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Abstract

Background: Rice, Oryza sativa L., is the staple food for half the world’s population. By 2030, the production of rice

must increase by at least 25% in order to keep up with global population growth and demand. Accelerated genetic

gains in rice improvement are needed to mitigate the effects of climate change and loss of arable land, as well as

to ensure a stable global food supply.

Findings: We resequenced a core collection of 3,000 rice accessions from 89 countries. All 3,000 genomes had an

average sequencing depth of 14×, with average genome coverages and mapping rates of 94.0% and 92.5%,

respectively. From our sequencing efforts, approximately 18.9 million single nucleotide polymorphisms (SNPs) in rice

were discovered when aligned to the reference genome of the temperate japonica variety, Nipponbare. Phylogenetic

analyses based on SNP data confirmed differentiation of the O. sativa gene pool into 5 varietal groups – indica,

aus/boro, basmati/sadri, tropical japonica and temperate japonica.

Conclusions: Here, we report an international resequencing effort of 3,000 rice genomes. This data serves as a

foundation for large-scale discovery of novel alleles for important rice phenotypes using various bioinformatics and/or

genetic approaches. It also serves to understand the genomic diversity within O. sativa at a higher level of detail. With

the release of the sequencing data, the project calls for the global rice community to take advantage of this data as a

foundation for establishing a global, public rice genetic/genomic database and information platform for advancing rice

breeding technology for future rice improvement.
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Data description
Purpose of data acquisition

For much of the world’s poor, rice (O. sativa L.) is the

cereal that provides the majority of daily calories in their

staple diet. Rice is also known for its tremendous

within-species genetic diversity and varietal group differ-

entiation [1,2]. Rice productivity has more than doubled

in recent decades, resulting primarily from the Green

Revolution and continued breeding efforts since the

1960s. However, in order to meet the demands imposed

by the projected increase in global population, the

world’s rice production has to increase by 25% or more

by 2030 [3]. This increase has to be achieved under less

land, less water and under more severe environmental

stresses due to climate change. Thus, accelerated genetic

gains are needed in the next few decades to improve

yield potential and stability, and grain quality of rice.

This requires more complete knowledge of the genetic

diversity in the O. sativa gene pool, associations of di-

verse alleles with important rice traits, and systematic

exploitation of this rich genetic diversity by integrating

knowledge-based tools into rice improvement using in-

novative breeding strategies [4-6].

To date, a few studies on rice have been undertaken to

discover allelic variants through next generation sequen-

cing (NGS) [7-9]. Unfortunately, these studies have been

unable to provide a complete picture of the total genetic

diversity within the O. sativa gene pool, due to either

the small sample size of sequenced accessions [7], or the

low-coverage sequencing depth of the genomes [8,9].

Here, we report an international effort to extend signifi-

cantly our understanding of the total genetic diversity

within the O. sativa gene pool by re-sequencing 3,000

O. sativa genomes using IIllumina-based NGS. Our
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ultimate goal is to establish, through collective efforts by

the international scientific community, a public rice

database containing genetic and genomic information

suitable for advancing rice breeding technology.

Selection of germplasm

A total of 3,000 germplasm accessions were chosen for

sequencing, including 2,466 accessions from the Inter-

national Rice Genebank Collection (IRGC) at the Inter-

national Rice Research Institute (IRRI), and 534 accessions

from the China National Crop Gene Bank (CNCGB)

in the Institute of Crop Sciences, Chinese Academy of

Agricultural Sciences (CAAS). The 2,466 accessions (in

Additional file 1: Table S1A ) contributed by IRRI represent

a panel that was randomly selected from a core collection

of 12,000 O. sativa accessions that was established by a

semi-stratified selection scheme from more than 101,000

rice accessions in the IRGC; taking into account factors,

such as the country of origin, eco-cultural type and var-

ietal grouping with even coverage of the name space while

limiting potential duplicates from each country, and com-

plemented by specific, nominated entries from IRRI and

the Centre de Coopération Internationale en Recherche

Agronomique pour le Développement (Cirad). The 534

accessions (in Additional file 1: Table S1B) contributed by

CAAS included a mini-core collection of 246 accessions

selected from a core collection of 932 accessions estab-

lished in the same way from the 61,470 O. sativa

accessions preserved in the CNCGB [10], plus 288 acces-

sions selected based on their isozyme diversity [1], and

used as parental lines in the international rice molecular

breeding network [2]. Together, the sampled 3,000 rice ac-

cessions came from 89 different countries/regions, 77.1%

of which are from the centers of rice genetic diversity

-Southeast Asia (33.9%), South Asia (25.6%) and China

(17.6%) (Figure 1).

Genetic stocks derived from the O. sativa accessions

were generated for each of the sampled 3,000 rice acces-

sions by one or more cycles of single-seed descent puri-

fication under field or screen-house conditions. New

accession numbers were assigned to seeds derived from

one or more rounds of multiplication starting from a

single plant of each source accession. As of March 2013,

new accession numbers have been assigned to 1,958 of

the IRRI accessions. Purified seeds of the sequenced ac-

cessions are (or will be available) from the IRGC or

CNCGB as genetic stocks. Information on obtaining

seeds from the IRGC can be found at [11] and from the

CNCGB at [12].

Sequencing

Genomic DNA was prepared from bulk harvested leaves

of a single young plant for each sampled accession by a

modified CTAB method either at IRRI or at CAAS. Gen-

omic DNA samples were then shipped to BGI-Shenzhen

and were used to construct Illumina index libraries

Figure 1 Geographical distribution of the 3,000 sampled rice accessions from 89 countries (see Additional file 1: Tables S1A and S1B).

The numbers in the parentheses after each region are the numbers of the countries in the region.
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following the manufacturer’s protocol. Following quality

control, at least 3 μg genomic DNA of each sample was

randomly fragmented by sonication and size-fractionated

by electrophoresis, and DNA fragments of approximately

500 bp were purified. Purified 500 bp DNA fragments

from each of the 24 accessions were labeled independently

using distinct 6 bp nucleotide multiplex identifiers,

followed by pooling prior to library construction for NGS.

Each sequencing library was sequenced in six or more

lanes on the HiSeq2000 platform and 90 bp paired-end

reads were generated. Subsequently, the reads from each

sample were extracted based on their unique nucleotide

multiplex identifiers as 83 bp reads (90 – 6 – 1, where 1 is

the ligation base “T”). To ensure high quality, raw data

was filtered by deleting reads having adapter contamin-

ation or containing more than 50% low quality bases

(quality value ≤ 5).

Data generation and analyses

Read alignment and variant identification

The clean reads were mapped to the temperate japonica

Nipponbare reference genome – the unified-build re-

lease Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0)

[13], using the BWA software with default parameters

except for “aln -m 10000 -o 1 -e 10 -t 4”. The alignment

results were then merged and indexed as BAM files

[14,15]. SNP calling was based on alignment using the

Genome Analysis Toolkit 2.0-35 (GATK) and Picard

package V1.71 [16]. To minimize the number of mis-

matched bases for SNP and InDel calling, all reads from

each accession were further cleaned by:

(1) deleting the reads that are unmapped to the

reference in the alignment result;

(2) deleting duplicate reads;

(3) conducting alignment by the IndelRealigner package

in GATK; and

(4) recalibrating realignments using the

BaseRecalibrator package in GATK.

SNP and InDel calling for each sample were performed

independently using the UnifiedGenotyper package in

GATK with a minimum phred-scaled confidence thresh-

old of 50, and a minimum phred-scaled confidence

threshold for emitting variants at 10. To ensure the qual-

ity of variant calling, the conditions for every site in a

genome were set at >20 for mapping quality, >50 for vari-

ant quality and >2 for the number of supporting reads for

every base.

SNP and InDel calling at the population level (i.e., for

all sequenced genomes concurrently) was performed

using the UnifiedGenotyper package in the GATK pipe-

line with 50 for the minimum phred-scaled confidence

threshold for variant calling, 30 for the minimum phred-

scaled confidence threshold for variant emitting, >20 for

the mapping quality, MAF >0.001 for every SNP, and >2

sequence depth for genotypes in every sample. Five inde-

pendent, randomly selected sets of 200,000 SNPs with

minimum missing data were then selected for phylogen-

etic analysis.

For each of these five sets, distance matrices using the

p-distances model were calculated, and Neighbor Joining

trees were constructed with 1,000 bootstraps using the

TreeBeST software [17]. Consensus trees were exported

as Newick format and imported into DarWIN v5.0.158

for topology visualization [18]. For each of the five con-

sensus trees, prior information on variety group designa-

tion (based on SSR or isozyme classification) was used

to define assignment to one of the five groups – indica,

aus/boro, basmati/sadri, japonica (tropical or temperate).

Groupings assigned for each of the five trees were com-

pared using a majority rule criterion (i.e., a minimum of

three trees to support the assignment). Those accessions

that failed this test were labeled as intermediate types.

Findings

Using IRGSP-1.0 as the reference, the 3,000 sequenced

genomes had an average depth of ~14×, ranging from ~4×

to greater than 60×, and yielded a combined total of ap-

proximately 17 TB of high quality sequence data. Of the

3,000 entries, 2,322 accessions had >10× sequence depths.

When aligned with IRGSP-1.0 using the BWA software,

the average genome coverage and mapping rate were

94.0% and 92.5%, respectively. BWA alignment followed

by variant calling using GATK identified approximately

18.9 million single nucleotide polymorphisms (SNPs)

(Table 1). The distribution of the identified SNPs across

different chromosomes varies considerably, with chromo-

somes 4, 1 and 11 having the highest numbers of SNPs

and chromosomes 9, 10 and 5 having the lowest. Most

SNPs were detected in intergenic regions and introns,

based on comparison with gene annotations provided by

MSU v7 [13,19]. Only 18.24% of the detected SNPs occur

in exons, of which ~40% are synonymous.

The phylogenetic analyses revealed clear differenti-

ation of the 3,000 accessions into two major groups –

indica and japonica, two small varietal groups – the

aus/boro and basmati/sadri types, plus a small group

(134) of intermediate (admixed) types (Figure 2). The

indica group represented the largest and most diverse

group comprising 1,760 (58.2%) accessions in five major

subgroups of diverse origins. The japonica group con-

tains 843 (27.9%) accessions, which had two well-

differentiated subgroups – 388 temperate japonicas and

455 tropical japonicas. The aus/boro group is composed

of 215 accessions and is more closely related to indica,

while the aromatic basmati/sadri group is more closely
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Table 1 Characteristics of the single nucleotide polymorphisms (SNPs) identified in the 3,000 rice genomes when aligned

to the reference japonica Nipponbare genome IRGSP-1.0

Chrom. Gene mRNA 5’-UTR CDS Intron 3’-UTR Intergenic Total Syn Non-syn Total Non-syn/Syn

Chr1 634,912 630,396 25,880 291,817 286,601 26,098 1,252,989 1,887,901 118,095 173,722 291,817 1.471

Chr2 528,417 524,172 20,087 243,967 238,738 21,380 1,013,475 1,541,892 97,306 146,661 243,967 1.507

Chr3 490,402 487,611 19,899 223,196 224,129 20,387 962,304 1,452,706 88,477 134,719 223,196 1.523

Chr4 730,310 727,473 19,018 388,220 301,071 19,164 1,176,274 1,906,584 160,101 228,115 388,220 1.425

Chr5 489,370 485,848 13,623 257,327 200,307 14,591 867,799 1,357,169 103,723 153,604 257,327 1.481

Chr6 560,506 557,361 16,943 280,933 242,635 16,850 1,023,473 1,583,979 114,625 166,308 280,933 1.451

Chr7 548,266 546,569 16,210 280,994 231,797 17,568 973,670 1,521,936 115,332 165,662 280,994 1.436

Chr8 582,068 580,181 16,396 302,785 244,991 16,009 998,651 1,580,719 124,025 178,759 302,785 1.441

Chr9 436,037 434,440 10,692 222,916 190,025 10,807 763,771 1,199,808 90,299 132,617 222,916 1.469

Chr10 476,710 473,603 11,735 258,013 192,214 11,641 806,940 1,283,650 109,451 148,561 258,013 1.357

Chr11 684,803 681,891 16,642 354,874 291,049 19,326 1,148,735 1,833,538 140,772 214,101 354,874 1.521

Chr12 607,336 603,783 16,549 319,401 251,103 16,730 1,055,044 1,662,380 129,296 190,105 319,401 1.470

ChrUn 19,706 19,706 0 12,615 7,091 0 26,669 46,375 5,819 6,796 12,615 1.168

ChrSy 11,463 11,463 0 7,913 3,550 0 15,043 26,506 3,846 4,067 7,913 1.057

Total 6,800,306 6,764,497 203,674 3,444,971 2,905,301 210,551 12,084,837 18,885,143 1,401,167 2,043,797 3,444,971 1.459

The MSU V7.0 rice gene annotation for 55,986 genes and 66,338 mRNA [13] as a raw gff3 file type was downloaded from the Rice Genome Project Annotation ftp

site [19]. Prior to categorization of SNP types, the raw gff3 file was processed 1) to remove all but the primary mRNA transcript and 2) to select the gene models

with the highest support in cases where there are overlapping gene models. Hence, SNP characteristics are reported here for 55,107 of the 55,986 gene models.

Characteristics of SNPs in pseudogenes or where the reference base is N (unknown or missing) are not reported. Syn = synonymous; Non-syn = non-synonymous.

Figure 2 Classification of 3,000 rice accessions into five distinct varietal groups based on 5 sets of 200,000 random sets from the 18.9

million discovered SNP variants.
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related to japonica and consists of 68 accessions primar-

ily from South Asia.

Availability and requirements
Data availability

The sequencing data of the 3,000 rice genomes project

(3K RGP) is now deposited in the GigaScience database

(GigaDB) and has a citable digital object identifier

(DOI) [20]. The dataset consists of separate directories

for sequences from each of the 3,000 rice genomes.

These directories are named by the DNA_UNIQUE_IDs

given in Additional file 1: Tables S1A and S1B. If the

DNA_UNIQUE_ID contains a space, the space is re-

placed by an underscore. Each directory contains from

12 to 40 Fastq (fq) files of trimmed, filtered reads that

are compressed using GNU zip (gzip, .gz). The dataset

consists of about 15.4 terabytes (Tb) of files. Individual

data files can be downloaded using tools such as File

Transfer Protocol (FTP). In order to obtain the complete

dataset, use of FTP is not possible due to the time re-

quired for file transfer and bandwidth consumed; other

tools will be needed.

Dataset name: The 3,000 rice genomes project data

Operating system: Platform-independent, UNIX/Linux

preferred

License: Creative Commons 0 (CC0) public domain dedi-

cation (https://creativecommons.org/publicdomain/zero/1.0)

Data requirements

After download or acquiring, depending on the task, from 8

Gb (reference-guided alignment and variant calling) to 16 Gb

(de novo genome assembly) or more main memory is needed

and from 16 to 64 Gb or more swap space allocated for each

pipeline; computation will require from 7 hours (alignment

and calling) to 3 days (assembly) per core per pipeline.

Discussion
This 3,000 rice genomes dataset provides an unprece-

dented resource for rice genomic research. With access

to the genome sequences of the 3,000 accessions repre-

senting various varietal types of diverse origins and avail-

ability of additional high-quality rice reference genomes,

further comparisons can be made among the 3,000 ge-

nomes and reference genomes of different rice types.

These analyses are expected to uncover the within-

species diversity and genome-level population structure

of O. sativa in great detail. Thus, we hope that this data

note will be the beginning of a new round of accelerated

discoveries in rice science. Here, we would like to call

for an international effort to analyze and mine the data-

set. The expected information explosion from follow-up

studies of the project will provide a foundation to

revolutionize rice genetics and breeding research.

Ultimately, this could lead to a more thorough under-

standing of the molecular, cellular and physiological ma-

chineries/networks responsible for the growth and

development of rice plants and their responses to vari-

ous abiotic and biotic stresses.

This data note is accompanied by a ‘Commentary’ article,

where the intent and plans for the projected uses of the

3,000 rice genomes dataset are further expanded [21].

Through the public release of this dataset, we encourage the

global science community to analyze the data and to con-

tribute in building a public rice genetic/genomic database

and information platform that will accelerate rice breeding.

Availability of supporting data
The data set supporting the results of this article is avail-

able in the GigaScience GigaDB Database [20]. Informa-

tion on SNP variants will be available on analysis of the

population-level genome diversity of the 3,000 rice ge-

nomes. Raw sequence data is also available from the

SRA at PRJEB6180.
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