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Abs t rac t .  In this paper we consider the estimation problem on independent 
and identically distributed observations from a location parameter family gen- 
erated by a density which is positive and symmetric on a finite interval, with 
a jump and a nonnegative right differential coefficient at the left endpoint. 
It is shown that the maximum probability estimator (MPE) is 3/2th order 
two-sided asymptotically efficient at a point in the sense that it has the most 
concentration probability around the true parameter at the point in the class 
of 3/2th order asymptotically median unbiased (AMU) estimators only when 
the right differential coefficient vanishes at the left endpoint. The second order 
upper bound for the concentration probability of second order AMU estima- 
tors is also given. Further, it is shown that the MPE is second order two-sided 
asymptotically efficient at a point in the above case only. 

Key words and phrases: Higher order two-sided asymptotic efficiency, maxi- 
mum probability estimator, non-regular distributions, asymptotically median 
unbiased estimator, asymptotic concentration probability. 

I .  Introduction 

In regular cases, it is known that  the maximum likelihood estimator (MLE) 
is third order asymptotical ly efficient (e.g. see Pfanzagl and Wefelmeyer (1978), 
Ghosh et al. (1980), Akahira and Takeuchi (1981) and Akahira (1986)). However, 
in non-regular cases, the MLE is not asymptotical ly efficient. The maximum 
probabili ty est imator (MPE) by Weiss and Wolfowitz (1967) is asymptotically 
equivalent to the maximum likelihood est imator in regular cases, but is not so 
in non-regular cases. In a t runcated normal case, it was shown by Akahira and 
Takeuchi (1979, 1981) tha t  the MPE is not asymptotical ly efficient in some sense. 
When considering the MPE,  it should be noted tha t  it depends on an interval 
( - t ,  t) determined in advance. In higher order asymptot ics  of non-regular cases, 
higher order asymptotical ly efficient est imator  may not  generally exist. In fact, it 
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is shown in Akahira (1988a) that the generalized Bayes estimator is not generally 
second order asymptotically efficient in non-regular cases. In such cases, it seems 
to be meaningful to consider the higher order asymptotic efficiency of an estimator 
at a certain point and then the MPE is one of the candidates. 

In this paper, for a family of non-regular distributions, it is shown that the 
MPE is 3/2th order two-sided asymptotically efficient at a point in the sense that 
its asymptotic concentration probability (ACP) around the true parameter attains 
the 3/2th order upper bound for the ACP of 3/2th order AMU estimators at the 
point only when the nonnegative (nonpositive) right (left) differential coefficient 
at the left (right) endpoint vanishes. The second order upper bound for the ACP 
of second order AMU estimators is also obtained. Further, it is shown that the 
MPE is second order two-sided asymptotically efficient at the point among second 
order AMU estimators in the same case. 

2. Preliminaries 

Let X be an abstract sample space whose generic point is denoted by x, B a a- 
field of subsets of 2d and {Po: 0 E O} a set of probability measures on B, where O is 
called a parameter space. We assume that O is an open subset of Euclidean 1-space 
R 1 . We denote by (X (n), B (n)) the n-fold direct products of (X, B). Consider n- 
fold product measures Pg of Po. An estimator of 0 is defined to be a sequence 

{0n} of B(n)-measurable functions 0n on X (n) into O. For simplicity we denote 

{0n} by 0n. 
For an increasing sequence of positive numbers {c,~} (Cn tending to infinity) 

an estimator 0n is called c~-consistent if for any ~ E O there exists a sufficiently 
small positive number 6 such that 

lim lim sup Pg{cnlOn-O I>_L}=O 
L--*oc n----~o~ O:[O_~[<5 

(Akahira (1975)). 

For any k > 1, a cn-consistent estimator 0n is said to be k-th order asymptotically 
median unbiased (k-th order AMU for short) if for any ~ C O there exists a positive 
number ~ such that 

c k - ,  p nsO < e} - (1 /2) l  = o, lim sup n 0 l n _ 
n---'~ O:[O_~l<,5 

c k - 1  p,'~sO > 0} - (1/2)1 : 0. lim sup n 0 t n _ 
n - - ' ~  O:]O_~[<5 

We denote by Ak a class of the all k-th order AMU estimators of 0. 
A k-th order AMU estimator 0* is called k-th order two-sided asymptotically 

efficient at a point t if for any k-th order AMU estimator 0" 

k - 1  n ^* lim % [P~ {c~lO~-Ol <_t}-  Pg{c~lO~-Ol _< t}] _> O. 
n - - - ~  O ~  

This means that the estimator 0* has the most concentration probability at a 
point or the maximal probability in a fixed symmetric interval in the class Ak. 
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3. Assumptions and maximum probability estimator 

Let X = O = R 1 , and we suppose that,  for each 0 E O, Po is absolutely contin- 
uous with respect to the  Lebesgue measure and consti tutes a location parameter  
family. Then  we denote the density dPe/dx by g(x, 8) and g(x, 8) = f (x  - 8). Let 
X1, X2,.  •. ,  X ~ , . . .  be a sequence of independently and identically distr ibuted real 
random variables with the density f ( x  - O). We assume the following conditions: 

(A.1) f (x)  > 0 for a < x < b, 

f ( x ) = O  for x_<a ,  x_>b, 

where both  a and b axe finite. 
(A.2) f (x)  is twice continuously differentiable in the open interval (a, b) and 

lim f ( x ) =  lim f ( x ) = c ,  
x----*a-kO x-"*b-O 

lira f ' ( x ) = -  lim f ' ( x ) = h ,  
x---*b-O x---*a+O 

where c is a positive constant  and h is a nonpositive constant.  
(A.3) f (x)  is symmetr ic  around z = (a + b)/2. 

b / ,  

(A.4) 0 < I = ],~ { f ' (x)}2/ f (x)dx < (X3. 

For example, the following densities, fl(x), f2(x), f3(x) and f4(x) satisfy the 
conditions (A.1) to (A.4): 

ClXa-l(1 - -  X) a-1 q- C] for 0 < x < 1, 
f l  (x) = 0 otherwise, 

where 2 < a < oc and Cl and c~ are certain positive constants. 

c2 exp{(1 - x2) ~} for Ixl < 1, 
f2(x) --- 0 otherwise, 

where 1 < a < co and c2 is some constant. 

f 3 ( x ) - -  { Cao e x p ( - x 2 / 2 )  otherwise,f°r Ixl < 1, 

where c3 is some constant.  

f4(x) = { c40 e xp ( - x4  + 2ax2) otherwise,f°r Ix I < 1, 

where 0 < a < 1 and c4 is some constant.  Then  it follows that ,  for each i = 
1, 2, 3, 4, the value of h in the condition (A.2) on the density f~(x) is given by 0, 
0~ -c3  e-1/2 and -4e4(1 - a)e - l+2a,  respectively. In the regular case, the amount  
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like I in (A.4) is called the Fisher information on f .  However, I in (A.4) represents 
only the information on the inner part (a, b) of the support of f ,  and so it does 
not involve that on the endpoints a and b. Hence I in (A.4) is different from the 
amount of Fisher information in the regular case. Further, in a non-regular case 
it does not necessarily hold that 

E o  [{ ( 0 / 0 0 )  log f ( X  - O ) } 2 X ( a , b ) ( X  - 0)] 

= - E [ { ( 0 2 / O 0 2 )  log f ( X  - O ) } x ( a , b ) ( X  --  0)], 

where X A ( X )  denotes the indicator of a set A. For example, in the case when the 
density is given by fa(x), it is easily seen that the fact does not hold. 

From the above conditions (A.1), (a.2) and (a.4) we have for the true param- 
eter 00, 

(a.1) EOo [{(O:/0O 2) log f ( X  - 00)}x(o,b)(X - Oo)] < 0. 

Indeed, it follows from the conditions that 

E o  o [{(S2/OO 2) log f ( X  - Oo)}X(a,b)(X - Oo)] 

= Eoo [{ ( f o o ( X  - O o ) / f ( X  - Oo)) 

- ( f o ( X  - O o ) / f ( X  - O o ) ) 2 } X ( a , b ) ( X  - -  O0)] 

= EOo[{ ( y ' ( x  - O o ) / f ( x  - Oo)) 

- ( f ' ( X  - O o ) / f ( X  - O o ) ) 2 } X ( a , b ) ( X  - O0)] 

= f " ( x ) d x  - { f ' ( x ) } 2 / f ( x ) d x  
a 

= f ' ( b -  O) - f ' ( a  + O) - I 

= 2 h - I < 0 ,  

where f e ( x  - 0)  = ( O / 0 8 ) f ( x  - e )  and f e o ( x  - O) = ( 0 2 / O 0 2 ) f ( x  - 8 ) .  

In the situation, it is known that the order cn of consistency is equal to n. It 
is easily seen that 

I]f(x•-e)>o for e_<0<a, 
i=1 

~ f ( x i  - 0) = 0 otherwise, 
i=1 

where 0_ = m a x l < i < n X  i - b and 0 = minl<~<~ x~ - a. We put S = n(~_ + 0)/2 and 
T = n(0 - 8_)/2. Let R = ( - t ,  t) for any fixed t > 0. The maximum probability 
estimator (MPE) 0~p of 0 at the point t is defined as that value of d maximizing 

~d 
d + ( t l n )  n 

] [  f(x~ - e)dO 
T-~ 
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^ 

(Weiss and Wolfowitz (1967, 1974)). Then, in this case, the MPE ~hP is shown 
to be 

(3.2) I 
S 

n ~  - t 

nOh  = 
nO_+ t 

nOo 

for T ~ t, 

for T > t, Oo >_ -0 -  ( t /n) ,  

for T > t, Oo <_ ~_ + ( t /n) ,  

for 0_ + ( t /n)  < Oo < 0 - ( t /n) ,  

where t~o is the maximum likelihood estimator whose local uniqueness in the in- 
terval (_0, 0) is guaranteed from (3.1). 

4. The 3/2th order two-sided asymptotic efficiency of the MPE 

In this section, it will be shown that the MPE is 3/2th order two-sided asymp- 
totically efficient at the point t only when h = 0. First, the 3/2th order upper 
bound for the asymptotic concentration probability (ACP for short) of 0n (E A3/2) 

around the true parameter Oo, i.e., P~o{nlOn - Ool <_ t} in the class A3/2 of the all 
3/2th order AMU estimators of 00, up to the order n -1/2, is established in Akahira 
(198sa) .  

THEOREM 4.1. Assume that the conditions (A.1) to (A.4) hold. Then for 

any On E A3/2, any 0 E 0 and any z > 0 

P~{nlOn - 91 ~ z} ~ 1 - e -2c~ + ~ ) z e  -2cz + o(1/v/-n). 

The proof is omitted since the theorem is given as Theorem 4.1 in Akahira 
(1988a). 

Next we shall obtain the ACP P~{n lOtp  - 01 <_ z} of the MPE 0~p around 
0 up to the order n -1/2. 

THEOREM 4.2. Assume that the conditions (A.1) to (A.4) hold. Then the 
^ 

A C P  of the M P E  O~a P is given by 

1 - e - 2 ~  + ( 4 h z / v / ~ - - ~ ) e  -2~t 

+ ~ { z  - (c/2)(z - t)2}e -2ct + o(1/v/-~ ) 

P3{nl  p - e[ _< z}  = 
for 

1 - e  -~(t+~) + (2h/2v/~-I-n)(t + z)e -c(t+z) 

+ o(1/v ) 

z<_t,  

f o r  z > t. 
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^ 

Further, i f  h = O, then the M P E  9~p is 3 /2 th  order two-sided asymptotically 
^ 

efficient at z = t in the class A3/2 in the sense that the A C P  of the M P E  9~p 

attains the bound given by Theorem 4.1 at z = t up to the order n -1/2 in the class 

A3/2. 

^ 

Remark  4.1. From Theorem 4.2 it is seen tha t  the M P E  9~p has the most 
ACP at the point t up to the order n -1/2 in the class A3/2 only when h = 0. 
For example, if the density is given by f l (x )  or f2(x) in Section 3, then it holds 
tha t  h -- 0. If h < 0, then it follows from Theorems 4.1 and 4.2 tha t  the MPE 

^ 

#~VIP does not a t ta in  the bound at z = t, tha t  is, it is not 3 /2 th  order two-sided 
asymptotically efficient at the point t. 

Remark 4.2. It is noted that  the order cn of consistency is equal to n, but 
there exists a term of order n -1/2 in the ACP of estimators in the class A3/2. 
Hence, in the non-regular case, the order k of asymptot ic  efficiency is equal to 
a fraction 3/2. This is quite different from the fact tha t  the order k takes only 
positive integer in regular cases. 

PROOF. 
equal to 0. Prom (3.2) it follows that  

(4.1) 

Wi thout  loss of generality, we assume tha t  the true parameter  O0 is 

P0{nlD~pl ___ z} --- P0{ISI ~ z, T 

+ Po{In-~ - tl 

-~ Po{Jno_ ~- tl 

(i) Pl: Since the asymptot ic  density of 

fn (S ,  T)  = { ~c2e-2cT + o ( 1 / n )  

it follows tha t  for z < t 

_< t} 

_ < z , T > t ,  ng0 > _ n g - t }  

< z , T > t ,  ng0 < n 0 _ + t }  

+ P0{nle01 _< z, no- + t < ~0o < n9 - t} 

= P l  + P2 + P3 + P4 (say). 

(S, T) is given by 

for - T  < S < T, T > 0, 
otherwise, 

pl = 2c2e-2CT d S d T  + 2c2e-2CT d S d T  + O(1 /n )  
T z 

= -- 2cze -2ct -- e -2cz + 1 + O(1 /n ) ,  

and for z > t /otf Pl = 2c2e-2CT d S d T  + O(1 /n )  
T 

= - 2cte -2ct - e -2ct + 1 + O(1 /n ) .  

(ii) P2: Put t ing  u ---- n9 and v = no-, we have the asymptot ic  density of (u, v) 

c2e -~(~-v) + O(1 /n )  for u > 0, v < 0, 
gn(U, v)  

( 0 otherwise. 
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~t 
We also put Z1 = - (1 /v~)  ~ l(1)(Xi), where l(1)(x) = (d/dx)l(x) with l(x) = 

i=1 
log f (x )  for a < x < b. Then the asymptotic conditional cumulants of Z1 given _0 
and 0 on the set {0__, 0 [ u - v > 2t}, up to the third, are given by 

Eo(Z1 [ 0_, -0) = - h(nO_ + n-O)/v~ + Op ( 1 / n v ~ ) ,  

Y0(Z1 ] ~_, O) -- I + Op(1/n), 

t~3,0(Z 1 [ 0__, 0) = O p ( 1 / r t ) ,  

hence the Edgeworth expansion of the conditional distribution of Z1 given _0 and 
on the set is obtained by 

where ~(x) = fx_co ¢(t)dt with ¢(t) = ( 1 / v / ~ )  e -t2/2. From (4.2) it follows that 

the conditional probability of the event {n00 _> u - t} given 0_ and 0 on the set 
{_8, E I u - v > 2t} is given by 

po{nOo >_ ~ - t l e_, ~} = Po {Zl _> I ( ~ -  t ) / v ~ l O _ ,  ~} 

= (1/2)- ~ ( ~ -  t) 
- h(u + v ) / ~  + o(1/v~). 

Hence we have for z < t 

P2 = Po{lU - tl <_ z, ( u -  v)/2 > t, nOo >_ u -  t} 

J t - - z  ~ - -co  

+ o ( i / ~ )  

+ o ( 1 / v ~ ) ,  

and also for z > t 

(/?F P2 = -{- c2 e -c(u-v) 
a --c~ J 2 t  J - - o c /  

{ (1/2) - ~ ( u -  t ) -  h(u + v)/2x/~-~In} dvdu + o(1/v/-n) 

_~ C t e  - 2 c t  na 2hte-2Ct / 2v/-~In 

+ { (1/2) + ~ ( t -  (1/c))} (e - 2 a -  e -c(t+~)) 

{ ~ + (h /  2vr~-fnrIn) } {(t +z )e  -c(t+z) - 2te -act } + o(1/x/n). + 
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(iii) P3: From the condition (A.3) and (3.2) it follows that 

p3 = go{InO + tl < z, T > t, nO0 <_ n O + t }  

= P o { I n O -  t I << z, r > t, nO0 >_ n O -  t}  = P2, 

whose value is obtained in ease (ii). 
(iv) P4: In this case we have 

=// 
v < u - - 2 t  
v < : O < u  

= P o { - z  < nOo < z, v + t < nOo < u - t }  

= P0{max(-z,  v + t) _< n00 < min(z, u - t)} 

Po {max(-z ,  v + t) < v Z n Z l l I  <_ rain(z, u - t) I _0, 0} 

(4.3) P4 

=N 
v < u - - 2 t  
v < O < u  

N 
v < u - - 2 t  
v~(O<,  u 

• c2e-~(u-V)dudv  + O ( 1 / n )  

P o { ( I I v ~ ) m a x ( - z  , v + t) < Z1 

_< ( S l ~ )  rain(z,  u - t) 1-0, 0 }  
.c2e-~(u-V)dudv + O ( 1 / n )  

[ ~ { m i n ( z ,  u - t ) -  max( -z ,  v + t)}] 

• c 2 e - ~ ( u - ' ) d u d v  + O ( 1 / n ) .  

Then we obtain for z < t 

i i  {min(z, u - t)}c2 e-C(U-~)dudv 
u < u - - 2 t  
u < O ~ u  

and for z > t 

// 
v ~ u - - 2 t  
v < 0 < u  

i z + t  l u - - 2 t  
= (u - t ) e2e-~(~-V)dvdu  

J O ~ --oz 

(L:' l? f/1 + zc2e-~(~-V)dvdu  
+t J - ~  t oe 

= [z - {c(z  - t)212}]e -2ct, 

{min(z, u - t ) } c2 e -¢( ~ - V ) dudv  

_ f +t LI 

= te-2Ct _ (1/c)(e-~(~+t) - e - 2 ~ ) .  
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We also have for z _< t 

f f  tmax(-z, v + t)}c2e-~(~-V)dudv 
v < u - - 2 t  
v < O < u  

= (v + t)c2e-4U-V)dudv 
t - z  +2t  

- /v2 + + ~ ( - z )  e2e -4~-v )dudv  

= ( c / 2 ) ( t  - z ) 2 e  - ~ t  - z e  - ~ ,  

and for z > t 

f f  tm x(-z, v + t )}c2e-4~-V)dudv  
v < u - - 2 t  
v < O < u  

+ (--z)c2e -c(u-v) dudv 
o o  

= - {t + (1/c)}e -2~t + (1/e)e-4t+z) .  

Prom (4.3) it follows tha t  

(4.4) 

{ ~ { z  - ( e /2 ) ( z  - t)~}e - 2 ~  for 

P 4 =  ~ { t e - 2 C t - - ( 1 / c ) ( e - C ( z + t ) - - e - 2 C t ) }  for 

From (4.1) and cases (i) to (iv) we have 

Pg{n]O~p] < z} 

1 -  e-2~z + ( 4hz / v / - ~ - ~ )  e -2~t 

+ ~ { z  - (c/2)(z  - t)2}e -2~t + o ( 1 / v ~  ) 

for 

1 - e  -4t+z)  + ( 2 h / 2 x / ~ - ~ ) ( t  + z)e -c(t+z) 

+ ~ z e  -c(t+z) + o ( i / v ~ )  

z<_t ,  

for z > t. 

z<_t ,  

z > t .  

If  h = 0 and z = t, then 

Po{nlO~p I _< t} = 1 - e -2ct + ~ t e  -2ct + o(1/v/-n), 
^ 

hence it follows tha t  the ACP of the MPE ORe coincides with the bound given by 
Theorem 4.1 at point t; tha t  is, the MPE is 3/2th order two-sided asymptotical ly 
efficient at z = t in class A3/2. Thus we complete the proof. 
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5. The second order two-sided asymptotic efficiency of the MPE 

In the previous section the ACP of the MPE is obtained up to the order n -1/2, 
and it is shown that the MPE attains the upper bound for the ACP of/}, ( •  A3/2) 
at point t only when h = 0. In this section, we shall consider the above up to the 
second order, i.e. order n - t .  First, in a similar way as in Akahira (1988a) we shall 
obtain the second order upper bound for the ACP of t}n (C A2) around the true 

parameter 00, i.e. P~o{nI#n -0o] 5 z} up to order n -1 in class A2. In order to do 
so, it is enough to get an upper bound for 

(5.1) P~o-~-,  {°~ <- 0 4  - P;:+,~-, { £  < 00} 

in class A2, up to order n-1, since 0n is a second order AMU estimator. In a way 
similar to the fundamental lemma of Neyman and Pearson, it is shown in Akahira 
and Wakeuchi ((1981), p. 76) that the/)* maximizing (5.1) is given by 

(s.2) Cn( . ) =  
0 

where Xn : ( X l , ' ' ' ,  Xn).  

n 

for n f ( x ~ - O o + t n  -1) > f ( x ~ - O o - t n - 1 ) ,  
i=1 i= I  

n n 

for r l  f ( x i - O o +  tn-1) < l-I  f ( x i - O o - t n - 1 ) ,  
i=1 i=1 

Using (5.2) we have the following result. 

THEOREM 5.1. Assume that the conditions (A.1) to (A.4) hold. Then for 
any On E A:, any O • O and any z > O 

P ~ { n l # .  - 0l _< z} 
< 1 - ~ - ~  + 2v/Ky((~n)ze - ~  + ( 2 / n ) ( c  ~ - h ) z~e  - ~  + o (1 /~ ) .  

Remark 5.1. From Theorem 5.1 it is seen that the second order upper bound 
is affected by the endpoint a or b of the support (a, b) of the density f (x )  through 
c 2 - h = f2(a + O) + f ' (a  + O) = f2(b - O) - f '(b - 0) and the inner points of the 
interval through I. 

PROOF. We p u t A = { ~ n  1 0 - < e 0 - z n  - x , ~ < e 0 + z n - 1 } , B = { ~ n  I 
0_ > 00 - zn -1, -0 > 00 + zn-1},  C = {xn ] 0- < 00 - zn -1, ~ > Oo + zn-1},  
D = {xn ] (1/v/-n)Z1 <_ 00} and D' = {xn ] (1/v~)Zx > 00}. From (5.2) we have 

f 1 for ~ • AU(CnD), 
¢*(~) 

0 for Yc~ • Bu(CnDI).  

Then we obtain for any/}n • A2 

(5.3) ~ ~ _Oo} n 
- P~o+zn-~ {On < 0o} P~o_zn-,{Sn < 

n ~ n <- Go-z.-1  (¢~) - Eoo+z~-~ (G) 
--~ ~no_zn_ l  (A) - Go+zn_~ (A) + P~o_zn_l (CnD) - P~'~+zn-~ (CnD). 
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Putt ing U = n(O - 0o) and V ---- n(_O - 0o), we have, as the joint density of (U, V), 

{(n - 1) ln}{F(b  + (v /n))  - F(a  + (u ln) )}  n-2 

gn(u, v) = • f ( a  + (u /n ) ) f (b  + (v/n))  for u > O, v < O, 

0 otherwise, 

where F(x )  = fxc¢ f ( t )d t ,  hence, by its expansion, 

c2¢-¢(u-v) [1 + ( l / n ) { - 1  + 2c(u - v) + (h/4)( (u  + v) 2 + (u - v) 2) 

- ( c 2 / 2 ) ( u  - v )  2 - ( h / c ) ( u  - v)}] + o ( 1 / n )  
g~(u, v) = 

for u < 0 ,  v > 0 ,  

0 otherwise. 

Since, from the expansion of gn(u, v), the asymptotic density of (S, T), up to the 
order o(1/n),  is given by 

2c2e-2cT[1 + ( l /n){--1 + 4cT + h(T  2 + S 2) 

A(s, T) 

0 

it follows that 

- 2c~T 2 - (2h/c)T}] + o ( l ln )  

for 

otherwise, 

- T < S < T ,  O < T ,  

(5.4) P'~o_~n-l(A) = P~o-~n-~{O < 00 - zn -1, -~ < O0 ~- ZTt -1} 

= P~o_~n-~ { n ( 0 -  (00 - zn-1)) < 0, n ( 0 -  (00 - zn-1))  < 2z} 

= P~{nO_ < 0, n0 < 2z} 

= P ~ { S -  T < O, S + T  < 2z} 

= 1 - e -2c"  + ( 2 1 n ) ( £  - h ) z 2 e  -2~:  + o ( l l n ) .  

Similarly we have 

(5.5) P~o+~- '  (A) = o( l /n) .  

In a way similar to the proof of Theorem 4.2, it follows that the conditional 
probability of the event { Z 1 / v ~  <_ 00} given S and T on the set C, up to the 
order n - 1  is given by 

P~oTzn-,{Zllv~ < Oo I s, T} = (1/2) + (2hS + I z ) / v / ~ - ~  + o(l/n), 
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(5.6) 
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f 
P~o~=zn-l(CnD) = . / c : P ~ o T ~ - x { Z , / v ~  <_ Oo IS,  T } f n ( S ,  T ) d S d T  

= (1/2)e -2~z + ( 1 / 2 ) V / ~ Q r n ) z e  - 2 ~  

+ (1/n)[{c + (h/2c)}z  - {c 2 - (h/2)}z2]e -2cz 

+ o(1/n), 

where the signs + and - should be read consistently. From (5.3) to (5.6) we have 

P~o{nl0n - 00l < z} 

<_ 1 - e -2cz + ~ ) z e  -2~z + (2/n)(c  2 - h)z2e - 2 ~  + o(1/n). 

This completes the proof. 

Next, we consider the second order two-sided asymptot ic  efficiency of the 
MPE. 

THEOREM 5.2. Assume that the conditions (A.1) to (A.4) hold. I f  h = O, 
^ 

then the A C P  of the M P E  Otp is given by 

P~ {nlO~p - O[ <_ z} 

1 - c - 2 ~  + ~ { z -  (c/2)(z - t)2}e -2~t 

+ (2c2/n)t2e -2ct + o(1/n) f o r  z <_ t, 

1 - e -~(t+~) + 2 X / ~ n ) z e  -~(t+~) 

+ (1/n)[2e2t2e -2ct + {(c2/2)(t + z) 2 

+ (2c 2 - 3c)(t + z) /2  + c - (3/2)}e -c(t+z) 

- { 2 c 2 t  2 + (2c 2 - 3c)t + c - (3/2)}e -2ct] + o(1/n) 

f o r  z > t, 

^ 

and so the M P E  O~p is second order two-sided asymptotically efficient at z = t in 
the class A2. 

The proof is similar to tha t  of Theorem 4.2. 

OUTLINE OF THE PROOF. Without  loss of generality, we assume tha t  0 is 
equal to 0. We also have (4.1) in the proof of Theorem 4.2. It is noted tha t  the 
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asymptotic density of (U, V), up to the order o(1/n), is given by 
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(5.7) f~(~, ~)= 

c2e-e(u-~)[1 + ( l / n ) { - 1  + 2c(u - v) 

- (c2/2)(u  - v)2}] + o(1 /n)  

for  v < 0 < u ,  

o t h e r w i s e ,  

and  the  a s y m p t o t i c  cond i t iona l  p robab i l i ty  of the  event {Z1/v/I (_ a} given 0 and  

is given by  

(5.8) P ~ { Z l / % / I  ~ a I ~--, -0} -~ ¢~(a) -[- O(1 /n ) .  

T h e n  pi (i -- 1, 2, 3, 4) def ined in (4.1) are  given as follows. 

px{ 1 - e -2~z - 2cze -2~t + ( z /n ) {4c2 t ( c t  - 1)e T M  + 2ceze -2c~ } + o(1 /n)  

for z <_ t, 

1 - e -2ct - 2cte -2~t + (2/n)c2t2(2ct  - 1)e -2~t for z > t. 

P2 = P3 = 

cze -2ct + (2 /n)c2tz (1  - ct)e -2ct + o(1 /n )  for z _< t, 

~t~-~c~ + (1/2)(~-~o~ _ e-c(~+~)) 

- V / I / ( 2 r r n ) { ( t  + (1 /c ) )e  -2ct - (z + (1 /c ) )e  -c(t+z) } 

+(1/n)[2c2t2(1 - ct)e -2~t + { (c~/4) ( t  + z) 2 

+ ((c2/2)  - (3c /4 ) ) ( t  + z) + (c /2)  - (3 /4 )}e  -~(t+z) 

- {c2t 2 + (c 2 - (3c /2) ) t  + (c /2)  - (3 /4 ) }e  -2ct] 

+ o ( 1 / n )  for z > t. 

~ { z  - (c /2) (z  - t)2}e -2ct + o(1 /n)  
P4 / ~ { ( t  + (1/e))~ -2c~ - (1/c)~-c(t+z)}  + o(1 /~)  

for z < t, 

for z > t. 
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Hence, by (4.1) 

P 0 ~ { n l ~ p l  _< z} = p a  + p 2  + p z  + p 4  

1 - e -2cz + ~ { Z  -- (C/2)(Z -- t)2}e -2et 

+(2c2/n)t2e -ect + o(1/n) for z _< t, 

1 e -c(t+z) + ~ z e  -c(t+z) 

= +(1/n)[2c2t2e -2ct ÷ { (c2/2) ( t  + z) 2 

+ (2e 2 - 3c)(t + z ) / 2  + e - (3/2)}e  -c(t+z) 

- {2c2t 2 + (2c 2 - 3c)t + c - (3/2)}e -2ct] 

+ o(1 / n )  for z > t. 

If z = t, then 

P g { n l 0 h p I  _< t} = 1 - e -2ct + ~ t e  -2ct + (2c2/n)t% -2ct + o(1/n), 
^ 

hence it follows tha t  the ACP of the M P E  ~ p  at point  t coincides with the bound 
given in Theorem 5.1; tha t  is, the MPE is second order two-sided asymptot ical ly  

efficient at z = t in class A2. Thus  we complete the proof. 

Remark  5.2. In the above discussion we assume tha t  I > 0 in the condit ion 
(A.4). If I = 0, the density f ( x )  coincides with a uniform density on the interval 
(a, b). Then  it is shown in Akahira (1988a, 1988b) tha t  the generalized Bayes 
est imator  is 3 /2 th  and second order asymptot ical ly  efficient. 
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