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ABSTRACT 
We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure 
the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the 
galaxies relative to the mass in the Universe. By analysing 80 x 106 triangle configurations in 
the wavenumber range 0.1 < /: < 0.5 h Mpc-1 (i.e. on scales roughly between 5 and 30 h~l 

Mpc) we find that the linear bias parameter is consistent with unity: b\ = 1.04 =b 0.11, and the 
quadratic (non-linear) bias is consistent with zero: 62 = —0.054 =b 0.08. Thus, at least on large 
scales, optically selected galaxies do indeed trace the underlying mass distribution. The bias 
parameter can be combined with the 2dFGRS measurement of the redshift distortion parameter 
ß ~ /b\, to yield Qm = 0.27 zb 0.06 for the matter density of the Universe, a result that 
is determined entirely from this survey, independent of other data sets. Our measurement of 
the matter density of the Universe should be interpreted as Qm at the effective redshift of the 
survey (z = 0.17). 

Key words: galaxies: clusters: general - cosmological parameters - large-scale structure of 
Universe. 

1 INTRODUCTION 

Clustering of mass in the Universe is believed to be a result of ampli- 
fication by gravitational instability of small perturbations generated 

^E-mail: lverde@ astro.princeton.edu 

in the early Universe. Comparison with theoretical predictions of- 
fers the chance to test models of generation of the perturbations, as 
well as putting important constraints on cosmological parameters, 
which control the growth rate of the perturbations. A fundamental 
limitation on such a comparison has been that theoretical models 
predict the clustering properties of the mass in the Universe, and yet 
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we have few direct measures of mass observationally. More readily 
observable is the distribution of luminous objects such as galax- 
ies, so to compare with theory one has to determine, or assume, 
the relationship between the clustering of mass and the clustering 
of galaxies. In general, one will expect these to differ, because the 
efficiency of galaxy formation may depend in some non-trivial way 
on the underlying mass distribution. The idea that structures may 
be ‘biased’ tracers of the mass distribution goes back to Kaiser 
(1984), who explained the high clustering strength of Abell clus- 
ters as being a result of their forming in high-density regions of the 
Universe. In addition, observations indicating that different types 
of galaxy cluster differently (e.g. Dressier 1980; Postman & Geller 
1984; White, Tully & Davis 1988; Hamilton 1988; Lahav, Nemiroff 
& Piran 1990; Lahav & Saslaw 1992) show that they cannot all be 
unbiased tracers of the mass. Bias became an attractive way to recon- 
cile the low velocities of galaxies with the high-density Einstein-de 
Sitter model favoured in the 1980s (e.g Davis et al. 1985), but after 
the Cosmic Background Explorer {COBE) determined the ampli- 
tude of primordial fluctuations on large scales Smoot et al. (1992), 
the ‘standard’ biased cold dark matter (CDM) model became less 
popular. With the advent of more detailed data sets for the cos- 
mic microwave background (CMB) and large-scale structure, it is 
possible to investigate and constrain a wider range of galaxy forma- 
tion models, and an unknown bias relation adds uncertainty to the 
process. 

Since the efficiency of galaxy formation is not well understood 
theoretically, it makes sense to try to measure it empirically from 
observations. When the perturbations are small (or on large, lin- 
ear scales), it is difficult to do this: there is a degeneracy between 
the unknown amplitude of the matter power spectrum P{k) and 
the degree of bias, b, defined such that the galaxy power spectrum 
is P%(k) = b2P(k). In principle, b may be a function of scale, through 
the wavenumber k. At later times (or on smaller scales), how- 
ever, the degeneracy is lifted by non-linear effects. One feature 
of non-linear gravitational evolution is that the overdensity field 
8(x) = [yo(x) — p]/p becomes progressively more skewed towards 
high density. In principle skewness could also arise from non- 
Gaussian initial conditions; in practice this can be neglected (Verde 
et al. 2000), since CMB fluctuations are consistent with Gaussian 
initial conditions (Komatsu et al. 2002; Santos et al. 2001). One 
can thus hope to exploit the gravitational skewness, but skewness 
could equally well arise from biasing, e.g. from a galaxy formation 
efficiency that increased at dense points in the mass field. It is never- 
theless possible to distinguish these two effects by considering the 
shapes of isodensity regions. If the field is unbiased, then the shapes 
of isodensity contours become flattened, as gravitational instability 
accelerates collapse along the short axis of structures, leading to 
sheet-like and filamentary structures (e.g. Zeldovich 1970). If the 
galaxy field is highly biased with the same power spectrum, how- 
ever, the underlying mass field is of low amplitude, and thus will 
be expected to be close to the initial field, which is assumed to be 
Gaussian. These fields do not have highly flattened isodensity con- 
tours, as bias does not flatten the contours; for example, Eulerian 
bias preserves the contour shape. Thus there is a difference, which 
could be detected, for example, by studying the three-point corre- 
lation function. In this paper, we exploit this effect in Fourier space 
rather than in real space, by analysing the bispectrum: 
where 8k is the Fourier transform of the galaxy overdensity field. 
The theory for the bispectrum is set out in Fry (1994), Hivon et al. 
(1995), Matarrese, Verde & Heavens (1997), Verde et al. (1998), 
Scoccimarro et al. (1998), Scoccimarro, Couchman & Frieman 
(1999) and Scoccimarro (2000). 
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The galaxy survey we use is the Anglo-Australian Telescope 2° 
Field Galaxy Redshift Survey (Colless et al. 2001), as compiled in 
2001 February. It was created with the 2dF multifibre spectrograph 
on the Anglo-Australian Telescope (Lewis et al. 2002), and currently 
consists of over 200 000 galaxies with redshifts up to about z = 0.3, 
broadly in two regions centred near the south and north galactic 
poles. See http://www.mso.anu.edu.au/2dFGRS/for further details. 
It is the first survey that is large enough to put tight constraints on the 
bias parameter, as previous surveys are too shallow or too sparse. In 
this paper, we use 127 000 galaxies from the 2001 February compi- 
lation of the catalogue, truncated at 0.03 < z < 0.25. 

The outline of the paper is as follows. In Section 2 we review the 
theory of growth of the bispectrum through gravitational instabil- 
ity, and discuss briefly the effects of redshift-space distortions; in 
Section 3 we illustrate our method of measuring the bias parame- 
ter. This method uses a new estimator of the bias parameter, which 
allows us to analyse many millions of A:-vector triplets, thus dras- 
tically improving the signal-to-noise ratio. In Section 4 we test the 
performance of the method. Finally, in Section 5 we present our 
results and in Section 6 we discuss the implications of these results. 
An Appendix presents and describes in detail our new estimator of 
the bias parameter. 

2 THE BISPECTRUM IN REAL 
AND REDSHIFT SPACE 

The statistic we use to measure the bias of the galaxies is the bis- 
pectrum B, which is related to the three-point correlation function 
in Fourier space. For the mass, this is defined by 

{^ki^k2^k3) = (¿Ti)3B(k\, &2, k3)8D(ki + #2 + ki), (1) 
where Sk= f d3xá(x) exp(—iA: • x) is the Fourier transform of the 
mass overdensity 8(x) = p{x)/p — 1 and 8D is the Dirac delta func- 
tion, which shows that the bispectrum can be non-zero only if the 
A;-vectors close to form a triangle. 

The power spectrum P is similarly defined by 

{8kSk.) = (2nfP(k)8D(k + kf). (2) 

Analogous relations hold for the power spectrum and bispectrum of 
the galaxy distribution. We assume that the mass overdensity is a 
Gaussian random field initially, as closely predicted by inflationary 
early-universe models. Thus, at asymptotically early times the bis- 
pectrum is zero by symmetry. As gravitational instability develops, 
the field becomes asymmetric, because non-linear effects skew the 
density field to high densities. In this way, a non-zero bispectrum 
develops. In the mildly non-linear regime, we use second-order per- 
turbation theory to compute the expected bispectrum. To second 
order (in the overdensity 8) the Fourier coefficients develop a non- 
linear component which is proportional to 82, so the leading-order 
term in the bispectrum grows as 84. Since the 2dFGRS is not a survey 
of mass density, to interpret the bispectrum measured from the sur- 
vey we must make some assumption concerning the distribution of 
mass relative to the distribution of galaxies. To date, this uncertainty 
in the relationship between the mass and the galaxy distribution has 
placed a limitation on the usefulness of galaxy catalogues as a probe 
of cosmology. We make the assumption that the galaxy overdensity 
field 5g is related to the underlying mass overdensity by some de- 
terministic function, which we expand in a Taylor series as (cf. Fry 
& Gaztanaga 1993) 

i=0 
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We must keep terms up to / = 2, since these enter in the bispectrum 
at the same level as second-order perturbation theory growth terms, 
and we ignore higher-order terms. In order for <5g to have zero mean, 
there is a (calculable) /?0 term, but we ignore it as it only contributes 
to A: = 0; b\ is the linear bias parameter and ¿>2 is the quadratic 
bias parameter. A non-zero b2 would indicate non-linear biasing of 
galaxies with respect to mass. Both of these parameters are estimated 
in this paper from the 2dFGRS. 

In real space, the two effects of non-linear growth and non-linear 
bias contribute terms to a non-zero bispectrum: 

B(ku k2, k3) = Pgik^Pgih) 
J(ki,k2) b2 

b\ + b] 
+ eye., (4) 

where there are two additional cyclic terms (2, 3) and (3, 1). De- 
tails of the theory leading to (4) may be found in, for example, 
Matarrese et al. (1997). We assume here that the galaxy power spec- 
trum is Pg{k) = b\P{k) [see Heavens, Matarrese & Verde (1998) for 
a discussion of this point]; / is a function that depends on the shape 
of the triangle in A:-space, but only very weakly on cosmology (e.g. 
Bouchet et al. 1992, 1995; Catelan et al. 1995). Note that we as- 
sume a deterministic bias; other authors (e.g. Scherrer & Weinberg 
1998; Dekel & Lahav 1999; Taruya et al. 1999) have investigated 
stochastic bias, where there is a random component to the relation- 
ship between 8 and 5g. In the case of stochastic bias the bispectrum 
still has the form of equation (3), but the function / is modified into 
Jf in such a way that when the correlation coefficient of the stochas- 
tic bias r goes to unity (i.e. the bias becomes deterministic), Jf 

J. Theoretical considerations suggest that r ~ 1 on scales of interest 
(e.g. Tegmark & Peebles 1998; Blanton et al. 2000; Seljak 2000). 

In redshift space, both the power spectrum and the bispectrum 
are modified by redshift-space distortions, arising because the dis- 
tance estimator (the redshift) is perturbed by peculiar velocities. 
These distortions are radial in nature, and can be analysed, at some 
expense in complexity, using radial and angular basis functions (e.g. 
Fisher, Scharf & Lahav 1994; Heavens & Taylor 1995; Ballinger, 
Heavens & Taylor 1995; Hamilton 1998; Tadros et al. 1999). Here, 
we adopt the distant-observer approximation (Kaiser 1987), and 
assume that non-linear effects can be modelled by an incoherent 
small-scale velocity field, characterized by the pairwise velocity 
dispersion crp. The large-scale infall leads to distortions that depend 
on the redshift distortion parameter ß = £1^¡b\, where is the 
matter density parameter. Assuming in addition an exponential dis- 
tribution for the pairwise velocity, the combined effect gives the 
power spectrum in redshift space (denoted by subscript s) 

PÁk) = 
P(^)(l + ^2)2 

1 + k2¡ji2G^ ¡2 
(5) 

(e.g. Ballinger, Peacock & Heavens 1996; Hatton & Cole 1998), 
where q is the cosine of the wavevector to the line of sight, which is 
a fixed direction in the distant-observer approximation. Other mod- 
ifications have been suggested, such as a Gaussian, or exponential 
one-particle velocity dispersion, which yield different functional 
forms for the redshift distortion. Note that ov is usually written, 
as here, implicitly divided by the Hubble constant. The bispectrum 
is modified similarly, and again various modifications have been 
proposed. We use the form 

Bs(k\, k2, k3) — (B\2 + B23 + ß3i) 1 + 

x 1 + 
aÿkliiAcr1; 

1 + 
-1/2 

(6) 

where 

B\2 = (1 + ßßl) (1 + ßiA) 
Ker(£i, k2) ^2 

b2 Pgik^Pgfa) 

(7) 
and the kernel function Ker is J modified for redshift space (see 
Verde et al. (1998), equation 13 for the formula); ov is an adjustable 
parameter which is shape-dependent, and must be calibrated from 
simulations. Scoccimarro et al. (1999) propose an alternative1 for 
the denominator of (6), namely 

[l + û'^k2^2 +/:2/^2 "I” ^3/^3)o'u , (8) 

where the one-particle dispersion <jv = ovl\¡2 if the small-scale ve- 
locities are incoherent, and again the parameter needs to be cal- 
ibrated for different triangle shapes and cosmologies. We find that 
the formula (6) recovers the true bias parameter in an ensemble 
of simulated biased 2dFGRS catalogues with smaller scatter than 
(8). We see from (6) and (7) how the bispectrum can allow us to 
measure the bias parameters. The left-hand side is potentially ob- 
servable, and we can hope to constrain b\ and b2 by considering 
triangles of different shape (and hence different Ker). 

3 METHOD 

The previous section shows the theoretical model for the bispec- 
trum, and its dependence on the two parameters b\ and b2\ note 
that, apart from these two parameters, the bispectrum depends on 
observable quantities such as ß, ap and P%. The real-space galaxy 
power spectrum is obtained from the angle-averaged redshift-space 
power (cf. Verde et al. 1998): 

P{k) = P¿k) F/2- ■ ß) ß 2ß 
+ 

Hk2 

+ 
V2(^gp

2-2J8): 

k4<j5 
tan kvv 

Ti 
(9) 

The real-space power spectrum obtained in this way agrees well 
with the ARM power estimated by Baugh & Efstathiou (1994) and 
Efstathiou & Moody (2001). The input catalogue is based on a 
revised and extended version of the ARM galaxy catalogue (Maddox 
et al. 1990a). 

The bispectrum and power spectrum data come from transforming 
the galaxy distribution as follows. The galaxies are weighted with 
the optimum weight for measuring the power spectrum (Feldman, 
Kaiser & Peacock 1994), which also minimizes the variance of 
higher-order correlation functions (Scoccimarro 2000). The weight 
is w(r) = 1/[1 + P0ñ(r)], where ñ(r) is the average number density 
of galaxies at position r and Pq is the power spectrum to be estimated. 
For reasons of computational speed, R0 was fixed at 5000 h 3 Mpc3 

so that a fast Fourier transform could be employed. This is optimal 
for minimizing the variance at Æ ~ 0.1 /? Mpc-1, whereas our signal 
comes from wavenumbers with a smaller power, but in fact altering 
Po hardly changes the results. 

3.1 Estimating the bispectrum 

In this section we describe how we estimate the bispectrum from 
the data, taking into account the survey shape, selection function 
and shot noise. 

1 Note that in equation (38) of Scoccimarro et al. (1999) there is an extra 
power of 2 outside the round brackets, which we omit in (8). 

© 2002 RAS, MNRAS 335, 432-440 
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We follow Feldman et al. (1994) and Matarrese et al. (1997), and 
transform the field 

F(r) = Xw{r) [n{r) — anx{r)], (10) 

where À is a constant to be determined, /?r(r) is the number density 
of a random catalogue with the same selection function as the real 
catalogue, but with l/o? times as many particles. If we set À = 
where 

/,7 ^ y dV(rV(r) (11) 

(Matarrese et al. 1997), then the power spectrum may be estimated 
from 

(l^l2) = />
g(i:)+ f^d +a) (12) 

¿22 
and the bispectrum from 

{Fk,Fk2F^) = F- \ B¿kuk2, k3) + ^ [/>,(*,) + Pg(k2) 
hi I 733 

+ ^(*3)] +d-«2)|ij. (13) 

An underlying assumption is that the power spectrum is roughly 
constant over the width of the survey window function in Æ-space. 
Because of the rather flat geometry of the survey regions, and the 
holes owing to star drills, this criterion is not satisfied in detail. In 
practice, we have used multiple mock catalogues Cole et al. (1998) 
with the same selection criteria as the survey regions to check that 
this assumption does not feed through into a biased estimate of the 
bias parameters. Also, the power spectrum and bispectrum estimates 
are convolved with the window function. This can lead to changes 
in shape from convolution, and an erroneous interpretation of cor- 
related noise as real features in the power spectrum. These effects 
are, however, not important in the wavenumber range (0.1 
0.5 h Mpc-1) which we use for the bispectrum analysis (Percival 
et al. 2001). 

To compute we generated random catalogues with approxi- 
mately 5 times as many particles as the real catalogue, and analysed 
the North and South Galactic Pole regions (NGP and SGP) sepa- 
rately. We ignored the random fields present in the 2dFGRS as these 
complicate the window function and add very little information for 
the current analysis. Fast Fourier transforms were performed on a 
512 x 512 x 256 grid which encompassed all the particles, leading 
to a grid spacing of about 1 /? 1 Mpc. 

3.2 Choice of triangles 

We use the real parts of Fk{Fk2Fk3 as our data, for triangles in k 
space (i.e. where + &2 + £3 = 0). Each triangle allows us to esti- 
mate a linear combination of the parameters natural to this analy- 
sis: Ci = \/bi and c2 = b^/b1^ through equations (6) and (7). Note 
that we must use triangles of different shape (and hence different 
Ker[Fi, £2]) to lift the degeneracy between non-linear gravity and 
non-linear bias. As explained in the introduction, this is equivalent 
to analysing the shapes of structures that are different in the two 
cases. 

Clearly, there are a huge number of possible triangles to investi- 
gate (many millions), and we are faced with a problem of how to 
choose the triangles to analyse. The problem is that triangles that 
have a wavevector in common will be correlated, through cross- 
terms in the six-point function. A likelihood analysis as originally 
suggested by Matarrese et al. (1997) and Verde et al. (1998) with 

© 2002 RAS, MNRAS 335, 432-440 

millions of correlated data points is infeasible, so we take a different 
approach. We use two sets of triangles of different configurations: 
one set with one wavevector twice the length of another, and another 
set with two wavevectors of common length. For the former, calibra- 
tions with mock catalogues give cq/ = 1.8, and the latter ay = 1.0. 
We set a lower limit to the wavenumber range oik = 0 Ah Mpc -1, to 
avoid the effects of convolution with the window function (Percival 
et al. 2001 ). We set an upper limit of /: = 0.5 h Mpc-1 where, for the 
2dFGRS power spectrum, the shot noise begins to dominate the sig- 
nal so that there is little further to be gained by increasing the limit. 
In addition, we impose a constraint k < 0.35/? Mpc-1 for the second 
configuration choice, where perturbation theory for this configura- 
tion begins to break down. This leaves us with 80 x 106 triangles. 
Two considerations motivate us to consider ‘only’ these 80 x 106 

triangles: (i) adding more highly correlated triangles complicates the 
analysis significantly and does not add much signal and (ii) more 
importantly, only these two configurations have been extensively 
tested against fully non-linear /V-body simulations. In fact, not only 
may perturbation theory breakdown on different scales depending 
on the triangle configuration, but also the (shape-dependent) redshift 
space distortion parameter av (equation 6) has only been calibrated 
for these two configurations. 

To cope with so many triangles, we define a new estimator for b\ 
and ¿>2 in the Appendix. Although the estimator is not at minimum 
variance, it is unbiased and has the big advantage in that it allows us 
to analyse many triangles, thus increasing the signal-to-noise ratio. 
The estimator does not give error bars; these are obtained by Monte 
Carlo simulation from 16 mock 2dFGRS catalogues (see Section 4). 
In Fig. 1 we show the measured (redshift-space) 2dFGRS bispec- 
trum from the SGP and NGP for the two chosen triangle config- 
urations. The dotted line shows the perturbation theory prediction 
for Zq = 1, Z?2 = 0, while the dashed line shows the shot noise con- 
tribution. For the bispectrum, the shot noise contribution becomes 
dominant around /: = 0.5 /? Mpc-1. 

4 MOCK CATALOGUES AND TESTS 

We have used 16 mock catalogues from a Hubble Volume V-body 
simulation with Œm = 0.3, £2A=0.7 (‘ACDM’ model), with the 
same selection function as the 2dF Galaxy Redshift Survey (Cole 
et al. 1998).2 This includes both the radial selection function and an 
angular mask that reflects the varying completeness of the survey of 
2001 February. The catalogues contain mock galaxies for which the 
positions are determined according to the prescription described in 
Cole et al. (1998). This is a two-parameter exponential model based 
on the final density field, i.e. it does not conform to our assumption of 
equation (3). We will show that nevertheless the bispectrum method 
recovers the bias parameter b\, defined by the square root of the ratio 
of the galaxy and the matter power spectra.3 This is the crucial test, 
since it is this ratio that we wish to determine, as we can then translate 
the galaxy power spectrum to the underlying mass spectrum. For 
the simulated galaxies in the Hubble volume as a whole the square 
root of the power spectrum ratio varies between about 0.9 at large 
scales and 0.75 at /: = 0.5 h Mpc-1. Over the scales probed by our 

2 See http://star-www.dur.ac.uk/~cole/mocks/hubble.html We find that 
16 mock catalogues are sufficient to estimate the error bars. The choice 
of the cosmological model is not important for the error estimate, however, 
this choice of the cosmological model turns out to be not too far away from 
the model recovered a posteriori. 
3 For a more general discussion of definitions of bias, see Lahav et al. (2002). 
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436 L. Verde et al. 

Figure 1. Measured (redshift-space) 2dFGRS dimensionless bispectrum from the SGP and NGP for the two chosen configurations. The dotted line shows the 
perturbation theory prediction for b\ = \,b2 = Q while the dashed and dot-dashed lines show the shot noise contributions. The error bars are obtained via Monte 
Carlo simulation of 16 mock 2dFGRS catalogues (see the text for details). 

kl ^1 true true 

Figure 2. Error on the linear bias parameter from ACDM mock galaxy catalogues in the SGP (left) and NGP (right). The average bias in the estimator is 
consistent with zero for the SGP: —0.01 ± 0.03, but shows a small bias of 0.10 ± 0.04 for the NGP. The sample rms of 0.11 for the SGP and 0.16 for the NGP 
are used in the analysis of the 2dFGRS. 

bispectmm triangles, the bias is roughly 0.8, but with an uncertainty 
that ultimately limits our error determination. The power spectrum 
of the simulated 2dFGRS catalogues varies a little, so we estimate 
bi = (Pg/Py/2 individually for each catalogue (and individually for 
SGP and NGP), from the wavenumber range 0.1-0.5 h Mpc-1. This 
sets ß for each sample, and we fit the pairwise velocity dispersion 
<7p individually by requiring a good fit to the redshift-space power 
spectrum, using the real-to-redshift mapping of equation (9). 

We then analyse the set of triangles for each simulation, as de- 
tailed above, and in Fig. 2 we show the error in the bias from 16 
simulations in the SGP and NGP. The average bias in the estima- 
tor is consistent with zero for the SGP: —0.01 ± 0.03, but shows a 
small bias of 0.10 it 0.04 for the NGP.4 Fig. 2 shows that the ap- 
proximations made in the analysis (e.g. the functional form of the 
bias, the window function, the distant observer approximation, etc.) 
do not significantly bias the result. We will use the sample rms of 

4 This is understandable since the NGP is smaller than the SGP, thus the 
effects of the convolution with the window are more important. 

0.11 for the SGP and 0.16 for the NGP as the errors in the analysis 
of the 2dFGRS. We also carried out the same analysis on 16 mock 
catalogues of the SGP obtained from the Hubble volume simulation 
for a rCDM model. The true underlying bias parameter is correctly 
recovered with a 20 per cent error (/? = 1.7 ± 0.3). The error in the 
natural parameter l/bi is comparable for the ACDM and rCDM 
models, but the value of b\ itself is larger in the latter case. In Fig. 3 
we show bi recovered with the bispectrum method versus the un- 
derlying (true) b[ = Pg/P for 16 mock SGP simulations for the 
rCDM and ACDM models. 

5 RESULTS 

We analyse the catalogue as compiled in 2001 February (i.e. the 
same catalogue as in Percival et al. 2001), and we analyse the NGP 
and SGP regions separately; we excise the random fields entirely. 
This leaves us with 75 792 and 51 862 galaxies in the SGP and NGP, 
respectively. The two survey regions give us a useful consistency 
check. 

© 2002 RAS, MNRAS 335, 432-440 
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Figure 3.1 /b\ recovered with the bispectrum method versus the underlying 
(true) l/bi = ^P/Pg for 16 mock SGP simulations for the rCDM and 
ACDM models. 1 /b\ is the natural quantity in the analysis of the bispectrum 
(see equation 4). Note that the 2dFGRS has data in the NGP and SGP, 
reducing the error bar compared with these mock catalogues. 

We initially present results fixing ß = 0.43 and ap = 385/ 
H0 km s-1 (3.85 h~l Mpc). These are the best-fitting values from 
the analysis of the 2dFGRS redshift-space correlation function 
(Peacock et al. 2001; Norberg et al. 2001a; see also Tegmark, 
Hemilton & Xu 2001). Note that this value of ß involves a bias 
parameter that is defined somewhat differently from ours, in terms 
of the correlation function. This bias parameter will coincide with 
our b\ only if certain assumptions hold, such as if the overdensity in 
galaxies is everywhere b\ times the mass overdensity. In due course, 
ß can be determined by analysis of the 2dFGRS power spectrum 
itself, but for the time being we assume that the two bias parameters 
are the same. Finally, we will marginalize over ß and crp. 

5.1 Bias parameters 

It is difficult to find a method to display in a single figure all of the 
information from the 80 x 106 triangles used: for this reason we dis- 
play only one configuration and for the SGP alone - adding other 
configurations (or the NGP) would complicate the figure. Fig. 4 
shows the SGP data for configurations with two wavevectors of 
common length, along with the perturbation theory predictions for 
different combinations of the linear and quadratic bias parameters. 
The dashed and dot-dashed lines are the perturbation theory predic- 
tion for bi = l .3, b2 = 0 and bi = 1.0, b2 = 0.5. The error bars come 
from the mock catalogues, and the offset between the centres of the 
error bars and the points shows the bias in the estimator. 

Fixing the values of ß and dp, and including all of the triangles 
in the SGP gives as a raw result b\ = 1.06, b2 = 0.01. The NGP 
linear bias is slightly higher: bi = l.\2,b2 = —0.07. Adjusting these 
results with the estimator bias obtained from the mock catalogues 
(Section 4), and associating an error from the mock catalogues gives 

= 1.07 ±0.11 (SGP) 
(14) 

= 1.02 ±0.16 (NGP) 

and a combined minimum-variance weighted result of 

bx = 1.05 ±0.09. (15) 

Note that the estimator bias does not significantly alter the results: 
ignoring it increases the estimate by 0.03, much less than the statis- 
tical error. 

© 2002 RAS, MNRAS 335, 432-440 

Figure 4. Ratio of the average measured bispectrum and the average per- 
turbation theory predictions, relative to the bispectrum for a fiducial unbi- 
ased model (5fki). Dashed line b\ = 1.3, b2 = 0, dot-dashed line b\ = 1.0, 
¿>2 = 0.5. To produce this figures only the SGP data were used and only 
configurations with two wavevectors of common length. This means that 
only 12 million triangles were used from the total 80 millions. Inclusion of 
the remainder excludes both models at high confidence. The error bars are 
obtained via Monte Carlo from the 16 /V-body simulations, and are placed 
centrally on the mean of the estimates from the mock catalogues. This illus- 
trates the level of bias in the estimator. The figure also shows that there is no 
evidence of scale-dependent bias. 

Our estimate of the quadratic bias parameter from the NGP and 
SGP 2dFGRS is 

b2 = -0.02 ±0.07, (16) 

with SGP and NGP individually giving ¿?2 = 0.01 ± 0.09 and 
—0.07 ±0.11, respectively. 

Thus we see that the 2dFGRS galaxies are perfectly consistent 
with tracing the underlying mass distribution on these scales (wave- 
lengths A = Injk = 13-63 h 1 Mpc), i.e. b\ is consistent with unity 
and b2 with zero. 

The results depend mildly on the values of ß and ov used. 
Marginalizing over the distribution of these quantities estimated 
from the redshift-space correlation function (Peacock et al. 2001), 
the final results are virtually unchanged: ¿?i = 1.040.06, b2 = 
—0.054 ± 0.04; adding these errors in quadrature with those of (15) 
gives our final estimates: 

¿?i = 1.04 ±0.11 
(17) 

b2 = -0.054 ± 0.08. 

5.2 Luminosity-dependent and scale-dependent bias 

The 2dFGRS exhibits luminosity-dependent clustering (Norberg 
et al. 200la,b), so it is reasonable to ask in what sense the galaxies in 
the 2dFGRS are unbiased. We have consistently used all the galaxies 
in the 2dFGRS NGP and SGP regions to determine ß and the bias pa- 
rameters. With the weighting scheme employed to measure ß and ¿q, 
the weighted mean luminosity is 1.9L*. From studies of the correla- 
tion function, Norberg et al. (2001a) found a luminosity dependence 
in the relative bias of 2dFGRS galaxies: ¿?/¿>* = 0.85 ± 0.15L/L*. 
If we use this relation to adjust our recovered bias to apply to L* 
galaxies, we find they could be slightly antibiased, but they are 
still consistent with ¿q = 1 (¿q* = 0.92 ± 0.11 assuming b\=b). 
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The 2dFGRS galaxies, as a population, trace the mass extremely 
well. 

Regarding the scale dependence of the bias, it is worth noting 
that theoretical arguments (e.g. Mann, Peacock & Heavens 1998; 
Peacock & Smith 2000; Seljak 2000; Benson et al. 2000; Blanton 
et al. 2000; Berlind & Weinberg 2001) suggest that bias is expected 
to be constant on large scales (larger than a few h ~1 Mpc) and a scale- 
dependent bias is plausible on intermediate scales, but the scale de- 
pendence is expected to be weak. We find no evidence of scale- 
dependent bias (see Fig. 4). Both scale and luminosity dependence 
may be explored in detail when the catalogue is complete. 

5.3 The matter density of the Universe 

Analysis of the redshift-space correlation function allows one to 
estimate ß = (Peacock et al. 2001), and this can be com- 
bined with our determination of b\ to estimate the matter density 
parameter Í2m. A strength of the result is that it is obtained from 
the 2dFGRS alone, independent of all other data sets. Following the 
same procedure as in the previous subsection, we marginalize over 
the uncertainty in ß and ap, to obtain 

= 0.27 ± 0.06. (18) 

The small size of the error bar is worth remarking on. For each pair 
of values of ß and ov, we obtain an estimate ofbi. The estimates of 
ß and b[ are slightly anticorrelated, which leads to a slightly smaller 
scatter in Çlm than one would expect from the errors on ß and bi. 

This result is consistent with other recent determinations by other 
methods such as combining CMB with large-scale structure or su- 
pernova measurements (e.g. Percival et al. 2001; Jaffe et al. 2001; 
Efstathiou et al. 2002) and from early weak lensing measurements 
(Hoekstra, Yee & Gladders 2001). 

5.4 Comparison with previous work 

Previous work has concentrated on using cumulants, although there 
have been two analyses (Feldman et al. 2001; Scoccimarro et al. 
2001) of the bispectrum of infrared-selected galaxies observed with 
the Infrared Astronomy Satellite (IRAS; Fisher et al. 1995; Saunders 
et al. 2000). The IRAS samples are much smaller than the current 
2dFGRS, and are also rather shallow, so shot noise and the radial 
nature of the redshift distortion is more severe than for 2dFGRS. 
Nevertheless, bias estimates have been made, and reported with re- 
markably small error bars. The most accurate quoted values are from 
Feldman et al. (2001), l/Tq = l^^^forthePSCz survey (Saunders 
et al. 2000). This value of the linear bias parameter is consistent with 
our determinations, since IRAS galaxies have a power spectrum that 
is lower than optically selected galaxies, by a factor ~1.32 on the 
relevant scales (Peacock & Dodds 1994; Seaborne et al. 1999). 

Studies of the skewness, kurtosis and higher-order moments of 
the optical galaxy distribution (e.g. Gaztanaga 1994; Szapudi & 
Szalay 1997; Hui & Gaztanaga 1999; Hoyle, Szapudi & Baugh 
2000) have also shown consistency with a linear bias of unity, but 
here we are able to derive both the linear bias and the quadratic bias 
simultaneously. In addition, our present results are more accurate 
and convert these general indications of a low degree of bias into a 
strong constraint on theoretical models. 

6 SUMMARY AND CONCLUSIONS 

We have demonstrated through analysis of the bispectrum of the 
2dFGRS that the optically selected galaxies of the sample trace 

the matter density extremely well on large scales (Fourier modes 
with 0.1 <£<0.5 h Mpc-1 that correspond approximately to 
30 < r < 5 /?_1 Mpc). Specifically, the linear bias parameter is very 
close to unity, and the quadratic (non-linear) bias is very close to 
zero. Ironically, this is exactly the assumption that used to be made 
decades ago in large-scale structure analysis, but which was ques- 
tioned when the concept of biased galaxy formation was introduced 
(e.g. Kaiser 1984; Peacock & Heavens 1985; Bardeen et al. 1986; 
Dekel & Rees 1994). Theoretical arguments suggest that an initial 
bias at formation approaches unity with time, provided that galaxies 
are neither created nor destroyed (Fry 1996), and that the Universe 
does not become curvature- or vacuum-dominated in the meantime 
(Catelan, Matarrese & Porciani 1998). In any case, these assump- 
tions will clearly fail at some level. Note that the effective depth of 
the survey is z = 0.17 and our measurement should be interpreted as 
the bias and Í2m at this epoch (for an additional discussion see Lahav 
et al. 2002). Because of a tendency for the bias to approach unity 
with time, with this measurement we do not rule out a significant 
bias of galaxies at formation time, but the unbiased nature of the 
galaxies today puts a significant constraint on theoretical models of 
galaxy formation. 

Currently, we find no evidence of scale-dependent bias (see 
Fig. 4). The size of the survey at the present time does not al- 
low us to place strong constraints on the scale dependence or the 
luminosity dependence of the bias parameter, or on the nature of 
biasing (e.g. deterministic, stochastic, Eulerian, Lagrangian, etc.), 
but these issues will be explored with the completion of the survey. 
At some level non-linear bias must appear on small scales, from the 
morphology-density relation (Dressier 1980; Hashimoto & Oemler 
1999), but this is probably on too small scales for the perturbative 
method of this paper to be valid. 

Our measurement of the matter density of the Universe 
£2m = 0.27 ± 0.06 should be interpreted as Í2m at the effective red- 
shift of the survey. The extrapolation at z = 0 is model-dependent, 
but the changes this correction introduces are below the quoted er- 
ror bars for reasonable choices of model. Our measurement is in 
agreement with other independent determinations such as cosmic 
microwave background together with Hubble constant constraints 
(e.g. Jaffe et al. 2001; Efstathiou et al. 2002; Freedman et al. 2001) 
that also give comparable error bars. 

It is worth re-emphasizing that the analysis presented here re- 
lies only on the 2dFGRS data set. It is also important that we 
not only conclude that the linear bias is essentially unity, but also 
that the quadratic (non-linear) bias term is constrained to be very 
close to zero. Taken together, these measurements argue power- 
fully that the 2dFGRS galaxies do indeed trace the mass on large 
scales. In addition to our findings, joint analysis of the 2dFGRS and 
CMB data (Lahav et al. 2002) also supports our conclusion that the 
2dFGRS galaxies are unbiased. Different methods of measur- 
ing linear bias require different assumptions, and it is remark- 
able that such different methods agree on the basic cosmological 
model. 
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APPENDIX 

Here we outline the new estimator for the bias parameters. Although 
not optimal, it allows many millions of triangles to be analysed. 

The likelihood of c\ = l/b\ and c2 = b2lb\ from each triangle 
(labelled by y ) is degenerate, since it constrains only a linear com- 
bination of ci and c2, namely 

By — RyC\ + SyC2 - (Al) 

where the expressions for Ry, Sy and Ty are at the end of this 
Appendix. The bispectrum estimate By has an intrinsic statistical 
error ay as discussed (e.g. in Matarrese et al. 1997). In computing the 
bias parameter, we wish to weight the determination obtained from 
each triangle by the inverse of the variance of the corresponding 
bispectrum. Since this is a cumbersome expression (see Matarrese 
et ak 1997; Verde et ak 1998) we approximate this by its dominant 
Gaussian term, 

(iCt.Cb^l2) = (Pgl + PsN)(Pg2 + PsN)(Pg3 + PSN), (A2) 
where (&i), etc. and PSn is the shot noise. The inclusion of 
higher-order terms leaves the results practically unchanged for this 
data set, and adds considerably to the computing time. If we now 
assume that this error is Gaussian distributed we can immediately 
see that the likelihood contours will be lines in the C1-C2 plane: 

In C(c\, C2) oc — In cry — 
(By — RyCi + SyC2 + Ty)

2 

2^2 • (A3) 

This should give an unbiased a posteriori probability for Ci and 
c2, if we assume uniform priors. We define a non-optimal estima- 
tor by simply multiplying these likelihoods together, ignoring the 
correlations between different triangles, forming what we term the 
pseudolikelihood. The maximum of the pseudolikelihood is still 
asymptotically unbiased. The error, however, cannot be determined 
internally; we estimate it by Monte Carlo methods, i.e. from the 
dispersion of ci and C2 estimates from 16 mock catalogues. This 
procedure also allows us to see whether the estimator is biased or 
not. Moreover, by estimating the errors via the Monte Carlo method, 
our final estimates do not depend on the initial assumption of Gaus- 
sian likelihood. 

The assumption of Gaussian likelihood, however, makes the max- 
imum of the pseudolikelihood calculable analytically, yielding the 
following estimates for ci and c2: 
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2Ai A22 — A2A12 
^12 — 4Aii A22 

(A4) 

2A2Aii — A\A\2 

where 

_sr^ r2
y 

An = ^^ V r 

\22 = Y^-2 

(Ty - By)Ry 
G. 

a2 = -E: 

An = Y^- ^ nr/ 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

We can also, if desired, compute ci on the assumption that C2 = 0: 

ci = -Ai_ (c2 = 0). (All) 
¿An 

The expressions for Ry, Sy and Ty can easily be obtained from the 
expression for the bispectrum of Verde et al. (1998) (Sections 2.3 
and 2.4). We report them here for completeness. To obtain their 
corresponding real-space quantities just set ov = 0 and ß = 0: 

Ry = { [/(*!, *2) + irßKdn, k2)\ IP^hW^k,) 

x (l + /3/x¡) (l + + cyC'} D3. (A 12) 

where /¿ = — ¿x3 for the term explicitly written and the expression 
for the kernel K can be found (e.g. in Catelan & Moscerdini 1994), 

Sy = [(1 +/l^)(l +iß^)/>ga-1)Pga-2) + cyc.] D3 (A13) 

T — I V   
Í 22 ß Í 7 2\ {k\ ^2^) 

+ - (mW!+/x2J +/3/X1/X2 ( — + — ) 

, 2 z + —/X1/X2 ^1 — + n2 
-, k2 

k2 ki 

x(l +y0^)(l TyS/Xo) + eye.} Z)3 

(1 + ß^\)2 

2Pg(ki)PAk2) 

+ Pg(ki) 
(l + ol j2k\ii\} 

■ eye. 
A? o Ai 
f+d-«2)/1, 
^33 ^33 

(A 14) 
where D3 denotes the damping term arising from the incoherent 
small-scale velocity dispersion (see equation 6): 

£3 = 1 + 
aykla^iil^ f ^ i ctyk^Gp /x2 

x 1 + ■ >kfor2/xí 

1 + ' 

-1/2 

(A 15) 
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