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ABSTRACT

We present an analysis of the small-to-intermediate scale clustering of samples of luminous

red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF-SDSS LRG

and QSO Survey (2SLAQ) survey carefully matched to have the same rest-frame colours

and luminosity. We study the spatial two-point autocorrelation function in both redshift space

[ξ (s)] and real space [ξ (r)] of a combined sample of over 10 000 LRGs, which represent the

most massive galaxies in the universe with stellar masses >1011 h−1 M⊙ and space densities

≃10−4 h3 Mpc−3. We find no significant evolution in the amplitude (r0) of the correlation

function with redshift, but do see a slight decrease in the slope (γ ) with increasing redshift

over 0.19 < z < 0.55 and scales of 0.32 < r < 32 h−1 Mpc. We compare our measurements with

the predicted evolution of dark matter clustering and use the halo model to interpret our results.

We find that our clustering measurements are inconsistent (>99.9 per cent significance) with a

passive model whereby the LRGs do not merge with one another; a model with a merger rate of

7.5 ± 2.3 per cent from z = 0.55 to 0.19 (i.e. an average rate of 2.4 per cent Gyr−1) provides a

better fit to our observations. Our clustering and number density measurements are consistent

with the hypothesis that the merged LRGs were originally central galaxies in different haloes

which, following the merger of these haloes, merged to create a single brightest cluster galaxy.

In addition, we show that the small-scale clustering signal constrains the scatter in halo merger

histories. When combined with measurements of the luminosity function, our results suggest

that this scatter is sub-Poisson. While this is a generic prediction of hierarchical models, it has

not been tested before.

Key words: surveys – galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies:

haloes – cosmology: observations – large-scale structure of Universe.

⋆E-mail: d.a.wake@durham.ac.uk

1 IN T RO D U C T I O N

In recent years, the evolution of massive galaxies in the universe

has received much attention because of the possible tension between

observations of the abundance and clustering of such galaxies, as
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1046 D. A. Wake et al.

a function of redshift, and predictions from popular hierarchical

models of galaxy evolution. Naively, in a cold dark matter (CDM)

dominated universe, one would expect the most massive galaxies to

form last through the hierarchical merging of smaller galaxies. This

behaviour is illustrated in the recent high resolution simulations

of De Lucia et al. (2006), which include the latest semi-analytical

formalism and account for feedback from active galactic nuclei

(AGN). In these simulations, the stars in the most massive galaxies

are formed at high redshifts, but their stellar mass is only assembled

into a single system at relatively late times through ‘dry mergers’,

that is, major mergers of gas-poor galaxies with little or no associ-

ated star-formation. For example, in figs 4 and 5 of De Lucia et al.

(2006), the simulations shows that for low-redshift elliptical galax-

ies, with masses >1011 M⊙, 80 per cent of their stars are formed at

a median redshift of z ≃ 2.5, but 80 per cent of the stellar mass is

only put in place by z ≃ 0.3. Likewise, the simulations show that

galaxies with masses >1011 M⊙ have multiple large progenitors

and cannot be formed through a single major merger of two large

galaxies.

These recent AGN-feedback models of galaxy evolution (see also

Croton et al. 2006; Bower et al. 2006; Hopkins et al. 2006) solve the

apparent inconsistency of the old ages of stars in massive galaxies

(both in and outside galaxy clusters) and the late assembly of such

galaxies in a �-dominated CDM universe. However,they appear to

be in conflict with recent observations of the luminosity function

(LF) and clustering of massive ellipticals as a function of redshift.

For example,Wake et al. (2006) (hereafter Paper I) showed that

the lack of evolution of the LF of luminous red galaxies (LRGs;

as defined in Eisenstein et al. 2001; Cannon et al. 2006) put an

upper limit on the amount of allowed evolution in these massive

galaxies, that is, at least half of the LRGs at low redshift (z ∼ 0.2)

must already have been well assembled (with more than half their

stellar mass in place) by z ∼ 0.6. This is in excellent agreement

with other LF studies. For example, Brown et al. (2007) used data

from the NOAO Deep Wide-Field Survey (NDWFS) and the Spitzer

IRAC Shallow Survey to show that ‘≃80 per cent of the stellar mass

contained within today’s 4L∗ red galaxies was already in place at

z = 0.7’. These observational constraints are barely consistent with

the semi-analytical CDM simulations discussed above.

The clustering of massive ellipticals provides an additional test

of the models. Masjedi et al. (2006) argue that the small-scale

clustering of LRGs from the Sloan Digital Sky Survey (SDSS; York

et al. 2000) suggest that LRG–LRG mergers (i.e. a major merger

of two equally massive systems) were not important for the mass

growth of LRGs below z = 0.36. More recently, Masjedi, Hogg &

Blanton (2007) used the LRG–galaxy cross-correlation function to

study the small-scale clustering of LRGs at z ∼ 0.25 and concluded

that LRGs grow in stellar mass at most by ≃10 per cent between

0.1 < z < 1 (or approximately half the age of the Universe). White

et al. (2007) interpreted the evolution in the clustering of LRGs

in the NDWFS using the halo model – they argue that a third of

all satellite galaxies (in a halo) disappear over the redshift range

0.5 < z < 0.9. Since the satellite fraction in their models is of the

order of 20 per cent, only about 7 per cent of the galaxies have

merged. However, if these mergers increase the stellar mass of the

central object, then this increase can be 25 per cent or even larger.

Bell et al. (2006) report rapid evolution in the stellar mass of red

galaxies since z ≃ 1. This apparent discrepancy is probably due to

the differences in the luminosity distributions of the samples,as it

is known in clusters that most of the evolution on the so-called ‘red

sequence’ is at magnitudes fainter than L∗ (see De Lucia et al. 2006;

Stott et al. 2007, and references therein).

In this paper, we expand our earlier study of the evolution of

the LRG LF (Paper I) to include an investigation of the two-point

autocorrelation function of these galaxies. The key difference of

this work to that in the literature is the combination of two large

samples of LRGs from the SDSS and the 2dF-SDSS LRG and QSO

(2SLAQ) survey (Cannon et al. 2006). As in Paper I, we are careful

to ensure the colour selection of LRGs is consistent between these

two surveys, thus allowing a study of this unique population of

massive ellipticals across the redshift range of 0.15 < z < 0.6. In

addition, this paper uses the halo model to understand the evolution

of the clustering of galaxies and constrain the merger rates of LRGs.

Although the logic is similar to the White et al. (2007) analysis of

NDWFS, our halo model is entirely analytic, rather than entirely

simulation-based. Our analysis is complementary to that of Ross

et al. (2007) who study the redshift space correlation function of the

2SLAQ sample, binned in pair separation parallel and perpendicular

to the line of sight, and fit both biasing and cosmological parameters

to this data. Ross et al. (2007) conclude that ‘LRGs have a constant

space density and their clustering evolves purely under gravity’,

which is consistent with the results of Paper I. Here, we wish to test if

this conclusion remains true under a more precise comparison of the

evolution of the correlation function of LRGs where we accurately

account for the changing definition of an LRG with redshift..

In Section 2, we describe the SDSS and 2SLAQ data used in

this paper, while in Section 3 we provide details of the sample

selection used to ensure a consistent definition of an LRG across

the two samples. In Section 4, we present our measurements of

the two-point correlation function in both real and redshift space.

Section 5 presents a halo model analysis of our measurements and

discuss constraining the merger rate in the halo model framework

in Section 6. We discuss our findings in the context of recent work

in Section 7 and conclude in Section 8. Throughout this paper,

we assume a flat �-dominated cosmology with �m = 0.27, H0 =

70 km s−1 Mpc−1, and σ 8 = 0.8 unless otherwise stated.

2 DATA

We present in this paper an analysis of galaxies taken from both

SDSS and the 2dF-SDSS LRG and QSO (2SLAQ) survey. SDSS

contains two main spectroscopic galaxy data sets: the MAIN sample

and the LRG sample. The MAIN sample consists of all galaxies with

a Galactic extinction corrected petrosian r magnitude rpet < 17.77;

this results in a median redshift of ∼0.1 (Strauss et al. 2002). The

LRG sample uses a series of colour and magnitude cuts with the

aim of selecting LRGs out to z ∼ 0.5 (see Eisenstein et al. 2001

for details of this sample). Here, we only consider the Cut I LRG

sample, which has a magnitude limit rpet < 19.2 and is designed to

select a pseudo volume-limited sample of LRGs, with Mr ≤ −21.8

and 0.15 < z < 0.35. At low redshift there is considerable overlap

between the MAIN and LRG samples. We select these two samples

of galaxies from the SDSS Data Release 5 (Adelman-McCarthy

et al. 2007).

The 2SLAQ LRG survey was designed to extend the SDSS LRG

sample to z ∼ 0.7. The LRGs were again selected with colour and

magnitude cuts using the SDSS imaging. Spectra were obtained

with the 2dF spectrograph on the Anglo–Australian Telescope. Full

details of the selection and observations are given in Cannon et al.

(2006). The final LRG sample contains over 11 000 LRG redshifts,

covering 180 deg2 of SDSS imaging data with over 90 per cent of

these galaxies within the redshift range 0.45 < z < 0.7. The targeted

LRGs were split into three subsamples as detailed in Cannon et al.

(2006), with the primary sample (Sample 8) accounting for two

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Evolution of the clustering of LRGs 1047

thirds of these. We only focus on Sample 8 in this paper due to

its high completeness and uniform selection. The overall success

rate of obtaining redshifts from the 2dF spectra for Sample 8 LRGs

is 95 per cent, while the centres of the 2dF fields were spaced by

1.◦2, resulting in an overall redshift completeness of sample 8 LRG

targets of ∼75 per cent across the whole survey area (Paper I).

Although the SDSS magnitude system (Fukugita et al. 1996) was

designed to be on the AB scale (Oke & Gunn 1983), the final calibra-

tion has differences from the proposed values by a few percent. We

have applied the corrections mAB = mSDSS + [−0.036, 0.012, 0.010,

0.028, 0.040] for u, g, r, i and z, respectively (Eisenstein, private

communication). All magnitudes and colours presented throughout

this paper are corrected for Galactic extinction (Schlegel, Finkbeiner

& Davis 1998).

3 MATCHING SAMPLES

Different techniques were employed to select LRGs in SDSS and

2SLAQ, resulting in intrinsic differences between the properties

of the LRGs in each sample (Fig. 1). In particular, the magnitude

dependent colour cut used in the SDSS selection results in only the

very reddest galaxies being included in the SDSS LRG sample at

fainter magnitudes. Therefore, if we wish to make a meaningful

comparison of the evolution of LRGs with redshift we must make

additional colour and magnitude cuts to ensure that we exactly

match the samples from the two surveys.

Following Paper I, we assume that the evolution of the LRGs

stellar populations can be approximated by simple passive ageing.

We therefore use the same models as Paper I to generate K + e-

corrections which are used to correct the observed magnitudes of

each sample to a common frame. Paper I demonstrated that these

models do not perfectly describe the colour evolution of the LRGs

Figure 1. The 0.2(g − i) versus M0.2r colour–magnitude relation for SDSS

main galaxies with 0.15 < z < 0.21, all K + e-corrected to z = 0.2. The

black points in each panel show the whole sample. The top panel shows those

galaxies that are selected to be in the 2SLAQ selection matched sample (see

the text) when K + e-corrected to z = 0.55 (green points). The bottom

panel shows those galaxies that would be selected in the the SDSS selection

matched sample (see text) when K + e-corrected to z = 0.2 (red points).

because of inadequacies in the stellar population synthesis models.

To minimize the magnitude of these corrections, Paper I restricted

their LRG samples to tight redshift ranges at approximately z = 0.2

and 0.55 where the u, g and r filters approximately map on to the

g, r and i filters, respectively. These same redshift cuts are again

applied to the samples used herein.

In this paper we take two approaches to matching the selection

between these two redshifts. In the first we follow the procedure of

Paper I. We take all the SDSS LRGs with 0.17 < z < 0.24 and K +

e-correct their magnitudes to both z = 0.2 and 0.55. We then apply

the SDSS selection criteria using the z = 0.2 mag and the 2SLAQ

selection criteria using the z = 0.55 mag. We then execute the same

procedure on the 2SLAQ LRGs within 0.5 < z < 0.6. We note that

since the 2SLAQ selection is significantly bluer in the rest frame

than the SDSS selection; it is the application of SDSS selection

cuts that is removing the majority of the LRGs removed from each

sample by this procedure. We will therefore describe these samples

as the SDSS selection matched samples.

Our second approach makes use of the MAIN galaxy sample

from the SDSS rather than just the LRG sample, although there is

considerable intersection over the redshift range we are considering

here. We limit the MAIN galaxies to 0.15 < z < 0.21 and then

apply our K + e-corrections to correct to both z = 0.2 and z =

0.55. For the galaxies at z = 0.21 the rpet = 17.77 mag limit of

the MAIN galaxy sample corresponds to M0.2r = −22.3.M0.2r is

calculated by determining the apparent magnitude the galaxy would

have at z = 0.2 in the SDSS r-band filter using our assumed K + e-

corrections, and is then converted to an absolute magnitude using the

distance modulus without the use of any further K or evolutionary

corrections. The M0.2r = −22.3 is only 0.3 mag brighter than the

limit of the 2SLAQ sample when K + e-corrected to this redshift.

Since the MAIN sample contains galaxies of all colours we can

generate a sample matching the 2SLAQ selection and we only need

limit the 2SLAQ sample by this M0.2r cut. There is, however, an

additional complication. As shown in Paper I the errors on the

photometry at the faint magnitudes of 2SLAQ result in a large scatter

of objects across the colour and magnitude selection boundaries. To

mimic this effect, we measure the magnitude error distributions of

the 2SLAQ galaxies as a function of magnitude and modify the

magnitudes of the SDSS galaxies randomly following this error

distribution. We then apply the 2SLAQ selection criteria to both

samples K + e-corrected to z = 0.55 along with a cut at M0.2r =

−22.4. This slightly brighter cut than the M0.2r = −22.3 limit

allows the inclusion fainter galaxies which are being scattered into

the selection region by the application of the 2SLAQ photometric

errors mimicking the effect present in the 2SLAQ data. We will

refer to these samples as the 2SLAQ selection matched samples.

We are unable to account for the effect of the photometric errors

on the selection in the SDSS selected LRG sample as we do not

have galaxies in that sample which are fainter or bluer than the

LRGs. In Paper I, we corrected the LF at z = 0.55 for this sample

using a subregion that had deeper photometry. We are unable to

apply such a correction in this work since the significantly smaller

area (approximately one-third of the total) of this subregion would

result in a very poor measurement of the clustering and render any

correction highly unreliable. The smaller area was not a problem

for the LF measurement since the region of the LF most affected

was the faint end where the galaxies were most numerous. The

correction was also only required for a subsection of the LF, which

one could always choose to disregard, whereas it would affect the

entire correlation function. For this reason, when making direct

evolutionary comparisons between redshifts, we will focus on the

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Table 1. The redshift range, selection and number of galaxies in each sample

defined in the text.

Sample Redshift Selection Number

1 0.17 < z < 0.24 SDSS 9912

2 0.5 < z < 0.6 SDSS 1239

3 0.15 < z < 0.21 2SLAQ 11 350

4 0.5 < z < 0.6 2SLAQ 2814

2SLAQ selection matched samples. Table 1 gives the number of

galaxies in each sample and Fig. 1 illustrates the difference between

the two selection criteria.

4 THE MEASURED TWO -POINT
C O R R E L AT I O N FU N C T I O N

The two-point correlation function, ξ (r), is defined as the excess

probability above Poisson of finding an object at a separation r

from another object. This is calculated by comparing the number

of pairs as a function of scale in our galaxy catalogues, with the

number in a random catalogue, which covers the same volume as

our data. We make this measurement using the Landy & Szalay

(1993) estimator,

ξ =
1

RR

[

DD

(

nR

nD

)2

− 2DR

(

nR

nD

)

+ RR

]

, (1)

where DD, DR and RR are data–data, data–random and random–

random pair counts, respectively, and nD and nR are number of

galaxies in the data and random catalogues.

4.1 Incompleteness corrections and error estimates

When making the two-point correlation function measurement in

our samples, we must account for the varying completeness across

our surveys. For both SDSS and 2SLAQ, we separate the galaxies

into unique regions based on the positions of the overlapping spec-

troscopic plates. For SDSS, we use the regions defined in the SDSS

Catalogue Archive Server (see Adelman-McCarthy et al. 2007, for

details.). For 2SLAQ, we use regions defined using the angular mask

constructed using repeated runs of the 2dF-configure software (see

Paper I for details). Within each region we determine the number

of targets with reliable redshifts (NR) and the number of targets

that could have been observed (NT). The completeness in each re-

gion is then defined as the ratio of these (NR/NT). Regions with

completeness below 65 per cent are removed.

To correct for the remaining incompleteness we wish to assign a

weight ≥1 to all the galaxies that have a reliable redshift. We begin

by assigning each target galaxy a weight equal to the inverse of the

completeness of the region in which it lies. For those that do not have

a redshift the weight is redistributed to its three nearest neighbours.

This maintains some of the spatial information, although on the

smallest scales where fibre collisions become important the cluster-

ing signal is likely to be underestimated. The weights of the galaxies

with redshifts in a given region are then renormalized so that the

mean weight in that region is as it was before the redistribution, that

is, the inverse of the completeness.

An alternative approach, often used to correct for incomplete-

ness, is to reduce the number of random points in regions with low

completeness. We do not do this for two reasons. First, by having

regions with lower numbers of random points we will be unnec-

essarily increasing the noise in these regions. Secondly, and more

importantly, unlike in the SDSS, the spectroscopic plates in 2SLAQ

were evenly spaced with no allowance made for the variation of

the target space density. This means that regions with a high target

density (i.e. highly clustered regions) will be more likely to have

a lower completeness. We calculate the completeness in regions

defined by the overlapping plates and so by simply reducing the

number of random points based on this completeness we would

be likely to systematically underestimate the clustering on scales

smaller than the given region. We would be preferentially removing

the most-clustered galaxies and then renormalizing the clustering

calculated from the remaining less-clustered galaxies by the ratio

of the number removed (i.e. the completeness). Since we instead

redistribute the weight of the galaxies without redshifts to their

nearest neighbours, we are likely to be up weighting other galaxies

in the most clustered regions and will therefore be making a better

estimate of the true clustering amplitude.

Nearly all of the completeness regions have annular scales up to

2◦ which corresponds to 32.6 h−1 Mpc at z = 0.55 and so this effect

is likely to be important over nearly all the scales we consider in

this paper. In fact the clustering is ≃5 per cent lower for the 2SLAQ

samples when calculated by just reducing the number of randoms.

We generate random catalogues for each galaxy sample following

the angular masks of the surveys with constant space density and

20 times the number of random points as data. The regions around

bright stars are removed from both data and random catalogues, as

galaxies in these regions are known to have systematically incor-

rect magnitudes due to poor sky subtraction in SDSS photometric

pipeline (Mandelbaum et al. 2005; Adelman-McCarthy et al. 2006).

Redshifts are assigned to the random catalogues by randomly sam-

pling a polynomial fit to the redshift distribution of each galaxy

sample. We note that within the tight redshift ranges of the samples

considered here all the samples are approximately volume limited.

We estimate the errors on our two-point correlation function

measurements using jackknife re-sampling (Scranton et al. 2002;

Zehavi et al. 2005). We split the SDSS area into 40 equal-area

regions and the 2SLAQ area into 32 equal-area regions. We then

calculate each two-point function removing one area at a time to

generate a full covariance matrix. Throughout this analysis, we mea-

sure the pair counts using the KD-tree code in the NTROPY software

package (Gardner, Connolly & McBride 2007).

4.2 Various clustering estimators

The peculiar velocities of galaxies generate errors in the distance

measurements along the line of sight. This means that our basic

measurement of ξ , which is based on redshift distances, is affected

by these redshift space distortions. By separating the clustering

signal into contributions perpendicular (rp) and parallel (π ) to the

line-of-sight (ξ (rp, π )) and then integrating over the π direction,

one obtains the projected correlation function

wp(rp) = 2

∫ ∞

0

dπ ξ (rp, π ) = 2

∫ ∞

rp

r dr ξ (r)

(r2 − r2
p )1/2

. (2)

The final expression only involves the real-space correlation func-

tion ξ (r) showing that wp(rp) is not compromised by redshift space

distortions (Davis & Peebles 1983). One can invert equation (2)

by interpolating between the binned w(rp) to yield an estimate of

ξ (r) which is free of redshift space distortions (Saunders, Rowan-

Robinson & Lawrence 1992). If ξ (r) = (r/r0)−γ , then equation (2)

can be solved analytically (Davis & Peebles 1983).

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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In practice, one models wp with the second of the equalities

above, but measures it using the first. However, when making the

measurement, it is only sensible to integrate out to some maximum π

because ξ (rp, π ) is poorly known on very large scales. We integrate

to 80 h−1 Mpc which appears to give stable results.

4.3 Observed evolution of clustering

Figs 2–4 show ξ (s), w(rp) and ξ (r) for the four samples described

in Section 3, along with the ratio of the functions between the

two redshifts. Figs 3–4 also show the result of fitting power laws

over the scales 0.32 < rp < 32 h−1 Mpc using the full covariance

matrices derived from the jackknife re-sampling technique. We limit

the fits to scales greater than 0.32 h−1 Mpc since our weighting

scheme does not fully correct for the effect of fibre collisions on

smaller scales. Table 2 provides the best-fitting values of r0, γ and

Figure 2. The redshift space two-point correlation functions at z ∼ 0.2 (red open circles) and z ∼ 0.55 (blue filled circles) and their ratio (z ∼ 0.55/z ∼ 0.2)

for the SDSS selection matched (left-hand panel) and for the 2SLAQ selection matched (right-hand panel) samples.

1
0

1
0

0
1

0
0

0

w
p
(r

p
)

0.17 < z < 0.24
0.5   < z < 0.6

1 10

0
1

2

r
p
 (h-1 Mpc)

R
at

io

1
0

1
0

0
1

0
0

0

w
(r

p
)

0.15 < z < 0.21
0.5   < z < 0.6

1 10

0
1

2
3

r
p
 (h-1 Mpc)

R
at

io

Figure 3. The projected two-point correlation functions at z ∼ 0.2 (red open circles) and z ∼ 0.55 (blue filled circles) and their ratio (z ∼ 0.55/z ∼ 0.2)

for the SDSS selection matched (left-hand panel) and for the 2SLAQ selection matched (right-hand panel) samples. The lines show power-law fits on scales

0.32 < rp < 32 h−1 Mpc.

the associated reduced χ 2, with error contours shown in Fig. 5.

These measurements show that there is very little evolution in the

clustering amplitude of LRGs between z ∼ 0.55 and z ∼ 0.2, but

there is a marginally significant increase in the slope.

4.4 Comparison with previous work

Several previous studies have performed similar analyses to those

we present here; it is important to make a comparison of the results

before further investigating the meaning of these measurements.

Zehavi et al. (2005) present the two-point correlation function for

three slightly different samples of SDSS LRGs. One of these sam-

ples, with −23.2 < Mg < −21.2, has an almost identical space

density to the z ∼ 0.2 SDSS selection matched sample, although

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Figure 4. The real-space two-point correlation functions at z ∼ 0.2 (red open circles) and z ∼ 0.55 (blue filled circles) and their ratio (z ∼ 0.55/z ∼ 0.2) for

the SDSS selection matched (left-hand panel) and for the 2SLAQ selection matched (right-hand panel) samples. The lines show power-law fits on scales 0.32

< r < 32 h−1 Mpc.

Table 2. Values of the power-law fits and the reduced χ2 to w(rp), and ξ (r) in the range 0.32 < r < 32 h−1 Mpc.

Selection Redshift r0(h−1 Mpc) γ χ2
min

w(rp) ξ (r) w(rp) ξ (r) w(rp) ξ (r)

SDSS 0.21 9.47 ± 0.29 9.52 ± 0.39 1.96 ± 0.03 1.87 ± 0.04 0.76 0.54

SDSS 0.55 9.61 ± 0.62 9.42 ± 0.76 1.79 ± 0.06 1.73 ± 0.09 0.53 0.71

2SLAQ 0.19 7.64 ± 0.29 7.72 ± 0.36 1.98 ± 0.04 1.89 ± 0.05 1.58 1.10

2SLAQ 0.55 8.29 ± 0.30 8.15 ± 0.42 1.77 ± 0.06 1.71 ± 0.08 1.02 0.80
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1
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Figure 5. 68, 90 and 99 per cent confidence intervals for power-law fits on scales 0.32 < rp < 32 h−1 Mpc to the projected two-point correlation functions

(left-hand panel) and the real-space two-point correlation functions (right-hand panel) at z ∼ 0.2 (red) and z ∼ 0.55 (blue) for the SDSS selection matched

(dashed lines) and for the 2SLAQ selection matched (solid lines) samples. The error bars show the 1 σ errors on the individual parameters.

at a higher redshift (z = 0.28). The two-point correlation func-

tions in redshift, projected and real space for this sample are almost

indistinguishable, within the errors, to those presented here.

Ross et al. (2007) present measurements of the two-point correla-

tion function for the Sample 8 2SLAQ LRGs. This sample is similar

to the 0.5 < z < 0.6 2SLAQ selection matched sample although with

a larger redshift range and slightly fainter absolute magnitude cut.

The power-law fit to w(rp) in Ross et al. (2007) has a very similar

slope (γ = 1.83 ± 0.05) to that measured here with a lower am-

plitude (r0 = 7.30 ± 0.34 h−1 Mpc). This lower amplitude is to be

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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expected as Ross et al. (2007) include intrinsically fainter galaxies

in their sample. To make a more direct comparison we recalculated

w(rp) using a selection almost identical to that used by Ross et al.

(2007). This produces an almost identical slope (γ = 1.81 ± 0.03)

but a slightly higher amplitude (r0 = 7.85 ± 0.15 h−1 Mpc) to that

found by Ross et al. (2007). This is to be expected, as Ross et al.

(2007) simply reduced the number of randoms points as a func-

tion of completeness. As discussed in Section 4, the 2SLAQ data

are more likely to be incomplete in the densest regions and so by

reducing the number density of random points as a function of com-

pleteness they will tend to underestimate the clustering on scales

smaller than the regions in which the completeness is determined.

Since we produce almost identical measurements to those pre-

sented in Zehavi et al. (2005) and Ross et al. (2007), with a com-

pletely independent analysis and different techniques on largely the

same data, we can be confident that our measurements are accu-

rate. We now consider what our measurements imply for our LRG

samples.

The slope of the two-point function is known to depend on

colour/spectral type: bluer galaxies have a shallower slope (e.g. Nor-

berg et al. 2002; Zehavi et al. 2002). Could it be that there are more

blue galaxies in the z = 0.55 samples? We have assumed passive

evolution when defining the sample selection, so it seems unlikely

that this would include more intrinsically bluer/later-type galaxies

at high redshift than at low redshift. We could, however, be scat-

tering more blue galaxies across the selection boundaries at high

redshift than at low redshift, for instance, if there were more galax-

ies populating the blue cloud close to the red sequence at high z. If

this is the case, one might expect to see a difference in the slopes be-

tween the 2SLAQ selection matched and SDSS selection matched

samples, as the SDSS selection only allows the reddest galaxies to

be included at the faintest magnitudes where the scattering is most

significant. This is not the case, suggesting that despite the fact that

we have selected galaxy populations consistent with purely passive

evolution, both dynamically and in terms of their stellar popula-

tions, we are in fact seeing some additional evolution in the LRG

population.

4.5 Comparison with a no-merger model

If, as suggested in Paper I, the LRGs do not merge with one another,

then the large-scale bias is predicted to evolve as blo = 1 + (bhi − 1)

(Dhi/Dlo), where D is the linear growth factor (Mo & White 1996;

Fry 1996). In this case, the ratio of the correlation functions should

be

ξhi(r)

ξlo(r)
=

b2
hiD

2
hi

b2
loD

2
lo

=

(

blo − 1 + Dhi/Dlo

blo

)2

(3)

on large scales. Note that this differs from the growth of the dark

matter clustering strength, because of the factor (bhi/blo)2. Since

Dhi/Dlo ≤ 1, the large-scale clustering strength should increase at

late times. For zhi = 0.55 and zlo = 0.2 in our chosen cosmology,

Dhi/Dlo = 0.84. We will argue below that bhi/blo = 2.16/1.91 =

1.13, so the expected ratio of large-scale clustering strengths is 0.9.

A similar argument can be made for the clustering in redshift

space: on scales where the Kaiser (1987) analysis of redshift space

distortions applies, the expected ratio of redshift-space clustering

amplitudes is

ξhi(s)

ξlo(s)
=

1 + 2βhi/3 + β2
hi/5

1 + 2βlo/3 + β2
lo/5

(

bhi Dhi

blo Dlo

)2

, (4)

where β lo ≈ �
5/9
lo /blo and βhi ≈ �

5/9
hi /bhi. Again, in the no merger

model, the low-redshift population is expected to be more strongly

clustered. For the two LRG samples studied in the main text, the

expected ratio is (1.236/1.211)0.9 = 0.92.

Figs 2–4 show the ratios of ξ (s), wp and ξ (r) measured at z ∼ 0.55

and z ∼ 0.2 which appear to be consistent with little or no evolution.

The expected ratios calculated above are inconsistent with the data

at the 93 per cent level for ξ (s) and the 80 per cent level for wp on

large scales (r > 3 h−1 Mpc) where these calculations apply. Thus,

the clustering signals suggest that the low-redshift LRG populations

are not simply passively evolved versions of the high-redshift pop-

ulation, although we are not able to conclusively demonstrate this

with the large-scale clustering measurements alone. In the follow-

ing sections, we model both the evolution of the clustering on all

scales and the number density to further constrain the evolution of

LRGs.

5 H A L O M O D E L A NA LY S I S

The halo model (see Cooray & Sheth 2002, for a review) assumes

that the galaxy clustering signal encodes information about the halo

occupation distribution (HOD) – how the galaxies populate dark

matter haloes – in particular, how the HOD depends on halo mass.

This approach has recently been used to constrain the HODs of

galaxies in a number of large data sets. We apply such a model

here to try to gain insight into our LRG populations, how they

have evolved, and how well or otherwise this evolution can be

described by the passive no-merger model. Our analysis of the no-

merger model has strong similarities to that recently performed by

White et al. (2007) and Seo, Eisenstein & Zehavi (2007). However,

whereas their work was primarily numerical, our analysis shows

that the entire discussion can be analytic.

5.1 The centre–satellite HOD

In the halo model, every galaxy is associated with a halo; all haloes

are 200 times the background density whatever the mass M of

the halo. Sufficiently massive haloes typically host more than one

galaxy. The halo model we use distinguishes between the central

galaxy in a halo, and the others, which are usually called satellites.

This is motivated by simulations (e.g. Kravtsov et al. 2004), and

has been a standard assumption of semi-analytic galaxy formation

models for many years (e.g. Baugh 2006). There is now strong

observational evidence that the two types of galaxies are indeed

rather different, and that the halo model parametrization of this

difference is rather accurate (Skibba, Sheth & Martino 2007).

The fraction of haloes of mass M which host centrals is modelled

as

〈Nc|M〉 = exp

(

−Mmin

M

)

. (5)

Only haloes which host a central may host satellites. In such haloes,

the number of satellites is drawn from a Poisson distribution with

mean

〈Ns|M〉 =

(

M

M1

)α

. (6)

Thus, the mean number of galaxies in haloes of mass M is

〈N |M〉 = 〈Nc|M〉[1 + 〈Ns|M〉], (7)

and the predicted number density of galaxies is

ng =

∫

dM n(M) 〈N |M〉, (8)

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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where n(M) is the halo mass function, for which we use the

parametrization given by Sheth & Lemson (1999).

We further assume that the satellite galaxies in a halo trace an

NFW profile (Navarro, Frenk & White 1996) around the halo centre,

and that the haloes are biased tracers of the dark matter distribution.

The halo bias depends on halo mass in a way that can be estimated

directly from the halo mass function (Sheth & Lemson 1999). With

these assumptions the halo model for ξ (r) is completely specified

(e.g. Cooray & Sheth 2002). We then calculate w(rp) from ξ using

the second of equations (2).

In addition to ξ , we are interested in the satellite fraction,

Fsat =

∫

dM n(M) 〈Nc|M〉 〈Ns|M〉/ng. (9)

and two measures of the typical masses of LRG host haloes: an

effective halo mass

Meff =

∫

dM M n(M) 〈N |M〉/ng, (10)

and the average linear bias factor

bg =

∫

dM n(M) b(M) 〈N |M〉/ng, (11)

where b(M) is the halo bias.

Our notation is intended to make explicit the fact that the

mean number density of central–satellite pairs from such haloes

is n(M) 〈Nc |M〉 〈Ns |M〉, and the mean number density of distinct

satellite–satellite pairs is n(M) 〈Nc |M〉 〈Ns |M〉2/2 (because we are

assuming the satellite counts are Poisson).

For completeness, our model for the real-space two-point func-

tion is

ξ (r) = 1 + ξcs(r) + 1 + ξss(r) + ξ2h(r) (12)

where

1 + ξcs(r) =

∫

dM
n(M)〈Nc|M〉

ng

〈Ns|M〉
ρ(r|M)

ngM
(13)

1 + ξss(r) =

∫

dM
n(M)〈Nc|M〉

ng

〈Ns|M〉2

2

λ(r|M)

ngM2
(14)

and

ξ2h(r) =

∫

dk

k

k3P2h(k)

2π
2

(15)

with

P2h(k) = bg(k)2 PLin(k), where

bg(k) =

∫

dM
n(M)

ng

b(M) 〈Nc|M〉

[

1 + 〈Ns|M〉u(k|M)

]

.
(16)

In the expressions above, ρ(r|M) is the density profile of haloes of

mass M, λ(r|M) denotes the convolution of two such profiles, u(k|M)

is the Fourier transform of ρ(r|M)/M, and PLin(k) denotes the linear

theory power spectrum. In practice, we usually approximate bg(k)

by its value bg at k = 0 (equation 11). All these quantities, along with

the mass function n(M) and bias factor b(M), are to be evaluated

at the redshift of interest. We have already specified how, for a

given halo mass, the virial radius depends on redshift; the NFW

halo density profile is also specified by its concentration, which we

assume is c = 9 (M/M∗0)−0.13/(1 + z) (Bullock et al. 2001). All

this, in the right-hand side of equation (2), gives the halo model

calculation of wp(rp).

Our halo model calculation of ξ (s) makes two additional assump-

tions: first, that satellite galaxies within haloes have isotropic ve-

locity dispersions which are proportional to GM/rvir and, secondly,

that the motion of the centre of mass of a halo is well described by

linear theory.

5.2 HOD fits

We fit for the parameters Mmin, M1 and α (see equations 5 and

6) by minimising a χ 2 defined as the sum of the squared dif-

ference between the predicted and measured ng and w(rp) for a

range of rp. We use w(rp) rather than ξ (r) as the numerical in-

version required to calculate ξ (r) increases the uncertainties and

systematically reduces the slope in our power-law fits. Our fit-

ting makes use of the full covariance matrices over 0.32 < rp <

50 h−1 Mpc. We exclude scales smaller than 0.32 h−1 Mpc as we

are not confident that we have sufficiently corrected for fibre colli-

sions. We note that the best-fitting parameters are not significantly

changed if the smallest bin included in the fit is one smaller or

larger.

The errors on the fits are determined by finding the region of

parameter space with a δχ 2 ≤ 1 (1σ for 1 degree of freedom)

from the best fit and then determining the maximum and minimum

parameter values within that region. For blin, Meff and Fsat, which

depend on all three of the fit parameters, the region used contains

δχ 2 ≤ 3.53 (1σ for 3 degrees of freedom).

The resulting best fits are shown in Fig. 6 and the best-fitting

values for the HOD parameters are given in Table 3. We have

checked that our best-fitting model also provides a good description

of our measurements of ξ (s) and ξ (r). These parameters were not

included in our definition of χ 2 because the halo model of ξ (s)

requires further assumptions than does w(rp). Table 3 also provides

the associated values of Fsat, Meff and blin.

The best-fitting HODs are shown in Fig. 7. Increasing σ 8 (see

Table 4) increases Mmin and M1, and decreases α. The bias decreases

to compensate for the increased clustering strength of the dark mat-

ter, and Meff increases because Mmin is larger. The satellite fraction

remains approximately the same, as α has reduced to compensate

for the increase in M1.

For our standard choice of σ 8 = 0.8, the LRGs populate haloes

with masses of the order of 1013–1014 M⊙; most of these LRGs are

central galaxies – the satellite fractions are typically less than 10 per

cent. In the lower redshift samples Meff is larger by about 50 per cent,

the bias is smaller by about 10 per cent, and the satellite fraction

has approximately doubled. The growth in Meff is a consequence of

a 10 per cent increase in Mmin, a small decrease in M1/Mmin, and a

significant decrease in α.

It might seem paradoxical that decreasing α increases the satel-

lite fraction. This is a consequence of the fact that M1 is larger

than the mass-scale on which the halo mass function drops expo-

nentially (for σ 8 = 0.8, this scale is 0.6 × 1012 h−1 M⊙ and 1.9 ×

1012 h−1 M⊙ at z = 0.55 and 0.2, respectively; when σ 8 = 0.9,

these masses become 1.3 × 1012 h−1 M⊙ and 3.9 × 1012 h−1 M⊙).

Thus, increasing α increases the number of satellites in (the ex-

ponentially rare) haloes more massive than M1 but decreases

the number in less massive haloes which are exponentially more

abundant.

The larger satellite fractions at low redshift are best understood

by thinking of the central and satellite populations separately. If

there is no merging, then the high-z satellites are satellites even at

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Evolution of the clustering of LRGs 1053

Figure 6. HOD fits on scales 0.32 < rp < 50 h−1 Mpc to the projected two-point correlation functions at z ∼ 0.2 (red) and z ∼ 0.55 (blue) for the SDSS

selection matched (left-hand panel) and for the 2SLAQ selection matched (right-hand panel) samples.

Table 3. The best-fitting HODs to wp(rp) assuming σ 8 = 0.8.

Selection Redshift Density Mmin M1 α χ2
red blin Meff Fsat

(10−4 h3 Mpc−3) (1013 M⊙) (1013 M⊙) (1013 M⊙) (per cent)

SDSS 0.21 0.94 ± 0.01 3.80 ± 0.07 34.2 ± 2.1 1.67 ± 0.23 1.22 2.11 ± 0.03 9.52 ± 0.59 10.1 ± 3.7

SDSS 0.55 0.73 ± 0.02 3.46 ± 0.06 34.0 ± 2.5 2.10 ± 0.38 1.12 2.42 ± 0.05 6.24 ± 0.51 4.7 ± 2.5

2SLAQ 0.19 1.64 ± 0.01 2.44 ± 0.02 27.0 ± 1.1 1.58 ± 0.13 0.77 1.91 ± 0.02 7.62 ± 0.41 10.4 ± 2.1

2SLAQ 0.55 1.65 ± 0.03 1.88 ± 0.02 21.8 ± 1.5 2.02 ± 0.2 1.23 2.16 ± 0.03 4.76 ± 0.20 6.2 ± 2.3

Figure 7. The mean number of LRGs per halo as a function of halo mass (top) and the mean number of LRGs per halo times the number density of haloes

as a function of mass (bottom) at z ∼ 0.2 (red) and z ∼ 0.55 (blue) for the SDSS selection matched (left-hand panel) and for the 2SLAQ selection matched

(right-hand panel) samples. The total, central and satellite contributions are shown by the solid, dashed and dotted lines, respectively.

low z, whereas some of the high-z centrals have become satellites

at low z (e.g. if their host halo merged with a more massive halo).

As a result, the satellite fraction increases. Merging would act in

the opposite sense (satellites merging with satellites or with centrals

would both reduce the satellite fraction).

We note that the best-fitting HODs for the z = 0.55 samples are

in excellent agreement with those presented in Blake, Collister &

Lahav (2008) who fit HODs to the angular clustering of 380 000

LRGs selected using the 2SLAQ LRG selection criteria with pho-

tometric redshifts 0.45 < zphot < 0.65.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Table 4. The best-fitting HODs to wp(rp) assuming σ 8 = 0.9.

Selection Redshift Density Mmin M1 α χ2
red blin Meff Fsat

(10−4 h3 Mpc−3) (1013 M⊙) (1013 M⊙) (1013 M⊙) (per cent)

SDSS 0.21 0.94 ± 0.01 4.43 ± 0.15 45.5 ± 5.7 1.38 ± 0.16 1.45 1.91 ± 0.03 11.82 ± 0.60 11.8 ± 2.2

SDSS 0.55 0.73 ± 0.02 4.15 ± 0.09 46.3 ± 3.9 1.91 ± 0.39 1.13 2.20 ± 0.04 8.22 ± 0.81 5.1 ± 2.8

2SLAQ 0.19 1.64 ± 0.01 2.77 ± 0.03 34.2 ± 1.3 1.38 ± 0.13 0.97 1.73 ± 0.02 9.59 ± 0.68 11.7 ± 2.3

2SLAQ 0.55 1.65 ± 0.03 2.19 ± 0.03 28.2 ± 2.1 1.86 ± 0.20 1.26 1.96 ± 0.02 6.28 ± 0.36 6.8 ± 2.4

6 C O N S T R A I N I N G L U M I N O U S
R E D G A L A X Y M E R G E R S

Paper I demonstrated that the evolution of the LF of LRGs was

consistent with passive evolution of the stellar populations, and did

not require any merging. If true, then as discussed in Section 4.5,

the bias should evolve as b(zlo) = 1 + (b(zhi) − 1) D(zhi)/D(zlo),

where D(z) is the growth factor (Mo & White 1996; Fry 1996).

When applied to the bias of the best-fitting z = 0.55 HODs for

the two samples, the predicted bias factors are 1.98 ± 0.02 at z =

0.19 for the 2SLAQ selected sample and 2.20 ± 0.04 at z = 0.21

for the SDSS selected sample. Both these values are significantly

larger than the measured values given in Table 3, with the evolution

in the 2SLAQ selected sample bias being incompatible with no-

merging hypothesis at a significance of 98.4 per cent. This is at a

higher significance level to that calculated in Section 4.5 using just

the ratio of the large-scale clustering; the inclusion of the number

density constraints in the HOD fits results in significantly smaller

relative errors on the bias measurements than would be derived

using clustering alone.

This argument against pure passive evolution still uses only the

large-scale clustering signals at the two epochs. In what follows,

we use the language of the halo model to show that the evolution of

the small-scale clustering signal also contains interesting informa-

tion, and can provide even greater constraints on the importance of

merging.

6.1 HOD evolution: no mergers

If we specify how galaxies populate haloes at some early time,

〈N|m〉, then we can estimate how this evolves as the haloes merge.

If the haloes merge but the galaxies do not, then

〈N |M〉 =

∫ M

0

dmN (m|M) 〈N |m〉 = C(M) + S(M), (17)

where N(m|M) is the mean number of haloes of mass m which are

in haloes of mass M at the later time, and

C(M) =

∫ M

0

dmN (m|M) 〈Nc|m〉 and (18)

S(M) =

∫ M

0

dmN (m|M) 〈Nc|m〉 〈Ns|m〉. (19)

For N(m|M) we use the expressions given by Sheth & Tormen

(2002), which generalize those of Lacey & Cole (1993). Appendix

A shows that this guarantees that the comoving density ng is con-

stant, whereas the large-scale bias evolves in accordance with the

continuity equation.

Whereas C(M) counts the objects which used to be centrals,

S(M) counts the satellites. Note that although 〈Nc|m〉 ≤ 1, there is

no guarantee that C(M) ≤ 1; indeed, for M ≫ Mmin, one expects

C(M) ≥ 1. Fig. 8 shows this explicitly; at late times, massive haloes

may host many galaxies which were centrals at the earlier time.

1012 1013 1014 1015 1016
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Figure 8. The mean number of LRGs as a function of halo mass at z ∼

0.19 obtained by passively evolving the best-fitting z = 0.55 2SLAQ HOD

to z = 0.19. The upper dashed and lower dotted lines show the contributions

from objects which used to be centrals and satellites; they sum to give the

solid curve which drops to zero at smaller mass-scales; the lower dashed

and upper dotted lines, which sum to give the other solid curve, show the

result of fitting this 〈N|M〉 to the form given in equations (5) and (6).

If we force 〈N|M〉 to have the same functional form as 〈N|M〉,

then we can fit for Mmin, M1 and α at the later time. These fitted

values can then be inserted into the halo model calculation of ξ .

Fig. 8 shows that forcing this parametrization allows a good but

not perfect description of the passively evolved HOD: the passively

evolved HOD has a more gradual transition from 0 to 1.

It will turn out that, for this study, it is important to accurately

model this transition. This is because we are studying rare objects

which populate the high-mass end of the mass function. As a result,

haloes which host zero or one galaxies are substantially more nu-

merous than those which host more. Hence, allowing some lower

mass haloes to host more than one galaxy (while making more such

haloes void of galaxies) can affect the number of small separation

pairs substantially.

To illustrate this effect, let p0(M) denote the probability that a

halo of mass M contains no galaxies which were centrals at the

higher redshift, and then

〈Nc|M〉 = 1 − p0(M) and (20)

〈Nc|M〉〈Ns|M〉 = S(M) + C(M) − 〈Nc|M〉. (21)

The second equation assumes that only one of the high-z centrals in

a halo continues to count as the low-z central; the others (of which

there are C(M) − 〈Nc|M〉 on average) count as low-z satellites. The

mean galaxy count 〈N|M〉 is given by inserting these expressions

in equation (7). This exercise shows that the problem is to model

p0(M); the next subsection studies three different models.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062

 at O
x
fo

rd
 Jo

u
rn

als o
n
 S

ep
tem

b
er 1

9
, 2

0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


Evolution of the clustering of LRGs 1055

0
.0

1
0

.1
1

1
0

1
0

0
1

0
0

0

z = 0.19
Poisson
Sub-Poisson
Step

Total
Central
Satellite

Passive
<

N
L

R
G

|M
>

1012 1013 1014 1015 1016

0
.0

1
0

.1
1

1
0

1
0

0

Merger

<
N

L
R

G
|M

>

Figure 9. The mean number of LRGs per halo as a function of halo mass

at z = 0.19 for the 2SLAQ selection matched samples. The top panel shows

the effect of passively evolving the z = 0.55 HOD to z = 0.19 using the

three models for p0(M) along with the measured HOD from the z = 0.19.

The effect of including merging of the central galaxies for the same models

is shown in the bottom panel. The total, central and satellite contributions

are shown by the solid, dashed and dotted lines, respectively.

6.2 HOD evolution: small-scale clustering and the abundance
of empty haloes

The quantity p0(M) counts the number of haloes of mass M which

were formed from mergers of objects which contained no galaxies.

If the threshold Mmin were sharp, then this would be simply related

to the number of haloes at low redshift which did not have a single

high-redshift progenitor of mass greater than Mmin. Sheth & Lemson

(1999) have studied this problem; they provide expressions for the

kth factorial moment μk of the progenitor distribution. (Results

in Casas-Miranda et al. 2002 suggest that these expressions are

quite accurate.) In principle, these can be used to estimate p0, since

p0 = 1 +
∑

k(−1)k μk/k!, where the sum runs from k = 1 to an

upper limit which is set by mass conservation; a halo of mass M can

have at most M/Mmin progenitors. If the HOD were a step function,

then Mmin would be the same as in equation (5), else, it need not

be. In practice, this is a complicated sum, so we have studied a few

simpler models.

In our first model, we set

p0(M) = e−C(M). (22)

This would be appropriate if the distribution of the number of high-

redshift centrals in low-redshift haloes were Poisson (so μk = μk
1),

with mean μ1 = C(M), and only one of these centrals continues to

count as the low-redshift central; the others count as low-z satellites.

Note that if C ≪ 1, then 〈Nc|M〉 → C(M), so there is no correction

to the satellite counts. And if C ≫ 1 then 〈Nc|M〉 → 1 and the

satellite counts are increased by C − 1. Thus, our model interpolates

smoothly between these two sensible limits. We show the resulting

evolution in the way galaxies populate haloes and in the clustering

in the top panels of Figs 9 and 10 as the red lines.

1
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Figure 10. The projected correlation function resulting from the evolving

the z = 0.55 2SLAQ selection matched sample HOD to z = 0.19 using the

three models for p0(M) along with the correlation function from the HOD

fit to the z = 0.19 sample. The effect of including merging of the central

galaxies for the same models is shown in the bottom panel.

We have also studied what happens if, instead, we require a

sharp transition between these two limits: set 〈Nc|M〉 = C(M) and

〈Ns|M〉= S(M) when C(M) ≤ 1, and 〈Nc|M〉= 1 and 〈Ns|M〉= S(M)

+ C(M) − 1 otherwise. Compared to the Poisson model, this model

has many more low-redshift haloes which host a single central high-

redshift galaxy, and few which host more than one such galaxy; the

Poisson model has fewer haloes which host galaxies, each allowed to

host more than one high-redshift central. This decreases the number

of high-redshift central pairs in haloes (compared to the Poisson

model), which means that the number of central–satellite pairs is

decreased, thus decreasing the small-scale clustering signal. (Of

course, higher order statistics will also be affected: the probability

of finding a large region devoid of galaxies will be larger in the

Poisson model.) This model is plotted as the blue lines in the top

panels of Figs 9 and 10.

Whereas this second model is perhaps too simple, the Poisson

model almost certainly allows too many low mass haloes to con-

tain more than one galaxy, thus resulting in too many small-scale

pairs. Indeed, mass conservation arguments (Sheth & Lemson 1999;

Casas-Miranda et al. 2002) strongly suggest that the progenitor

counts should be sub-Poisson (μk < μk
1), especially at low masses.

Furthermore, sub-Poisson counts are clearly seen in the numerical

models 10 and 30 of Seo et al. (2007). The following Binomial

model conserves mass, and lies between these two extremes:

p0(M) =

[

1 −
C(M)

Nmax

]Nmax

, (23)

where Nmax = int (M/Mmin). We use this model as written for

illustrative purposes only: in reality Mmin is unlikely to be the same

quantity as in equation (5), and the integer changes in Nmax as M

increases produce artificial discontinuities in 〈N|M〉. Nevertheless,

this model predicts a small-scale clustering signal which lies below

that associated with the Poisson model, but above that for the sharp

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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threshold model shown as the green lines in the top panels of Figs 9

and 10.

The top panel of Fig. 10 shows that for all three models for p0(M)

the passive evolution of the clustering predicts a far greater increase

in the clustering strength than is observed. This is caused by the

presence of too many satellite galaxies, with satellite fractions of

27 ± 3, 11 ± 1 and 19 ± 2 per cent for the Poisson, Step and

Sub-Poisson models, respectively, compared to 10 ± 2 per cent for

the best-fitting HOD to the data.

6.3 HOD evolution: central–central mergers

Once we have decided how likely it is that a low-redshift halo

contains at least one high-redshift central galaxy, we also study

models in which centrals merge on to centrals. This is motivated by

the fact that central galaxies are expected to be more massive than

satellites, so dynamical friction may be more effective at making

these objects merge on to the true low-redshift central. To model

this case, we again use equation (20) for 〈Nc|M〉, but we set

〈Nc|M〉〈Ns|M〉 = S(M) + fno-merge [C(M) − 〈Nc|M〉], (24)

where fno-merge is the fraction of low-redshift satellites which were

high-redshift centrals, and have not merged with one another or on

to the new central object.

When fno-merge = 1 then this is the same as the no merger model

of the previous section; when fno-merge = 0, then the central galaxies

of all the high-redshift haloes which merged to make a low-redshift

halo have merged to make a single massive central galaxy. Strictly

speaking, the model says nothing about what these objects merged

with – they may have merged with one another or with other satel-

lites – it only assumes that the number of objects which merge

scales with M in the manner given above. However, the assumption

that they merged on to the central object has considerable physical

appeal.

The results of applying this merger model for the three

parametrization of p0(M) are shown in the bottom panels of Figs 9

and 10. For each model we chose the value of fno-merge that best

matches the large-scale clustering, 0.1, 0, 0.25 for the Poisson, Step

and sub-Poisson models, respectively. In all cases the agreement

in the high mass haloes is much improved and the satellite frac-

tion reduces to 11 ± 3, 7 ± 2 and 10 ± 3 per cent, comparable

to the measured value. The best fit at small scales is provided by

the sub-Poisson model; this is reassuring, as it is the most phys-

ically motivated – although our implementation is not yet ideal.

This suggests that the data are consistent with a generic predic-

tion of hierarchical models – that the scatter in merger histories

should produce sub-Poisson scatter. The step model produces far

too little small-scale clustering, consistent with its lower satellite

fraction, with both the Poisson and sub-Poisson models providing

a reasonable match within the errors.

We show in Fig. 11 a more detailed comparison of the passive and

merger sub-Poisson model with the measured correlation functions

by dividing each by the best fit to the z = 0.19 measurement. Also

shown are the 1σ confidence regions calculated by propagating

the error on the fit at z = 0.55. This figure explicitly shows that

the passive model is ruled out at high significance. On large scales

(>3 h−1) Mpc, the passive model is incompatible with the measured

clustering at z = 0.2 at the 98 per cent level, consistent with the

constraints from the bias evolution given above. However, when

smaller scales are included the passive model becomes increasingly

incompatible with the measured clustering; for scales larger than

1 h−1 Mpc the passive model is excluded at a confidence level of

Figure 11. Halo model fits to w(rp) at z ≃ 0.19 (red solid) and z ≃ 0.55

(blue solid) for the 2SLAQ selection matched sample. The effect of passively

evolving the z = 0.55 HOD to z = 0.19 is shown as the dotted line and the

effect of including merging of the central galaxies is shown as the dashed

line. The bottom panel shows the ratios of the w(rp) fits shown above he

measured z = 0.19 fit. The shaded areas enclose the 1σ confidence regions.

greater than 99.9 per cent, with the level of significance increasing

with the inclusion of even smaller scales. The sub-Poisson merger

model is consistent with the data on all scales, even though the

fraction of centrals which are alowed to merge is determined by

matching only the large-scale clustering.

We have demonstrated that it is necessary to allow some merging

(or some other method of removal) of some fraction of the high-

redshift LRGs if we wish to reproduce the clustering at low redshift.

This will have the effect of reducing the space density of the evolved

population at low redshift, something that we do not observe in the

data. The change in the space density associated with the best-fitting

sub-Poisson model is 9.2 ± 2.6 per cent, suggesting that at most

about 20 per cent of the LRGs are merging with each other. In fact

there are on average 2.34 high-redshift centrals in each merged halo,

resulting in 16.1 ± 4.6 per cent of LRGs experiencing an LRG–LRG

merger. This is consistent with the constrainst provided by the LF

evolution of Paper I. For comparison, the Possion model predicts a

change in the space density of 19.4 ± 5.5 per cent, suggesting that up

to 40 per cent of LRGs have been involved in a LRG–LRG merger.

This number is highly inconsistent with the LF measurments and

lends further support to the sub-Poisson model.

If we continue with the hypothesis that LRGs are merging with

one another, it is reasonable to assume that some red galaxies too

faint to be included in our sample at z = 0.55 will have also merged

by z = 0.19, some of which will now be sufficiently luminous to

be included in that sample. These galaxies will then increase the

space density of the low-redshift LRG sample, potentially allowing

the space density to remain unchanged. From the measurements,

we have no constraints on how many of these galaxies there are

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Figure 12. In each panel, the blue solid line shows the best fit to the 2SLAQ selection matched sample at z = 0.19. The effect of applying the sub-Poisson

central merger model to the z = 0.55 HOD is shown as the red solid line and the z = 0.19 HOD fit random sampled to match the space density of the merger

model is shown as the dashed blue line. The mean number of LRGs per halo as a function of halo mass is shown in the top left-hand panel and the mean number

of LRGs per halo times the number density of haloes as a function of mass is shown in the bottom left-hand panel. The ratio of the numbers of LRGs is shown

in the upper right-hand panel and the difference in the space densities shown in the bottom right-hand panel.

and how they are distributed within the dark matter haloes and thus

how they might change the clustering. Because the space density

has changed in the merger model, one could argue that we should

compare our evolved high-redshift two-point correlation function

with one measured from a sample of low-redshift LRGs with a

matching lower space density. The difficulty with this approach is

deciding which galaxies to remove from our observed sample in

order to reduce the space density.

An obvious choice would be to change the magnitude limit, thus

removing the galaxies with the lowest stellar masses, equivalent to

the approach taken in White et al. (2007). However, in our merg-

ing model, we merge high-redshift central galaxies, and it seems

unlikely that these would represent the LRGs with the lowest stel-

lar masses. Alternatively, if we randomly sample the low-redshift

HOD, we will reduce the space density with out changing the clus-

tering. This is equivalent to saying that the LRGs, which are newly

formed by the merging of lower luminosity red galaxies at low

redshift, trace the dark matter in the same way as the whole LRG

population. If this is a true reflection of the evolution of the LRG

population, then the randomly sampled measured HOD should look

like the HOD produced by our central merging model.

We show in Fig. 12 a comparison of the HOD of the best-fitting

sub-Poisson merger model with the best HOD fit to the z = 0.19

measurement, along with the measured z = 0.19 HOD randomly

sampled to match the space density of the merger model HOD. The

left-hand side of Fig. 12 shows the HODs and the HODs weighted

by the number density of the haloes in the same way as we have

shown before. The right-hand side shows the ratio of the HODs

(top) and the difference between the weighted HODs (bottom). For

all but the lowest masses there is reasonable agreement between

the randomly sampled HOD and the merger HOD. At the low mass

end, the large difference is due in part to our having to force the

z = 0.19 HOD to have a particular functional form; a form which

the central merger model is not required to satisfy. There is still

some discrepancy beyond that caused by the steps introduced by

the binomial form of the sub-Poisson model, suggesting that any

newly formed LRGs, which have been added to the low-redshift

sample, do not trace the dark matter in exactly the same way as the

existing LRGs.

7 C O M PA R I S O N W I T H PR E V I O U S WO R K

7.1 Merger rates

A number of authors have recently tried to constrain the merger rate

of LRGs using a variety of methods. Bell et al. (2006) estimate that

50 per cent of massive galaxies (>5 × 1010 M⊙) have experienced

a major merger since z = 0.8. They also show that the merger rate

increases with redshift and provide a fitting formula for this increase.

Applying this formula to the redshift interval, we are considering

here yields a merger rate of 21 per cent between z = 0.55 and

0.19. The merger rate defined by Bell et al. (2006) is the equivalent

of the change in space density we measure, that is, 9.2 per cent.

However, the Bell et al. (2006) sample has a space density of 33 ×

10−4 h−1 Mpc3 which is 20 times higher than ours and thus consists

of galaxies with typically much less stellar mass. The merger rate

is believed to increase with decreasing stellar mass so any direct

comparisons between the two measurements are difficult.

Masjedi et al. (2006) use the small-scale clustering to estimate an

LRG–LRG merger rate of 0.625 per cent Gyr−1 for SDSS LRGs at

z = 0.25. This would correspond to 2 per cent from z = 0.55 to 0.19

far lower than our measurement. Applying the fitting formula for

the evolution of the merger rate from Bell et al. (2006) normalized

to match the Masjedi et al. (2006) value at z = 0.25 yields a rate

≃4 per cent, still a factor of 2.5 lower than our best-fitting value.

Once again the galaxy samples are not directly comparable since

the space density of LRGs in the Masjedi et al. (2006) sample is

a factor of 3.5 lower than the sample we use here, so one would

expect the merger rate to be lower for the more massive Masjedi

et al. (2006) LRGs.
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Conroy, Ho & White (2007) use N-body simulations to follow

the accretion of haloes sufficiently massive to host LRGs. They

then compare this accretion history with the observed multiplicity

function of LRGs at z ∼ 0.3 (Ho et al. 2007) in order to constrain the

LRG merger time-scale and hence merger rate. Using this method

they find a LRG–LRG merger rate approximately a factor of two

higher than that measured by Masjedi et al. (2006) using the small-

scale clustering of LRGs.

Using a very similar methodology to our own, White et al. (2007)

estimate that approximately one-third of the low-redshift satellite

galaxies must be destroyed (e.g. merge) in order to match the clus-

tering evolution of LRGs between z = 0.9 and 0.5 in the NDWFS.

This corresponds to a merger rate of 3.4 per cent Gyr−1, which

would be 10.6 per cent over our redshift interval. This rate is com-

prable to our estimates; however, based on the Bell et al. (2006)

trend, one would expect a factor of 2 increase in the mean rate due

to the higher redshift of the White et al. (2007) sample and also an

increase due to the factor of 6 higher space density of their LRGs.

There is, however, one important difference between the White et al.

(2007) study and the one presented here that may rectify some of

the descrepency in the merger rates. As mentioned above White

et al. (2007) adjust the space density of the low-redshift LRG sam-

ple HOD fit with which they compare to their evolved high-redshift

sample. This is accomplished by adjusting the mass-scale of the

HOD fit by 7 per cent to higher masses. This approach, of course,

would reduce the space density and increase the clustering, result-

ing in a lower amount of merging required to reduce the clustering

produced by the passive evolution model to the measured level.

Reducing the fraction of high-redshift centrals allowed to merge in

the model similarly increases the clustering but also decreases the

space density.

Therefore, there is only one unique combination of mass-scale

shift and merger rate that will match both the clustering and space

density simultaneously. We find that increasing the z = 0.19 HOD

mass-scale by 6 per cent and allowing 63 per cent of the high-

redshift centrals to merge yields a large-scale bias of 1.93 and space

density of 1.52 × 10−4 h−1 Mpc3 for both the measured low-redshift

HOD and the evolved high-redshift HOD. This corresponds to a

merger rate of 7.5 ± 2.3 per cent between z = 0.55 and z = 0.19.

Figs 13 and 14 show the HOD and clustering, respectively. Within

the errors the merger model yields a good match with the measured

HOD although the small-scale clustering is a slightly poorer fit

than the model with more merging shown in Fig. 11. This value is

now in better agreement to that which one might derive from the

measurement of Masjedi et al. (2006) and the estimate of White

et al. (2007) although it still seems marginally higher. This may of

course be due to the uncertainty in the dependence of the merger rate

with redshift and mass. Alternatively, the possible discrepancy with

the White et al. (2007) result, which uses a very similar method

coupled to N-body simulations could point to a deficiency in the

current theoretical models of the conditional mass function used

herein.

Finally, McIntosh et al. (2007) search for evidence of disturbance

in close pairs of massive galaxies in z < 0.12 groups to estimate

the merger rate. They find that most of the mergers are occurring

between approximately equal mass red progenitors and typically

involve the central group galaxy, a picture that is consistent with

the model we present here. They determine a merger rate of two to

nine times higher than that of Masjedi et al. (2006) for comparable

galaxies and suggest that this is because their minimum group mass

is 3.5 × 1013 M⊙, higher than the typical halo mass of LRGs, and

therefore the merger rate of LRGs increases with increasing halo

Figure 13. The mean number of LRGs per halo as a function of halo mass

at z = 0.19 (black) for the 2SLAQ selection matched sample with the mass-

scale increased by 6.4 per cent. The effect of passively evolving the z = 0.55

fit to z = 0.19 is shown as the red line and the effect of including merging

of the central galaxies is shown as the green line.

Figure 14. The ratio of the projected correlation functions to the best-fitting

HOD at z = 0.19 where the mass-scale of the HOD has been increased by

6.4 per cent. The effect of passively evolving the z = 0.55 fit to z = 0.19

is shown as the red line and the effect of including merging of the central

galaxies is shown as the green line.

mass. We show in Fig. 15 the merger rate as a function of halo

mass for our three merger models. This figure does indeed indicate

a rapid increase in the merger rate in haloes with mass up to 3 or

4 × 1013 M⊙, but with a decrease at higher masses.

7.2 Semi-analytic Models

Almeida et al. (2007) present a comparison of semi-analytic galaxy

formation models to various properties of samples of LRGs very

similar to the ones presented here. They find that the one of their

models (Bower et al. 2006) gives a good match to the LF of SDSS

LRGs at z = 0.24, but over predicts the abundance of 2SLAQ LRGs

at z = 0.55. The Bower et al. (2006) model is also able to repro-

duce the clustering of samples at both z = 0.5 and 0.24. They also

present HODs generated from their models and compare them to the

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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Figure 15. The LRG merger rate as a function of halo mass.
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Figure 16. The mean number of LRGs per halo as a function of halo mass

(top panel) and the mean number of LRGs per halo times the number density

of haloes as a function of mass (bottom panel) for the Bower et al. model

of LRGs presented in Almeida et al. (2007) (red lines) compared to those

generated from the fits to correlation functions present herein (blue lines).

The total, central and satellite contributions are shown by the solid, dashed

and dotted lines, respectively.

best-fitting HODs for the samples presented within this paper, where

the HOD fits are made using the same cosmological parameters as

are used in the semi-analytic models. We only consider here the

Bower et al. (2006) z = 0.24 HOD, which is shown in Fig. 16 since

it matches both the LF and clustering of SDSS selected LRGs at z

= 0.24. The plotted HOD has a quite different form from the one

we measure and is not reproducible with the formulation we have

used in this paper.

In addition, these models predict satellite fractions of 20-30 per

cent which is a factor of 2–3 times higher than our HOD fits yield,

but a merger rate for the 2SLAQ selected sample of ∼5 per cent

over our redshift range, in good agreement with the observations.

Plotting the central and satellite HODs separately for the Bower

et al. (2006) model (Fig. 16) demonstrates the reason for the high

satellite fraction. There are many haloes that do not have an LRG

central but do have satellite LRGs. It may appear surprising that

the central galaxy within a halo does not meet the LRG selection

criteria. Although the central galaxy is the most massive in terms

of stellar mass and cold gas mass, it is not necessarily the brightest

in the observer frame r-band.

A more likely scenario, however, is the case in which the central

galaxy is the brightest galaxy in the halo, but does not match the

LRG colour selection. In the Bower et al. (2006) model the sup-

pression of gas cooling by AGN heating ramps up gradually from

intermediate mass haloes, so some gas is still cooling in haloes with

Mhalo ∼ 1012 h−1 M⊙ and being directed on to the central galaxy.

This supply of cold gas results in recent star formation in the cen-

tral galaxy. In more massive haloes, the cooling flow is suppressed

more strongly, so central galaxies in these haloes experience no re-

cent star formation. It may also be the case that there are too many

red satellites due to the instantaneous stripping of the gas a galaxy

experiences in the Bower et al. (2006) model. However, one does

need to remain cautious with these comparisons since even though

at z = 0.24 the Bower et al. (2006) model does match both the LF

and clustering, it is unable to reproduce the evolution of the LF,

suggesting that it is still lacking in some areas. Even so, it does sug-

gest that the form of the HOD we are using may be too simplistic

when a colour selection is included along with a luminosity cut. We

will investigate this further in a forthcoming paper, which includes

both a better treatment of the gas stripping (Font et al. 2008) and a

refined AGN feedback model.

8 SU M M A RY A N D C O N C L U S I O N S

We present here a detailed analysis of the clustering of LRGs (as de-

fined by Eisenstein et al. 2001 and Cannon et al. 2006) as a function

of redshift using samples of LRGs matched to have the same in-

trinsic colours and luminosities assuming passive evolution of their

stellar populations. These galaxies represent the most massive in

the universe with stellar masses lager than 1011 h−1 M⊙ and space

densities of ≃10−4 h3 Mpc−3. We find the following.

(i) The amplitude of the clustering (r0) does not significantly

evolve with redshift over 0.15 < z < 0.6, whereas there is a

marginally significant decrease in the slope (γ ) with increasing

redshift.

(ii) The lack of evolution in the clustering amplitude on large

scales is inconsistent with a picture in which the LRGs have purely

passive evolution undergoing no major mergers over this time-

period, and rules out this passive model at 98 per cent significance.

(iii) A HOD where the fraction of haloes which host central

galaxies 〈Nc|M〉 = exp(−Mmin/M) and only haloes which host cen-

trals can host satellites where the satellites are drawn from a Pois-

son distribution with mean 〈Ns|M〉 = (M/M1)α is able to accurately

reproduce the clustering and space density of our LRG samples.

Within this framework, the LRGs are predicted to be hosted in

haloes with a typical mass close to 1014 h−1 M⊙ which increases

by ≃50 per cent from z = 0.55 to 0.2, and to have satellite frac-

tions increasing from ≃5 to 10 per cent over this time. The LRGs

are found to have a bias ≃ 2 and which decreases with redshift at a

much greater rate than would be predicted for the passive no merger

case.

(iv) We introduce an analytic approach to describe the evolution

of the HOD with redshift, and demonstrate that this guarantees

that the comoving density remains constant and the large-scale bias

evolves in accordance with the continuity equation. We use this
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approach to further demonstrate that the passive evolution of the

LRG HOD from z = 0.55 is inconsistent with the measurements at

z = 0.19 at greater than 99.9 per cent significance, predicting far

too many satellite galaxies at z = 0.19 and greatly over estimating

the clustering strength on all scales.

(v) We introduce a model in which high-redshift centrals are

allowed to merge with other high-redshift centrals occupying the

same halo at low redshift. This choice is motivated by the fact that

centrals are likely to be more massive than satellites, so dynamical

friction may be more effective at making these objects merge with

the true low-redshift central. This model is able to accurately match

the large-scale clustering evolution of the LRGs. We demonstrate

that the small-scale clustering is dependent on the parametrization

of the scatter in halo merger histories. We investigate three models

for this scatter and find that both the sub-Poisson and the Poisson

models are able to match the small-scale clustering evolution. How-

ever, the Poisson model requires a much larger LRG–LRG merger

rate (20 per cent) which is not favoured by either the evolution of

the LRG luminoisty function (Paper I) or other independent mea-

sures of the LRG–LRG merger rate (Masjedi et al. 2006; White

et al. 2007). We therefore favour the best motivated sub-Poisson

scatter giving observational support to this generic prediction of

hierarchical models.

(vi) In order to match the clustering evolution we require an

LRG–LRG merger rate of 7.5 ± 2.3 per cent from z = 0.55 to 0.19

corresponding to 2.4 per cent Gyr−1. This is probably consistent

with other measurements of the merger rate of massive red galaxies,

given the uncertainties in how the merger rate depends on the mass

of the galaxy and evolves with redshift.

(vii) Although some merging is required to match the clustering

evolution, the merger rate is sufficiently small that it is entirely

compatible with the low rate of evolution in the LF of LRGs found

in Paper I.

(viii) We compare in detail the measured HOD for one of the

LRG samples to that predicted by the latest semi-analytic models of

galaxy formation for a very similar sample of LRGs which matches

both the LF and clustering as described in Almeida et al. (2007).

The model HOD is very different from our fit, and would not be

reproducible by the functional form of the HOD we assume. In

particular, the model has many haloes that contain LRG satellites

where the central is not an LRG. This suggests that a more sophisti-

cated form of the HOD may be required for galaxy samples selected

by colour in addition to luminosity, although caution is required as

the semi-analytic model is still unable to accurately reproduce the

evolution of the LRG population.

(ix) Our halo model analysis of the relation between the low-

and high-redshift populations is similar in spirit to those of White

et al. (2007) and Seo et al. (2007). However, whereas their work

used numerical simulations, our approach is entirely analytic. This

means that our analysis relies heavily on the accuracy of current

models of N(m|M), the conditional mass function. These models

are not particularly accurate for small redshift intervals Sheth &

Tormen (2002), so we hope that our analysis will generate interest

in improving these models.

(x) Our analysis also highlights the need for a better understand-

ing of the stochasticity in halo merger histories.
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A P P E N D I X A : C O N S TA N T C O M OV I N G
NUMBER DENSITY IN THE H ALO MODEL

A1 Large-scale clustering in real-space

Let g(m) denote the mean number of galaxies in haloes of mass m

at some early time, and let g(m) denote a similar quantity at some

later time. If haloes merge but galaxies do not, then

G(M) =

∫ M

0

dmN (m|M) g(m), (A1)

where N(m|M) denotes the mean number of m haloes from the ear-

lier epoch which have been incorporated into M haloes by the later

epoch. Lacey & Cole (1993) and Sheth & Tormen (2002) discuss

models for N(m|M) that are consistent with the halo abundances of

Press & Schechter (1974) and Sheth & Tormen (1999).

To see that the number density of galaxies has indeed not changed,

note that

n̄ ≡

∫ ∞

0

dM n(M) G(M)

=

∫ ∞

0

dM n(M)

∫ M

0

dmN (m|M) g(m)

=

∫ ∞

0

dmg(m)

∫ ∞

m

dM n(M) N (m|M)

=

∫ ∞

0

dmn(m) g(m). (A2)

The first equality expresses the number density as an integral over

the low-redshift halo population, whereas the final equality inte-

grates over the high-redshift population. The associated large-scale

bias factor at the later time is

b0 − 1 =

∫ ∞

0

dM
n(M) G(M)

n̄
[b(M) − 1]

=

∫ ∞

0

dm
g(m) n(m)

n̄

×

∫ ∞

m

dM
n(M) N (m|M)

n(m)
[b(M) − 1]. (A3)

Now,

b(M) = 1 −
d ln n(M)

dδc

(A4)

(Sheth & Tormen 1999) and the algebra in Abbas & Sheth (2005)

shows that the expression above reduces to

b0 − 1 =

∫ ∞

0

dm
g(m) n(m)

n̄

[b(m) − 1]

D0/Dz

= (bz − 1)/(D0/Dz),

(A5)

where D is the linear theory growth factor. (If the later time is the

present in an Einstein de-Sitter universe, then D0/Dz = a0/az =

1 + z.) This shows explicitly that the halo model calculation of the

evolution of the bias in the no-merger model is the same as that

derived from an argument based on the continuity equation (Nusser

& Davis 1994; Fry 1996). Note that the bias factor evolves even

though the number density does not.

One might wonder if, although the bias factor evolves, the clus-

tering strength itself does not. The ratio of the large-scale clustering

signal at the two epochs is

ξ0(r)

ξz(r)
=

b2
0D

2
0

b2
zD

2
z

=

(

b0

b0 − 1 + Dz/D0

)2

; (A6)

since Dz < D0, the later epoch is more strongly clustered. For exam-

ple, for b0 = 2 and Dz/D0 = 2/3, this factor is (6/5)2 = 1.44. Setting

Dz/D0 ≪ 1 illustrates a fact that is often overlooked: the cluster-

ing strength of highly biased objects (i.e. the most massive haloes)

evolves very little, even though the clustering of the dark matter

itself has evolved significantly: (D0/Dz)
2 ≫ 1. The most massive

objects do not move far from their initial comoving positions.

This calculation suggests a simple test of the null hypothesis

that two populations having the same comoving number density are

related by the no-merger evolution model: if the measured cluster-

ing signal has not evolved, or if the high-redshift sample is more

strongly clustered, then the hypothesis can be rejected.

A2 Small-scale clustering in real-space

The continuity equation argument is restricted to the large scales on

which linear theory applies. The virtue of writing this in terms of

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 1045–1062
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halo abundances is that it shows clearly how to extend the model

to predict the clustering signal in the no-merger model even on

small scales. In particular, two additional pieces of information

are required: a model for how the galaxies are distributed around

the centre of their parent haloes, and the second factorial moment

G2(M) of the distribution p(N|M) of the number of galaxies N

at a fixed halo mass M. Sheth et al. (2001) show that, on scales

larger than approximately half a Megaparsec, it is more important

to model the first two moments G1(M) and G2(M) accurately than

the density profiles; in particular, the approximation that the spatial

distribution of the galaxies is the same as that of the dark matter

is sufficiently accurate. Hence, if we know the second factorial

moment of how galaxies populate haloes, then we can describe the

no-merger correlation function on small scales as well. Simulations

indicate that in haloes which host more than one galaxy, p(N − 1|M)

is a Poisson distribution with mean G1 − 1. This specifies G2(M).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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