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ABSTRACT

In this paper we present a clustering analysis of quasi-stellar objects (QSOs) using over 20 000

objects from the final catalogue of the 2dF QSO Redshift Survey (2QZ), measuring the redshift-

space two-point correlation function, ξ (s). When averaged over the redshift range 0.3 < z <

2.2 we find that ξ (s) is flat on small scales, steepening on scales above ∼25 h−1 Mpc. In a

WMAP/2dF cosmology (�m = 0.27, �� = 0.73) we find a best-fitting power law with s0 =
5.48+0.42

−0.48 h−1 Mpc and γ = 1.20 ± 0.10 on scales s = 1 to 25 h−1 Mpc. We demonstrate that

non-linear redshift-space distortions have a significant effect on the QSO ξ (s) at scales less than

∼10 h−1 Mpc. A cold dark matter model assuming WMAP/2dF cosmological parameters is a

good description of the QSO ξ (s) after accounting for non-linear clustering and redshift-space

distortions, and allowing for a linear bias at the mean redshift of bQ(z = 1.35) = 2.02 ± 0.07.

We subdivide the 2QZ into 10 redshift intervals with effective redshifts from z = 0.53 to

2.48. We find a significant increase in clustering amplitude at high redshift in the WMAP/2dF

cosmology. The QSO clustering amplitude increases with redshift such that the integrated

correlation function, ξ̄ (s), within 20 h−1 Mpc is ξ̄ (20, z = 0.53) = 0.26 ± 0.08 and ξ̄ (20, z =
2.48) = 0.70 ± 0.17. We derive the QSO bias and find it to be a strong function of redshift

with bQ(z = 0.53) = 1.13 ± 0.18 and bQ(z = 2.48) = 4.24 ± 0.53. We use these bias values

to derive the mean dark matter halo (DMH) mass occupied by the QSOs. At all redshifts 2QZ

QSOs inhabit approximately the same mass DMHs with M DH = (3.0 ± 1.6) × 1012 h−1 M⊙,

which is close to the characteristic mass in the Press–Schechter mass function, M∗, at z = 0.

These results imply that L∗
Q QSOs at z ∼ 0 should be largely unbiased. If the relation between

black hole (BH) mass and MDH or host velocity dispersion does not evolve, then we find that

the accretion efficiency (L/L Edd) for L∗
Q QSOs is approximately constant with redshift. Thus

the fading of the QSO population from z ∼ 2 to ∼0 appears to be due to less massive BHs

being active at low redshift. We apply different methods to estimate, tQ, the active lifetime of

QSOs and constrain tQ to be in the range 4 × 106–6 × 108 yr at z ∼ 2.

We test for any luminosity dependence of QSO clustering by measuring ξ (s) as a function of

apparent magnitude (equivalent to luminosity relative to L∗
Q). However, we find no significant

evidence of luminosity-dependent clustering from this data set.

Key words: galaxies: clusters: general – quasars: general – cosmology: observations – large-

scale structure of Universe.
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1 I N T RO D U C T I O N

The question of how activity is triggered in the nucleus of galaxies

is vital to answer if we wish to have a full understanding of the

galaxy formation process. It appears that a large fraction of galaxies

may have contained an active galactic nucleus (AGN) at some point

in their history. When local galaxies are surveyed (including our

own Milky Way) most show evidence of a supermassive black hole

(BH) (e.g. Kormendy & Richstone 1995). The BHs tend to be found

in dynamically hot systems (i.e. spheroids – elliptical galaxies or

bulges), and the mass of the BH is well correlated with the mass of

the spheroid. The tightest correlation is found between BH mass,

MBH, and spheroid velocity dispersion, σ c (Ferrarese & Merritt

2000; Gebhardt et al. 2000). At higher redshift it is not clear that this

correlation holds, or indeed in general, how high-redshift BHs relate

to their host galaxies. However Shields et al. (2003) do suggest that

the same M BH–σ c seems to be appropriate at high redshift.

It is the powerful evolution in luminosity of the AGN population

which allows them to be readily observed to high redshift. Under-

standing this evolution goes hand-in-hand with our understanding

of the relation between AGN and galaxies. Croom et al. (2004a)

(which we will henceforth call Paper XII) find that optically se-

lected quasi-stellar objects (QSOs) are well described by so-called

‘pure luminosity evolution’ (PLE) with an exponential increase in

the typical luminosity L∗
Q (e-folding time of ∼2 Gyr) up to z ∼ 2.

Work at higher redshift (e.g. Fan et al. 2001) finds that at z ∼ 4–6

the number density of QSOs is much lower than at z ∼ 2. The X-ray

luminosity function (LF) appears to give a more complex picture

(Ueda et al. 2003) but still shows the general trend of luminous

AGN being more active, peaking at z ∼ 2–3.

The question is, then, how do we gain further information about

the physical processes of QSO formation at high redshift? One ap-

proach is to attempt to image QSO host galaxies directly at high

resolution (Kukula et al. 2001; Croom et al. 2004b). These analyses

seem to show that high-redshift QSO hosts (at least for radio-quiet

sources) are no brighter than low-redshift hosts, after accounting

for only passive evolution of the stellar populations in the galaxies.

QSO clustering measurements gives us an important second angle to

study the hosts of QSOs, as the clustering amplitude can be consid-

ered as a surrogate for host mass or dark matter halo (DMH) mass,

MDH. With large samples such as the 2dF QSO Redshift Survey

(2QZ; Paper XII) it is possible to determine these host properties

over a wide range in redshift. With an estimate of the host mass of

these high-redshift QSOs we can hope to determine whether the host

mass versus BH mass correlation at low redshift continues to high

redshift. We can also attempt to predict the masses of the descen-

dants of high-redshift QSOs, and locate them in the local Universe.

A number of authors (e.g. Haiman & Hui 2001; Martini &

Weinberg 2001; Kauffmann & Haehnelt 2002) have constructed

models for QSO evolution including clustering, and these need to

be tested against accurate measurements. One parameter that can

be derived from these models is a mean QSO lifetime, although the

exact interpretation of this is rather model dependent.

As well as being used for the study of QSO formation/evolution,

QSOs are also powerful probes of large-scale structure in their own

right. The large volumes probed (∼6 × 109 h−3 Mpc3 for the 2QZ in

a universe with �m = 0.3 and �� = 0.7) and high redshift sampled

makes observations quite complementary with lower-redshift

galaxy observations and higher-redshift cosmic microwave back-

ground (CMB) observations. A number of authors have attempted

to detect high-redshift QSO clustering (Osmer 1981; Shaver 1984;

Shanks et al. 1987; Iovino & Shaver 1988; Andreani & Cristiani

1992; Mo & Fang 1993; Shanks & Boyle 1994; Croom & Shanks

1996; La Franca, Andreani & Cristiani 1998) and made some prelim-

inary measurements of clustering evolution, but these have all been

based on small samples of QSOs (typically a few hundred objects).

At low redshift, there have also been a number of recent analyses.

Grazian et al. (2004) find s 0 = 8.6 ± 2 h−1 Mpc for a sample of

bright, B < 15, low-redshift, z < 0.3, QSOs. Miller et al. (2004)

show that the AGN fraction in the SDSS galaxy survey is not depen-

dent on environment, while Croom et al. (2004c) and Wake et al.

(2004) show that low-redshift, low-luminosity AGN are clustered

identically to non-active galaxies. The 2QZ provided the first large,

deep sample with which to perform detailed clustering analysis at

high redshift. Outram et al. (2003), Outram et al. (2004), Miller et al.

(2004) and others have used the 2QZ to test cosmological models.

The two-point correlation function (the subject of this paper) has

been discussed by Croom et al. (2001a) for the preliminary, 10k,

data release of the 2QZ (Croom et al. 2001b). They found the clus-

tering of high-redshift (z̄ ≃ 1.5) QSOs to be very similar to the

clustering of typical galaxies at low redshift. They also found that

the amplitude of clustering was approximately constant, or slightly

increasing, with redshift.

For comparison to the high-redshift QSO clustering results, there

are now some measurements of galaxy clustering over similar red-

shift intervals. These suggest moderately high clustering ampli-

tudes, generally not inconsistent with that measured for QSOs. For

example, deep wide-field (∼ few degrees) imaging surveys used to

measure the angular correlation function of galaxies also suggest

high clustering amplitudes (Postman et al. 1998). However, vari-

ous differences are found, depending on the magnitude limits and

photometric bands used to define the samples. This is not surpris-

ing given that there is clearly evidence that galaxy clustering is a

function of luminosity (Norberg et al. 2001). This may also be the

case for QSOs, although there has been no significant evidence for

this to date (Croom et al. 2002). At z ∼ 3, galaxy surveys using the

drop-out technique (e.g. Steidel et al. 1998) have found that L ∼ L∗

galaxies also cluster similarly to local galaxies on scales �10 h−1

Mpc, with r 0 ≃ 4–6 h−1 Mpc for a cosmology with �m = 0.3 and

�� = 0.7 (Adelberger et al. 1998, 2003; Foucaud et al. 2003).

In this paper we use the final data release of the 2QZ (Paper XII) to

measure the QSO two-point correlation function over a wide range

in redshift. The 2QZ is currently the best sample on which to per-

form this analysis, being by far the largest QSO sample with a high

surface density (∼35 deg−2). We focus in this paper on the redshift-

space correlation function ξ (s) and attempt to account for the effects

of any z-space distortions. The real-space correlation function will

be addressed in a further paper (da Ângela et al. in preparation), and

the cross-correlation of QSOs in different luminosity intervals will

be discussed by Loaring et al. (in preparation). In Section 2 we in-

troduce the 2QZ sample and the techniques used in our analysis. In

Section 3 we use mock QSO catalogues (Hoyle 2000) constructed

from the large simulations to test the reliability of our corrections

for variations in completeness in the 2QZ. The redshift-averaged,

redshift-dependent and luminosity-dependent 2QZ ξ (s) measure-

ments are presented in Sections 4, 5 and 6, respectively. We finally

discuss our conclusions in Section 7.

2 DATA A N D T E C H N I QU E S

2.1 The 2dF QSO Redshift Survey

There is a full description of the 2QZ in Paper XII. Briefly, the

survey covers two 75◦ × 5◦ strips, one passing across the South

C© 2004 RAS, MNRAS 356, 415–438
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Figure 1. The distribution of 2QZ QSOs from the final catalogue. The SGP strip is on the left, the equatorial strip on the right. The rectangular regions show

the distributions projected on to the sky. An EdS cosmology is assumed in calculating the comoving distances to each QSO.

Galactic Cap centred on δ = −30◦ [the South Galactic Pole (SGP)

strip] and the other across the North Galactic Cap centred on δ = 0◦

[the North Galactic Pole (NGP) or equatorial strip]. The SGP strip

extends from α = 21h40 to α = 3h15 and the equatorial strip from α

= 9h50 to α = 14h50 (B1950). The total survey area is 721.6 deg2,

when allowance is made for regions of sky excised around bright

stars.

2dF spectroscopic observations were carried out on colour-

selected targets in the magnitude range 18.25 < bJ < 20.85. This

resulted in the discovery of 23 338 QSOs at redshifts less than z ∼
3. In this paper we restrict our analysis to QSOs with quality 1 iden-

tifications (see Paper XII), that is 22 655 QSOs. The distribution of

QSOs in the final sample is shown in Fig. 1.

2.2 Correlation function estimates

As the QSO correlation function, ξ (s), probes high redshifts and

large scales, the measured values are highly dependent on the as-

sumed cosmology. In determining the comoving separation of pairs

of QSOs we choose to calculate ξ (s) for two representative cosmo-

logical models. The first uses the best-fitting cosmological param-

eters derived from WMAP, 2dFGRS and other data (Spergel et al.

2003; Percival et al. 2002, respectively) with (�m, ��) = (0.27,

0.73), which we will call the WMAP/2dF cosmology. The second

model assumed an Einstein–de Sitter cosmology with (�m, ��) =
(1.0, 0.0), which we denote as the EdS cosmology. We will quote

distances in terms of h−1 Mpc, where h is the dimensionless Hubble

constant such that H 0 = 100 h km s−1 Mpc−1.

We have used the minimum variance estimator suggested by

Landy & Szalay (1993) to calculate ξ (s), where s is the redshift-

space (or z-space) separation of two QSOs (as opposed to r, the

real-space separation). This estimator is

ξ (s) =
Q Q(s) − 2Q R(s) + R R(s)

R R(s)
, (1)

where QQ, QR and RR are the number of QSO–QSO, QSO–

random and random–random pairs counted at separation s ±
	s/2. QR and RR are normalized to the total number of QSOs.

The density of random points used was 50 times the density of

QSOs.

We calculate the errors on ξ (s) using the Poisson estimate of

	ξ (s) =
1 + ξ (s)
√

Q Q(s)
. (2)

At small scales, �50 h−1 Mpc, this estimate is accurate because each

QSO pair is independent (i.e. the QSOs are not generally part of an-

other pair at scales smaller than this). On larger scales the QSO

pairs become more correlated and we use the approximation that

	ξ (s) = [1 + ξ (s)]/
√

NQ, where N Q is the total number of QSOs

used in the analysis (Shanks & Boyle 1994; Croom & Shanks 1996).

We also derive field-to-field errors and compare these to the errors

found in simulations. On small scales, �2 h−1 Mpc, the number

of QSO–QSO pairs can be �10. In this case simple root-n errors

(equation 2) do not give the correct upper and lower confidence

limits for a Poisson distribution. We use the formulae of Gehrels

(1986) to estimate the Poisson confidence intervals for one-sided

84 per cent upper and lower bounds (corresponding to 1σ for Gaus-

sian statistics). These errors are applied to our data for QQ(s) < 20.

Above this number of pairs root-n errors adequately describe the

Poisson distribution.

In our analysis below we will also use the integrated correlation

function out to some pre-determined radius as a measure of cluster-

ing amplitude. This is commonly denoted by ξ̄ , where

ξ̄ (smax) =
3

s3
max

∫ smax

0

ξ (x)x2 dx . (3)

As in Croom et al. (2001a) we will generally take s max =
20 h−1 Mpc as this is on a large enough scale that linear theory

C© 2004 RAS, MNRAS 356, 415–438
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Figure 2. The completeness map of the 2QZ catalogue for the equatorial (top) and SGP (bottom) regions. The grey-scale indicates the percentage of all 2QZ

targets that were both observed and positively identified (quality 1) over the two survey strips.

should apply. The effect of z-space distortions due to small-scale

peculiar velocities or redshift errors is also minimal on this scale.

2.3 Selection functions and incompleteness

The area of the survey is covered by a mosaic of 2dF pointings. These

pointings overlap in order to obtain near complete coverage in all

areas, including regions of high galaxy and QSO density. In order to

take into account the variable completeness between 2dF pointings,

due to variations in observational conditions, we use a mask that

specifies the completeness of each survey sector, where we define a

sector as the unique intersection of a number of circular 2dF fields.

These masks are fully discussed in Paper XII. The completeness

of each survey strip as a function of angular position on the sky

is shown in Fig. 2. The distribution of random points used in our

correlation analysis is constructed to have an identical distribution

on the sky. In order to minimize the influence of low completeness

fields, we restrict the analysis in this paper to sectors for which the

spectroscopic completeness is at least 70 per cent. This results in a

sample of 20 686 QSOs in the redshift range 0.3 < z < 2.9.

It is possible that on scales smaller than a 2dF field systematic

variations in completeness may exist (e.g. see Paper XII). In order to

test the consequence of these, detailed simulations have been carried

out (see below). On larger scales small residual calibration errors in

the relative magnitude zero-points of the United Kingdom Schmidt

Telescope (UKST) plates could add spurious structure. These are

also assessed using simulations.

After generating random points according to the angular distribu-

tion specified by the completeness masks, we then assign a random

redshift to each point. This random redshift is drawn from a distri-

bution defined by a polynomial fit to the observed n(z) distribution

(see Fig. 3a and Section 3.2.1 below).

As a direct test of the effectiveness of the above corrections, we

also use random distributions generated by taking right ascensions

(RAs) and declinations (Decs) from the QSO catalogue itself. We

then assign a redshift based on either the fitted n(z) (as above; this

we call the RA–Dec mixing method) or by assigning a random QSO

redshift taken from the catalogue (the RA–Dec–z mixing method).

These methods will mimic the 2QZ QSO angular distributions ex-

actly, but with the effect of reducing the amount of structure mea-

sured (particularly on larger scales). We examine the reduction in

large-scale power that these estimates cause below.

These two alternative methods also demonstrate that the QSO

correlation function is not affected by the deficit of close (<1 arcmin)

pairs in the 2QZ. The deficit is due to the fact that the 2dF instrument

cannot position two fibres closer than ∼30 arcsec. It has in large part

been alleviated by the overlapping field arrangement in the 2QZ

strips, and the fact that the vast majority of QSO pairs which are

close in angular position have very different redshifts. We therefore

make no further corrections for this effect in our analysis.

Extinction by galactic dust will also imprint a signal on the an-

gular distribution of the QSOs. Primarily this changes the effective

magnitude limit in bJ by AbJ
= 4.035 × E(B − V ) where we use

the dust reddening E(B − V ) as a function of position calculated by

Schlegel, Finkbeiner & Davis (1998). We then weight the random

distribution according to the reduction in number density caused by

the extinction such that

Wext(α, δ) = 10−β AbJ
(α,δ), (4)

where β is the slope of the QSO number counts at the magnitude

limit of the survey. At bJ = 20.85, the magnitude limit of the 2QZ, the

QSO number counts are flat, with β ≃ 0.3. Applying this correction

we find that it only makes a significant difference to ξ (s) on scales

of ∼1000 h−1 Mpc.

2.4 Making model comparisons to ξ(s)

Below we make comparisons of the data to a number of models,

both simple functional forms (power laws) and more complex, phys-

ically motivated models (e.g. cold dark matter; CDM). We use the

maximum-likelihood method to determine the best-fitting parame-

ters. The likelihood estimator is based on the Poisson probability

distribution function, so that

L =
N

∏

i=1

e−µµν

ν!
(5)

is the likelihood, where ν is the observed number of QSO–QSO

pairs, µ is the expectation value for a given model and N is the

number of bins fitted. We fit the data with bins 	log(s) = 0.1,

although we note that varying the bin size by a factor of 2 makes no

noticeable difference to the resultant fit. In practice we minimize the

function S =−2 ln(L), and determine the errors from the distribution

of 	S, where 	S is assumed to be distributed as χ2. This procedure

does not give us an absolute measurement of the goodness of fit for

a particular model. We therefore also derive a value of χ2 for each

model fit in order to confirm that it is a reasonable description of the

data. In particular this is appropriate when fitting on moderate-to-

large scales (� 5 h−1 Mpc), where the pair counts are large enough

that the Poisson errors are well described by Gaussian statistics.

C© 2004 RAS, MNRAS 356, 415–438
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Figure 3. QSO and simulation n(z) distributions. (a) The n(z) distributions in the two 2QZ slices, SGP (solid line) and NGP (dotted line). The NGP has been

renormalized to the number of QSOs in the SGP to aid comparison. Also shown is the 12th-order polynomial fit to the combined n(z) (dashed line). (b) The

n(z) distribution of two Hubble Volume simulation slices each containing 12 500 particles.

3 C O R R E L AT I O N F U N C T I O N T E S T S U S I N G

M O C K Q S O C ATA L O G U E S

3.1 Mock QSO catalogues

To test both our correlation function estimation methods and the

effect of incompleteness we apply our analysis to mock QSO cata-

logues produced from the large Hubble Volume simulations of the

Virgo Consortium (Frenk et al. 2000; Evrard et al. 2002). In partic-

ular we make use of the �CDM Hubble Volume simulation where

data on each particle has been output along the observer’s past light

cone to mimic the 2QZ. The simulation contains 109 particles in

a cube that is 3000 h−1 Mpc on a side. The cosmological param-

eters of the simulation are �b = 0.04, �CDM = 0.26, �� = 0.7,

H 0 = 70 km s−1 Mpc−1 and σ 8 = 0.9 (at z = 0). The light cone

data were output in a 75◦ × 15◦ wedge oriented along the maximal

diagonal of the cube, allowing the light cone to extend to a scale

of ∼5000 h−1 Mpc (z ∼ 4). This volume is then split up into three

largely independent 75◦ × 5◦ slices, each one mimicking a single

2QZ strip. We note that there will be some correlation between the

largest structures in the different simulation strips; however, it was

not practical to generate simulations large enough to select many

completely independent volumes.

In order to create realistic mock QSO catalogues, the mass par-

ticles are then biased to give a similar clustering amplitude to that

observed in the 2QZ (based on the results of Croom et al. 2001a).

The biasing prescription is based on that of Cole et al. (1998) (their

model 2), but varying the parameters as a function of redshift to

match the Croom et al. (2001a) results and using a cell size of

20 h−1 Mpc to determine the local density (Hoyle 2000). In our

analysis below we consider mock catalogues with large numbers of

biased particles (∼100 000), almost a factor of 10 more than a single

real 2QZ strip. This allows us to test for possible weak systematic

effects. Full details of the Hubble Volume simulation are given by

Hoyle (2000).

3.2 The effect of different correlation function estimates

There are several issues involved with accurately determining the

two-point correlation function. We will investigate each of these in

turn.

3.2.1 Estimates of the QSO n(z)

The redshift distributions, n(z), of the two 2QZ slices are shown in

Fig. 3(a). In order to compare the two directly, we renormalize the

NGP n(z) to contain the same total number as the SGP. The two

strips have the same overall shape; however, we note that they ap-

pear to have more structure that the n(z) distributions of the Hubble

Volume simulations shown in Fig. 3(b) (note that the simulations

have a cut-off imposed at z = 2.2). By examining the spatial dis-

tribution of the QSOs it is possible to see that the extra structure

in the n(z) is due to a number of weak large-scale structures. For

example, the narrow peak in the NGP n(z) at z = 1.5 is due to a

wall-like feature (top right of Fig. 1). We must therefore be careful

not to remove any excess large-scale power by fitting the n(z) on too

fine a scale. A detailed discussion of structure on very large scales

is given by Miller et al. (2004). In Fig. 3(a) we plot the polynomial

fit (12th order) to the QSO n(z) distribution used to generate the ran-

dom distributions. Tests using higher- and lower-order polynomial

fits (8th–16th order) showed no significant differences between the

resultant ξ (s) estimates. We also found that different methods of fit-

ting the n(z) of the simulations (e.g. spline versus polynomial) only

caused differences at the ∼0.1 per cent level, much smaller than the

random errors in the measurements of ξ (s) from the 2QZ.

3.2.2 Masks versus randomizing

We next investigate differences between the methods described

above to produce the random distributions. In particular, although

the RA–Dec and RA–Dec–z mixing methods are effective at remov-

ing any variations in completeness, we also need to assess whether

they also remove significant amounts of large-scale structure. To

do this we determine the clustering in our simulations using these

different methods. In Fig. 4 we show a comparison of the masking

and RA–Dec mixing methods for a single Hubble Volume sim-

ulation slice. When the redshift range is broad (Fig. 4a) there is

no significant difference between the two methods and the ratio

of the two (bottom of Fig. 4a) is consistent with 1 at all scales.

However, if we take a narrower redshift interval, as in Fig. 4(b),

we do see significant depression of the clustering strength in the

RA–Dec mixing method. This is because in a narrow redshift in-

terval, the angular clustering of QSOs will be greater, due to the

reduced amount of projection. Therefore we conclude that while

C© 2004 RAS, MNRAS 356, 415–438
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Figure 4. Comparison of masking (filled points) and RA–Dec mixing (open points) methods for the Hubble Volume simulations. Beneath each plot we show

the ratio of the two correlation function measures, ξ (s)mask/ξ (s)mixing. (a) ξ (s) measured over a broad redshift range, z = 0.3–2.2. There is no significant

difference between the two estimates. (b) ξ (s) measured over a narrow redshift range, z = 1.35–1.70. In this case the RA–Dec mixing method produces a

correlation function which is ∼10–20 per cent lower than the masking method.

the RA–Dec mixing method is a useful check of the clustering

amplitude averaged over the full survey, it is not an accurate es-

timate when measuring QSO clustering evolution in narrow red-

shift slices. The same results were found for the RA–Dec–z mixing

method.

3.3 The effect of the survey selection

function and incompleteness

We now assess the effect of errors in the survey selection function on

our estimates of ξ (s). All these tests are carried out using the masking

method. Errors in the zero-points of the UKST photographic plates

are a possible source of excess large-scale power. To mimic this

effect we divide the simulated survey strips into fifteen 5◦ × 5◦

regions and apply to each a Gaussian random zero-point error 	m,

Figure 5. Comparison of simulated correlation functions with (open points) and without (filled points) zero-point errors for (a) the full redshift range and (b)

a narrow redshift range with z = 1.35–1.70. The ratio of the points with and without zero-point errors, ξ (s, σ zp = 0.05)/ξ (s, σ zp = 0.000), is shown below

each plot.

with σ = 0.05 mag. We then modulate the density of sources in

that region by a factor of 10−0.3	m , as the faint-end slope of the

QSO number counts is ∼0.3. This equates to an error in the QSO

density of 7 per cent for a zero-point error of 0.1 mag. With σ =
0.05 the full range of zero-point errors used was ≃0.15 mag. We

do not expect there to be real zero-point errors in the survey larger

than this. A comparison of simulated correlation functions with and

without zero-point errors is shown in Fig. 5. We see no systematic

differences caused by the zero-point errors in either the full redshift

interval (Fig. 5a), or narrower redshift intervals (Fig. 5b). We note

that if the zero-point errors are increased (to values greater than the

likely photometric errors in the survey) then significant differences

can be seen. With σ = 0.1 mag there are systematic offsets in ξ (s) at

the level of ∼1 per cent which become significant on scales greater

than ∼40 h−1 Mpc.
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Another possible cause of systematic errors in ξ (s) is the vari-

ations in completeness within 2dF fields. These can be caused by

systematic errors in astrometry or field rotation which will be worse

at the edges of a field, or atmospheric refraction effects, if a field

was observed at a different hour angle from that which it was config-

ured for. Paper XII showed that although radially dependent com-

pleteness is noticeable when observations of many individual fields

are averaged together, if the overlap between fields and repeat ob-

servations are taken into account there is no systematic decline in

completeness towards the edge of 2dF fields. In order to confirm

that completeness variations within 2dF fields will not impact on

our clustering analysis we perform detailed tests. We first position

our 2dF field centres along the simulation strips, and then apply

spectroscopic completenesses selected randomly from the actual

field completenesses found in the survey. A mask is also generated

to correct for this variable incompleteness. We then modulate the

completeness within each simulated 2dF field such that it mimics

the radial decrease seen in Paper XII (filled points in their fig. 18).

We then calculated ξ (s) from these simulations, using a complete-

ness mask which corrects for all effects apart from the variation in

completeness within the 2dF fields. This is a worst case scenario,

as in the simulations we allocate an object to only one field, and

then derive the radial completeness variation from the centre of that

field. In the actual survey, objects without IDs could be observed in

overlapping fields. We compare the results to ξ (s) measured without

the radial completeness variations in Fig. 6. We find that the radial

completeness variations have no significant impact on ξ (s) for ei-

ther the whole redshift range or in narrower redshift intervals. We

also determine the effect of radial incompleteness on ξ̄ (s) in nar-

row redshift intervals (which is used extensively in Section 5). The

radial incompleteness typically only changes ξ̄ (s) by 2–5 per cent,

with the worst case being 10 per cent. Given that the radial selection

model is a worst case scenario, and that the measurement errors in

ξ̄ (s) are at least 20 per cent, any radial dependence of complete-

ness within 2dF fields will not impact on our conclusions presented

below.

Figure 6. Comparison of simulated correlation functions with (open points) and without (filled points) radially dependent incompleteness within 2dF fields

for (a) the full redshift range and (b) a narrow redshift range with z = 1.35–1.70. The ratio of the points with and without radial dependent incompleteness,

ξ (s)rad/ξ (s), is shown below each plot.

4 T H E R E D S H I F T- AV E R AG E D Q S O

C O R R E L AT I O N F U N C T I O N

The above simulations confirm that our methods of correlation anal-

ysis, and any residual systematic errors in the 2QZ, should not sig-

nificantly bias our estimates of ξ (s). We now present the results of

applying our correlation analysis to the final 2QZ sample, beginning

with ξ (s) averaged over the redshift range 0.3 < z < 2.2, for the

most part, assuming a WMAP/2dF cosmology. We note that here

we restrict the redshift range to regions of high completeness, and

do not include QSOs above z = 2.2. This is because the mean QSO

colours move progressively further into the stellar locus above this

redshift making the sample increasingly sensitive to small system-

atic errors in selection. This sample contains 18 066 QSOs and has

a mean redshift of z̄ = 1.35.

4.1 Results

We first plot a comparison between the masking method and the

RA–Dec mixing method for the redshift-averaged QSO ξ (s). This

is shown in Fig. 7. Note that we only plot ξ (s) on scales greater than

1 h−1 Mpc as we find no QSO–QSO pairs on scales smaller than

this (in a WMAP/2dF cosmology). Also, for any other bins without

QSO–QSO pairs we plot a point on the bottom x-axis without an

error bar. We see that on all scales the two estimates are consistent

within the Poisson measurement errors. There is some indication

that the RA–Dec mixing method is slightly systematically lower

than the mask method on scales >20 h−1 Mpc, which could be

an indication of a weak systematic error in the mask method, but

this is not a significant deviation. Given the consistency of the two

methods, unless we state so explicitly, we will use the mask method

for all of our ξ (s) estimates.

In a second check of the consistency of our results we plot a

comparison of the measured ξ (s) in each of the NGP and SGP

strips (Fig. 8). Although the ξ (s) measured from the two strips

is in broad agreement, the NGP strip shows slightly stronger
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Figure 7. The QSO ξ (s) from the 2QZ using the masking method (filled

points) and RA–Dec mixing method (open points). A WMAP/2dF cosmol-

ogy is assumed. Below we show the ratio of the two, ξ (s)mixing/ξ (s)mask.

Figure 8. The QSO ξ (s) from the 2QZ, plotting the results from the SGP

(filled points) and NGP (open points) separately. A WMAP/2dF cosmology

is assumed. Below we show the ratio of the two, ξ (s)NGP/ξ (s)SGP. Note that

the scale of the ratio plot is broader than the previous similar plots.

clustering on scales >20 h−1 Mpc. Comparing the estimates of ξ̄ (s)

on different scales in the two strips we find that they are consistent

(0.9σ , 1.3σ and 0.6σ differences for s = 20, 30 and 50 h−1 Mpc,

respectively).

The large volume probed by the 2QZ allows ξ (s) to be probed

on very large scales, in excess of ∼1000 h−1 Mpc. Most models do

not predict any signal in ξ (s) at large scales, however, there have

been some claims of features in the QSO ξ (s) (including using data

from the 2QZ). For example, Roukema, Mamon & Bajtlik (2002)

claimed to see several features, including a positive feature at the

level of ∼4 per cent on a scale of ∼240 h−1 Mpc in the ξ (s) of ∼2300

QSOs from the initial release of the 2QZ catalogue (Croom et al.

2001b). To test these claims we make an estimate of the 2QZ ξ (s)

to the maximum scales probed by the sample. The results of this

are shown in Fig. 9 for the WMAP/2dF cosmology (Roukema et al.

assume �m = 0.3 and �� = 0.7, but our results are similar for both

cosmologies). As Fig. 9 probes very large scales, where QSO pairs

could be correlated, we determine errors by measuring the variance

between six subregions of the full data set (three 5◦ × 25◦ regions in

each 2QZ strip). The errors plotted are the measured rms between

the six subsamples divided by
√

6 to account for the greater volume

of the full sample. We note that on the largest scales even these

field-to-field errors will be somewhat inaccurate. By comparing the

QSO–QSO pair counts for the full region and the six subregions

we find that, at ∼200 h−1 Mpc, ∼ 10 per cent of pairs come from

correlations between different subregions. By ∼1000 h−1 Mpc this

number has risen so that approximately half of all QSO–QSO pairs

are from QSOs in different subregions. This means that on large

scales there will be significant correlation between the subregions,

but the reduction of pairs in each subregion will also increase the

Poisson noise.

There is little evidence of any strong deviation from zero on any

scale larger that ∼100 h−1 Mpc and the QSO ξ (s) is zero to within

0.5 per cent over a broad range of scales. One point (at 90 h−1

Mpc) deviates from zero by ∼1 per cent. There is no evidence for a

feature at ∼240 h−1 Mpc. At various different scales there are some

points that are greater than 1σ from zero. A χ2 test comparing the

data to ξ (s) = 0 at s = 100–1000 h−1 Mpc gives χ2 = 76.1 with 45

degrees of freedom (dof), which implies significant deviations at the

99.7 per cent level. The rms scatter over this scale range is ±0.002.

The level of deviations away from zero at large scales is so small

that we cannot be confident that they are real features and not due to

low-level residual systematics. However, residual systematic effects

at this level will not affect any of our conclusions and we can have

confidence that the masks used to define the selection function are

removing structure not due to QSO clustering.

4.2 Fitting models to the QSO ξ(s)

We now attempt to fit a variety of models to the data. The simplest

model traditionally fitted to correlation function estimates is a power

law of the form

ξ (s) =
(

s

s0

)−γ

, (6)

where s0 is the comoving correlation length, in units of h−1 Mpc.

We first fit a power law over the full range of scales where significant

clustering is detected, from 1 to 100 h−1 Mpc, using the maximum-

likelihood technique. For the WMAP/2dF cosmology, this resulted

in best-fitting parameters (s 0, γ ) = (5.55 ± 0.29, 1.633 ± 0.054),

however this fit is unacceptable at the 99.5 per cent level (see

Table 1). This best-fitting power law (solid line) is compared to the

data in Fig. 10(a) and it can be seen that the data are flatter on small

scales and steeper on large scales than the model. We then vary the

maximum scale that we fit. Only by reducing this to ∼25 h−1 Mpc

is an acceptable power-law fit achieved. Over the range 1–25 h−1

Mpc we find best-fitting values (s 0, γ ) = (5.48+0.42
−0.48, 1.20+0.10

−0.10). The

power law slope is significantly flatter when the fit is performed on

these smaller scales, but the scalelength, s0, is largely unaffected.

This shows that the shape of the QSO ξ (s) changes with scale and

does not follow a single pure power law, but steepens at large scales.

We also fit similar power-law models to ξ (s) estimated assuming an

EdS cosmology. Over the range s = 1–100 h−1 Mpc we find (s 0, γ )

= (3.89 ± 0.18, 1.713 ± 0.052), but as for the WMAP/2dF cosmol-

ogy, this is clearly rejected (at the 99.9 per cent level) (see Fig. 10b).

As above, fitting on a more restricted range of scales allows
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Figure 9. The QSO ξ (s) from the 2QZ on scales 0–2000 h−1 Mpc, plotted on a linear scale. Error bars are derived from the field-to-field variance between

six subsamples of the data set.

Figure 10. The QSO ξ (s) from the 2QZ (filled points) compared to the best-fitting power laws over a range of scales: s = 1–100 h−1 Mpc (solid line) and (a)

s = 1–25 h−1 Mpc for a WMAP/2dF cosmology or (b) s = 1–10 h−1 Mpc for an EdS cosmology (dotted lines).

Table 1. The results of power-law fits to the 2QZ ξ (s) averaged over the redshift range 0.3 < z < 2.2. Model fits assuming a power

law in z-space [(s/s 0)−γ ] and a power law in real-space [(r/r 0)−γ ] are presented (the second for a WMAP/2dF cosmology only). The

real-space power law is corrected for the effects of linear and non-linear z-space distortion. We list the cosmology assumed, the scales

fitted over, the best-fitting parameters and associated errors, the measured χ2 values, number of dof, ν and probability of acceptance,

P(<χ2).

Model �m,�� smin,smax s0/r0 γ χ2 ν P(<χ2)

(s/s 0)−γ 0.27,0.73 1.0,100.0 5.55+0.29
−0.29 1.633+0.054

−0.054 37.7 18 4.6e−3

(s/s 0)−γ 0.27,0.73 1.0,25.0 5.48+0.42
−0.48 1.20+0.10

−0.10 8.1 12 7.8e−1

(s/s 0)−γ 1.00,0.00 1.0,100.0 3.89+0.18
−0.18 1.713+0.052

−0.052 42.6 18 9.2e−4

(s/s 0)−γ 1.00,0.00 1.0,10.0 3.88+0.43
−0.53 0.86+0.16

−0.17 5.6 8 7.0e−1

(r/r 0)−γ 0.27,0.73 1.0,100.0 5.81+0.29
−0.29 1.866+0.060

−0.060 20.4 18 3.1e−1

(r/r 0)−γ 0.27,0.73 1.0,25.0 5.84+0.33
−0.33 1.647+0.047

−0.047 7.2 12 8.4e−1

acceptable fits. We find an acceptable power-law fit on scales s

= 1–10 h−1 Mpc with (s 0, γ ) = (3.88+0.43
−0.53, 0.86+0.16

−0.17) (see Fig. 10b).

The apparent break in the QSO ξ (s) is unsurprising given that we

generally only expect power-law clustering in the regime where

clustering is non-linear. Similar breaks have been seen in the clus-

tering of low-redshift galaxies (e.g. Hawkins et al. 2003). On scales

�10 h−1 Mpc where ξ (s) < 1 clustering should be close to lin-

ear. Other effects, such as z-space distortions, could also distort the

measured ξ (s) away from a power law.

We assess the impact of z-space distortions on a power law. Small-

scale peculiar velocities will tend to reduce ξ (s) on small scales.

Both intrinsic peculiar velocities and redshift measurement errors

will generate a similar effect. If due to intrinsic peculiar velocities,

this should be best described by an exponential distribution (Rat-

cliffe et al. 1998; Hoyle et al. 2002; Hawkins et al. 2003) such that

fexp(wz) =
1

√
2
〈

w2
z

〉1/2
exp

(

−
√

2
|wz|

〈

w2
z

〉1/2

)

, (7)

C© 2004 RAS, MNRAS 356, 415–438



424 S. M. Croom et al.

Figure 11. (a) The difference between redshift measurements for repeated

QSO observations in the 2QZ (using only quality 1 identifications and red-

shifts) as a function of mean redshift (points); also shown is the calculated

rms in 	z = 0.1 bins (solid lines). (b) The rms redshift difference divided

by 1 + z as a function of mean redshift. The mean σ z/(1 + z) is shown by

the dashed line.

where 〈w2
z〉1/2 is the rms pairwise line-of-sight velocity dispersion.

If it is the redshift measurement errors which dominate, then the

distribution may be better described by a Gaussian,

fnorm(wz) =
1

〈

w2
z

〉1/2 √
2π

exp

(

−
w2

z

2
〈

w2
z

〉

)

. (8)

The rms pairwise redshift error measured from repeat observations

of 2QZ QSOs is given as σ z = 0.0027z in Paper XII. We have re-

assessed this redshift error using the same data as Paper XII (Fig. 11)

and find that a better estimate of the pairwise redshift error is

σ z = 0.0014(1 + z) (the dashed line in Fig. 11b). Thus the pairwise

velocity error [δv = cδz/(1 + z)] corresponding to this redshift

error is δvz = 416 km s−1 largely independent of redshift. To this

we need to add the intrinsic velocity dispersion of the QSOs, δv i.

At low redshift the typical intrinsic galaxy pairwise velocity dis-

persion is ≃500 km s−1 (e.g. Hawkins et al. 2003) at z ≃ 0.15. We

note that Hawkins et al. did not include the factor of 1 + z in equa-

tion (11) (see below). Correcting for this, the pairwise velocity is

actually ≃430 km s−1. It is uncertain whether this will decline with

redshift. While the dark matter velocity dispersion should decline,

as QSOs are biased tracers of large-scale structure, their pairwise

velocity may not decline. Zhao, Jing & Borner (2002) predict that

the pairwise velocity dispersion of Lyman-break galaxies at z ∼
3 could be ∼200–400 km s−1. Given the uncertainty in the evo-

lution of δv i we will assume a fixed value of ≃430 km s−1 at all

redshifts, noting that any evolution is likely to reduce this value. A

final issue that needs to be considered is the velocity error due to

intrinsic emission-line shifts in QSOs, δv l. The ultraviolet emission

lines in QSO spectra typically show blueshifts relative to their sys-

temic velocity; this is particular so of lines such as C IV. Richards

et al. (2002) demonstrated that the dispersion between the centroids

of C IV and Mg II lines was 511 km s−1, while the dispersion be-

tween Mg II and [O III] was a somewhat smaller 269 km s−1. This

dispersion will cause an extra dispersion in our redshift estimates

which is not taken into account by the repeat observations (as they

are repeats of the same QSO spectrum). Thus δv l should take val-

ues in the range 200–450 km s−1 allowing for measurement er-

rors (Richards et al. 2002). Combining the three components of

velocity dispersion together in quadrature results in 〈w2
z〉1/2 ≃ 630–

750 km s−1. In our analysis below we will assume a value of

690 km s−1 which lies in the middle of this range. As a combination

of δv l and δvz dominates the total pairwise velocity dispersion, we

use equation (8) to model the effects of z-space distortions on small

scales. We note that other authors (e.g. Hoyle et al. 2002; Outram

et al. 2004) used a similar value of 〈w2
z〉1/2 ≃ 800 km s−1 (however

they miss the factor of 1 + z in equation 11 below).

We should also take into account the effect of linear z-space dis-

tortions. Kaiser (1987) showed that

ξ (s) = ξ (r )

(

1 +
2

3
β +

1

5
β2

)

, (9)

where ξ (r ) is the real-space correlation function and β ≃ �0.6
m /b.

More generally, ξ (σ , π ), the correlation function across (the σ di-

rection) and along (the π direction) the line of sight is distorted,

such that

ξ (σ, π ) =
[

1 +
2(1 − γµ2)

3 − γ
β

+
3 − 6γµ2 + γ (2 + γ )µ4

(3 − γ )(5 − γ )
β2

]

ξ (r ), (10)

assuming that ξ (r ) is a power law (Matsubara & Suto 1996). µ is

the cosine of the angle between r and π (the distance along the line

of sight), and γ is the slope of the power law. Then including the

effects of non-linear z-space distortions, the full model for ξ (σ , π )

is given by

ξ (σ, π ) =
∫ ∞

−∞
ξ ′[σ, π − (1 + z)wz/H (z)] fnorm(wz) dwz, (11)

where ξ ′[σ , π − (1 + z)wz/H (z)] is given by equation (10),

f norm(wz) is given by equation (8) and H(z) is Hubble’s constant at

redshift z. Finally, we carry out a spherical integral over the model

ξ (σ , π ) to derive the model ξ (s) which we then fit to the data. We

note that there is an extra factor of 1 + z in equation (11) compared

to previous work (e.g. Hoyle et al. 2002; Hawkins et al. 2003). This

is because the velocity dispersions are generally given in proper

coordinates, rather than comoving coordinates. At low redshift this

has a minimal effect; however, at high redshift this extra term boosts

the effective scale corresponding to a given proper velocity by 1 +
z (in fact it approximately cancels out the increase of H(z) with red-

shift, so that the proper velocity dispersion corresponds to a similar

comoving scale at every redshift). It is therefore critical to incorpo-

rate this term. In this paper we are not specifically focusing on ξ (σ ,

π ) and z-space distortions, but only wish to determine their effect

in shaping the measured ξ (s). Detailed investigation of ξ (σ , π ) is

discussed by da Ângela et al. (in preparation).

Estimates of the strength of z-space distortions via the QSO power

spectrum have been made by Outram et al. (2004). They find that

at z = 1.4, the mean redshift of the sample used, β = 0.4 ± 0.1.

We assume this value for β and a small-scale velocity dispersion of

690 km s−1. We then produce a grid of model real-space correlation

functions which are adjusted for these z-space distortions and fitted

to our observed ξ (s) using the maximum-likelihood technique.

In Fig. 12(a) we show a comparison of models with and without

z-space distortions, assuming a real-space correlation function of

ξ (r ) = (r/5)−1.8 in a WMAP/2dF cosmology, and the above values

of β = 0.4 and 〈w2
z〉1/2 = 690 km s−1. The solid lines show the

real-space ξ (r ) and ξ̄ (r ) (see equation 3). The model ξ̄ (r ) is a factor
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Figure 12. (a) Model power-law correlation functions demonstrating the

effects of z-space distortions, assuming a real space ξ (r ) = (r/5)−1.8. In each

case ξ and ξ̄ are plotted with ξ̄ being the upper line. We show ξ (r ) (solid

line), ξ lin(s) (dotted line) and and ξ non−lin(s) (dashed line). For the redshift-

space distortion model we assume a WMAP/2dF cosmology, at a mean

redshift of 1.35 with β(z) = 0.4 and 〈w2
z〉1/2 = 690 km s−1. (b) The ratio

of different models comparing the ratios of ξ non−lin(s)/ξ (r ) (upper dashed

line) and ξ non−lin(s)/ξ lin(s) (upper dotted line). The other two dashed and

dotted lines are the ξ̄ equivalents. The two solid lines are set at 1.0 and at

(1 + 2β/3 + β2/5) = 1.30 for β = 0.4.

of 3/(3 − γ ) = 2.5 above ξ (r ). The dotted lines show the model

ξ (s) and ξ̄ (s) for linear z-space distortions only (ξ lin(s), i.e. β =
0.4 and 〈w2

z〉1/2 = 0.0), while the dashed lines show the full model

with linear and non-linear z-space distortions (ξ non−lin(s), i.e. β =
0.4 and 〈w2

z〉1/2 = 690 km s−1). On scales less than 10 h−1 Mpc

the non-linear z-space distortions cause a significant suppression

of ξ . In Fig. 12(b) we plot the ratio of these various models. The

dashed lines are ξ non−lin(s) (top) and ξ̄non-lin(s) (bottom) divided by

ξ (r ) and ξ̄ (r ), respectively. The dotted lines are ξ non−lin(s) (top)

and ξ̄non-lin(s) (bottom) divided by ξ lin(s) and ξ̄lin(s), respectively.

The solid lines are set at 1 and at (1 + 2β/3 + β2/5) = 1.30 (for

β = 0.4). From this it can be seen that on scales ∼20–30 h−1 Mpc

and larger the effect of non-linear z-space distortion is small, while

the linear term affects ξ on all scales. For the above power law, we

find that ξ̄non-lin(s)/ξ̄lin(s) = 0.93, 0.97 and 0.99 for s = 20, 30 and

50 h−1 Mpc, respectively.

To begin with we assume a power law model for ξ (r ) (equation 6).

We generate a grid of models with different power-law slopes (γ ),

and fit these models to the data using the maximum-likelihood tech-

nique over the range s = 1–100 h−1 Mpc. The resulting best-fitting

model with β = 0.4 and 〈w2
z〉1/2 = 690 km s−1 is shown by the

solid line in Fig. 13. We find a power-law slope of γ = 1.866 ±
0.060 and a real-space scalelength r 0 = 5.81 ± 0.29 h−1 Mpc. This

provides an acceptable fit to the data with χ 2 = 20.4 (18 dof) and

an acceptance probability of 31 per cent. If we fit over a more re-

stricted range of scales, noting that we expect deviations from a pure

power law in real space on large scales, then we find best-fitting

values of γ = 1.647 ± 0.047 and r 0 = 5.84 ± 0.33 h−1 Mpc for

s = 1–25 h−1 Mpc. Both fits are compared to the data in Fig. 13 (see

also Table 1). When fitting on smaller scales the power-law slope

is flatter, however, r0 is unchanged. It can be seen that the effect

of small-scale z-space distortions has a significant impact on scales

less than ∼10 h−1 Mpc.

Figure 13. The QSO ξ (s) from the 2QZ (filled points) compared to the best-

fitting power-law model incorporating the effects of linear and non-linear

redshift-space distortions. A WMAP/2dF cosmology is assumed. The fits

are carried out on scales s = 1–100 h−1 Mpc (solid line) and s = 1–25 h−1

Mpc (dotted line).

More generally we should fit a model where the shape of ξ (r )

is governed by the underlying physics of the dark matter distribu-

tion (e.g. CDM). In particular, Hamilton et al. (1991, 1995) pro-

vide an analytic description of the generic linear CDM ξ (r ). The

input parameters for the CDM model are taken from the now stan-

dard WMAP/2dF cosmological model (Spergel et al. 2003; Percival

et al. 2002, respectively) with �m = 0.27, �� = 0.73, �b = 0.04,

H 0 = 71 km s−1 Mpc−1 and σ 8 = 0.84 (at z = 0). We calculate

the model ξ (s) at the mean redshift of the 2QZ sample (z̄ = 1.35),

and correct for the effects of non-linear clustering (Hamilton et al.

1991; Jain, Mo & White 1995). Linear and non-linear z-space effects

are accounted for as above, but using the more general prescription

of Hamilton (1992) rather than equation (10) for the linear distor-

tions. For the z-space distortions we assume β = 0.4 and 〈w2
z〉1/2 =

690 km s−1. We then perform a maximum-likelihood fit for a single

parameter, a scale-independent QSO bias, over the scale range s =
1–100 h−1 Mpc. QSO bias is defined as

bQ(z) =
√

ξQ(r )

ξρ(r )
, (12)

where ξ Q(r ) and ξ ρ(r ) are the real-space QSO and mass correlation

functions, respectively. We note that our assumed value of β includes

an implicit assumption of QSO bias. If we substitute the ξ Q(r ) in

equation (12) with that from equation (9) and solve the resultant

quadratic in bQ(z) we find that

bQ(z) =
√

ξQ(s)

ξρ(r )
−

4�1.2
m (z)

45
−

�0.6
m (z)

3
. (13)

This relation thus directly gives us the QSO bias at a redshift z, but

is only strictly true if non-linear z-space distortions, which affect the

shape of ξ (s), are not present. The linear distortions do not affect the

shape of ξ (s) (this is exactly the case when there are no non-linear ef-

fects, and correct to first order in the presence of non-linear effects),

so we fit a model ξ ρ(s) divided by (1 + 2β/3 + β2/5) (using the

same β = 0.4 value used above) to obtain the ratio ξ Q(s)/ξ ρ(r )

seen in equation (13). Assuming �m(z = 0) = 0.27 [implying

�m(z = 1.35) = 0.83] we find a best-fitting QSO bias of
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Figure 14. The QSO ξ (s) from the 2QZ (filled points) compared to a

WMAP/2dF CDM model. The models shown are the linear real-space mass

correlation function, ξ ρ (r ) (short dashed line), and the non-linear ξ ρ (r )

(dotted line). The non-linear ξ ρ (r ) is scaled by the best-fitting bias value

(long dashed line) and the non-linear mass correlation function corrected for

z-space distortions, ξ ρ (s), is scaled by the best-fitting bias (solid line).

bQ(z = 1.35) = 2.02 ± 0.07. This model is fully consistent with

the data, with a χ2 = 14.3 from 19 dof (acceptable at the 76 per

cent level, see the solid line in Fig. 14). The implied values of β

for this best-fitting bias is β = 0.44 ± 0.02. This is close to our

assumed value of β = 0.4 and within the errors estimated by Out-

ram et al. (2004) of ±0.1. To test the impact of making the z-space

corrections to our model, we also fit the non-linear real-space model

to the data. This results in a best-fitting bias of 2.12 ± 0.09 (long

dashed line in Fig. 14); however, this is a slightly worse fit with a

χ 2 = 25.2 (19 dof) acceptable at the 15 per cent level. From Fig. 14

we see that the real-space model does not have a strong enough

break at ∼10–20 h−1 Mpc to match the data. We conclude that the

2QZ QSO ξ (s) averaged over redshift is fully consistent with the

WMAP/2dF cosmology once allowance is made for the effects of

z-space distortions.

4.3 Comparisons to other results

The redshift-averaged QSO ξ (s) from the 2QZ is consistent with the

current best-fitting cosmological model, after allowing for a linear

bias bQ(z = 1.35) = 2.02 ± 0.07. We now compare our results

to those from other estimates of ξ (s). We find that there is very

good agreement between the 2QZ ξ (s) and 2dF Galaxy Redshift

Survey (2dFGRS; Hawkins et al. 2003) ξ (s) both in the shape and

amplitude (see Fig. 15). We note that the 2QZ ξ (s) may be slightly

flatter than that of the 2dFGRS on small scales, as would be expected

given the smaller influence of non-linear clustering at high redshift

together with the larger impact of non-linear z-space distortions.

However this is not significant. While the agreement in shape is not

particularly surprising, the impressive match in amplitude is more

surprising. This was also found in the preliminary 2QZ data release

(Croom et al. 2001a). Considering the evolution of clustering seen

(see Section 5 below), this must be considered as something of a

coincidence.

A number of authors have measured the spatial clustering of radio

galaxies over a range of redshifts. Overzier et al. (2003) finds a real-

space clustering scalelength r 0 = 14 ± 3 h−1 Mpc at z ∼ 1 for

Figure 15. The QSO ξ (s) from the 2QZ (filled points) compared to the

2dFGRS ξ (s) of Hawkins et al. (2003) (solid line, with ±1σ errors shown

by the dotted lines).

Figure 16. The QSO ξ (s) from the 2QZ (filled points) compared to that

for NVSS detected 2QZ QSOs (open points). The radio-detected ξ (s) uses

broader bins of 	log(s) = 0.2.

powerful radio galaxies, while weaker radio sources appear less

clustered, with r 0 ∼ 4–6 h−1 Mpc. The clustering of 2QZ QSOs

(which are largely radio quiet) is more similar to the radio-weak

sources. The 2QZ contains a small fraction of sources detected in the

radio. There are 428 2QZ QSOs in the redshift range 0.3 < z < 2.2

that are detected by the NRAO VLA Radio Survey (NVSS; Condon

et al. 1998). The ξ (s) we measure for this radio-detected population

is shown in Fig. 16 (open circles). The small number of sources and

their low surface density means that there is barely a detection of

clustering, with only two QSO pairs detected versus 1.15 expected

at s < 20 h−1 Mpc. The clustering of radio-detected QSOs in the

2QZ does not therefore impact on the clustering measurements of

the full sample. There is a clear difference between the clustering

of radio-quiet QSOs, as sampled by the 2QZ, and powerful radio

galaxies, implying that radio galaxies must exist in more massive

dark matter haloes that radio-quiet QSOs.
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The low-redshift galaxy cluster correlation function has a much

higher amplitude with s0 typically 12–25 h−1 Mpc depending on the

richness of the clusters (Bahcall et al. 2003). There are few measure-

ments of the cluster correlation length at high redshift. Gonzalez,

Zaritsky & Wechsler (2002) find that approximately velocity dis-

persion limited samples of clusters at z = 0.35–0.575 have similar

clustering scalelengths to local clusters. For a WMAP/2dF cosmol-

ogy, linear theory predicts that the amplitude of mass clustering

between z = 1.35 and z = 0 will increase by a factor of ≃3.4,

which is equivalent to an increase in s0 by a factor of 2.0 (assuming

γ = −1.8). Hence, even if QSO clustering at a mean redshift of z =
1.35 evolved as strongly as linear theory evolution allows (making

no allowance for evolution of bias), the descendants of objects that

contained QSOs at z ∼ 1.4 could not be clustered any more strongly

than poor clusters at low redshift. Below we make a more detailed

analysis of the evolution of QSO clustering.

5 T H E E VO L U T I O N O F Q S O C L U S T E R I N G

Above we have calculated ξ (s) averaged over a broad redshift range.

Under the assumption that QSO bias is largely scale independent (at

least compared to the uncertainties in the clustering measurements)

this should preserve the correct underlying shape of ξ (s), partic-

ularly on large scales. However, according to the standard picture

of gravitational growth of structure, the mass distribution should

evolve with redshift. Croom et al. (2001a) showed that QSO clus-

tering was constant or slightly increasing with redshift, with s 0 ≃
5 h−1 Mpc up to z ∼ 2.5. This demonstrated that QSOs must be

biased tracers of the matter distribution, and that the amount of bias

must evolve with redshift. Below we repeat this analysis with the

final 2QZ data set, and discuss in detail the implications for QSO

formation models. We will assume a WMAP/2dF cosmology unless

stated otherwise.

5.1 Measurements of ξ(s, z)

We split the QSOs up into 10 redshift intervals, such that there are ap-

proximately equal numbers of QSOs (∼2000) in each bin. Here we

sample the redshift range 0.3 < z < 2.9 and note that the final redshift

interval z = 2.25–2.90 could be affected by systematic variations in

completeness on large scales. We perform the correlation analysis

as described above on each of these subsamples. In particular we

use the mask method to correct for incompleteness, as the RA–Dec

mixing method was shown to significantly suppress clustering mea-

surements in narrow redshift intervals (see Section 3.2.2). We do,

however, perform tests with the RA–Dec and RA–Dec–z mixing

methods to confirm that there are no obvious unaccounted for sys-

tematic errors in our analysis. The resulting correlation functions

are plotted in Fig. 17.

In order to make a quantitative measure of the clustering prop-

erties we calculate ξ̄ (20) (equation 3) for each redshift interval. To

test for any evidence of a change in shape of ξ (s) we also calculate

ξ̄ using radii of 30 and 50 h−1 Mpc. The evolution of ξ̄ is plot-

ted in Fig. 18(a) using all three scales (the values are also listed in

Table 2). In each case there is a general trend for ξ̄ to increase with

redshift. To assess the significance of the evolution we perform a

Spearman rank correlation test on the ξ̄ values. We find Spearman

rank-order correlation coefficients, ρ = 0.721, 0.648 and 0.552 for

ξ̄ determined at a radius of 20, 30 and 50 h−1 Mpc, respectively.

These correspond to correlation significances of 98.1, 95.7 and 90.2

per cent. We note, of course, that as these are integral measures they

are not independent of each other. The above test implies a signif-

icant correlation with redshift; however, the data are still found to

be consistent (via a χ2 test) with a single-parameter model which

is constant with redshift (only rejected at the 81, 77 and 75 per cent

levels for ξ̄ (20), ξ̄ (30) and ξ̄ (50), respectively).

In Fig. 18(b) we show the ratio of ξ̄ (20)/ξ̄ (30) and ξ̄ (50)/ξ̄ (30) to

provide a simple test for any evidence of a change in the shape of ξ (s)

with redshift. These ratios are consistent with being constant over

the full redshift range of the data set, suggesting that the shape of ξ (s)

does not change significantly with redshift. We also compare the ξ̄

ratios to those assuming a CDM power spectrum in a WMAP/2dF

cosmology (dotted lines in Fig. 18b). These are fully consistent with

the observed ratios. In Fig. 19 we show the evolution of ξ̄ (s) for an

EdS cosmology. In this cosmology clustering is completely constant

as a function of redshift, a Spearman rank correlation test shows no

significant correlation.

We next fit a simple power-law model (equation 6). In Section 4.2

we find that a power law is an acceptable fit to the redshift-averaged

QSO ξ (s) on scales s = 1–25 h−1 Mpc. We therefore fit the data

subdivided into redshift intervals over the same range of scales.

The best-fitting s0 and γ values are shown in Fig. 20 (and listed in

Table 2). We carry out a Spearman rank test on both s0 and γ versus

redshift. For s0 we find ρ = 0.770 (99 per cent significant), while

for γ we find ρ = −0.030 (7 per cent significant). The measured

values of s0 are inconsistent with a constant value at 98 per cent

significance. Given the lack of evolution in γ we now fix its value

and reperform the fitting. For this we use the best-fitting power-law

slope of γ = 1.20. The s0 values derived are plotted in Fig. 20

(open points). These are similar to those found when allowing γ

to vary freely. A Spearman rank correlation test confirms that the

correlation is still present with ρ = 0.842 significant at the 99.8 per

cent level.

Examining the highest-redshift bin in Fig. 17 we see that there

is significant signal at scales ∼70–100 h−1 Mpc. This redshift in-

terval at 2.25 < z < 2.90 has a large variation in completeness

with redshift, as the absorption due to the Lyman-α forest quickly

moves the mean QSO colours into the stellar locus (see Paper XII).

We do not need to calculate the absolute completeness in each red-

shift interval, as we rely on fitting to the observed shape of the

QSO n(z) relation. However, if this fit is not accurate enough over a

given redshift interval, or there are systematic differences in the n(z)

covering different regions of the 2QZ survey, extra spurious large-

scale structure could be added. We test for the presence of any such

systematic effect by first calculating the ξ (s, z) using RA–Dec–z

mixing. This produces estimates of ξ (s) which are systematically

biased low (see Section 3.2.2), however any broad trends should still

be present. We find that the highest-redshift bin still has the largest

best-fitting value of s0 using these mixing methods. As a second

test we calculate ξ (s) for the 2.25 < z < 2.90 interval by normal-

izing the total number and the redshift distribution of the random

points within each UKST field. This would remove the effects of

any UKST photometric zero-point errors or the differential effects

of variability on completeness in different fields. The results of this

analysis are indistinguishable from those using masking and the full

2QZ strips. While it is possible that this excess large-scale structure

is still caused by systematic error, its size does not influence any

of our main results below. In fact, the final redshift bin could be

completely ignored without changing our basic conclusions.

5.2 Comparison to simple models

Following Paper II we test a number of simple models against the

observed data. To be conservative we use the ξ̄ (20) measurements,

rather than the best-fitting s0 values which are dependent on the
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Figure 17. The QSO ξ (s) from the 2QZ (filled points) as a function of redshift in 10 redshift bins containing approximately 2000 QSOs each. The best-fitting

power law is shown in each case (solid line), as well as the best-fit fixing γ to be 1.20 (dashed lines). We also show the best-fitting power law for the full redshift

range (0.3 < z < 2.2) for comparison (dotted line). A WMAP/2dF cosmology is assumed.

range of scales fitted and assumptions concerning the slope, γ . We

note that removing the highest-redshift point does not remove the

detected correlation between ξ̄ (20) and redshift, although it does

reduce its significance (ρ = 0.617, significant at the 92 per cent

level). The significance of the correlations of ξ̄ (30) and ξ̄ (50) with

redshift are also reduced when the highest redshift point is removed

(to 85 and 69 per cent, respectively).

We compare our results to the expected growth in density pertur-

bations from linear theory, which should be applicable on the scales

we are probing. For an EdS universe, the linear growth rate, D(z),

is given by D(z) = 1/(1 + z), and for other cosmologies we use

the accurate fitting formula of Carroll, Press & Turner (1992). In

Fig. 21(a) we plot the measured ξ̄ (20) for QSOs versus linear theory

models (dotted lines). We assume a CDM model with WMAP/2dF

parameters. In this model the values of ξ̄ (r , z = 0) for the mass dis-

tribution are 0.254, 0.123 and 0.042 for r = 20, 30 and 50 h−1 Mpc,

respectively. We plot two linear theory lines, the first (lower dotted

line) assumes the above normalization given by WMAP/2dF, which

is significantly below the points at all redshifts. The second (upper

dotted line) is the linear theory model renormalized by a constant

bias to a ‘best-fitting’ value for the data points. As in Croom et al.

(2001a) we find linear theory evolution with a fixed bias to be in

clear disagreement with the data (the probability of acceptance is

formally 3.6 × 10−9). Assuming an EdS cosmology, we also get

a rejection of QSOs following linear theory evolution (rejected at

the 99.98 per cent level). We next fit the long-lived QSO model
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Figure 18. (a) The evolution of ξ̄ (s) for three different values of s = 20, 30 and 50 h−1 Mpc (open circles, filled circles and open squares, respectively). There

is evidence for an increase in ξ̄ with increasing redshift in all cases. (b) The ratios of ξ̄ as a function of redshift for ξ̄ (20)/ξ̄ (30) (open circles) and ξ̄ (50)/ξ̄ (30)

(filled circles). The redshift-averaged mean values for the ratios are indicated by the solid lines. The ratios are consistent with an unchanging shape for ξ (s).

The WMAP/2dF cosmology is assumed. Also plotted are the expected ratios for a CDM model with WMAP/2dF parameters (dotted lines).

Table 2. 2QZ clustering results as a function of redshift for a WMAP/2dF cosmology. All fits are on scales s = 1–25 h−1 Mpc. We list the redshift interval,

and mean redshift, apparent magnitude and absolute magnitude (assuming h = 0.71) for each bin together with the number of QSOs used. The best-fitting

values of s0 (in comoving units of h−1 Mpc) and γ are given with their χ2 values, number of dof, ν and probability of acceptance, P(<χ2). Lastly we also

list the measured values of ξ̄ (s) for s = 20, 30 and 50 h−1 Mpc.

z interval z bJ MbJ
N Q s0 γ χ2 ν P(<χ2) ξ̄ (20) ξ̄ (30) ξ̄ (50)

0.30,0.68 0.526 19.85 −22.16 2119 5.73+0.79
−0.94 −1.49+0.25

−0.25 15.9 10 1.02e−01 0.263 ± 0.075 0.162 ± 0.041 0.071 ± 0.023

0.68,0.92 0.804 19.93 −23.23 2067 3.94+1.00
−0.98 −1.15+0.24

−0.25 7.2 9 6.12e−01 0.332 ± 0.085 0.118 ± 0.044 0.020 ± 0.022

0.92,1.13 1.026 19.95 −23.86 2012 4.76+0.97
−1.02 −1.23+0.25

−0.25 6.7 9 6.71e−01 0.353 ± 0.094 0.146 ± 0.048 0.063 ± 0.024

1.13,1.32 1.225 19.97 −24.27 2066 5.52+0.98
−1.00 −1.04+0.25

−0.25 8.0 8 4.29e−01 0.511 ± 0.100 0.226 ± 0.050 0.082 ± 0.024

1.32,1.50 1.413 20.02 −24.57 2063 5.28+0.98
−1.00 −1.04+0.25

−0.25 3.4 7 8.51e−01 0.452 ± 0.099 0.211 ± 0.050 0.064 ± 0.023

1.50,1.66 1.579 20.02 −24.82 2011 4.87+0.95
−1.02 −0.94+0.25

−0.24 4.3 7 7.43e−01 0.379 ± 0.096 0.205 ± 0.050 0.066 ± 0.024

1.66,1.83 1.745 20.03 −25.06 2044 6.25+0.83
−0.85 −1.80+0.24

−0.25 3.5 10 9.66e−01 0.321 ± 0.098 0.096 ± 0.049 0.045 ± 0.023

1.83,2.02 1.921 20.05 −25.29 2020 6.39+0.98
−1.00 −1.09+0.25

−0.25 3.7 9 9.29e−01 0.483 ± 0.111 0.260 ± 0.057 0.100 ± 0.026

2.02,2.25 2.131 20.07 −25.51 2049 8.00+0.99
−1.00 −1.17+0.25

−0.25 5.6 9 7.82e−01 0.607 ± 0.128 0.249 ± 0.063 0.074 ± 0.028

2.25,2.90 2.475 20.09 −25.86 2235 8.81+0.98
−1.01 −1.24+0.25

−0.25 5.9 7 5.56e−01 0.701 ± 0.174 0.289 ± 0.086 0.144 ± 0.039

discussed by Croom et al. (2001a) which has the form

bQ(z) = 1 + [bQ(z = 0) − 1]/D(z). (14)

This model is equivalent to assuming that QSOs have ages of order

the Hubble time, and after formation at some arbitrarily high-redshift

subsequent evolution is governed by their motion within the gravita-

tional potential (Fry 1996). It is also equivalent to QSOs forming in

density peaks above a constant threshold (Croom & Shanks 1996).

The best-fitting value of bQ(z = 0) is 1.64 ± 0.05 (short dashed

lines in Fig. 21a); however, while Croom et al. (2001a) found this

model was marginally acceptable in a cosmology with �m = 0.3 and

�� = 0.7, we find that the extra signal in the final 2QZ data set re-

jects the long-lived model at a significance level of 99.97 per cent

in the WMAP/2dF cosmology. Fitting this model in the EdS uni-

verse gives bQ(z = 0) = 1.40 ± 0.04, and is marginally acceptable

(rejected at the 89 per cent level).

5.3 Bias, dark matter halo mass and the evolution of QSOs

By assuming an underlying cosmological model we are able to

convert the measured values of ξ̄ to an effective bias by making

comparisons to linear theory evolution. This allows us to determine

QSO bias directly as a function of redshift. In doing so, we need

to account for the effect of z-space distortions on the measured

values of ξ̄ (s). The non-linear z-space distortions have a small ef-

fect on the scales we are examining here (see Section 4.2). To de-

termine their effect on ξ̄ (s) we derive the ratio of ξ̄ (s) with lin-

ear and non-linear z-space distortions to that including only the

linear distortions, ξ̄non-lin(s)/ξ̄lin(s). This is plotted for the CDM

model with WMAP/2dF parameters as a function of redshift for

〈w2
z〉1/2 = 630, 690 and 750 km s−1 in Fig. 22 (solid, dotted and

dashed lines, respectively). In constructing the models we assume

values of β that are consistent with β(z = 1.4) = 0.4 ± 0.1 of Out-

ram et al. (2004) and also account for the evolution of bias we find
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Figure 19. The evolution of ξ̄ (s) for three different values of s = 20, 30

and 50 h−1 Mpc (open circles, filled circles and open squares, respectively)

in an EdS cosmology.

Figure 20. (a) The fitted values of s0 with freely varying γ (filled points)

and fixed γ (open points) as a function of redshift. (b) The best-fitting values

of γ as a function of redshift. The dotted lines indicate the best-fitting values

to the full redshift range. A WMAP/2dF cosmology is assumed.

below. This assumption of β only influences the shape of ξ (σ , π )

that is convolved with equation (8) to determine the non-linear z-

space distortions. Varying the assumed β within reasonable limits

results in negligible difference in the ξ̄non-lin(s)/ξ̄lin(s) ratio (less than

0.5 per cent). We plot the ratio for s = 20, 30 and 50 h−1 Mpc (top

to bottom) and see that even at s = 20 h−1 Mpc the worst correction

is only 12 per cent. Assuming 〈w2
z〉1/2 = 690 km s−1, the range of

reasonable values for 〈w2
z〉1/2 results in a scatter of only ∼2 per cent

at s = 20 h−1 Mpc and less at larger scales. This is considerably

smaller than the measurement errors in ξ̄ , and we therefore use the

derived ratio for 〈w2
z〉1/2 = 690 km s−1 to correct our results for

non-linear z-space effects (dotted lines in Fig. 22). Linear z-space

distortions (equation 9) have a more significant effect (e.g. a factor

of ∼1.3 at z ∼ 1.4). We use equation (13) to determine the QSO

bias self-consistently at a given redshift.

Figure 21. (a) Our measurement of ξ̄ (20) for 2QZ QSOs as a function

of redshift (filled points). The data are compared to linear theory gravita-

tional evolution (dotted lines) for two normalizations, one normalized to a

WMAP/2dF cosmology (lower dotted line) and a second normalized to pro-

vide a ‘best fit’ to the data points (upper dotted line). We also compare to the

best fit for a constant ξ̄ (20) (solid line) and a long-lived model (short dashed

line). (b) The QSO bias, bQ(z), as a function of redshift derived from a com-

parison of ξ̄ (20) for QSOs to that expected for the WMAP/2dF cosmology.

The open points are the raw bias values, i.e. ξ̄Q(s)/ξ̄ρ (r ), while the filled

points with error bars are the values after making a consistent correction for

z-space distortions. A simple empirical model is also shown (dotted line). (c)

The mean mass of DMHs containing QSOs derived from the measured bias

(filled points). We also show the mean mass averaged over redshift (solid

line) and the mean plus twice the rms of the points (long dashed line). M∗(z),

the characteristic mass which is just collapsing at a given redshift, is denoted

by a dotted line. The short dashed lines show the median expected growth

in DMH mass from the mean DMH mass of QSO hosts at z = 0.53, 1.41

and 2.48.

Fig. 21(b) shows the derived bias of 2QZ QSOs as a function of

redshift (filled points). The open points are the values found without

accounting for z-space distortions. Here we see that QSO bias is

strongly evolving with redshift, from bQ(z = 0.53) = 1.13 ± 0.18

to bQ(z = 2.48) = 4.24 ± 0.53 (see Table 3). A simple empirical

description of the bias evolution found is

bQ(z) = (0.53 ± 0.19) + (0.289 ± 0.035)(1 + z)2, (15)

which is shown in Fig. 21(b) (dotted line). At z ∼ 0.5 the value of bQ

is already close to 1, and a simple extrapolation of the trend observed

would predict that the bias would be at or below 1 at z = 0. We note

at this point that because of the apparent magnitude limit of the

2QZ, the mean absolute magnitude in each interval increases with

redshift (see Table 2). However, the 2QZ selects QSOs that are close

to ∼L∗
Q (the characteristic luminosity of the QSO optical luminosity

function) at every redshift, and the space density of objects in each of

the redshift slices is also approximately equal. Table 3 lists the values
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Figure 22. The ratio of ξ̄non-lin(s)/ξ̄lin(s)(ξ̄ including and not including

non-linear z-space distortions) as a function of redshift for 〈w2
z〉1/2 = 630,

690 and 750 km s−1 (solid, dotted and dashed, respectively) at scales s =
20, 30 and 50 h−1 Mpc (bottom to top).

Table 3. The derived QSO bias, bQ and DMH mass, MDH as for 2QZ

QSOs as a function of redshift in a WMAP/2dF cosmology. We also list the

mean redshift and absolute magnitude of each redshift interval, as well as

the value of M∗
bJ

derived from the polynomial evolution model of Paper XII

and the space density of QSOs, �, found by integrating the QSO luminosity

function between the apparent magnitude limits of the 2QZ.

z MbJ
M∗

bJ
� h3 Mpc−3 bQ MDH h−1 M⊙

0.526 −22.16 −23.24 9.6 × 10−6 1.13 ± 0.18 0.82+1.55
−0.67 × 1012

0.804 −23.23 −23.94 7.6 × 10−6 1.49 ± 0.21 2.09+2.18
−1.30 × 1012

1.026 −23.86 −24.41 6.8 × 10−6 1.71 ± 0.24 2.31+2.23
−1.37 × 1012

1.225 −24.27 −24.78 6.6 × 10−6 2.31 ± 0.23 5.76+2.90
−2.21 × 1012

1.413 −24.57 −25.07 6.3 × 10−6 2.32 ± 0.27 3.69+2.24
−1.62 × 1012

1.579 −24.82 −25.29 6.1 × 10−6 2.24 ± 0.30 2.05+1.61
−1.07 × 1012

1.745 −25.06 −25.47 5.8 × 10−6 2.17 ± 0.35 1.15+1.24
−0.72 × 1012

1.921 −25.29 −25.61 5.3 × 10−6 2.91 ± 0.35 3.05+1.85
−1.34 × 1012

2.131 −25.51 −25.72 4.8 × 10−6 3.53 ± 0.38 4.46+2.20
−1.68 × 1012

2.475 −25.86 −25.76 3.5 × 10−6 4.24 ± 0.53 4.78+2.68
−1.99 × 1012

of M∗
bJ

(z) assuming the polynomial evolution model of Paper XII

(which is an uncertain extrapolation beyond z = 2.1). Although the

actual values of M∗
bJ

(z) should be used with caution as the fitted

value of M∗
bJ

(0) is correlated with the bright- and faint-end slopes

of the LF, it can be seen that there is little change in the relative

difference between M∗
bJ

(z) and MbJ
(z) (less than 1 mag at z < 2.2).

Also listed is the space density found by integrating the observed

luminosity function over the apparent magnitude range of the 2QZ

for each redshift. Between z = 0.5 and z = 2.1 there is only a

factor of 2 change in space density (increasing to a factor of 2.7

if we include the highest-redshift bin). Paper XII found that the

extrapolated M∗
bJ

(the absolute magnitude equivalent of L∗
Q) at z =

0 lies in the range −20.5 to −21.6 (where the large range is due to

correlation between the value of M∗
bJ

and the bright/faint slopes of

the QSO LF, and uncertainty in the exact model to extrapolate to zero

redshift). Thus we would expect that at these moderate luminosities,

QSOs (or more properly AGN) would be close to unbiased at z =
0. It has been shown (Verdi et al. 2002; Hawkins et al. 2003) that

∼L∗
gal galaxies at low redshift are largely unbiased. This implies that

typical low-redshift AGN (which are much less luminous than those

at high redshift) are clustered similarly to ∼L∗
gal galaxies. There is

some direct evidence that this is the case, as Croom et al. (2004c)

have shown that the cross-correlation between low-redshift 2QZ

QSOs and 2dFGRS galaxies is equal to the autocorrelation of the

galaxies.

Once the bias is derived it is possible to relate this to the mean mass

of the DMHs that the QSOs reside in. Haloes of a given mass, M,

are expected to be clustered differently to the underlying mass dis-

tribution. Mo & White (1996) developed the formalism for relating

mass to bias. This was extended to low-mass haloes by Jing (1998).

Both of these works were based on the spherical collapse model.

Sheth, Mo & Tormen (2001) extend the formalism to account for

ellipsoidal collapse, to provide an improved relation between bias

and mass. It is this relation that we will use in our analysis. The bias

is related to the mass via

b(M, z) = 1 +
1

√
aδc(z)

[

aν2
√

a + 0.5
√

a(aν2)1−c

−
(aν2)c

(aν2)c + 0.5(1 − c)(1 − c/2)

]

, (16)

where ν = δc(z)/σ (M , z), a = 0.707 and c = 0.6. δc is the critical

overdensity for collapse of a homogeneous spherical perturbation.

For an EdS universe δc = 0.15(12π)2/3 ≃ 1.69. For a general cos-

mology δc has a weak dependence on redshift, which is given by

Navarro, Frenk & White (1997). σ (M) is the rms fluctuation in the

linear density field on a mass-scale, M, and is given by

σ 2(M) =
1

2π
2

∫ ∞

0

k2 P(k)w2(kr ) dk, (17)

where P(k) is the power spectrum of density perturbations and

w(kr ) =
3[kr sin(kr ) − cos(kr )]

(kr )3
, (18)

which is the Fourier transform of a spherical top-hat of size

r =
(

3M

4πρ0

)1/3

. (19)

ρ 0 is the mean density of the Universe at z = 0 and corresponds to

2.78 × 1011�m h2 M⊙ Mpc−3. σ (M) at z = 0 is related to that at

arbitrary redshift by the linear growth factor, D(z), such that

σ (M, z) = σ (M)D(z). (20)

The characteristic mass at any given redshift, M∗(z), that is, the

mass-scale which is just collapsing at a given redshift, is defined by

σ [M∗(z)] =
δc

D(z)
. (21)

We apply equation (16) to estimate the typical mass of the DMHs

containing our QSOs at each redshift. This typical mass is plotted in

Fig. 21(c). We find that the typical MDH of 2QZ QSO hosts is largely

constant as a function of redshift, even though their typical lumi-

nosity is increasing at high z. There appears to be a slight tendency

for low-redshift QSOs to be in lower-mass DMHs, but a Spearman

rank test shows no significant correlation between redshift and MDH

(ρ = 0.467, significant at only the 83 per cent level). The mean

mass corresponds to M DH = (3.0 ± 1.6) × 1012 h−1 M⊙ (rms er-

ror). By comparison, the characteristic mass of the Press–Schechter
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mass function (Press & Schechter 1974), M∗, is declining quickly

at high redshift (dotted line in Fig. 21c). M∗ haloes are unbiased

(b = 1) at every redshift, with haloes more massive than M∗ becom-

ing progressively more biased. We therefore see that the increasing

bias of DMHs hosting 2QZ QSOs towards higher redshift makes

them increasingly more massive than M∗. However, the increase in

mass relative to M∗ is almost exactly cancelled out by the evolu-

tion of M∗ to give an approximately constant MDH. We find that

MDH for QSO hosts is in fact very similar to M∗(z = 0) ≃ 3.5 ×
1012 h−1 M⊙. This is effectively the same result discussed above,

that by extrapolation L� ∗
Q QSOs would be largely unbiased at z ∼

0. The actual mass derived is dependent on the exact cosmology

used. Varying our assumed σ 8(z = 0) = 0.84 by ±0.08 (the 2σ

range from analysis of WMAP and other data; Spergel et al. 2003)

gives a range in MDH between (2.6 ± 1.3) × 1012 h−1 M⊙ and

(3.4 ± 2.0) × 1012 h−1 M⊙ for σ 8(z = 0) = 0.76 and σ 8(z = 0)

= 0.92, respectively. Such changes in normalization will affect all

redshift intervals equally, and also scale the value of M∗ by an equal

amount. So although the derived mass might be different our over-

all conclusions (in terms of constant MDH and bQ ≃ 1 at z = 0) are

not affected. Using a different form for the relation between bQ and

MDH also slightly affects out results. The relations described by Mo

& White (1996) and Jing (1998) give a mean M DH ≃ (1.9 ± 0.9)

× 1012 h−1 M⊙. These show even less dependence of MDH with

redshift, as the masses of the highest-redshift haloes are reduced the

most. We confirm that similar results are found using the estimates

of ξ̄ (30); these give a similar non-evolving MDH, with a mean of

(2.2 ± 1.3) × 1012 h−1 M⊙. Our mass estimates are consistent with

those derived by Grazian et al. (2004) based on the QSO clustering

results of Croom et al. (2001a).

5.3.1 The lifetime of QSOs

The observation that 2QZ QSOs sample the same mass DMHs at

every redshift further demonstrates that we cannot be seeing a cos-

mologically long-lived population. As the masses of DMHs grow

with time through the process of accretion and merging, the low-

redshift descendants of high-redshift QSOs will inhabit higher-mass

DMHs, and hence the QSOs we observe at high and low redshift

cannot be drawn from the same single coeval population. We use the

formalism for DMH evolution developed by Lacey & Cole (1993)

to predict the median mass of the descendants of DMHs hosting

QSOs at later epochs. Equation (2.22) of Lacey & Cole gives the

cumulative probability that a DMH of mass M1 at time t1 will merge

to form a new DMH of mass greater than M2 by time t2. By finding

the mass, M2, that corresponds to a probability of 0.5 at a given time

t2 we have the median mass of descendant DMHs. In Fig. 21(c) we

plot the evolution of the median DMH mass for a starting mass of

3.0 × 1012 h−1 M⊙ (the mean QSO host MDH) at z = 0.53, 1.41

and 2.48 (dashed lines). At low redshift, there is only limited time

for growth, and the DMHs of QSO hosts at z ≃ 0.5 would only

have evolved to a mass of ≃1 × 1013 h−1 M⊙ at z = 0. However,

the highest redshift DMHs hosting QSO have more time to evolve

and would have typical masses of ≃6 × 1014 h−1 M⊙ at z = 0. It

therefore appears that 2QZ QSOs at high redshift (z ∼ 2) inhabit

the progenitors of low-redshift galaxy clusters, while 2QZ QSOs

at lower redshift are located in the progenitors of galaxy groups.

The growth of MDH allows us to place constraints on the allow-

able lifetime of QSO activity. Low-redshift QSOs cannot be the

same population of objects as at higher redshift if they have masses

which are less than the mass of the high-redshift sources, after ac-

counting for their expected growth over time. Therefore calculating

Figure 23. The 2σ upper limits to QSO lifetime as a function of redshift

(connected filled circles), based on the growth in mass of DMHs.

the time taken to reach the mean QSO host DMH mass plus twice

the measured rms gives a ∼2σ limit on the lifetime of QSO activity

(the rms is 1.6 × 1012 h−1 M⊙ and the long dashed line in Fig. 21

shows the mean plus twice this rms). The result of this is plotted

in Fig. 23 (connected filled circles). At high redshift, haloes merge

more quickly than at low redshift, therefore we find that the limits

on QSO lifetime using this method are smaller at high redshift than

at low redshift. At z = 2.48 the 2σ upper limit on QSO lifetime

is 6 × 108 yr, while at redshifts below z = 1.7, the upper limit is

�1 × 109 yr. At z = 0.53 the limit is 3 × 109 yr.

A number of authors have produced models for QSO clustering

in order to try and constrain the typical lifetime of QSOs. Martini &

Weinberg (2001) give fitting functions for their models which relate

r1, the scale at which the rms fluctuations in the QSO distribution is

1 (i.e. σ Q(r 1, z) = 1), to typical QSO lifetime. Their model makes

some assumptions, including that the brightest QSOs are always in

the most massive haloes at any given redshift and that the presence

of a black hole is the only requirement for QSO activity. This second

assumption may be valid at high redshift z � 2, but may not be at

low redshift where fuelling must be an issue. We therefore compare

their models to our data for z = 2 only and use our two bins at

z = 1.92 and z = 2.13 to make the comparisons. To convert from

ξ̄ (20) to r1 we assume an underlying CDM power spectrum with the

WMAP/2dF parameters. This results in r 1(z = 1.92) = 9.35+1.51
−1.69 h−1

Mpc and r 1(z = 2.13) = 11.29+1.58
−1.76 h−1 Mpc. We also need to convert

between the space density assumed by Martini & Weinberg (5.27

× 10−7 h3 Mpc−3 for �� = 0.7 and �m = 0.3) and the measured

space density of the 2QZ at z = 2 (5.1 × 10−6 h3 Mpc−3 for the

same cosmology). This difference increases the estimated lifetimes

by a factor of 9.7 compared to those derived by Martini & Weinberg.

We then use the Martini–Weinberg fitting function for lifetimes in

a �CDM universe (σ 8 = 0.9) to find that t Q = 9.7+9.7
−5.8 × 106 yr

(for the z = 1.93 point) and t Q = 2.4+2.4
−1.4 × 107 yr (for the z = 2.13

point). Thus the full range of lifetimes at z = 2 in this model is t Q ≃
4–50 Myr. This range is lower than, but consistent with, the upper

limits derived above.

The above determination of the typical QSO lifetime is the to-

tal period of activity for a single BH, which may be split up into

several episodes of activity. The short lifetime indicates that there
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are many generations of QSOs, and that a large fraction of galax-

ies pass through an AGN phase. The models used by Martini &

Weinberg and others generally assume that luminosity is perfectly

correlated with host mass, thus more luminous QSOs would be in

more massive DMHs and therefore be more strongly clustered. We

will investigate this below (see Section 6). A scatter in the relation

between DMH mass and QSO luminosity would tend to increase the

effective lifetime, and thus the estimates from the Martini–Weinberg

models become lower limits to the QSO lifetime.

5.3.2 Accretion efficiency and the mass of black holes

There is strong evidence for a correlation between bulge velocity

dispersion, σ c, and central BH mass (Ferrarese & Merritt 2000;

Gebhardt et al. 2000). This has been extended to a correlation be-

tween MBH and MDH by Ferrarese (2002). The exact connection

is uncertain, largely due to uncertainty in the DMH density profile.

Ferrarese suggests three possible relations, covering the likely range

of allowable assumptions:

MBH

108 M⊙
∼ 0.027

(

MDH

1012 M⊙

)1.82

(22)

for an isothermal dark matter profile,

MBH

108 M⊙
∼ 0.1

(

MDH

1012 M⊙

)1.65

(23)

for an NFW profile (Navarro et al. 1997) and

MBH

108M⊙
∼ 0.67

(

MDH

1012 M⊙

)1.82

(24)

for a profile based on the weak lensing results of Seljak (2002)

(henceforth S02). If we assume that these relations do not evolve

with redshift, then we can directly estimate the central BH mass of

the DMHs hosting the 2QZ QSOs. These BH mass estimates are

shown in Fig. 24(a) (points connected by solid lines). We assume

h = 0.71 in order to convert from h−1 M⊙ to M⊙. As a comparison

we also plot estimates of MBH assuming the model of Wyithe &

Loeb (2004) in which it is the relation between velocity dispersion

(or circular velocity) and M BH, M BH–σ c, which is constant with

redshift (Shields et al. 2003). This results in a relation between MDH

and MBH of the form

MBH = ǫMDH

(

MDH

1012 M⊙

)2/3 [

	c�m(0)

18π
2�m(z)

]5/6

(1 + z)5/2, (25)

where ǫ is a constant and

	c = 18π
2 + 82[�m(z) − 1] − 39[�m(z) − 1]2. (26)

The constant ǫ depends on the density profile of the DMH and, based

on the work of Ferrarese (2002), Wyithe & Loeb suggest that for the

assumption of a singular isothermal sphere ǫSIS ≃ 10−5.1. For a NFW

profile ǫ = 3.7ǫSIS and for an S02 profile ǫ = 25ǫSIS. These models

with, ǫ = ǫSIS, 3.7ǫSIS and 25ǫSIS (which are direct analogues of

equations 22, 23 and 24 for the case of a non-evolving M BH–σ c), are

plotted in Fig. 24(a) (points connected by dotted lines). Examination

of this plot shows that models in which the M BH–σ c is independent

of redshift predict higher-mass BHs, and a significant increase in

MBH with redshift for 2QZ QSOs. The masses in this case are a factor

∼50–100 greater at z = 2.5 than they are at z = 0.5. In contrast, for

the assumption that M BH–M DH is independent of redshift, there is

a much weaker trend of increasing MBH.

Figure 24. (a) The estimated MBH based on the relations of Ferrarese

(2002) (points connected by solid lines) and Wyithe & Loeb (2004) (points

connected by dotted lines). We show estimates of MBH based on equation

(22) (filled circles), equation (23) (filled squares) and equation (24) (filled

triangles) for the Ferrarese (2002) relations and for ǫ = ǫSIS (open circles),

3.7ǫSIS (open squares) and 25ǫSIS (open triangles). (b) The derived accretion

efficiency, L/L Edd, from the above MBH estimates, using the same symbols

as in the plot of MBH.

Given the known mean absolute magnitude of each redshift inter-

val, we can then calculate the accretion efficiency, L/L Edd, where

L is the bolometric luminosity of the QSOs and LEdd is the Edding-

ton luminosity [L Edd = 1039.1(M/108 M⊙)W]. To determine the

bolometric luminosity we convert from absolute magnitude in the

bJ band using the relation derived by McLure & Dunlop (2004) for

the B band and correcting by bJ = B − 0.06 for a mean QSO B −
V = 0.22 (Cristiani & Vio 1990). The relation is then

MbJ
= −2.66 log(L) + 79.42 (27)

for L in watts. The resulting accretion efficiencies are shown in

Fig. 24(b). In some cases the mean efficiency of the population is

found to be super-Eddington. If the Eddington limit is a meaningful

constraint on the accretion of matter on to supermassive BHs, then

the M BH–M DH relations described by equations (22) and (23) are

unlikely to hold at high redshift, as they predict accretion that is

significantly super-Eddington. For the relation described by equa-

tion (24), L/L Edd evolves little and is at ∼0.1 at all redshifts. There

is also little evidence of evolution for the cases in which M BH–σ c

is independent of redshift (connected by dotted lines). The values

for L/L Edd range between L/L Edd ∼ 1 and ∼0.01 depending on

the value of ǫ assumed. The more realistic values of ǫ (3.7ǫSIS and

25ǫSIS) imply a lower accretion efficiency. We note that Wyithe &

Loeb (2004) have fitted models to the QSO clustering results pre-

sented by Croom et al. (2001a). They suggest that a model where

M BH–σ c is independent of redshift is preferred from this data; how-

ever, this assumes that the accretion efficiency is not a function of

redshift.

An independent estimate of MBH is available by invoking the

virial theorem in the QSO broad-line region and using the widths

of broad lines as a direct probe of the kinematics. Authors have

carried out this analysis on both the 2QZ (Corbett et al. 2003) and

SDSS (McLure & Dunlop 2004). There are a number of assump-

tions in these analyses, the most crucial of which is the radius–

luminosity relation for broad-line regions (Kaspi et al. 2000). This is
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Table 4. 2QZ/6QZ clustering results as a function of apparent magnitude, bJ, for a WMAP/2dF cosmology. All fits are over scales s = 1–25 h−1 Mpc. We

list the bJ interval and the mean redshift, apparent magnitude and absolute magnitude for each bin together with the number of QSOs used. We also give the

value of M∗
bJ

at the mean redshift of each sample derived assuming the polynomial evolution model of Paper XII. The best-fitting values of s0 (in units of h−1

Mpc) and γ are given with their χ2 values, number of dof, ν and probability of acceptance, P(<χ2). Lastly we also list the measured values of ξ̄ (s) for s = 20,

30 and 50 h−1 Mpc. We do not fit a power law to the brightest magnitude bin (6QZ data) as there are too few QSO–QSO pairs to make a reliable fit; we also

do not list ξ̄ (20) for this sample, as there are no pairs found on scales <20 h−1 Mpc.

bJ interval z̄ b̄J M̄bJ
M∗

bJ
N Q s0 γ χ2 ν P(<χ2) ξ̄ (20) ξ̄ (30) ξ̄ (50)

16.00,18.25 1.063 17.81 −25.73 −24.48 275 – – – – – – 0.58 ± 0.71 −0.01 ± 0.26

18.25,19.45 1.261 19.02 −25.02 −24.84 3586 3.14+2.86
−3.08 −0.83+0.62

−0.55 3.2 6 7.83e−01 0.378 ± 0.150 0.140 ± 0.078 0.039 ± 0.036

19.45,19.90 1.336 19.69 −24.53 −24.96 3521 8.06+1.42
−1.53 −1.53+0.34

−0.32 3.2 8 9.23e−01 0.588 ± 0.175 0.209 ± 0.084 0.058 ± 0.038

19.90,20.25 1.369 20.09 −24.22 −25.01 3624 4.81+1.43
−1.39 −1.76+0.57

−1.05 5.5 7 6.02e−01 0.103 ± 0.139 0.121 ± 0.078 0.042 ± 0.036

20.25,20.55 1.384 20.40 −23.93 −25.03 3563 0.90+3.91
−0.84 −0.52+0.32

−0.76 1.7 6 9.43e−01 0.303 ± 0.156 0.167 ± 0.083 0.115 ± 0.039

20.55,20.85 1.405 20.70 −23.67 −25.06 3772 4.68+2.89
−4.62 −0.76+0.60

−0.46 4.4 7 7.34e−01 0.515 ± 0.158 0.167 ± 0.077 0.100 ± 0.036

generally assumed to be independent of redshift, although this has

not been demonstrated observationally. These works provide a rel-

atively independent comparison with the present analysis. Corbett

et al. (2003) find little evidence of any evolution of L/L Edd in the

2QZ. McLure & Dunlop (2004) also find only weak evolution in

L/L Edd for the SDSS. Note that both of these samples are flux lim-

ited so that higher-luminosity QSOs are at higher redshift; however,

it is then still true that QSOs with L ∼ L∗
Q have little evolution in

L/L Edd.

This implies that the evolution in luminosity of L∗
Q QSOs is not

caused by a decline in fuelling, but rather by less massive BHs

becoming active at lower redshift. It is also possible that the observed

break in the QSO LF (see Paper XII) may be due to the difficulty of

accreting with an efficiency above some limit (presumably close to

the Eddington limit). However, the shape of the QSO LF is likely

driven by a combination of accretion rate and MBH. Any spread

in accretion rate for a given MBH would suppress any luminosity

dependence of QSO clustering. We will investigate this issue in the

next section.

6 T H E L U M I N O S I T Y D E P E N D E N C E

O F Q S O C L U S T E R I N G

In this section we investigate whether there is any evidence for QSO

clustering being dependent on luminosity. There is evidence that

low-redshift AGN have nuclear luminosities that are correlated with

host galaxy luminosity (e.g. Schade, Boyle & Letawsky 2000), and

in particular with the luminosity of the bulge/spheroid component

of the host. It has also been shown that galaxy clustering is a strong

function of luminosity brighter than L∗
gal (e.g. Norberg et al. 2001).

Thus bright QSOs, which would be expected to inhabit the most

massive galaxies, should be clustered more strongly that faint QSOs.

Croom et al. (2002) investigated this in the first data release of

the 2QZ (Croom et al. 2001b), and found some weak evidence for

QSOs with brighter apparent magnitudes (approximately equivalent

to luminosity relative to L∗
Q) being more strongly clustered. A range

of physical effects could act to cancel any correlation of clustering

with luminosity, for example, a broad range of accretion efficiencies.

It is possible to examine the luminosity dependence of QSO clus-

tering in a number of ways. Ideally, we would split the sample up

into a number of redshift and luminosity bins and try to separate

the luminosity and redshift dependencies. This is hard simply due

to the low number density of QSOs, particular in the most luminous

intervals. In the analysis below we follow Croom et al. (2002) and

measure the clustering of QSOs as a function of apparent magnitude.

This has a number of advantages, as it allows us to split the QSOs

up into only a small number of subsamples. Apparent magnitude is

also approximately equivalent to a magnitude relative to L∗
Q over

the redshift range we are considering, due to the strong evolution of

the QSO LF. This means that in a given apparent magnitude inter-

val, QSOs will have approximately the same space density at every

epoch.

6.1 QSO clustering as a function of bJ

We split the 2QZ QSOs into five subsamples, on the basis of their

apparent magnitude, bJ. These intervals are listed in Table 4. To

enhance the dynamic range of this analysis we also include QSOs

from the 6dF QSO Redshift Survey (6QZ; Paper XII). This data set

contains 275 QSOs at 0.3 < z < 2.2 in the magnitude range 16.0 <

bJ < 18.25 selected from the same photometric data as the 2QZ. It

forms a bright extension to the 2QZ, in the SGP region only (see

Paper XII). All the QSOs in the 6QZ form a sixth magnitude interval.

The distribution of QSOs in the z–MbJ
plane is shown in Fig. 25.

Figure 25. The redshift–absolute-magnitude distribution of 2QZ (small

points) and 6QZ (triangles) QSOs used in our analysis. The solid lines denote

the apparent magnitude limits applied to the data, while the dashed lines show

the redshift range used. A WMAP/2dF cosmology is assumed.
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Even with the large sample presented here, the steep bright-end

slope of the QSO luminosity function means that we can only cover

an effective dynamic range of ≃3 mag in apparent magnitude (or a

factor of ≃16 in luminosity). There is also only a relatively small

dynamic range in QSO space density, from a mean 4.5 × 10−6 h3

Mpc−3 mag−1 at the faintest magnitudes to 9.2 × 10−7 h3 Mpc−3

mag−1. The greatest luminosity dependence might be expected for

the brightest QSOs, as these are the rarest sources. This is exactly the

point at which the rarity of QSOs makes clustering measurements

most difficult. One solution to this problem is to cross-correlate

QSOs of a given luminosity with QSOs at all other luminosities.

This approach will be discussed by Loaring et al. (in preparation).

The measured bJ dependent ξ (s) are shown in Fig. 26. At bright

magnitudes (Fig. 26a) the small number and low space density of

Figure 26. The QSO ξ (s) from the 2QZ/6QZ (filled points) as a function of apparent bJ magnitude in six intervals from bright (a) to faint (f) magnitudes.

The best-fitting power law is shown in each case (solid line) as is the best-fitting power law for the full sample for comparison (dotted line). We also show the

best-fitting power law when fixing γ to a value of 1.20 (dashed lines). No power-law fit is attempted for the 6QZ data (a). A WMAP/2dF cosmology is assumed.

QSOs means that no significant signal is detected. At fainter mag-

nitudes the data appear reasonably consistent with the best-fitting

power law for the full sample (dotted lines). We also fit power laws

to each bJ interval, showing the results as the solid lines in Fig. 26.

The values are also listed in Table 4. The best-fitting parameters vary

considerably, but have large errors. Neither the slopes or amplitudes

are particularly well constrained. If instead we fix γ = 1.2 as found

above, we find values of s0 that are much closer to the mean (dashed

lines in Fig. 26). We also note that the faintest magnitude interval

(Fig. 26f) shows more structure on large scales than the other sam-

ples. It is possible that this is the result of increased incompleteness

at the faint limit of the sample, even though we have taken care

to correct for magnitude-dependent spectroscopic completeness, as

described in Paper XII. Estimation of ξ (s) using the RA–Dec and
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Figure 27. The dependence of ξ̄ (s) on bJ for three different values of

s = 20, 30 and 50 h−1 Mpc (open circles, filled circles and open squares,

respectively). We do not plot a point at s = 20, for the brightest bin, as there

are no QSO pairs found.

RA–Dec–z mixing methods described above cause some reduction

in this excess at large scales but does not completely remove it. This

suggests that some, but not all, of this excess power could be due

to residual incompleteness effects. Bearing this in mind we have

checked whether any of our results above are affected by removing

QSOs in the faintest bin from our sample and confirm that they have

no significant impact on our conclusions.

In order to use a robust measure of any luminosity dependence we

calculate ξ̄ (s) in each of the bJ intervals (Table 4), which is plotted

in Fig. 27. We confirm that the estimates of ξ̄ are not significantly

changed by using the RA–Dec mixing method to measure ξ (s). We

find that there is no significant evidence for any dependence of clus-

tering amplitude with bJ (or equivalently luminosity relative to L∗
Q).

However, given the relatively large errors found [∼30 per cent in

ξ̄ (20)] this result does not rule out models for which QSO clustering

should be dependent on luminosity. As pointed out above, the mean

space density of our brightest and faintest samples only differs by

a factor of ∼5. If this decrease in space density was solely due to

higher-mass (and therefore rarer) haloes acting as hosts then this

would correspond to a factor of ∼2 increase in MDH, but only a

∼15 per cent increase in bias (or ∼30 per cent in clustering am-

plitude) which is approximately at the level of our measurement

errors. This suggests that the increase in sensitivity provided by

cross-correlating different QSO samples may provide useful con-

straints on QSO models (see Loaring et al. in preparation).

7 C O N C L U S I O N S

We have performed a detailed analysis of the clustering of 2QZ

QSOs in redshift space as described by the two-point correlation

function. Here we now discuss our conclusions.

The QSO two-point correlation function, ξ (s), averaged over the

redshift range 0.3 < z < 2.2, shows a slope which changes as a

function of scale, being flatter on small scales and steeper on large

scales. A power law is an acceptable fit on scales less than 25 h−1

Mpc in a WMAP/2dF cosmology; the best-fitting parameters are

s 0 = 5.48+0.42
−0.48 h−1 Mpc and γ = 1.20+0.10

−0.10. We demonstrate that

QSO clustering on scales <10 h−1 Mpc is strongly affected by non-

linear z-space distortions, caused by redshift errors, shifts in QSO

broad emission lines and intrinsic peculiar velocities, which all con-

tribute similar amounts to the total velocity dispersion, of 〈w2
z〉1/2 ≃

690 km s−1. A power-law model which has been corrected for both

linear and non-linear z-space distortions is shown to be a good de-

scription of the shape of ξ (s). Here we note that in modelling non-

linear z-space distortions at high redshift it is important to include an

extra factor of 1 + z in equation (11) relative to the version normally

used.

On large scales power-law clustering is not an appropriate model

and we therefore compare the 2QZ ξ (s) to a model CDM ξ (s) in a

WMAP/2dF cosmology (�m = 0.27, �� = 0.73, σ 8 = 0.84) ac-

counting for the effects of non-linear clustering on small scales and

the effects of z-space distortions. This model is well matched to the

data after allowing for a linear bias of bQ = 2.02 ± 0.07 at the mean

redshift of the sample (z̄ = 1.35). The 2QZ ξ (s) also agrees remark-

ably well with that measured from the low-redshift galaxies in the

2dFGRS (Hawkins et al. 2003), in both shape and amplitude. While

the match in shape is unsurprising given that the physics (at least on

large scales) prescribing the shape should be identical, the match in

amplitude is impressive. Given that 2dFGRS galaxies are unbiased

tracers of the mass distribution at low redshift (Verdi et al. 2002),

it appears that the bias of QSOs exactly cancels out the growth of

density fluctuations, to give a measured clustering equivalent to an

unbiased population at low redshift. As we find evidence for evolu-

tion of QSO clustering in a WMAP/2dF cosmology, this agreement

must be something of a coincidence. Also, in an EdS universe the

2QZ ξ (s) is a factor ∼2 below the observed 2dFGRS clustering.

To investigate these issues further, we determine the clustering of

2QZ QSOs as a function of redshift. In a WMAP/2dF cosmology

we find a significant (at the 98 per cent level) correlation of clus-

tering amplitude with redshift as measured by the integrated cor-

relation function within 20 h−1 Mpc, ξ̄ (20). Clustering increases

with redshift and we find ξ̄ (20) = 0.263 ± 0.075 at z = 0.53, and

ξ̄ (20) = 0.701 ± 0.174 at z = 2.48. In an EdS cosmology we find

no evidence for evolution. By assuming an underlying WMAP/2dF

cosmology we are able to determine directly the bias of QSOs, which

we find to be a strong function of redshift. Even if there were no

evolution in the measured ξ̄ (20) with redshift, this would still imply

a strongly evolving QSO bias. At low redshift, 2QZ QSOs appear

largely unbiased, with bQ(z = 0.53) = 1.13 ± 0.18, while at high

redshift we find bQ(z = 2.48) = 4.24 ± 0.53. A complication is that

as the 2QZ is a flux-limited sample, we are sampling more luminous

QSOs at high redshift. However, the strong evolution of the QSO

population means that to good approximation we are sampling the

QSO population at the same space density at each redshift, and at the

same point relative to the evolving break in the luminosity function,

L∗
Q. It thus appears that L∗

Q QSOs at low redshift should be largely

unbiased, and clustered similarly to low-redshift galaxies. This has

indeed been seen by Croom et al. (2004c) who cross-correlate low-

redshift (and therefore low luminosity) 2QZ QSOs with 2dFGRS

galaxies and find no difference in the clustering properties of the

two populations (see also Wake et al. 2004).

By using the theoretical relation between MDH and bias derived

by Sheth et al. (2001) and others, it is possible for us to take the

measured bias values for 2QZ QSOs and calculate the typical masses

of the DMHs of their hosts. We find that the mass of DMHs hosting

2QZ QSOs is approximately constant with redshift, with a mean

M DH = (3.0 ± 1.6) × 1012 h−1 M⊙. The fact that the hosts of 2QZ

QSOs have the same mass at all redshifts demonstrates that they

cannot be cosmologically long lived, as DMHs tend to grow and

accumulate mass over time. Based on the formalism of Lacey &
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Cole (1993) we predict that DMHs hosting QSOs at z ∼ 2.5 would

typically have merged into DMHs of mass ≃6 × 1014 h−1 M⊙ by

the present, and therefore exist in rich galaxy clusters (although

they would not generally be active at low redshift). In contrast, the

descendants of lower-redshift 2QZ QSOs would not have had time

to form more massive haloes, and should exist in either massive

galaxies or groups. By extrapolation it is suggested that at z = 0,

∼ L∗
Q QSOs should also sit in M DH = (3.0 ± 1.6) × 1012 h−1 M⊙

haloes, which is very close to the characteristic mass of the Press–

Schechter mass function, M∗(z = 0) ≃ 3.5 × 1012 h−1 M⊙. The

predicted growth of DMH mass by accretion/merging allows us to

place upper limits on the lifetime of the QSO population. Low-

redshift QSOs cannot be the same population of objects as at higher

redshift if they have masses which are less then the mass of the

high-redshift sources, after accounting for their expected growth

over time. Therefore calculating the time taken to reach the mean

QSO host DMH mass plus twice the measured rms gives a ∼2σ limit

on the lifetime of QSO activity. We find this limit to be t Q < 6 × 108

yr at z = 2.48, but weaker at low redshift (3 × 109 yr at z = 0.53). We

note that this limit is not based on the measured number density of

QSOs compared to a Press–Schechter mass function (as many other

estimates are), but is only constrained by the clustering evolution of

QSOs. Various authors have provided more detailed models in order

to constrain the lifetime of QSO activity. When applied to our data,

the model of Martini & Weinberg (2001) suggests that z ∼ 2 QSOs

will have lifetimes t Q ≃ 4–50 × 106 yr. If there is scatter in the

relation between MDH and luminosity, then this is an effective lower

limit on QSO lifetimes. The e-folding time for the evolution of L∗
Q

is ∼2 × 109 yr (Paper XII), much less than the ages determined

from the Martini–Weinberg model, and significantly less than our

clustering evolution upper limits at high redshift.

As a next step we determine the central BH mass, MBH, of 2QZ

QSOs based on their estimated MDH. For this we use the relations

suggested by Ferrarese (2002) to estimate MBH for different assump-

tions concerning the density profiles of the DMHs, and the evolu-

tion of the correlation (Wyithe & Loeb 2004). A model in which

the correlation between MBH and MDH is unchanging with redshift

predicts that BH masses should be slightly increasing with redshift,

with 	log(M BH) ≃ 1.3 ± 1.1 from the lowest to highest redshift.

The derived BH masses are in the range 1–20 × 107 M⊙ for NFW

profiles, or 0.9–20 × 108 M⊙ for S02 profiles. The Eddington ratio,

L/L Edd, is seen to be approximately constant as a function of red-

shift when the M BH–M DH relation is independent of redshift. This

is found to be significantly greater than 1 if isothermal DMHs are

assumed, and approximately 1 for the NFW profile, while the S02

profile gives L/L Edd ∼ 0.1. A model in which it is the M BH–σ c rela-

tion which is invariant with redshift gives a much stronger evolution

of MBH, as DMHs of a given mass have a higher central velocity

dispersion when formed at higher redshift. Thus the change in MBH

from low to high redshift is more significant with 	log(M BH) ≃ 2.1

± 1.1, and BHs of order ∼1010 M⊙ being predicted at high red-

shift. This increase in estimated MBH is greater than (although not

significantly) the factor ∼30 increase in mean luminosity from our

lowest to highest redshift interval. As a result there is a small (fac-

tor of a few) decline in L/L Edd with increasing redshift, although

again this is not significant. As the BH masses predicted are higher,

the accretion efficiencies are lower, in the range L/L Edd ∼ 0.01–1,

depending on DMH profile assumed.

The above suggests that any model of BH formation in which su-

permassive BHs form at least as efficiently at high redshift as they

do at low redshift, will tend to have L/L Edd constant or decreasing

with redshift. This implies that it cannot be a reduction in efficiency

which is driving the fading of the QSO population to low redshift.

Instead active BHs at high redshift are more massive than those at

low redshift, and it is this reduction in the BH mass that causes

the population of bright QSOs to disappear in the local Universe.

Because supermassive BHs cannot be destroyed, the massive BHs

active at high redshift must be largely inactive at low redshift, oth-

erwise we would find that low-redshift QSOs would show lower

accretion efficiency, and be located in more massive DMHs. This

argument also implies that at any given redshift, the QSO popula-

tion must be dominated by objects which are active for the first time.

Hence it is likely that each QSO passes through only one bright ac-

tive epoch (possible at the point of BH formation), although at low

redshift massive BHs may accrete at levels well below LEdd without

contributing significantly to the total luminosity of the population

[see also the discussions in Corbett et al. (2003) and Croom et al.

(2004b)].

The above is valid at redshift below z ∼ 2.5, which is approx-

imately the point at which the space density of luminous QSOs

peaks. Clustering measurements of QSOs at z > 2.5 would help us

to understand the build-up of QSOs at this epoch. However the low

surface density of z > 2.5 QSOs currently makes any accurate clus-

tering measurements difficult or impossible. The increasing number

of high-redshift QSOs from the SDSS survey (Fan et al. 2001) may

remedy this situation.

Finally, we examine our sample to look for any indication of lu-

minosity dependence in the clustering of 2QZ QSOs, by measuring

ξ (s) as a function of apparent magnitude. This shows no indication

of any luminosity dependence that might be expected if more lumi-

nous QSOs inhabited more massive DMHs, but the errors are large

enough that we would not be able to detect reasonable amounts of

luminosity dependence. More detailed investigation of this problem

will be presented by Loaring et al. (in preparation).
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