDν〉 therefore includes two terms (as in Appendix A
of Feldman, Kaiser & Peacock 1994) corresponding to the
convolved power and the shot noise. Allowing a and b to rep-
resent either real or imaginary parts, the expected value of
the noise component for each mode, for a particular galaxy
luminosity is

〈aNν bNµ〉 = cνcµ

∫

d3r
ρ̄(L, r)

r̂2
b(L)

w2(r)jν(r)jµ(r)r2×

aY ∗

ν (θ, φ)bY ∗

µ (θ, φ). (A41)

To allow for all galaxy luminosities, we simply integrate over
luminosity as in Percival, Verde & Peacock (2004).

Allowing for the combinations of modes defined in
Eq. A32,

〈N̂a N̂b〉 =
∑

ν

∑

µ

(

Er
aνEr

bµ〈Re NνReNµ〉

+Ei
aνEi

bµ〈ImNνIm Nµ〉 + Er
aνEi

bµ〈Re NνIm Nµ〉

+Ei
aνEr

bµ〈ImNνRe Nµ〉
)

(A42)

The components of the covariance matrix of the re-
duced data are 〈D̂aD̂b〉 + 〈N̂a N̂b〉 as given by Equa-
tions A40 & A42.

A6 Some practical issues

The calculation of the angular part of the mixing matrices,
Wνµ (given by Eq. A27) is more CPU intensive than the cal-
culation of the radial components. Because of this, Tadros
et al. (1999) utilized Clebsch-Gordan matrices to relate a
single transform of the angular mask to the full transition
matrix given by Eq. A27. However at the high ℓ-values re-
quired for the complex geometry of the 2dFGRS survey it is
computationally expensive to calculate these accurately. Be-
cause the integral in Eq. A27 can be reduced to a sum over
the angular mask, a direct integration proved stable and
computationally faster than the more complicated Clebsch-
Gordan method. At low ℓ-values both methods agreed to
sufficient precision.

In the large-scale regime k < 0.15 h Mpc−1, and in
the regime where the assumed redshift distribution does
not have a significant effect on the recovered power k >
0.02 h Mpc−1 (see P01), there are 86667 modes with m ≥ 0.
This statistically complete set includes real and imaginary
modes separately, but only includes modes with m ≥ 0 be-
cause Dν (Equation A22) obeys the Hermitian relation and
positive and negative m-modes are degenerate. The maxi-
mum n of the modes in this set is 33, and the maximum ℓ
is 101.

Obviously we cannot invert a 86667 × 86667 covariance
matrix with each mode as a single element for every model

Figure A1. Normalized contribution to P (k) as a function of k
for 5 example modes for the NGP and SGP (top row). In the lower
row we present the average (solid line) and maximum (dotted line)
of the normalized distribution of k-contributions, calculated from
all modes used.

we wish to test, and we therefore need to reduce the num-
ber of modes compared. Another serious consideration is
that many of the modes are nearly degenerate. Because we
can only calculate the components required with finite pre-
cision, nearly degenerate modes often become completely
degenerate due to numerical issues and therefore need to be
removed from the analysis: covariance matrices with nega-
tive eigenvalues are unphysical. Removing degenerate modes
is discussed in the context of data compression in the next
Section.

There are two convolutions that we need to perform
in order to determine the covariance matrix, given by
Eqns. A28 & A29. The number of modes summed when nu-
merically performing these convolutions is limited by com-
putational time. The first convolution is given by Equa-
tion A28 and results from the small-scale velocity dispersion
correction. This convolution is a simple convolution in n and
is relatively narrow in the linear regime that we consider in
this paper. In fact we chose to convolve over 1 ≤ n ≤ 100.
The second convolution is given by Equation A40, and is per-
formed for ℓ ≤ 200. This is complete for k < 0.29 h Mpc−1,
and contains > 4 × 106 modes. A limit in ℓ was chosen
rather than a limit in k as the CPU time taken to perform
the convolution is dependent on ℓmax. The k-distribution of
contributions to a few of the chosen modes is presented in
Fig. A1. Note that although the convolved set of modes is
complete for k < 0.29 h Mpc−1, the fall-off to higher k is
very gentle, and most of the signal beyond this limit will
still be included in the convolution.

A7 Data compression

As mentioned in Section A6, there are 86667 Spherical Har-
monic modes with 0.02 < k < 0.15 h Mpc−1, and it is im-
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practical to use all of these modes in a likelihood analysis.
Consequently, we reject modes for the following reasons

(i) The 2dFGRS regions considered have a relatively
small azimuthal angle, so modes that are relatively smooth
in this direction will be close to degenerate. We therefore
set a limit of ℓ− |m| > 5 for the modes analysed. This limit
effectively constrains the number of azimuthal wavelengths
in the modes used.

(ii) Modes with similar ℓ-values were found to be closely
degenerate. Rather than applying a more optimal form of
data compression, it was decided to simply sample the range
of ℓ-values with ∆ℓ = 10. This spacing was chosen by exam-
ining the number of small eigenvalues in the three compo-
nents of the covariance matrix as described after Eq. A40.

In addition, we carry out the following steps to remove
degenerate modes in the covariance matrix and to compress
the data further. These steps are performed first in the an-
gular direction (assuming modes with different ℓ and n are
independent), then on all of the remaining modes.

(i) Even after rejection of near ℓ-values, nearly degener-
ate combinations of modes remain, which, given the limited
numerical resolution achievable, could give negative eigen-
values in the covariance matrix. Because of this, only modes
with eigenvalues in the covariance matrix greater than 10−5

times the maximum eigenvalue, well above the round-off er-
ror, are retained in the three components of the covariance
matrix as described after Eq. A40. This step is effectively
a principal-component reduction of the covariance matrix
eigenvectors.

(ii) Finally, we perform a Karhunen-Loève decomposition
of the covariance matrix optimized to constrain β(L∗, 0). Af-
ter our angular reduction we retain 2155 & 2172 modes for
the NGP and SGP respectively after this step. Following
radial compression we are left with 1223 & 1785 modes for
the NGP and SGP respectively. The number of modes re-
tained for the NGP is smaller than for the SGP because the
smaller angular coverage means that more modes are nearly
degenerate.

A8 Calculating the likelihood

Following the hypothesis that Re Dν and Im Dν are Gaus-
sian random variables, the likelihood function for the vari-
ables of interest can be written

L[D|β(L∗, 0), P (k)] =

1

(2π)N/2|C |1/2
exp

[

−1

2
D

T
C

−1
D

]

. (A43)

Matrix inversion is an N3 process, so finding the inverse
covariance matrix can be prohibitively slow in order to test
a large number of models. However, the KL procedure de-
scribed in Section A7 means that the covariance matrix is
diagonal for a model chosen to be close to the best fit po-
sition. To first order, we might be tempted to assume that
the covariance matrix is diagonal over the range of models to
be tested. However, this can bias the solution depending on
the exact form of the matrix. A compromise is to apply the
iterative Newton-Raphson method of root-finding to matrix
inversion (section 2.2.5 of Press et al. 1992) starting with
the diagonal inverse covariance matrix as the first estimate.

Given an estimate of the inverse covariance matrix H0, our
revised estimate is H1 = 2H0 − H0CH0. Because H0 is di-
agonal, the first step of this iterative method only takes of
order N2 operations. This trick allows the likelihood to be
quickly calculated for a large number of models, and we use
this method in Section 5.2, when we consider a fixed power
spectrum shape.

However, over the larger range of models considered
in Section 5.3, the covariance matrix changes significantly,
and the estimate H1 is not sufficiently accurate. Instead, a
full matrix inversion is performed for each model, so map-
ping the likelihood hypersurface becomes computationally
expensive. A fast method for mapping surfaces which has
recently become fashionable in cosmology is the Markov-
chain Monte-Carlo technique, where an iterative walk is per-
formed in parameter space seeking local likelihood maxima
(e.g. Lewis & Bridle 2002; Verde et al. 2003; Tegmark et al.
2003b). However, we only wish to consider variation of 4
parameters (β(L∗, z), b(L∗, 0)σ8, Ωmh, & Ωb/Ωm) in a very
simple model described in Section 5.1, so it is easy to map
the likelihood surface using a grid.
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