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Abstract

We report two microlensing planet candidates discovered by the Korea Microlensing Telescope Network (KMTNet)
survey in 2017. However, both events have the 2L1S/1L2S degeneracy, which is an obstacle to claiming the
discovery of the planets with certainty unless the degeneracy can be resolved. For KMT-2017-BLG-0962, the
degeneracy cannot be resolved. If the 2L1S solution is correct, KMT-2017-BLG-0962 might be produced by a super
Jupiter-mass planet orbiting a mid-M-dwarf host star. For KMT-2017-BLG-1119, the light-curve modeling favors the
2L1S solution but higher-resolution observations of the baseline object tend to support the 1L2S interpretation rather
than the planetary interpretation. This degeneracy might be resolved by a future measurement of the lens-source
relative proper motion. This study shows that the problem of resolving 2L1S/1L2S degeneracy exists over a much
wider range of conditions than those considered by the theoretical study of Gaudi (1998).

Key words: planets and satellites: detection – gravitational lensing: micro

1. Introduction

The basic requirements for the statistical studies of planets
are detections of planets and the determination of planet
properties. However, discoveries and characterizations of
microlensing planets depend on the interpretation of anomalies

in the observed light curves. Even when these anomalies can be

described by a planetary model, alternative interpretations may

exist that also provide sufficient descriptions for the putative

planetary anomalies. In other words, degenerate solutions of

the light curves can be obstacles to prevent either secure

discoveries of planets or the unique determination of their

properties.
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For example, the degeneracy between two interpretations of

the binary-lens and single source (2L1S) and the single-lens

and binary source (1L2S) can be a severe obstacle. If this

2L1S/1L2S degeneracy exists, we cannot claim a secure

discovery of the planet unless the degeneracy is resolved.
Gaudi (1998) first pointed out this 2L1S/1L2S degeneracy by

showing that a certain class of the 1L2S model can resemble a

planetary anomaly in the lensing light curve. In particular, that

work focused on planetary events that exhibit small, short-

duration positive deviations from a single-lens, single-source

(1L1S) light curve. To produce a similar anomaly in the light

curve using a 1L2S model, the brightness of the companion

should be much fainter than the primary (the flux ratio of the

secondary and primary, º F F2 1, should be from ò∼10−2 to

∼10−4
). In addition, the companion should pass very close (in

projection) to the lens (this impact factor for the secondary,

u0,S2, depends on the maximum amplitude, δmax, of the planet-

like anomaly with the flux ratio: u0,S2ò/δmax).
Indeed, there are discoveries of microlensing planet

candidates, which could be interpreted by both 2L1S and

1L2S models. Beaulieu et al. (2006) found a clear planetary

deviation (i.e., a small, short-duration positive deviation) in a

microlensing event, OGLE-2005-BLG-390. They also found

the 2L1S/1L2S degeneracy that plausibly described the

anomaly. However, the 1L2S interpretation was rejected by

the detailed light-curve analysis. Thus, they could claim the

secure discovery of a planet, whose mass they estimated to be

ÅM5.5 . Hwang et al. (2013) also showed a microlensing event

that had the 2L1S/1L2S degeneracy. The light curve of this

work exhibits a planet-like anomaly (i.e., the strong positive

deviation) that can be explained by either the 2L1S (including a

planet) or 1L2S interpretation. They successfully resolved this

degeneracy using multiband observations, revealing that the

event was produced by two sources, rather than a planetary

system. In addition, Dominik et al. (2019) recently presented a

long timescale (tE∼300 days) microlensing event, which can

be explained either 2L1S or 1L2S interpretation. Their 2L1S

model indicates that the lens system might be a planet with the

mass of ∼45M⊕ orbiting an M-dwarf host star (∼0.35Me).

However, they also find a competitive 1L2S model that

indicates that the lens might be a brown dwarf (0.046Me). The

light-curve data cannot resolve this degeneracy, but they

suggest that future observations may be able to resolve this
severe degeneracy.

However, in practice, we have found that the 2L1S/1L2S
degeneracy can be extended to cases beyond the extreme flux

case considered by Gaudi (1998), e.g., Jung et al. (2017b),

Dominik et al. (2019), and events in this work. In Jung et al.

(2017b), the light curve of the event showed a broad

asymmetry with small additional deviations in the wing. This

anomaly can be adequately described by both the 2L1S (i.e., a

planetary lens system) and the 1L2S interpretations. This event

was produced by approximately equally luminous binary
sources in contrast to the case of Gaudi (1998). They resolved

this degeneracy using detailed modeling of the densely covered

light curve. In Dominik et al. (2019), they showed that the

planet-like anomaly in the 2L1S case could be produced when

the source passes close to the central caustic, i.e., a high-

magnification, event. This anomaly is different from Gaudi’s

case, which is produced when the source approaches one

planetary caustic. They noted that the 1L2S model with a small

flux ratio of binary sources can produce this planet-like
anomaly in contrast to Gaudi’s case.
In addition, microlensing events show that more complex

anomalies have been found. These events can be described by
more complicated multiple-lens and multiple-source interpreta-
tions. For example, Jung et al. (2017a) showed a degeneracy
caused by 3L1S and 2L2S interpretations. Moreover, Hwang
et al. (2018) showed an extreme case (i.e., an exo-moon
candidate) of a three-fold degeneracy with 3L1S, 2L2S, and
1L3S interpretations. In particular, the degeneracy becomes
severe when the observations do not optimally cover the
anomalies in the light curves.
Here we analyze two microlensing events, KMT-2017-BLG-

0962 and KMT-2017-BLG-1119, which were discovered in
2017 by the Korea Microlensing Telescope Network
(KMTNet; Kim et al. 2016). We reveal that these events are
planet candidates by analyzing the light curves using the 2L1S
interpretation. For KMT-2017-BLG-0962, the mass ratio
(q=Mplanet/Mhost) is ∼0.01, which indicates that the compa-
nion in the lens system might be a Jupiter-class planet under the
assumption of an M-dwarf host star. For KMT-2017-BLG-
1119, the mass ratio is ∼0.01, which also indicates that the lens
component might be a planet. Moreover, the Einstein timescale
(tE) of this event is very short, i.e., tE∼2.9 days. This short
timescale implies that the event can be produced by a very low-
mass planetary lens system.25 However, both light curves can
also be well described using the 1L2S interpretation.
We present observations of these planet candidates in

Section 2. In Section 3, we present analyses of the light curves
and the degeneracies. Then, we discuss the possibilities of
resolving the degeneracies in Section 4. In Section 5, we
present the possible properties of planet candidates determined
using the Bayesian analyses. Lastly, in Section 6, we present
our conclusion with the difference between a Gaudi (1998)-
type degeneracy and this work. Additionally, we provide
details of the 1L2S interpretations for the modeling in
Appendix A. We also present tests for higher-order effects of
the models to discuss non-detections of them in Appendix B.

2. KMTNet Observations

KMTNet is a second-generation microlensing survey con-
sisting of a telescope network composed of three identical
1.6 m telescopes located at three sites in the southern
hemisphere: the Cerro Tololo Inter-American Observatory in
Chile (KMTC), the South African Astronomical Observatory
in South Africa (KMTS), and the Siding Spring Observatory
in Australia (KMTA). These well-separated time zones can
provide near-continuous observations, weather permitting. In
addition, the cameras of the KMTNet survey have a wide field
of view (FOV: 4 deg2). These wide FOVs yield high-cadence
observations that are optimized to capture planetary anomalies
caused by various types of planets. Thus, in general, the KMTNet
survey (i.e., a second-generation microlensing survey) is less
dependent on follow-up observations.
KMTNet discovered the two planet candidates presented in

this work. The events were found by the KMTNet Event Finder

25
The Einstein timescale is a crossing time that the source transverses the

Einstein ring radius (θE), i.e., tE ∝ θE. The size of θE is directly related to
the mass of the lens system (M), i.e., q µ M DE rel where ºDrel

( )-- - -D DL
1

S
1 1. DL and DS are distances to the lens and source, respectively.

Thus, µt ME , which is of the order of a month for typical microlensing
events.

2
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algorithm (Kim et al. 2018), which was run after the end of the
2017 microlensing season. No real-time alert was issued for
these events, either by KMTNet or other microlensing groups.
Hence, no useful real-time photometric follow-up observations
were taken.26

However, we found that KMT-2017-BLG-1119 was located
within the footprint of another survey. The Microlensing
Observations in Astrophysics (MOA; Sumi et al. 2003) survey
observed this event using the 1.8 m MOA-II telescope located
at the Mount John Observatory in New Zealand, with the
customized filter called the MOA-Red filter (wide R+ I filter).
Because the MOA survey did not alert this event during the
2017 season, we separately requested the MOA data of the
event. The data were reduced using their pipeline, which
employed the difference image analysis (DIA) photometry
(Bond et al. 2001). In contrast, KMT-2017-BLG-0962 is not
located in the MOA observation fields.

2.1. KMT-2017-BLG-0962

KMT-2017-BLG-0962 occurred on source(s) located at
( ) ( )a d = -  ¢ , 17 46 48. 54, 26 10 48. 07J2000

h m s corresponding
to the Galactic coordinates (l, b)=(2°.49,1°.21). This event is
located in the KMT-field BLG18 (see Figure 12 of Kim et al.
2018), which has the nominal observational cadence of 1 hr−1.
During the event, the cadence was 1 hr−1 at KMTC. For the
other observations, the cadence was 0.75 hr−1. In Figure 1, we
present KMTNet observations of this event with a 1L1S model
curve as a reference to clearly show the anomaly in the light
curve. Clear perturbations exist around the peak of the event,

( )¢ = - ~HJD HJD 2450,000 7871.5.

2.2. KMT-2017-BLG-1119

KMT-2017-BLG-1119 occurred on source(s) located at
( ) ( )a d = -  ¢ , 17 52 10. 63, 33 01 05. 30J2000

h m s corresponding to
the Galactic coordinates (l, b)=(−2°.78,−3°.30). This event
is located in the KMT-field, BLG22, which also has the
nominal cadence 1 hr−1. During the event, this was an actual
cadence for KMTC observations. For KMTS and KMTA
observations, the cadence was switched from 1 hr−1 to
0.75 hr−1 at HJD′∼7971.25, i.e., just after the event peaked.
In Figure 2, we present the KMTNet and MOA observations of
this event. The observations show clear deviations (from HJD′
∼7967.5 to ∼7969.0) from the 1L1S model.

3. Interpretations of the Light Curves

Because both events show clear anomalies in the observed
light curves, we analyze the light curves using both 2L1S
and 1L2S interpretations. For each interpretation, we build
model light curves using an appropriate parameterization.
Then, we minimize the χ2 difference between the model and
observations by using a Markov Chain Monte Carlo (MCMC)

algorithm (Dunkley et al. 2005).

During the modeling process, the uncertainties of observa-
tions are rescaled using the equation enew=κobs eold, where
the enew and eold are rescaled and original uncertainties in
magnitudes, respectively.27 The coefficient κobs, an error
rescaling factor for each data set, is defined based on the
best-fit model with the lowest χ2 value. By making sure each
data point contributes on average Δχ2∼1, we can quantita-
tively compare the degenerate models. For KMT-2017-BLG-
0962 and KMT-2017-BLG-1119, the sets of error rescaling
factors are (κKMTC, κKMTS, κKMTA)=(1.244, 1.239, 1.392)
and (κKMTC, κKMTS, κKMTA, κMOA)=(1.2208, 1.1209,
1.2017, 0.8930), respectively.

3.1. Parameterization of the 2L1S Interpretation

To build a standard 2L1S model light curve, seven basic
parameters are required to describe the caustic form and the
source trajectory. Two parameters (s and q) determine the caustic
form. The value s represents the projected separation between
the lenses in units of the angular Einstein ring radius (θE).
Conventionally, cases of <s 1 and s>1 are referred to “close”
and “wide,” respectively. The mass ratio of the lenses is defined
as q=M2/M1 where M1 and M2 are masses of first and second
bodies, respectively. These close and wide cases can yield a
close/wide degeneracy caused by similarities in the magnifica-
tion pattern, which are induced by an intrinsic symmetry in the
lens equation (Griest & Safizadeh 1998; Dominik 1999).
Four parameters (t0, u0, tE, and α) describe the source

trajectory: t0 is the time when the source most closely
approaches to the reference position of the lens system (this
reference position is the photocenter (Kim et al. 2009) defined
as s[1−(1+q)

−1
] and s

−1
q/(1+q) for the close (s<1) and

wide (s>1) cases, respectively), u0 is the separation at the
time of t0, tE is the Einstein timescale defined as the time for the
source to cross the Einstein ring radius of the event, and α is
the angle of the source trajectory with respect to the binary axis
of the lens system. The geometry of a microlensing event
produced by 2L1S is built using these six parameters, which
determine the magnification as a function of time, i.e., the
microlensing light curve. The finite angular size of the source
moderates the magnification. To account for the finite source
effect, the final parameter, ρ*, is required, which is defined as
the angular source radius (θ*) scaled by θE. In addition, we
introduce two additional parameters, FS,obs (source flux) and
FB,obs (blending flux), for each data set, which are used to scale
the model to the data. These parameters are determined based
on the model using the least-square fitting method.

3.2. Parameterization of the 1L2S Interpretation

A standard 1L2S model light curve is built using a
superposition of two 1L1S light curves induced by each
source. The trajectory of each source yields the individual

26
KMT-2017-BLG-1119 was, in fact, serendipitously observed by the Spitzer

satellite because it lies within the FOV of the InfraRed Array Camera (IRAC)
of another event (OGLE-2017-BLG-0019) that was chosen for observations
(see Yee et al. 2015). Unfortunately, these observations ended (due to Sun-
angle restrictions) on JD-2450,000.0∼7967.0, just two days before the peak
of this very short event. In principle, if the lens were traveling approximately
east, the source could nevertheless have been significantly magnified.
However, we checked the images and found that the Spitzer light curve of
KMT-2017-BLG-1119 is essentially flat. Thus, no meaningful constraints can
be placed on this system from the Spitzer data.

27
In general, the error rescaling is used a quadrature formalism: =enew

k +e eold
2

min
2 , where κ and emin are error rescaling factors. However, we find

that the emin factors should be zero for observations of both events. Thus, we
only present the κ factor without the meaningless zero terms. In principle, the κ
factor has an uncertainty of (2N)

−1/2. Neglecting this factor can affect the
interpretation of the Δχ2 difference between two models. Specifically, it
leads to an uncertainty in the Δχ2 of ( )N2 . Hence, ( )s c cD D =2 2

( ) N2 3.7% for N∼1500, so that, for example, Δχ2=10 would
formally be written as Δχ2=10±0.37 (for three observatories). This
uncertainty inΔχ2 has no practical impact in the present case, so we suppress it
in all expressions.

3
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magnification of its 1L1S light curve. For the 1L2S model light

curve, the final magnification is calculated by superposing

magnifications of both sources weighted by the flux ratio of

source stars. To describe the source trajectories, there are two

parameterizations. The first parameterization (hereafter,

A-type) describes the trajectory of each source, individually.

In contrast, the second parameterization (hereafter, B-type)

describes the barycenter motion of the binary-source system.

Then, from the position of the barycenter, the position of each

source is derived. In Appendix A, we provide detailed

descriptions of these parameterizations and discuss the pros

and cons of the two types. In this work, because the merits of

the two types are different, we adopt the A-type for the basic

1L2S modeling (Sections 3.3 and 3.4). For testing the higher-

order effects, we adopt the B-type (Section 3.4).

3.3. Degenerate Models

3.3.1. KMT-2017-BLG-0962

For KMT-2017-BLG-0962, we find that the observed light

curve can be described using either 2L1S and 1L2S interpreta-

tions. In Figure 1, we present the observed data and model light

curves of this event with geometries of the 2L1S and 1L2S

interpretations. We also present residuals between the models

and observations. In Table 1, we present the model parameters

of best-fit models with χ2 between the models and observa-

tions. The 2L1S model indicates that this event can be caused

by a planetary lens system with a mass ratio of q∼0.01
between the lens components. However, there is a degeneracy

between the close and wide solutions. At the same time, the

1L2S model implies that the event can also be caused by a

Figure 1. Degenerate models of KMT-2017-BLG-0962. The solid lines in red and blue indicate the 2L1S model light curves of the close and wide cases, respectively.
The dashed line in black indicates the 1L2S model light curve. The dotted line indicates the 1L1S model light curve for this event. Left-side inner panels show a
zoomed-in view of the anomaly part of the light curve with residuals. Right-side inner panels present geometries of 2L1S (top and middle panels for the close and wide
cases) and 1L2S (bottom panel) models. Three bottom panels show residuals between each model and observations.

4
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binary-source system. The planetary model (2L1S models of
the close and wide cases) and 1L2S model are completely
degenerate. The χ2 differences between 1L2S and 2L1S are
only ∼0.6 and ∼0.3 for the close and wide cases, respectively.
Thus, we cannot claim a certain planet discovery.

3.3.2. KMT-2017-BLG-1119

For KMT-2017-BLG-1119, we find that the observed light
curve is also well described by both interpretations. In Figure 2,
we present light curves of these degenerate models with their
geometries and residuals. In Table 2, we present the parameters
of these degenerate models. In contrast to the previous case,
these models show slight variations. The best-fit model, 2L1S,
shows a low-mass ratio (q∼0.009) with a very short Einstein
timescale (tE∼2.92 days). This indicates that this event can be

caused by a low-mass planetary lens system. However, this
event also can be well described by the 1L2S interpretation,
which implies that the planet would not exist. Quantitatively,
the χ2 difference between 1L2S and 2L1S is Δχ2∼29.7. This
Δχ2 value is too marginal to claim the 2L1S/2L1S degeneracy
is resolved considering the severe systematics of the observa-
tions (see residuals of Figure 2). The Δχ2 cannot be conclusive
evidence to resolve the degeneracy (we discuss more details of
the χ2 difference in Section 4.1).

3.4. Higher-order Effects of the Interpretations

Even though both events have the 2L1S/1L2S degeneracy, it
is possible that these events were caused by planetary lens
systems. Thus, for the 2L1S interpretation, we check the
possibility of measuring the annual microlens parallax (APRX;

Figure 2. Degenerate models of KMT-2017-BLG-1119. The description is the same as for Figure 1.

5

The Astronomical Journal, 158:199 (17pp), 2019 November Shin et al.



Gould 1992) because the microlens parallax is not only a key
observable for directly determining the properties of the lens
system but also a strong constraint for estimating the properties
using the Bayesian analysis. However, we cannot find any
meaningful improvements for both events to claim the
detection of the APRX signals when we consider the APRX
models by introducing the additional parameters of the
microlens parallax.

For the 1L2S interpretation, the binary sources orbit each
other and conserve their angular momentum. This source-orbital
motion can affect the light curve. In addition, the source-orbital
effect can be a clue to resolving the 2L1S/1L2S degeneracy.
Thus, we test the effect of the source-orbital motion by adopting
the B-type parameterization with two additional orbital para-
meters (see Appendix A for details about this parameterization).
However, we cannot find any meaningful signals in the light
curves of both events caused by the orbital motion of the sources

(for the details of non-detection of these higher-order effects, see

Appendix B).

4. Resolving the Degeneracy

4.1. Detailed Analysis of the Light curve

We now consider whether the 2L1S/1L2S degeneracy can

be resolved in either of the two events. There are several

methods that may be employed to resolve this degeneracy,

most of which were discussed by Gaudi (1998). The first

method is the detailed analysis of the light curve to check for

small differences between the two models.
For KMT-2017-BLG-0962, the χ2 difference between the

2L1S and 1L2S models is insignificant, and Figure 1 shows that

the three models are quite similar. In contrast to the Gaudi (1998)

case, there are no caustic crossings. Only a smooth deviation

exists from a 1L1S event. Thus, for this event, the differences in

the light curve are not sufficient to resolve the degeneracy.
For KMT-2017-BLG-1119, the best 2L1S model is preferred

by Δχ2∼30 over the 1L2S model. However, even though the

degeneracy is formally broken, the distinction is not as strong

as it appears. In Figure 3, we present plots of the cumulative χ2

of each model to investigate the origin of the χ2 improvement.

We find that the χ2 improvement starts at HJD′∼7969.0,
which is a part of the light curve covered by MOA and KMTC

observations. The χ2 improvement mostly comes from the

MOA observations. Quantitatively, among the total χ2

improvement, the MOA and KMTC data contribute

Δχ2∼24 and ∼6, respectively. However, both data sets have

systematics that persist even in the best model (see the bottom

four panels of the zoomed-in view in Figure 3). This fact

suggests that a significant portion of the improvement could

just be from fitting systematics in the data. Thus, Δχ2 cannot

be a conclusive clue to resolve the 2L1S/1L2S degeneracy. In

addition, while this still indicates a preference for the 2L1S model,

the physical parameters derived from the Bayesian analysis in

Section 5.2.2 predict an extreme system in which the host itself is

a massive planet. Thus, we should consider other means of testing

the models to independently resolve the degeneracy.

Table 1

Best-fit Parameters of Degenerate Models of KMT-2017-BLG-0962

Parameter 2L1S (Close) 2L1S (Wide) Parameter 1L2S

χ2/Ndata 1918.423/1918 1918.687/1918 χ2/Ndata 1919.026/1918

t0 (HJD′) -
+7872.514 0.015
0.009

-
+7872.536 0.011
0.011 t0,S1 -

+7871.478 0.029
0.024

u0 -
+0.017 0.002
0.003

-
+0.016 0.001
0.002 t0,S2 -

+7872.797 0.024
0.012

tE (days) -
+33.380 4.002
2.966

-
+35.513 4.445
3.026 tE -

+34.435 4.044
3.215

s -
+0.529 0.048
0.012

-
+1.964 0.069
0.210 u0,S1 -

+0.011 0.002
0.002

q -
+0.012 0.002
0.004

-
+0.011 0.002
0.004 u0,S2 -

+0.015 0.001
0.002

α -
+2.723 0.011
0.006

-
+2.725 0.011
0.006 qflux -

+4.099 0.489
0.844

ρ* �0.010 �0.009 ρ* L

FS,KMTC -
+0.014 0.001
0.002

-
+0.013 0.001
0.002 FS,KMTC -

+0.014 0.001
0.002

FB,KMTC -
+0.327 0.002
0.001

-
+0.328 0.002
0.001 FB,KMTC -

+0.327 0.002
0.001

FS,KMTS -
+0.013 0.001
0.002

-
+0.012 0.001
0.002 FS,KMTC -

+0.013 0.001
0.002

FB,KMTS -
+0.329 0.002
0.001

-
+0.330 0.002
0.001 FB,KMTC -

+0.329 0.002
0.001

FS,KMTA -
+0.011 0.001
0.002

-
+0.010 0.001
0.002 FS,KMTC -

+0.010 0.001
0.001

FB,KMTA -
+0.312 0.002
0.001

-
+0.313 0.002
0.001 FB,KMTC -

+0.313 0.001
0.001

Note. We present upper limits (3σ) of the ρ* parameters for the 2L1S models. Because this event does not have caustic crossings, the ρ* parameters are not accurately

measured (see Figure 5). For the 1L2S models, the finite source effect is not considered for modeling.

Table 2

Best-fit Parameters of Degenerate Models of KMT-2017-BLG-1119

Parameter 2L1S Parameter 1L2S

χ2/Ndata 1580.372/1579 χ2/Ndata 1610.081/1579

t0 (HJD′) -
+7969.731 0.006
0.002 t0,S1 -

+7968.468 0.034
0.044

u0 -
+0.051 0.001
0.003 t0,S2 -

+7969.769 0.002
0.003

tE (days) -
+2.917 0.110
0.048 tE -

+2.449 0.189
0.137

s -
+1.211 0.001
0.016 u0,S1 - -

+0.123 0.032
0.020

q -
+0.009 0.001
0.001 u0,S2 - -

+0.051 0.005
0.003

α -
+3.089 0.006
0.001 qflux -

+4.720 0.679
0.526

ρ* -
+0.029 0.001
0.003 ρ* L

FS,KMTC -
+0.185 0.006
0.007 FS,KMTC -

+0.248 0.019
0.030

FB,KMTC -
+0.210 0.007
0.006 FB,KMTC -

+0.147 0.032
0.017

FS,KMTS -
+0.157 0.012
0.003 FS,KMTC -

+0.206 0.023
0.033

FB,KMTS -
+0.256 0.004
0.012 FB,KMTC -

+0.208 0.034
0.021

FS,KMTA -
+0.145 0.009
0.007 FS,KMTC -

+0.212 0.020
0.031

FB,KMTA -
+0.251 0.007
0.009 FB,KMTC -

+0.184 0.032
0.018

FS,MOA -
+0.158 0.002
0.012 FS,MOA -

+0.221 0.017
0.024

FB,MOA -
+0.242 0.012
0.002 FB,MOA -

+0.179 0.024
0.014

Note. For the 1L2S models, the finite source effect is not considered for

modeling.
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4.2. Color Information of the Source(s)

The second method is to use the source-color information.
Because the magnification of the 1L2S model is a weighted
mean using the flux ratio of the sources (see Appendix A), the
final magnification is wavelength dependent. Thus, if the
binary sources have different colors (and the event really is a
1L2S event), we can measure the color change or difference
during the perturbation from multiband observations. However,
unfortunately, the signal-to-noise ratio of V-band observations
(the KMTNet regularly takes V-band images) for both events
is too low to apply this method. Thus, we cannot resolve the
degeneracy using this method.

4.3. Other Methods to Resolve the Degeneracy

Gaudi (1998) also proposed additional observations to
resolve the degeneracy if the previous methods fail. One
spectroscopic method requires taking spectra of the source both
during and after the perturbations of the event. However, this
method cannot be used after the events have ended. The other
method requires photometrically and spectroscopically mon-
itoring of the source after the event to search for other signals
induced by the binary source such as radial velocity variations
due to orbital motion or eclipses. Given the faintness of the
source(s), spectroscopic monitoring would be challenging.
And given the source separations (0.04 θE and 0.5 θE for

Figure 3. Cumulative χ2 difference (ΣΔχ2
) of degenerate models with zoomed-in views for anomaly part of KMT-2017-BLG-1119. The top panel shows the ΣΔχ2

of total and each data set. The bottom four panels present zoomed-in views of anomaly parts with residuals of each model case.
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KMT-2017-BLG-0962 and KMT-2017-BLG-1119, respec-
tively), the probability of eclipses is extremely low. In addition,
Calchi Novati et al. (2018) presented a new method to resolve
the 2L1S/1L2S degeneracy using simultaneous ground- and
space-based observations. However, unfortunately, space-
based data do not exist for these events (see footnote 26).

4.4. Measurement of the Baseline Object

Because most possibilities, which are proposed by other
studies, are not helpful to resolve the 2L1S/1L2S degeneracy
of our cases, we consider another possibility to resolve the
degeneracy using higher-resolution follow-up observations
to directly measure the magnitude of the source(s) for these
events. For KMT-2017-BLG-1119, we found different source
fluxes (FS,KMTC) for the 2L1S and 1L2S interpretations
(see Table 2). If this event was caused by the planetary
system, the magnitude of the source will be I=19.85±0.04
and the lens is predicted to be dark. If this event was caused
by binary sources, the integrated magnitude of the sources will
be observed: I=19.54±0.11. We note that these expected I
magnitudes are calibrated to the OGLE-III magnitude system
by crossmatching between KMTNet and OGLE-III catalogs
( ( ) )=  +I I0.0228 0.0125OGLE KMTNet .

We check the expected brightness of the baseline object
using observations taken from the Canada–France–Hawaii
Telescope (CFHT) located at the Maunakea Observatories in
2018. In Figure 4, we present the CFHT image with the
astrometric offset between the positions of the baseline object
obtained from CFHT and KMTNet observations. The offset is
0 037±0 009. From the CFHT image, we measure the
brightness of the baseline object. We also see that the baseline
object is close to coincident with the event and is isolated.
Thus, it is highly likely that the light from the baseline object is
composed of light from stars related to the event. Thus, the

CFHT measurement can be a constraint to check the degenerate
solutions of this event. From the stacked deep CFHT image
(seeing ∼0 7), we can measure the brightness of the baseline
object: Ibase=19.62±0.05 (we note that the CFHT instru-
mental magnitude is also calibrated to the OGLE-III magnitude
system). The measurement of the baseline object is consistent
with the expectation of the 1L2S interpretation considering its
1σ uncertainty. Therefore, this constraint supports the conclu-
sion that this event might be caused by the 1L2S system.
However, we cannot guarantee that the CFHT measurement
completely excludes blend light from unrelated stars. Thus, the
possibility of the 2L1S origin cannot be clearly ruled out,
although it is disfavored.
The 2L1S solution predicts a lens-source relative proper

motion of 4.7±0.6 mas yr−1. Thus, if a 30 m class telescope
made observations a decade after the event and the relative
proper motion of the source and lens were measured to be
significantly different from 2L1S value, that would rule out that
solution. On the other hand, if the proper motion were
consistent with the 2L1S value, that would tend to support the
planetary solution but would not be definitive. Note that such a
measurement (as always) requires that the lens (or a companion
to the lens) be luminous. However, the short timescale of this
event favors low-mass lenses, which might fail this condition.
In contrast, for KMT-2017-BLG-0962, we obtained almost

identical values of the FS (see Table 1). Thus, for this event, the
measurement of the baseline object using higher-resolution
follow-up observations would not be helpful for resolving the
degeneracy.

5. Properties of Planet Candidates

5.1. Bayesian Analyses

Because we cannot measure the microlens parallax, we
estimate the properties of these planet candidates using the
Bayesian analyses. We build a prior by generating artificial
microlensing events (the total number of simulated events is
4×107). To generate these events, we adopt the Galactic
models from various studies: initial and present-day mass
functions of Chabrier (2003), velocity distributions of Han &
Gould (1995), and matter density profiles of the Galactic bulge
and disk of Han & Gould (2003). When these artificial
microlensing events are generated, the line of sight to the actual
event is considered. This prior contains various information
about host properties according to the event rate. Based on the
event rate, we calculate the posterior probability distributions
of the lens properties, by applying constraints obtained from
the actual event.
The constraints are built in the form of weight functions,

which are obtained from the tE and ρ* distributions of the
actual event. In Figures 5 and 6, we present the distributions of
selected parameters (tE, ρ*, and q), the first two of which are
used to build the weight functions and to determine the lens
properties for KMT-2017-BLG-0962 and KMT-2017-BLG-
1119, respectively. The distributions show a skewed Gaussian
form, which we parameterize by

{ }( ) ( )( )
( )⎡

⎣
⎤
⎦h= + a m

s
- -m

s
-

W x e 1 erf , 1
x

2

x1
2

2

where the function [ ]zerf indicates an error function defined as

[ ] ( )/ òp=
-

-z e dterf 1
z

z
t2 . The variable x is tE or ρ*. The set

of (η, μ, σ, and α) are fitting parameters. We use the MCMC

Figure 4. CFHT image with the astrometric offset (0 037±0 009) between the
baseline object positions obtained from the CFHT image (cyan) and the KMTNet
catalog (red) that is measured using the DIA. The green arrows indicate the north
and east directions (top right) and a scale of ∼1″ (bottom left).
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algorithm to fit these parameters. The fitting results, i.e., tE and

ρ* weight functions, W(tE) and W(ρ*), are presented in

Figures 5 and 6 (cyan lines). In Table 3, we present the best-

fit parameter sets of W(tE) and W(ρ*) for both events. The final

weight function is W=W(tE)W(ρ*). By applying the final

weight function to the event rate, we construct probability

distributions of the host mass (ML), the distance to the lens

(DL), the physical Einstein ring radius (rE), and the lens-source

relative proper motion (μrel). From these probability distribu-

tions, we can determine the properties of the planet candidate

of each event.

5.2. Angular Source Radius

To apply the W(ρ*) to the event rate, the angular source
radius (θ*) is required to convert from θE (for the artificial
lensing events) to ρ* (ρ*=θ*/θE). However, unfortunately,
we do not have reliable V-band data to estimate θ*. Thus, we
cannot adopt the conventional method (Yoo et al. 2004) using
the (V− I) color of the source for measuring the θ*. For each
event, we estimate θ* using different methods because the
available observations are different.

5.2.1. KMT-2017-BLG-0962

For this event, reliable observations to measure the source
color do not exist. Thus, we adopt a statistical method
(established in Bennett et al. 2008) to estimate the source
color using Hubble Space Telescope (HST) observations of
Baade’s window (Holtzman et al. 1998).
The source magnitude offset from the red giant clump

(ΔIS=4.531±0.110) is determined from comparing the source
flux (FS,pyDIA) obtained from the pyDIA light curve to the red
giant clump centroid measured from the color–magnitude diagram
(CMD). Then, we extract HST stars that have similar magnitude
offsets to those of the source of the event. Using this extracted
HST star sample (and excluding 3σ outliers in V− I), we
determine the median star color ( ( )< - >V I HST ) and the standard
deviation of the color (σ(V−I)HST). Then, we take this HST star
color with uncertainty as a representative of the source color:
(V−I)S=1.357±0.083. By adopting the clump color for the
HST CMD from Bennett et al. (2008), we find that the offset of
the source from the clump isΔ(V−I)=−0.263±0.083. Then,
using the intrinsic color (1.06; Bensby et al. 2011) and magnitude
(14.362; Nataf et al. 2013) of the red giant clump along this line of
sight, we derive: (V−I, I)S,0=(0.797±0.083, 18.893±0.110).
Lastly, θ* is estimated using the color/surface-brightness relation
adopted from Kervella et al. (2004):

( )q m= 0.58 0.06 as. 2
*

In Figure 7, we present the combined CMDs of events where

the centroids of the red giant clumps are aligned to the

dereddened red giant clump magnitudes.

Figure 5. Distributions of tE, q, and ρ* parameters for KMT-2017-BLG-0962.
The top six panels present 2D distributions for the close and wide cases of the
2L1S model obtained from the MCMC chains. Each color represents Δχ2

between realization on the chain and the best-fit model: 12 (red), 22 (yellow), 32

(green), 42 (sky blue), 52 (blue), and 62 (purple). The bottom six panels present
1D distributions of tE, q, and ρ* parameters for the close and wide cases. The
cyan lines indicate weight functions constructed by the fitting of the skewed
Gaussian function. The black dotted line indicates the parameter value of the
best-fit model. The red dotted line in the ρ* distributions represent the 3σ
values.

Figure 6. Distributions of tE, q, and ρ* parameters for KMT-2017-BLG-1119.
The description is the same as for Figure 5.

Table 3

The Best-fit Parameters of Weight Functions

Event
KMT-2017-BLG-0962

KMT-2017-

BLG-1119

Model
Close Wide Resonant

Parameter W(tE) W(ρ*) W(tE) W(ρ*) W(tE) W(ρ*)

η 0.706 0.593 0.672 0.597 0.766 0.780

μ 29.780 0.007 31.103 0.006 2.826 0.030

σ 4.745 0.004 5.452 0.004 0.105 0.003

α 1.683 −3.077 2.022 −3.164 1.285 1.201
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5.2.2. KMT-2017-BLG-1119

For this event, MOA R-band observations exist. Thus, we can
measure the (R− I) color of the source from source fluxes of the
model fits of MOA (FS,MOA) and KMTNet (FS,KMT,pyDIA) light
curves: (R−IKMT)S=−24.684±0.021. Then, we cross-
match stars between the KMTNet and MOA CMDs with the
OGLE-III catalog (Szymański et al. 2011) to derive a relation to
convert (R−IKMT) to ( )- -V I OGLE III. By combining the
measured (R− I) source color and conversion relation, we can
determine the position of the source on the crossmatched CMD
(in OGLE-III magnitude scales): ( )- =-V I I, S,OGLE III

( ) 2.425 0.105, 19.891 0.042 . Then, by adopting the
method of Yoo et al. (2004) and the intrinsic color (1.06; Bensby
et al. 2011) and magnitude (14.581; Nataf et al. 2013) of the red
giant clump, we can measure the dereddened (V− I) source
color: ( ) ( )- =  V I I, 1.060 0.105, 18.162 0.052S,0 . Then,
we determine θ* using the color/surface-brightness relation
(Kervella et al. 2004):

( )q m= 1.093 0.131 as. 3
*

In Figure 7, we present the dereddened KMTNet CMD with

positions of the source and centroid of the red giant clump.

5.3. Bayesian Results

5.3.1. KMT-2017-BLG-0962

For KMT-2017-BLG-0962, we expect the θE constraint
(combined with W(ρ*) and θ*) to have only a weak effect on
the Bayesian analysis because the constraint of W(ρ*) is weak
for this event (see Figure 5). In addition, we have had to
estimate θ* by estimating the source (V− I) using HST
observations of Baade’s window rather than making a direct
measurement. Thus, we conduct Bayesian analyses with and
without the θE constraint. In addition, the posterior distributions

are constructed using Galactic priors with and without stellar
remnants as hosts of the lens system because we cannot rule out
the possibility of stellar remnant hosts. Thus, for the degenerate
2L1S solutions (i.e., close and wide), we conduct four types of
Bayesian analyses. In Figure 8, we present the results of the
Bayesian analyses. In Table 4, we present median values of the
distributions as representative of the lens system with 68% (1σ)

confidence intervals. The Bayesian results both with and
without the θE constraint are consistent considering the
confidence intervals. The results indicate that this event can
be produced by a planetary system consisting of a mid-M-
dwarf host star and a super Jupiter-mass planet orbiting beyond
the snow line.

5.3.2. KMT-2017-BLG-1119

For KMT-2017-BLG-1119, the 2L1S interpretation is
disfavored considering the CFHT measurement of the baseline
object. Although the 2L1S solution is disfavored, we report the
Bayesian results for completeness. In Figure 9, we also present
the probability distributions of the lens properties. Because the
timescale of this event is particularly short, the distributions
with and without stellar remnant hosts show identical results.
Thus, we present one case. In Table 4, we also present median
values of the distributions.
The Bayesian results suggest that the lens system of this

event may be interesting. If the 2L1S solution is correct, the
lens system is most likely to be a sub-Saturn-mass planet with a
mass of ∼0.16MJupiter (∼0.53MSaturn) orbiting a brown-dwarf
host with a mass of ∼0.017Me. Indeed, these kinds of
planetary systems with faint/dark hosts ( M M0.08h ) were
discovered by the microlensing method (e.g., Bennett et al.
2008; Han et al. 2013; Sumi et al. 2016; Shvartzvald et al.
2017; Jung et al. 2018a, 2018b; Miyazaki et al. 2018).
Microlensing is one useful method to search these kinds of

Figure 7. Combined CMD of KMT-2017-BLG-0962 (left) and KMT-2017-BLG-1119 (right), which are corrected for reddening. The green dots show the CMD of
the Galactic bulge observed by the HST (Holtzman et al. 1998). The blue dots show the CMD of KMTNet constructed using pyDIA reductions. The gray dots show
the KMTNet CMD dereddened and converted to the OGLE-III magnitude system. The red and black dots indicate the centroid of the red giant clump and the estimated
source of each event, respectively.

10

The Astronomical Journal, 158:199 (17pp), 2019 November Shin et al.



systems because the method can discover planets regardless of
the brightness of the hosts. However, we note that the 2L1S
interpretation for this event is disfavored. Thus, it is unclear
whether or not this event contains an example of such a
planetary system.

6. Conclusion

We presented the analysis of two microlensing events with
candidate planets. From the Bayesian analysis, we determine

the properties of the planet candidates. For KMT-2017-BLG-

0962, the lens system may consist of a super Jupiter-mass

planet and a mid-M-dwarf host. However, the severe 2L1S/
1L2S degeneracy of this event, which is unresolvable, prevents

claiming this planet discovery with certainty. For KMT-2017-

BLG-1119, the 2L1S interpretation would indicate that the lens

system consists of a sub-Saturn-mass planet and a brown-dwarf

host. However, the CFHT imaging supports the 1L2S

interpretation rather than this potential interesting planetary

Figure 8. Probability distributions of the lens properties for KMT-2017-BLG-0962. The top six panels show the probability distributions of the host mass (ML), the
distance to the lens (DL), the physical Einstein ring radius (rE), and the lens-source relative proper motion (μrel) for the close and wide cases. These distributions are
constructed from the Galactic prior with stellar remnant hosts. The bottom six panels show the probability distributions for the same lens properties, which are
constructed from the Galactic prior without stellar remnant hosts. The solid and dashed vertical lines indicate the median value and 68% confidence interval (1σ
uncertainty) of each property, respectively. The red and pink lines represent close and wide cases, respectively. The distributions in blue indicate the probability
distributions including both the tE and θE constraints considering only luminous hosts. The distributions in green indicate the probability distributions excluding the θE
constraint.
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system. The planetary solution could be tested with the

possibility of conclusively ruling it out by a future measure-

ment of the lens-source relative proper motion.
The 2L1S/1L2S degeneracies described in this work (and

also the degeneracy in Jung et al. 2017b) are far different from

the degeneracy for small, short-duration positive anomalies

shown in Gaudi (1998). The anomalies are of a much longer

duration and affect a significant fraction of the light curves, yet

the degeneracy remains. In addition, the magnitude difference

(ΔI) between the two sources is not very extreme (ΔI<1.8) in
contrast to Gaudi (1998)’s case. These events are similar to the

event recently analyzed in Dominik et al. (2019). These cases

show that the 2L1S/1L2S degeneracy can exist for a wide

range of planetary events and for much less extreme binary-

source systems. Because binary stars are common and this

degeneracy has proven not to be limited to a rare subset of

binaries, the 2L1S/1L2S degeneracy may be a bigger problem

for the discovery of planets than previously thought.
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Appendix A
Two Parameterizations of the 1L2S Interpretation

In Figure 10, we present conceptual geometries of the 1L2S

interpretation for two types of parameterizations. The A-type

parameterization (see the left panel of Figure 10) requires six

parameters: t0,S1, t0,S2, u0,S1, u0,S2, tE, and qflux (Griest & Hu

1992). The first five parameters are directly related to the source

trajectories: t0,S1 and t0,S2 are the time when each source most

closely approaches the reference position (i.e., the position of the

lens), u0,S1 and u0,S2 represent the closest separation between

each source and the reference position at the time of t0,S1 and

t0,S2, respectively, and tE is the Einstein timescale. We use one tE
parameter assuming that the lens-source relative speeds are same

for both sources, i.e., a comoving binary-source system. The last

parameter, =q F Fflux S S2 1
is the flux ratio of the sources. The

role of qflux is to weighting the two 1L1S light curves produced

by the individual sources.
By adopting this parameterization, the position of each

source as a function of time (t) is defined in Cartesian

Table 4

Properties of Planetary System Candidates

Event
KMT-2017-BLG-0962

KMT-

2017-

BLG-1119

Constraints
tE+θE tE Only

tE+θE
Model Close Wide Close Wide Resonant

W/stellar

remnants

Mhost (Me) -
+0.46 0.29
0.34

-
+0.48 0.30
0.34

-
+0.50 0.31
0.34

-
+0.52 0.31
0.34

-
+0.017 0.011
0.041

Mplanet (MJ) -
+5.6 3.7
4.7

-
+5.6 3.6
4.5

-
+6.1 3.8
4.7

-
+6.0 3.7
4.6

-
+0.16 0.10
0.38

DL (kpc) -
+6.4 1.8
1.3

-
+6.4 1.8
1.3

-
+6.2 1.8
1.3

-
+6.2 1.8
1.3

-
+8.2 1.1
1.1

a⊥ (au) -
+1.2 0.5
0.5

-
+4.7 1.9
1.9

-
+1.3 0.5
0.5

-
+5.0 1.9
1.8

-
+0.36 0.06
0.07

asnow (au) -
+1.2 0.8
0.9

-
+1.3 0.8
0.9

-
+1.4 0.8
0.9

-
+1.4 0.8
0.9

-
+0.05 0.03
0.11

μ (mas yr−1
) -

+4.3 1.9
2.4

-
+4.2 1.9
2.4

-
+4.8 2.0
2.4

-
+4.7 2.0
2.4

-
+4.7 0.6
0.6

W/o stellar

remnants

Mhost (Me) -
+0.38 0.24
0.40

-
+0.40 0.25
0.41

-
+0.43 0.26
0.40

-
+0.44 0.27
0.41

Mplanet (MJ) -
+4.7 3.0
5.2

-
+4.7 2.9
5.1

-
+5.2 3.2
5.3

-
+5.1 3.2
5.1

DL (kpc) -
+6.4 1.9
1.3

-
+6.3 1.9
1.3

-
+6.2 1.9
1.3

-
+6.1 1.9
1.4

a⊥ (au) -
+1.1 0.5
0.5

-
+4.3 1.7
2.0

-
+1.2 0.5
0.5

-
+4.7 1.8
2.0

asnow (au) -
+1.0 0.6
1.1

-
+1.1 0.7
1.1

-
+1.2 0.7
1.1

-
+1.2 0.7
1.1

μ (mas yr−1
) -

+4.1 1.9
2.5

-
+4.1 1.8
2.4

-
+4.6 2.0
2.4

-
+4.5 2.0
2.4

Note. For KMT-2017-BLG-1119, the median values with and without stellar

remnant hosts are identical. Thus, we present one case to avoid clutter.

Figure 9. Probability distributions of the lens properties for KMT-2017-BLG-1119. The description is the same as for Figure 8. In this case, the probability
distributions with and without stellar remnant hosts are identical. Thus, we present only one case to avoid clutter.
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coordinates normalized by θE as

[ ( ) ( )] ( )
⎡

⎣
⎢
⎛

⎝
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⎞

⎠
⎟

⎤

⎦
⎥=

-
=X t Y t

t t

t
u i, , ; 1, 2. 4S S

S
S

0,

E

0,i i

i

i

According to the positions of the sources, the magnification of

each source, ( )A tSi , is defined as

( )
( )

( ) ( )

( ) [ ( ) ( )] ( )

=
+

+

= + =

A t
u t

u t u t

u t X t Y t i

2

4

;

; 1, 2. 5

S
S

S S

S S S

2

2

2 2

i

i

i i

i i i

1
2

These magnifications are superposed by weighting the ratio of

source fluxes, =q F Fflux S S2 1
. Then, the final magnification of

the lensing light curve, A(t), is calculated as

( )
( ) ( )

( )=
+
+

A t
A t q A t

q1
. 6

S flux S

flux

1 2

This model light curve in the magnification scale is converted

to the flux scale of each data set for comparison to the

observations using two additional parameters, FS and FB

(similar to those of the 2L1S interpretation). These additional

parameters are determined using the least-square fitting

method.
The merit of this A-type parameterization is that it is possible

to directly guess the initial values of most parameters (except
qflux) from the observed light curve. However, the A-type
parameterization has a disadvantage in that it is difficult to
apply higher-order effects, especially the orbital motion of the
binary-source system.

Thus, we introduce an alternative parameterization, B-type
(see the right panel of Figure 10), which considers the motion
of the barycenter of the binary-source system (Jung et al.
2017b) rather than the motion of each source. To describe the
barycenter motion, it requires three parameters (t0, u0, and tE):
t0 is the time when the barycenter closely approaches to the

reference position, u0 is the closest separation at the time of t0,
and tE is the Einstein timescale. To derive the trajectory of each
source from the barycenter trajectory, three additional para-
meters (dS, qS, and αS) are required to describe the binary-
source system: dS is the projected separation between the
sources, =q M MS S S2 1

is a mass ratio of the source stars, and
αS is an angle between the axis of the binary-source and the
barycenter trajectory. In addition, there is the last parameter
(qflux) that is identical to that of the A-type parameterization.
By adopting this parameterization, the source positions are

defined as

( )

( )

( )

( )
[ ( ) ( )]

( )

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥


a
a

=


=
-

=

X t

Y t

X t r

Y t r
X t Y t

t t

t
u i

cos

sin
; ,

, ; 1, 2 , 7

S

S

S

S

CM S

CM S
CM CM

0

E

0

i

i

i

i

where the rS1 and rS2 are the separations between the barycenter

and each source, which are defined as

( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟=

+
=

+
r d

q

q
r d

q1
;

1

1
. 8S S

S

S

S S

S

1 2

Based on the positions of the source, the final model light curve

is constructed in the same way as the previous parameterization

(see Equations (5) and (6)).
This B-type parameterization has merit when higher-order

effects are considered. In particular, the orbital motion of the
binary source can be easily introduced because the binary-
source positions are defined from the barycenter. To introduce
the source-orbital motion, two additional parameters, dd dtS

and ad dtS , are required. These parameters are the variation
rates of dS and αS to describe a partial orbit of the binary-
source system. The variations are derived as

( ) ( ) ( )a a
a¢ = + - ¢ = + -d d

dd

dt
t t

d

dt
t t; , 9S S

S
ref S S

S
ref

Figure 10. Conceptual geometries of the 1L2S interpretation. The left and right panels present the geometries of the A-type and B-type parameterizations,
respectively. The blue text indicates parameters. The indices i=1 and 2 indicate the first source (S1) and second source (S2), respectively. The FSi and MSi denote the
flux and mass of each source. “CM” denotes the barycenter (i.e., the center of mass) of the binary-source system.
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where tref is a reference time for describing the orbital motion

of sources (we set tref=t0 for the modeling in this work).

Thus, the source trajectories are varied by the source-orbital

motion, which are described by modifying Equations (7) and

(8) as

( )

( )

( )

( )

( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟



a

a

¢

¢
=

 ¢ ¢

¢ ¢

¢ = ¢
+

¢ = ¢
+

X t

Y t

X t r

Y t r

r d
q

q
r d

q

cos

sin

where
1

;
1

1
. 10

S

S

S

S

CM S

CM S

S S
S

S

S S

S

i

i

i

i

1 2

However, the downside of this B-type parameterization is
that it is particularly difficult to guess the initial parameters for
describing the binary-source system (i.e., dS, qS, and αS). Thus,
usually, this parameterization is only adopted for testing
higher-order effects.

Appendix B
Non-detections of Higher-order Effects

B.1. The Annual Microlens Parallax Effect of the 2L1S
Interpretation

The APRX is caused by the orbital motion of Earth
(Gould 1992). Thus, the Einstein timescale (tE) is a direct
indicator for estimating the possibility of detecting the APRX
signal. Empirically, to detect the APRX signal, the event should
last more than∼20 days. For KMT-2017-BLG-0962, tE is about
33 days, which implies that there is a chance to detect the
APRX signal in the light curve. Thus, we try to measure the
APRX by introducing two additional parameters, p NE, and p EE, ,
which indicate the north and east directions of the microlens
parallax vector (pE), respectively. From the model considering
the APRX, we find χ2 improvements, 13.0 and 0.1, for the close
and wide cases, respectively. However, these improvements

originate in fits of systematics in the baseline, which are caused

by an accidental caustic crossing and approach (see Figure 11).

This fact implies that the APRX is not significantly constrained

in these fits. Thus, we cannot extract any useful information

from the APRX model for this event. For KMT-2017-BLG-

1119, tE is only 2.9 days, which implies that the APRX signal is

unlikely to be present in the light curve. However, for

consistency, we also test the APRX model for this event. From

the model, as expected, the APRX signal is not detected.

B.2. The Source-orbital Effect of the 1L2S Interpretation

For the 1L2S interpretation, the binary sources always orbit

each other to conserve their angular momentum. As a result,

this source-orbital motion can affect the light curve if the

microlensing event was caused by the 1L2S. It implies that

once we may find the source-orbital effect on the lensing light

curve, we can obtain a key clue to resolve the 2L1S/1L2S
degeneracy. Therefore, we test the effect by introducing

additional parameters of the simplified source-orbital motion

(see Appendix A, B-type parameterization). The possibility of

the detection of the source-orbital effect depends on the

timescale of the event, which is similar to the APRX effect. As

expected, for KMT-2017-BLG-1119, there is no χ2 improve-

ment considering the very short tE of this event. In contrast, for

KMT-2017-BLG-0962, we find a small χ2 improvement

(Δχ2∼8.7) when the source-orbital effect is considered. We

investigate this improvement using the cumulative χ2 differ-

ence plot. See Figure 12. From the investigation, we find that

the improvement mostly comes from the fitting of the “bump-

like” feature in the baseline (HJD′∼8000). It is unclear

whether this feature is real or due to some systematics in the

baseline of the event. With Δχ2∼8.7 for 2 additional degrees

of freedom, the significance is too low to claim a detection.
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Figure 11. APRX models (2L1S) of KMT-2017-BLG-0962. The top panels show geometries of the APRX models for the close (left) and wide (right) cases with
zoomed-in views of the caustic crossing and approach. The middle panels show the APRX model light curve (solid line) of the close case with a zoomed-in view
where the part of the caustic crossing (left panels). The bottom panels show the APRX model light curve of the wide case. The zoomed-in view (right) shows the light-
curve part where the caustic approach. The bottom panels of each light curve show residuals between models and observations. The color scheme of the observations
is identical to Figure 1.
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