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The 3–fold vertex via stable pairs

RAHUL PANDHARIPANDE

RICHARD P THOMAS

The theory of stable pairs in the derived category yields an enumerative geometry of
curves in 3–folds. We evaluate the equivariant vertex for stable pairs on toric 3–folds
in terms of weighted box counting. In the toric Calabi–Yau case, the result simplifies
to a new form of pure box counting. The conjectural equivalence with the DT vertex
predicts remarkable identities.

The equivariant vertex governs primary insertions in the theory of stable pairs for
toric varieties. We consider also the descendent vertex and conjecture the complete
rationality of the descendent theory for stable pairs.

14N35; 14M25, 14D20, 14J30

0 Introduction

0.1 Overview

Let X be a nonsingular 3–fold, and let

ˇ 2H2.X;Z/

be a nonzero class. We are interested here in the moduli space of stable pairs

ŒOX
s
! F � 2 Pn.X; ˇ/

where F is a pure sheaf supported on a Cohen–Macaulay subcurve of X , s is a
morphism with 0–dimensional cokernel and

�.F /D n; ŒF �D ˇ:

The space Pn.X; ˇ/ carries a virtual fundamental class obtained from the deformation
theory of complexes in the derived category; see our preprint [14]. A review can be
found in Section 1.

If X is toric, we may calculate the stable pairs invariants by localization with respect to
the torus action as in Graber and Pandharipande [4]. The outcome is expressed in terms
of the associated polyhedron �.X /. The edge contributions are related to partition
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sums. The vertex contributions, related to box counting, are the most interesting aspect
of the geometry.

We calculate the edge and vertex contributions for toric X in terms of weighted partition
and box counts. In case X is toric Calabi–Yau, the formulas simplify to pure box
counting. The subject is related to dualities in string theory, wall-crossing formulae in
the derived category, commutative algebra and the combinatorics of 3–dimensional
partitions.

0.2 Toric geometry

Let X be a nonsingular toric 3–fold acted upon by a 3–dimensional complex torus T.
Let �.X / denote the Newton polyhedron of X determined by a polarization. The
polyhedron �.X / is the image of X under the moment map.

The vertices of the polyhedron �.X / correspond to fixed points

X T
D fX˛g

of the T–action. For each X˛ , there is a canonical, T–invariant, affine open chart,

U˛ ŠC3;

centered at X˛ . We may choose coordinates ti on T and coordinates xi on U˛ for
which the T–action on U˛ is determined by

(0-1) .t1; t2; t3/ �xi D tixi :

The edges of �.X / correspond to the T–invariant lines of X . More precisely, if

C˛ˇ �X

is a T–invariant line incident to the fixed points X˛ and Xˇ , then C˛ˇ corresponds to
an edge of �.X / joining the vertices X˛ and Xˇ .

The geometry of �.X / near the edge is determined by the normal bundle NC˛ˇ=X . If

NC˛ˇ=X DO.m˛ˇ/˚O.m0˛ˇ/

then the transition functions between the charts U˛ and Uˇ can be taken to be of the
form

(0-2) .x1;x2;x3/ 7! .x�1
1 ;x2 x

�m˛ˇ
1

;x3 x
�m0

˛ˇ

1
/ :

The curve C˛ˇ is then defined in these coordinates by x2Dx3D0. If X is Calabi–Yau,
then degree of NC˛ˇ=X is �2 and

m˛ˇ Dm0˛ˇ mod 2:
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0.3 Localization

The T–action on X canonically induces a T–action on the moduli space of pairs
Pn.X; ˇ/. Our first result is a determination of the T–fixed loci of Pn.X; ˇ/. Let

Q� Pn.X; ˇ/
T

be a connected T–fixed locus.

Theorem 1 Q is a product of P1’s.

The 0–th product of P1 is a point. Indeed, if X is a local toric surface, the T–fixed
points of Pn.X; ˇ/ are isolated. Positive dimensional fixed loci occur only in the fully
3–dimensional setting. Theorem 1 is proven by an explicit characterization of the
T–fixed points in terms of box configurations in Section 2 and Section 3.

Let ŒOX ! F � 2 Q be a stable pair, and let C � X be the Cohen–Macaulay curve
obtained from the (scheme-theoretic) support of F . Certainly C has set-theoretic
support on the edge curves [

˛;ˇ

C˛ˇ �X:

Since C must be T–invariant, C determines a partition �˛ˇ at each edge. The size
j�˛ˇj of the partition is simply the multiplicity of C along C˛ˇ . The partition �˛ˇ is
the same for each stable pair in Q. All the moduli in Q are obtained from the vertices.

A complete determination of the T–equivariant contribution of the T–fixed locus Q to
the stable pairs theory of X is the main calculation of our paper. The result is easiest
to state in the toric Calabi–Yau case for the basic stable pairs invariant

(0-3) Pn;ˇ D

Z
ŒPn.X ;ˇ/�vir

1:

If X is toric Calabi–Yau, define the restricted contribution of Q to the invariant Pn;ˇ

by
�top.Q/ � .�1/nC

P
˛ˇ m˛ˇ j�˛ˇ j

where �top is the topological Euler characteristic.

Theorem/Conjecture 2 The toric Calabi–Yau invariant Pn;ˇ is obtained by summing
over all components of Pn.X; ˇ/

T :

ZP;ˇ.q/D
X

n

Pn;ˇ qn

D

X
n

X
Q�Pn.X ;ˇ/T

�top.Q/ � .�1/nC
P
˛ˇ m˛ˇ j�

Q
˛ˇ
j qn:
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We prove Theorem/Conjecture 2 in the local Calabi–Yau toric surface case (where all
vertices have at most 2 legs). For the 3–leg case, our derivation at present depends
upon conjectural1 properties of the stable pair space; see Sections 3.3–3.4. We will
show the summation of Theorem/Conjecture 2 is a form of box counting.

0.4 Correspondence with DT theory

DT theory (see Donaldson and Thomas [3] and Thomas [15]) is defined by integration
against the virtual fundamental class of the moduli space In.X; ˇ/ of ideal sheaves2

0! I!OX !OY ! 0

satisfying
�.OY /D n; ŒOY �D ˇ 2H2.X;Z/:

In the Calabi–Yau case, the basic invariants are

In;ˇ D

Z
ŒIn.X ;ˇ/�vir

1:

For toric Calabi–Yau 3–folds, the DT invariants have been calculated by localization
by Maulik, Nekrasov, Okounkov and Pandharipande [9; 10]:

ZDT;ˇ.q/D
X

n

In;ˇ qn(0-4)

D

X
n

X
ŒI��In.X ;ˇ/T

.�1/nC
P
˛ˇ m˛ˇ j�

I
˛ˇ
jqn:

The result (0-4) is parallel to Theorem/Conjecture 2. The edge contributions in DT
theory agree exactly with the edge contributions in the theory of stable pairs. The main
difference occurs in the vertex contributions. Since the fixed point set

In.X; ˇ/
T
� In.X; ˇ/

consists of isolated points, the DT result (0-4) is easier to prove than Section 2 for
stable pairs. However, the stable pairs result is free of the irrationalities related to
unrestricted box counting.

The stable pairs theory is conjectured to be equivalent to DT theory for all 3–folds;
see our preprint [14]. In case X is toric, the conjecture specializes to the claim

ZP;ˇ.q/D
ZDT;ˇ.q/

M.�q/jX
Tj
;

1The Calabi–Yau case is a particular limit of the full T–equivariant calculation. The conjectural
properties are needed to take the limit.

2 In.X; ˇ/ is isomorphic to the Hilbert scheme.
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where M.�q/ is the MacMahon function

M.�q/D
Y
n�1

1

.1� .�q/n/n
:

The toric equivalence can be further refined to relate only the vertex contributions of
the two theories.3 This is discussed in Section 4.

0.5 Descendents

Let X be a nonsingular projective 3–fold. Let

F !X �Pn.X; ˇ/

denote the universal sheaf.4 For a stable pair ŒOX ! F � 2 Pn.X; ˇ/, the restriction of
F to the fiber

X � ŒOX ! F ��X �Pn.X; ˇ/

is canonically isomorphic to F . Let

�X W X �Pn.X; ˇ/!X;

�P W X �Pn.X; ˇ/! Pn.X; ˇ/

be the projections onto the first and second factors. Since X is nonsingular and F is
�P –flat, F has a finite resolution by locally free sheaves. Hence, the Chern character
of the universal sheaf F on X �Pn.X; ˇ/ is well-defined. By definition, the operation

�P�

�
��X . / � ch2Ci.F/\ .�

�
P . � /

�
W H�.Pn.X; ˇ//!H�.Pn.X; ˇ//

is the action of the descendent �i. /, where  2H�.X;Z/.

For nonzero ˇ 2 H2.X;Z/ and arbitrary i 2 H�.X;Z/, define the stable pairs
invariant with descendent insertions by� kY

jD1

�ij .j /

�X
n;ˇ

D

Z
ŒPn.X ;ˇ/�vir

kY
jD1

�ij .j /

D

Z
Pn.X ;ˇ/

kY
jD1

�ij .j /
�
ŒPn.X; ˇ/�

vir�:
3 The refinement in the Calabi–Yau case is Conjecture 5.1 of [14].
4The existence of the universal sheaf is shown in Section 2.3 of [14].
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The partition function is

ZP;ˇ

� kY
jD1

�ij .k/

�
D

X
n

� kY
jD1

�ij .j /

�X
n;ˇ

qn:

Since Pn.X; ˇ/ is empty for sufficiently negative n, ZP;ˇ

�Qk
jD1 �ij .j /

�
is a Laurent

series in q .

Conjecture 1 The partition function ZP;ˇ

�Qk
jD1 �ij .j /

�
is the Laurent expansion

of a rational function in q .

The partition functions with primary insertions (all ij D 0) were conjectured to be
rational and, furthermore, conjectured to take a very restrictive BPS form in [14]. The
analogue of BPS invariants in the presence of descendents is an interesting question.

The descendent series of both Gromov–Witten theory and DT theory are known to
contain irrationalities. Conjecture 1 predicts the descendent theory of stable pairs is
much better behaved.

0.6 Vertices

The stable pairs vertices for toric 3–folds in increasing degree of generality are:

(i) the toric Calabi–Yau vertex,

(ii) the equivariant vertex,

(iii) the equivariant descendent vertex.

The vertices (i) and (ii) are discussed in Sections 4 and 5. We treat the localization
formulas for the descendent theory in Section 6.
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1 Stable pairs on 3–folds

1.1 Definitions

Let X be a nonsingular quasi-projective 3–fold over C with polarization L. Let
ˇ 2H2.X;Z/ be a nonzero class. The moduli space Pn.X; ˇ/ parameterizes stable
pairs

(1-1) OX
s
! F

where F is a sheaf with Hilbert polynomial

�.F ˝Lk/D k

Z
ˇ

c1.L/C n

and s 2H 0.X;F / is a section. The two stability conditions are:

(i) the sheaf F is pure with proper support,

(ii) the section OX
s
! F has 0–dimensional cokernel.

By definition, purity in (i) means every nonzero subsheaf of F has support of dimen-
sion 1; see Huybrechts and Lehn [5]. In particular, purity implies the (scheme theoretic)
support CF of F is a Cohen–Macaulay curve. A quasi-projective moduli space of
stable pairs can be constructed by a standard GIT analysis of Quot scheme quotients as
in Le Potier [6].

For convenience, we will often refer to the stable pair (1-1) on X simply by .F; s/.

1.2 Virtual class

A central result of [14] is the construction of a virtual class on Pn.X; ˇ/. The standard
approach to the deformation theory of pairs fails to yield an appropriate 2–term
deformation theory for Pn.X; ˇ/. Instead, Pn.X; ˇ/ is viewed in [14] as a moduli
space of complexes in the derived category.

Let Db.X / be the bounded derived category of coherent sheaves on X . Let

I � D fOX ! Fg 2Db.X /

be the complex determined by a stable pair. The tangent-obstruction theory obtained
by deforming I � in Db.X / while fixing its determinant is 2–term and governed by
the groups5

Ext1.I �; I �/0; Ext2.I �; I �/0:

5The subscript 0 denotes traceless Ext.
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The virtual class
ŒPn.X; ˇ/�

vir
2Adimvir .Pn.X; ˇ/;Z/

is then obtain by standard methods [1; 7]. The virtual dimension is

dimvir
D

Z
ˇ

c1.TX /:

Apart from the derived category deformation theory, the construction of the virtual
class of Pn.X; ˇ/ is parallel to virtual class construction in DT theory [15].

1.3 Characterization

Consider the kernel/cokernel exact sequence associated to a stable pair .F; s/,

(1-2) 0! ICF
!OX

s
�! F !Q! 0:

The kernel is the ideal sheaf of the Cohen–Macaulay support curve CF by Lemma 1.6
of [14]. The cokernel Q has dimension 0 support by stability. The reduced support
scheme, Supportred.Q/, is called the zero locus of the pair. The zero locus lies on CF .

Let C � X be a fixed Cohen–Macaulay curve. Stable pairs with support C and
bounded zero locus are characterized as follows. Let

m�OC

be the ideal in OC of a 0–dimensional subscheme. Since

Hom.mr=mrC1;OC /D 0

by the purity of OC , we obtain an inclusion

Hom.mr ;OC /�Hom.mrC1;OC /:

The inclusion mr ,!OC induces a canonical section

OC ,!Hom.mr ;OC /:

Proposition 1 A stable pair .F; s/ with support C satisfying

Supportred.Q/� Support.OC =m/

is equivalent to a subsheaf of Hom.mr ;OC /=OC ; r � 0:

Alternatively, we may work with coherent subsheaves of the quasi-coherent sheaf

(1-3) lim
�!

Hom.mr ;OC /=OC
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Under the equivalence of Proposition 1, the subsheaf of (1-3) corresponds to Q, giving
a subsheaf F of lim

�!
Hom.mr ;OC / containing the canonical subsheaf OC and the

sequence
0!OC

s
! F !Q! 0:

Proposition 1 is proven in [14].

2 T–fixed points

2.1 Affine charts

Let X be a nonsingular, quasi-projective, toric 3–fold, and let

(2-1) ŒOX
s
! F � 2 Pn.X; ˇ/

T

be a T–fixed stable pair.

Let X˛ 2 X T be a T–fixed point with associated T–invariant affine chart U˛ � X .
The restriction of the stable pair (2-1) to U˛ ,

(2-2) OU˛

s˛
! F˛;

determines an invariant section s˛ of an equivariant sheaf F˛ .

Let x1 , x2 , x3 be coordinates on the affine chart U˛ in which the T–action takes the
diagonal form

.t1; t2; t3/ �xi D tixi :

We will characterize the restricted data .F˛; s˛/ in the coordinates xi .

2.2 Monomial ideals and partitions

Let x1 , x2 be coordinates on the plane C2 . A subscheme S �C2 invariant under the
action of the diagonal torus,

.t1; t2/ �xi D tixi ;

must be defined by a monomial ideal IS �CŒx1;x2�. If

dimC CŒx1;x2�=IS <1

then IS determines a finite partition �S by considering lattice points corresponding
to monomials of CŒx1;x2� not contained in IS .

Conversely, each partition � determines a monomial ideal

�Œx1;x2��CŒx1;x2�:
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x3
2

x1x3
2

x1x2
2

x2
2

x1x2x2

1 x1 x2
1

x3
1

x4
1

x2
1
x2

x2
1
x2

2

x1

x2

Figure 1: The monomial ideal .x4
2
;x2

1
x3

2
;x3

1
x2;x

5
1
/ determines the partition .4; 4; 3; 1; 1/ .

The ideal associated to the finite partition .4; 4; 3; 1; 1/ is displayed in Figure 1.

Similarly, the subschemes S � C3 invariant under the diagonal T–action are in
bijective correspondence with 3–dimensional partitions. The ideal pictured in Figure 2
corresponds to a 3–dimensional partition with infinite legs.

In Figure 1 and Figure 2, the boxes are labelled by the lattice points in the corners with
smallest coordinates, a convention which will be followed throughout the paper.

x1

x2

x3

Figure 2: The monomial ideal .x1x2
2 ;x1x2

3 ;x2x3/ determines the above
3–dimensional partition. The legs in the three coordinate directions are of
infinite length.

2.3 Cohen–Macaulay support

The first step in the characterization of the restricted data (2-2) is to determine the
scheme-theoretic support C˛ of F˛ . If nonempty, C˛ is a T–invariant, Cohen–
Macaulay subscheme of pure dimension 1.
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Let C � C3 be a T –fixed subscheme of pure dimension 1. The subscheme C is
defined by a monomial ideal

IC �CŒx1;x2;x3�:

associated to the 3–dimensional partition � . The localisations

.IC /x1
�CŒx1;x2;x3�x1

;

.IC /x2
�CŒx1;x2;x3�x2

;

.IC /x3
�CŒx1;x2;x3�x3

;

are all T –fixed and each corresponds to a 2–dimensional partition �i . Alternatively,
the 2–dimensional partitions �i can be defined as the infinite limits of the xi –constant
cross-sections of � . In order for C to have dimension 1, not all the �i can be empty.

Given a triple E�D .�1; �2; �3/ of outgoing partitions, there exists a unique minimal
T –fixed subscheme

C E� �C3

with outgoing partitions �i . The 3–dimensional partition corresponding to C E� is
obtained by taking the union of the infinite cylinders on the three axes determined by
the 2–dimensional partitions �i . Let

I�1 D �1Œx2;x3� �CŒx1;x2;x3�; C�1 DOC3=I�1 ;

I�2 D �2Œx1;x3� �CŒx1;x2;x3�; C�2 DOC3=I�2 ;

I�3 D �3Œx1;x2� �CŒx1;x2;x3�; C�3 DOC3=I�3 :

Then C E� is the union C�1 [C�2 [C�3 with ideal

I E� D

3\
iD1

I�i :

If the �i are not all empty, then C E� is easily seen to be the unique Cohen–Macaulay
T –fixed curve in C3 with these outgoing partitions. By convention, let C∅;∅;∅ �C3

denote the empty scheme.

Consider the kernel/cokernel sequence associated to the T–fixed restricted data (2-2),

(2-3) 0! IC˛ !OU˛

s
! F˛!Q˛! 0:

We conclude C˛ D C E� where the partitions �i are associated to the edges of �.X /
incident to the vertex corresponding to X˛ .

Geometry & Topology, Volume 13 (2009)



1846 Rahul Pandharipande and Richard P Thomas

2.4 Module M

Since the support of the quotient Q˛ in (2-3) is both 0–dimensional by stability and
T–fixed, Q˛ must be supported at the origin. By Proposition 1, the pair .F˛; s˛/
corresponds to a T–invariant subsheaf of

lim
�!

Hom.mr ;OC˛ /=OC˛ ;

where m is the ideal sheaf of the origin in C˛ �C3 .

Following the notation of Section 2.3, let C˛ D C E� . Let

Mi D .OC
�i
/xi

be CŒx1;x2;x3�–module obtained by localisation. So, for instance,

M1 DCŒx1;x
�1
1 �˝

CŒx2;x3�

�1Œx2;x3�
:

By elementary algebraic arguments,

lim
�!

Hom.mr ;OCE�
/Š

3M
iD1

lim
�!

Hom.mr ;OC
�i
/

Š

3M
iD1

Mi :

The T–equivariant CŒx1;x2;x3�–module Mi has a canonical T–invariant element 1.
Let

M D

3M
iD1

Mi :

By Proposition 1, the T–fixed pair .F˛; s˛/ corresponds to a finitely generated T–
invariant CŒx1;x2;x3�–submodule

(2-4) Q˛ �M=h.1; 1; 1/i:

Conversely, every finitely generated6 T–invariant CŒx1;x2;x3�–submodule

Q�M=h.1; 1; 1/i

occurs as the restriction to U˛ of a T–fixed stable pair on X .

6Here, finitely generated is equivalent to finite dimensional or Artinian.
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2.5 Box configurations

We now describe the finitely generated T–invariant CŒx1;x2;x3�–submodules

(2-5) Q�M=h.1; 1; 1/i:

via labelled box configurations in the weight space Z3 of T.

For each of the three partitions �i , the module Mi may be viewed in the space of
T–weights as an infinite cylinder

Cyli � Z3

along the xi –axis with cross section �i . The cylinder extends in both the positive and
negative weight directions.

x1

x2

x3

Figure 3: Cylinder associated to the partition .2; 1/ along the x1 –axis in
both the positive and negative directions

The module M is obtained by summing the Mi . For every weight w , let 1w , 2w and
3w be three independent vectors. A C–basis for M is determined by the set

f iw j w 2 Cyli g:

The CŒx1;x2;x3�–module structure on M is clear:

x1 � iw D iwC.1;0;0/; x2 � iw D iwC.0;1;0/; x3 � iw D iwC.0;0;1/:

The union of the cylinders Cyli can be separated into 4 types of weights

3[
iD1

Cyli D IC[ II[ III[ I� � Z3;

Geometry & Topology, Volume 13 (2009)
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where:

� IC consists of all weights which have only nonnegative coordinates and which
lie in exactly 1 of the cylinders,

� II and III consist of all weights which lie in exactly 2 and 3 cylinders respectively,

� I� consists of all weights with at least 1 negative coordinate.

x1

x2

x3

Figure 4: Diagram of boxes of type I� , II and III distinguished by shading
for the partitions �1 D .2; 1/ , �2 D .1/ and �3 D .1/

The submodule OCE�
�M generated by

.1; 1; 1/D 10C 20C 30

lies entirely in the weight space IC [ II[ III. The quotient M=OCE�
, described as a

T –module, is supported on II[ III[ I� and has the following C–basis:

� If w 2 I� is supported on Cyli , then

C � iw �M=OCE�
:

� If w 2 II is supported on Cyli and Cylj , then

C � iw˚C � jw
C � .iwC jw/

Š C �M=OCE�
:

� If w 2 III, then

C � 1w˚C � 2w˚C � 3w
C � .1; 1; 1/w

Š C2
�M=OCE�

:

Here, .1; 1; 1/w D 1wC 2wC 3w .

Geometry & Topology, Volume 13 (2009)



The 3–fold vertex via stable pairs 1849

A finitely generated T –invariant CŒx1;x2;x3�–submodule

Q�M=OCE�

yields the following labelled box configuration in II[ III[ I� : a finite number of boxes
supported on II[ III[ I� where the type III boxes w may be labelled by an element of

P1
D P

�
C � 1w˚C � 2w˚C � 3w

C � .1; 1; 1/w

�
:

A box signifies the occurrence of the corresponding T–weight in Q. An unlabelled
type III box signifies the inclusion of the entire 2–dimensional space

C � 1w˚C � 2w˚C � 3w
C � .1; 1; 1/w

�Q:

A labelled type III box signifies the inclusion of only the corresponding 1–dimensional
space in Q.

Conversely, given a labelled box configuration, the following rules ensure that the
corresponding T–submodule

Q�M=OC

is actually a CŒx1;x2;x3�–submodule:

(i) If w D .w1; w2; w3/ 2 I� and if any of

.w1� 1; w2; w3/; .w1; w2� 1; w3/; .w1; w2; w3� 1/

support a box then w must support a box.

(ii) If w 2 II, w … Cyli , and if any of

.w1� 1; w2; w3/; .w1; w2� 1; w3/; .w1; w2; w3� 1/

support a box other than a type III box labelled by the 1–dimensional subspace
C � i, then w must support a box.

(iii) If w 2 III and the span of the subspaces of

C � 1w˚C � 2w˚C � 3w
C � .1; 1; 1/w

induced by boxes supported on

.w1� 1; w2; w3/; .w1; w2� 1; w3/; .w1; w2; w3� 1/

is nonzero, then w must support a box. If the span has dimension 1, then w
may either support a box labelled by the span or an unlabelled box. If the span
has dimension 2, then w must support an unlabelled box.
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The length of a labelled box configuration is calculated by summing the following
contributions over the boxes of the configuration. Boxes of type I� and II contribute
length 1 each. A labelled box of type III contributes 1 and an unlabelled box of type III
contributes 2.

A labelled box configuration for M=OCE�
is said to have outgoing partitions �1 , �2

and �3 .

Proposition 2 T–invariant CŒx1;x2;x3�–submodules of M=OCE�
of length l are

in bijective correspondence with labelled box configurations satisfying (i)–(iii) with
outgoing partitions E� and length l .

Proof Certainly CŒx1;x2;x3�–submodules satisfy (i)–(iii). An elementary analysis
shows the converse.

Proposition 3 The reduced connected components of the moduli space of T–invariant
CŒx1;x2;x3�–submodules of M=OCE�

are products of P1’s.

Proof Given a labelled box configuration, let L be the set labelled type III boxes.
Define a path of labelled boxes to be a sequence of translations of the form x˙1

i that
stay within L. The set L is divided into disjoint path connected subsets.

Two labelled type III boxes differing by a move of x˙1
i must carry the same label in

P1 by rule (iii) above. Hence, all labelled boxes in each path component of L carry
the same label.

A path component P �L is restricted if either of the following two possibilities hold:

.rC/ There is a box in P which is taken by multiplication by xi to a type II box of
M=OCE�

not occurring in the labelled box configuration.

.r�/ There is a box in P which is taken by multiplication by x�1
i to a type I� box

of the configuration.

The label of such a path component P is forced to be a single point of P1 by the
rule (iii). In the first case above, if the empty type II box is not in Cyl1 , then the label
is forced to be .1; 0; 0/. In the second case, if the type I� box is in Cyl1 , then the
label is forced to be .1; 0; 0/.

The labellings are the only continuous parameters of the labelled box configurations. For
each unrestricted path component of L, the label can take any value in P1 . Therefore,
the moduli space, as a reduced variety, is simply a product of P1’s.

Geometry & Topology, Volume 13 (2009)



The 3–fold vertex via stable pairs 1851

We will use the calligraphic symbol Q E� to denote components of the moduli space of T–
invariant CŒx1;x2;x3�–submodules of M=OCE�

. By Proposition 2 and Proposition 3,
the components Q˛ correspond to the discrete data of a labelled box configuration –
forgetting the labelling of the labelled type III boxes.

2.6 Local to global

We have determined the T–fixed restricted data

OU˛

s
! F˛

locally on every T–invariant affine chart U˛ �X . The gluing condition for different
charts is simply the matching of edge partitions.

We conclude the T–fixed points of Pn.X; ˇ/ exactly arise by distributing labelled box
configurations to the vertices of �.X /,

ŒX˛ � 2 V.X / 7!Q˛;

and partitions to the edges,

ŒC˛ˇ � 2 E.X / 7! �˛ˇ;

compatible with the outgoing partitions at the vertices. The vertex data Q˛ determines
the edge partitions.

All the moduli in the T–fixed points of Pn.X; ˇ/ occur at the vertices. Proposition 3
is half of the proof of Theorem 1. We will complete the proof of Theorem 1 by a
Zariski tangent space analysis to show the moduli spaces of T–invariant CŒx1;x2;x3�–
submodules of M=OCE�

are scheme-theoretically reduced (and hence nonsingular).

3 Tangent spaces

3.1 T–fixed deformation theory

The scheme structure on Pn.X; ˇ/ obtained from the moduli of stable pairs coincides
with the scheme structure obtained from the moduli of complexes in Db.X /. The
Zariski tangent space to Pn.X; ˇ/ at the stable pair

I � D
˚
OX

s
! F

	
is Ext0.I �;F /. Derived category Ext0 may also be written as Hom.
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On each affine chart U˛ �X , the Zariski tangent space to the restricted data

I �˛ D
˚
OU˛

s˛
! F˛

	
is Ext0.I �˛;F˛/. There is a global to local restriction map

Ext0.I �;F /!
M
˛

Ext0.I �˛;F˛/

which need not be an isomorphism. However, if the stable pair .F; s/ is T–fixed, we
will see the induced map

(3-1) Ext0.I �;F /T!
M
˛

Ext0.I �˛;F˛/
T

is an isomorphism. Here, the superscript T denotes the T–fixed part, or equivalently,
the T–weight 0 part.

To complete the proof of Theorem 1, we show the Zariski tangent space Ext0.I �˛;F˛/
T

to the T–fixed data,
I �˛ D

˚
OU˛

s˛
! F˛

	
;

described by a labelled box configuration has dimension equal to the number of
unrestricted path components of L˛ , the set of labelled type III boxes.

The kernel/cokernel sequence (2-3) yields the following sequence of T–modules:

(3-2) 0! Ext1.Q˛;F˛/! Ext0.I �˛;F˛/! Hom.IC˛ ;F˛/:

The last term has no 0–weight piece: the T–weights of IC˛ lie in the complement in
the weight space Z3

�0
of the T–weights of F˛ . As a result,

Ext0.I �˛;F˛/
T
Š Ext1.Q˛;F˛/

T:

Also, the vanishing of the last term shows the T–weight 0 deformations of the restricted
data are supported entirely at the origin. As the latter can easily be glued, (3-1) is an
isomorphism.

To avoid calculating with quasi-coherent sheaves (or non–finitely generated modules)
and passing direct limits through derived functors, we work with a sufficient approxi-
mation of M ,

M r
i DHom.mr ;OC

�i
/; M r

D

3M
iD1

M r
i ;

for r � 0. Since F˛ is a subsheaf of M r , we obtain

(3-3) Hom.Q˛;M
r /! Hom.Q˛;M

r=F˛/! Ext1.Q˛;F˛/! Ext1.Q˛;M
r /:
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Lemma 1 Hom.Q˛;M
r /T D Ext1.Q˛;M

r /T D 0 for r � 0.

Proof By symmetry, we need only prove Exti.Q˛;M
r
1
/ has no trivial T –subrepre-

sentations for i D 0; 1. Since C�1 is a product in the x1 direction and Artinian in the
x2;x3 –directions, we have

mrC1OC
�1
D .x1/m

rOC
�1
; r � 0;

where .x1/ is the ideal of OC
�1

generated by x1 . The ideal .x1/ is invertible and ab-
stractly isomorphic as a sheaf to OC

�1
, but twisted by the 1–dimensional representation

of T with character t1 and associated weight .1; 0; 0/.

Therefore, M rC1
1
Š t�1

1
˝M r

1
and

(3-4) Exti.Q˛;M
rCN
1

/Š t�N
1 ˝Exti.Q˛;M

r
1 /:

Since Exti.Q˛;M
r
1
/ is a finite sum of 1–dimensional T–representations (since Q has

0–dimensional support and is finite dimensional), the T–module (3-4) has no trivial
subrepresentations for N � 0.

Putting together Lemma 1, the previous sequences and the stabilization

Hom.Q˛;M=F˛/
T
Š lim
�!

Hom.Q˛;M
r=F˛/

T;

we conclude that
Ext0.I �˛;F˛/

T
Š Hom.Q˛;M=F˛/

T

for r � 0.

Proposition 4 The dimension of Hom.Q˛;M=F˛/
T equals the number of unre-

stricted path components of L˛ .

Proof The T–weights w of Q˛ lie in I�[ II[ III and are a subset of the weights of
F˛ . The latter are a subset of the weights of M . We analyse each type in turn.

If w lies in I� , then w appears in M with multiplicity 1 and so does not appear in
M=F˛ . Thus, the T–weights of Q in I� do not contribute to Hom.Q;M=F˛/

T .

If w lies in II, then w appears in both F˛ and M with multiplicity 2. Again, w does
not appear in M=F˛ and so does not contribute to Hom.Q;M=F˛/

T . Similarly, if w
lies in III with multiplicity 2, then w appears in both F˛ and M with multiplicity 3
and does not contribute to Hom.Q˛;M=F˛/

T .

If w lies in III with multiplicity 1, then w appears in F˛ with multiplicity 2 but in M

with multiplicity 3. The multiplicity of w in M=F˛ is 1. Thus, we find an at most a

Geometry & Topology, Volume 13 (2009)



1854 Rahul Pandharipande and Richard P Thomas

1–dimensional subspace of Hom.Q˛;M=F˛/
T corresponding to such w . However,

the analysis used in the proof of Proposition 3 shows that the CŒx1;x2;x3�–module
structure forces any morphism in the w–box to be equal to the morphism in any other
box in the same path component of L˛ . And, if the path component is restricted, then
the morphism is 0 over the whole path component.

Therefore, Hom.Q˛;M=F˛/
T has dimension equal to the number of unrestricted path

components of L˛ .

Proposition 3 and Proposition 4 imply Theorem 1. Proposition 3 provides a description
of the reduced T–fixed components of Pn.X; ˇ/. The T–fixed Zariski tangent space
obtained from Proposition 4 establishes the nonsingularity of the scheme structure.

Let Q� Pn.X; ˇ/ be a component of the T–fixed locus. We have proven

QD
Y

ŒX˛�2V.X /

Q˛

where Q˛ is a component of moduli space of labelled box configurations. Each element
of Q can be described by a labelled box configuration

ŒX˛ � 2 V.X / 7!Q˛

at each vertex. We will follow the above notation throughout the paper.

3.2 T0–fixed deformation theory

Let X be a toric Calabi–Yau 3–fold with canonical form

! 2H 0.X;KX /

invariant under a 2–dimensional subtorus T0 � T. On the affine chart

C3
Š U˛ �X;

the subtorus T0 must act trivially on the form dx1 ^ dx2 ^ dx3 and hence must be
defined by

T0 D f .t1; t2; t3/ 2 T j t1t2t3 D 1 g:

Consider the T–fixed restricted data studied above,

I �˛ D
˚
OU˛

s˛
! F˛

	
:

Certainly I �˛ is also T0 –fixed.

Lemma 2 Hom.IC˛ ;F˛/ contains no T0 –fixed representation.
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Proof The space Hom.IC˛ ;F˛/
T0 may be decomposed as a direct sum of weight

spaces for the quotient torus C� Š T=T0 . Homomorphisms of C�–weight w 2 Z
multiply the T–submodules of IC˛ by .x1x2x3/

w to give T–submodules of F˛ .

We have seen in Section 3.1 there are no such homomorphisms of C�–weight 0. The
same argument shows the nonexistence in the positive weight case. The T–weights of
.x1x2x3/

w�0IC˛ all lie in the complement in Z3
�0

of the T–weights of F˛ . Since

F˛ �M D

3M
iD1

Mi ;

the vanishing of all T0 –fixed homomorphisms of C�–weight w < 0 between IC˛

and Mi implies the Lemma.

x2

x3

x
a2CA

2

x
a2

2
x

a3

3

x
a2Cm

2
x

a3�n

3

x
a2Cm

2
x

a3

3

x
a2CA�w

2
x�w

3

x
a2�w

2
x

a3�w

3
x

a2Cm�w

2
x

a3�w

3

x
a2Cm�w

2
x

a3�n�w

3

�

Figure 5: The partition �1Œx2;x3�

In fact, by symmetry, we need only study M1 . We write

M1 DCŒx1;x
�1
1 �˝C

CŒx2;x3�

�1Œx2;x3�

for the outgoing partition �1 . Let � 2 Hom.IC˛ ;M1/
T0 be homomorphism of C�–

weight w < 0. Pick a nonzero element

x
a1

1
x

a2

2
x

a3

3
2 Im.�/�M1:
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Then, perhaps after scaling, we have

�.x
a1�w
1

x
a2�w
2

x
a3�w
3

/D x
a1

1
x

a2

2
x

a3

3
;

where x
a1�w
1

x
a2�w
2

x
a3�w
3

2 IC˛ .

By multiplying by xN
1

if necessary, we may assume that a1� 0. In the limit, we may
see the problem as essentially two dimensional in the variables x2 , x3 .

There is a maximal m� 0 satisfying

0¤ x
a2Cm
2

x
a3

3
2

CŒx2;x3�

�1Œx2;x3�
:

Such a monomial x
a2Cm
2

x
a3

3
is said to be x2 –maximal. Consider the set

S D f n0 � 0 j x
a2Cm
2

x
a3�n0

3
is not x2 –maximal g:

Let n be the minimal element of S . If S is empty, let nD a3 . Unless a3D 0, n must
be positive. See Figure 5.

By the minimality of n and the strict negativity of w ,

x
a2Cm�w
2

x
a3�n�w
3

2 �1Œx2;x3��CŒx2;x3�:

Since a1� 0, we also have x
a1�w
1

x
a2Cm�w
2

x
a3�n�w
3

2 IC˛ . Then,

xn
3�.x

a1�w
1

x
a2Cm�w
2

x
a3�n�w
3

/D x
a1

1
x

a2Cm
2

x
a3

3

is nonzero in M1 . We find

�.x
a1�w
1

x
a2Cm�w
2

x
a3�n�w
3

/D x
a1

1
x

a2Cm
2

x
a3�n
3

¤ 0:

We have found another nonzero element of M1 in the image of � with smaller x3

exponent.

Inductively, we reduce the x3 exponent to 0; see Figure 5. We find there is an A� 0

for which x
a1�w
1

x
a2CA�w
2

x�w
3
2 IC and

�.x
a1�w
1

x
a2CA�w
2

x�w3 /D x
a1

1
x

a2CA
2

is nonzero in M1 . After multiplying by a nonnegative power of x2 , we may also
assume x

a2CA
2

to be x2 –maximal. Hence,

x
a2CA�w
2

2 �1Œx2;x3�; x
a1�w
1

x
a2CA�w
2

2 IC :

We now obtain a contradiction since

�.x
a1�w
1

x
a2CA�w
2

x�w3 /D x
a1

1
x

a2CA
2

D x�w3 �.x
a1�w
1

x
a2CA�w
2

/
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and �.xa1�w
1

x
a2CA�w
2

/D 0 since its third T–weight is negative.

Lemma 2 and the T0 –fixed part of sequence (3-2) imply the local to global sequence
is an isomorphism for T–fixed stable pairs:

(3-5) Ext0.I �;F /T0 Š

M
˛

Ext0.I �˛;F˛/
T0

Also, since the proof of Lemma 1 is valid for T0 in place of T, we obtain the following
result.

Lemma 3 The Zariski tangent space Ext0.I �˛;F˛/
T0 to the T0 –fixed locus is equal

to Hom.Q˛;M=F˛/
T0 .

3.3 Nonsingularity

The question of the nonsingularity of the T0 –fixed loci

Pn.X; ˇ/
T0 � Pn.X; ˇ/

is very natural and plays a crucial role in our study of the Calabi–Yau vertex.

Conjecture 2 The loci Pn.X; ˇ/
T0 are nonsingular.

By the local to global relation of tangent spaces (3-5), Conjecture 2 is equivalent to the
nonsingularity of the moduli space of T0 –invariant submodules of M=OCE�

.

A local toric surface is the total space of a toric line bundle over a toric surface. If X is
a local toric surface, The restricted supports C˛ have only 1 or 2 legs. By Proposition 3
and Proposition 4, the loci Pn.X; ˇ/

T are isolated points. Lemma 3 easily implies
the tangent space Ext0.I �˛;F˛/

T0 to the restricted data is 0, so the T0 –fixed Zariski
tangent space is no larger. Hence Conjecture 2 is proven in the local toric surface case.

Conjecture 2 would follow in general if the tangent vectors

Hom.Q˛;M=F˛/
T0

to the restricted data could be exponentiated. The latter is an essentially combinatorial
condition which holds in all the examples we have studied.
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3.4 Dimension

For any finite T–module K , let

�K .t1; t2; t3/ 2 ZŒt˙1 ; t
˙
2 ; t
˙
3 �

be the T–character, and let

x�K .t1; t2; t3/D �K .t
�1
1 ; t�1

2 ; t�1
3 /:

Define the Laurent polynomial 
K

by

K D �K ��K x�K

.1� t1/.1� t2/

t1t2
:

Finally, let
K ;0.t1; t2/D K .t1; t2; t

�1
1 t�1

2 / 2CŒt˙1 ; t
˙
2 �:

Let Con.K; 0/ be the constant term of 
K ;0

.

Given T–fixed restricted data .F˛; s˛/, let F c
˛ be the finite length T–module obtained

by cutting off7 the infinite legs of F˛ in the 3 positive directions. The parity of the
dimension of the T0 –fixed tangent space is determined by the following result.

Conjecture 3 For all suitably large cut-offs F c
˛ ,

dimC Ext0.I �˛;F˛/
T0 D Con.F c

˛ ; 0/ mod 2:

If the support curve C˛ has 1 or 2 legs, we have seen the dimension of Ext0.I �˛;F˛/
T0

is 0. Conjecture 3 then asserts that Con.F c
˛ ; 0/ is even. The proof is easily obtained by

box removal in the manner described in Section 4.11 of [9]. We leave the details to the
reader.

If the parity of the dimensions of the Zariski tangent spaces to Pn.X; ˇ/ were constant
in families of stable pairs, Conjecture 3 would be very natural. It is tempting to look for
a formal proof of the even jumping of tangent dimensions via an appropriate symplectic
form in the ambient geometry.

Unfortunately, we know the conservation of the parity of the Zariski tangent spaces is
false in general. An example can be found in a K3–fibration,

�W X ! P1;

7The cut-offs may be taken to be simple cuts perpendicular to the axes. Since we are only interested in
suitably large cut-offs, cuts which are finitely jagged are also fine to consider as well.
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where the fiber X0 over 0 2 P1 is a K3 surface with a fully obstructed8 A2 –
configuration

L1[L2 �X0:

Here, L1 and L1 are .�2/–curves meeting transversely in a point,

�.OL1[L2
/D 1:

The Zariski tangent spaces of P2.X; ŒL1�C ŒL2�/ are seen to jump from 1–dimension
to 2–dimensions.9

The sign of Conjecture 3 is therefore not purely formal and depends essentially on toric
geometry. In fact, the sign may be viewed as the only aspect of the Calabi–Yau vertex
calculation which is not purely formal.10

4 Equivariant vertex

4.1 Localization

Let X be a nonsingular, quasi-projective, toric 3–fold. The T–equivariant obstruc-
tion theory of Pn.X; ˇ/ obtained from deformations in Db.X / admits a 2–term
T–equivariant free resolution

(4-1) E�1
!E0

(see [14]). Denote the dual of the restriction of (4-1) to a component Q of the T–fixed
locus

�W Q ,! Pn.X; ˇ/;

by EQ;0!EQ;1 .

The T–action on (4-1) restricts to a fiberwise T–action. Let ET
Q;i and Em

Q;i denote the
subbundles with 0 and nonzero characters respectively. A T–fixed obstruction theory
on Q is obtained from

ET
Q;0!ET

Q;1 :

Let ŒQ�vir be the associated virtual class [4].

8Here, we require the algebraic classes ŒL1� , ŒL2� and ŒL1�C ŒL2� are all obstructed to first order in
the family � .

9 A similar odd jumping phenomena can be found in the moduli space
I2.X; ŒL1�C ŒL2�/ of ideal sheaves.

10A position taken by J Bryan
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By the virtual localization formula [4] we haveX
Q�Pn.X ;ˇ/

��

�
e.Em

Q;1/

e.Em
Q;0/
\ ŒQ�vir

�
D ŒPn.X; ˇ/�

vir
2AT
�.Pn.X; ˇ//loc :

Here, e denotes the T–equivariant Euler class, or equivalently, the top Chern class.
The formula holds in the localized T–equivariant Chow ring of Pn.X; ˇ/.

4.2 T–fixed obstruction theory

The data of the T–fixed obstruction theory on Q includes a morphism � to the cotangent
complex,

Œ.E�1
Q /T! .E0

Q/
T�

�
!L�Q ;

for which h0.�/ is an isomorphism and h�1.�/ is a surjection. Since Q is nonsingular
by Theorem 1, the 2–term cut-off of the cotangent complex of Q can be taken simply
to be

L�Q D Œ0!�Q�:

We can, after exchanging E� , assume the morphism � is represented by a map of
complexes. Then, the sequence

.E�1
Q /T! .E0

Q/
T �0

!�Q! 0

is exact. The kernel on the left is a bundle K , and

ŒQ�vir
D e.K_/\ ŒQ�

by the definition of the virtual class [1].

Let TQ denote the tangent bundle of Q. The obstruction bundle K_ is determined in
K–theory by

(4-2) ŒK_�D ŒET
Q;1�� ŒE

T
Q;0�C ŒTQ�:

The formal Euler class expression

e.TQ/ �
e.ET

Q;1/

e.ET
Q;0/
2A�.Q/

is therefore well-defined and equal to e.K_/.

Together with the localization formula, we obtain the following result:

(4-3)
X

Q�Pn.X ;ˇ/

��

�
e.TQ/ �

e.EQ;1/

e.EQ;0/
\ ŒQ�

�
D ŒPn.X; ˇ/�

vir

in AT
�.Pn.X; ˇ//loc .
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4.3 Local to global

We will calculate the difference

(4-4) ŒEQ;0�� ŒEQ;1�

in the T–equivariant K–theory of Q. Consider a stable pair

I � D
˚
OX

s
! F

	
; ŒI �� 2Q:

The difference (4-4) restricted to ŒI �� 2Q is simply the virtual tangent space11

(4-5) TŒI�� D Ext1.I �; I �/�Ext2.I �; I �/:

Our first goal is a canonical calculation of the T–representation (4-5) relatively over Q.

By [14], the virtual tangent space at I � is given by

TŒI�� D �.O;O/��.I �; I �/

�.F �;G�/D

3X
iD0

.�1/i Exti.F �;G�/ :where

We can compute each Euler characteristic using the local to global spectral sequence

�.I �; I �/D

3X
i;jD0

.�1/iCj H i.Extj .I �; I �//D

3X
i;jD0

.�1/iCjCi.Extj .I �; I �// ;

where, in the second equality, we have replaced the cohomology terms with the Cech
complex with respect to the open affine cover fU˛g. Though the modules of the Cech
complex are infinite-dimensional, they have finite-dimensional weight spaces and,
therefore, their T–character is well defined as a formal power series.

Since F is supported on the T–invariant curves corresponding to the edges of �.X /,
we have I �DOX on the intersection of three or more U˛ . Therefore, only the C0 and
C1 terms contribute to the calculation. We find

(4-6) TŒI�� D
M
˛

�
�.U˛/�

X
i

.�1/i�.U˛; Ext i.I �; I �//

�
�

M
˛;ˇ

�
�.U˛ˇ/�

X
i

.�1/i�.U˛ˇ; Ext i.I �; I �//

�
:

11Tracelessness is automatic for toric varieties.
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The calculation of TŒI�� is reduced to a sum over all the vertices and edges of �.X /.
We have the restrictions of I � ,

I �˛ 2Db.U˛/; I �˛ˇ 2Db.U˛ˇ/;

and we need to compute

�.U˛/�
X

i

.�1/i Exti.I �˛; I
�

˛/;

�.U˛ˇ/�
X

i

.�1/i Exti.I �˛ˇ; I
�

˛ˇ/:

The vertex and edge cases will be treated separately.

A similar strategy was pursued in [9] to calculate the DT invariants of toric 3–folds.
The difference here occurs entirely in the vertex terms. The edge terms are identical.

4.4 Vertex calculation

Let R be the coordinate ring

RDCŒx1;x2;x3�Š �.U˛/:

Following the conventions of Section 0.2, the T–action on R is

.t1; t2; t3/ �xi D tixi :

Let I�˛ denote the universal complex on Q˛ � U˛ . Consider a T–equivariant free
resolution of I�˛

(4-7) fFs! � � � ! F1g Š I�˛ 2Db.Q˛ �U˛/:

Each term in (4-7) can be taken to have the form

Fi D

M
j

Lij ˝R.dij / ; dij 2 Z3;

where Lij 2 Pic.Q˛/. The Poincaré polynomial

P˛ D
X
i;j

.�1/i ŒLij �˝ tdij 2K.Q˛/˝Z ZŒt˙1 ; t
˙
2 ; t
˙
3 �

does not depend on the choice of the resolution (4-7). We require the K–theoretic data
to keep track of twisting over Q˛ .

We denote the T–character of F˛ by F˛ . By Theorem 1 and the sequence

0!OC˛ ! F˛!Q˛! 0;
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we have a complete understanding of the representation F˛ . The T–eigenspaces of F˛
correspond to the T–eigenspaces of OC˛ and the boxes of the labelled configuration
associated to Q˛ . The boxes contributes monomials to F˛ . For each unrestricted path
component P � L˛ , let PP denote the associated factor of Q˛ . For every labelled
box in P , we tensor the corresponding character by OPP

.�1/. The K–theory factors
associated to OC˛ and the unlabelled boxes are trivial. Of course, an unlabelled type
III box contributes twice. The result determines

F˛ 2K.Q˛/˝Z Z.t1; t2; t3/:

The rational dependence on the ti is elementary.

From the resolution (4-7), we see that the Poincaré polynomial P˛ is related to the
T–character of F˛ as follows:

(4-8) F˛ D
1CP˛

.1� t1/.1� t2/.1� t3/
:

Hence, we may effectively compute P˛ .

The family �.I�˛; I
�

˛/ of virtual representations over Q˛ is given by the following
alternating sum

�.I�˛; I
�

˛/D
X

i;j ;k;l

.�1/iCkLij ˝L_kl ˝HomR.R.dij /;R.dkl//

D

X
i;j ;k;l

.�1/iCkLij ˝L_kl ˝R.dkl � dij / :

Therefore, the T–character is

tr�.I˛;I˛/ D
P˛ xP˛

.1� t1/.1� t2/.1� t3/
:

The dual bar operation

 2K.Q˛/˝Z Z..t1; t2; t3// 7! x 2K.Q˛/˝Z Z..t�1
1 ; t�1

2 ; t�1
3 //

is negation on K.Q˛/ and
ti 7! t�1

i

on the variables.

We find the T–character of the ˛ summand of virtual tangent space TŒI�� in (4-6) is

1�P˛ xP˛

.1� t1/.1� t2/.1� t3/
:
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Using (4-8), we may express the answer in terms of F˛ :

(4-9) trR��.I�˛;I
�
˛/
D F˛ �

xF˛

t1t2t3
C F˛xF˛

.1� t1/.1� t2/.1� t3/

t1t2t3
:

On the right side of (4-9), the rational functions should be expanded in ascending
powers in the ti .

4.5 Edge calculation

We now consider the summand of (4-6) corresponding to a pair .˛; ˇ/. Our calculations
will involve modules over the ring

RD �.U˛ˇ/DCŒx2;x3�˝C CŒx1;x
�1
1 � :

The CŒx1;x
�1
1
� factor will result only in the overall factor

ı.t1/D
X
k2Z

tk
1 ;

the formal ı–function at t1 D 1, in the T–character. Let

F˛ˇ D
X

.k2;k3/2�˛ˇ

t
k2

2
t
k3

3

be the generating function for the edge partition �˛ˇ . Arguing as in the vertex case,
we find

(4-10) � trR��.I˛ˇ;I˛ˇ/ D ı.t1/

�
� F˛ˇ �

xF˛ˇ

t2t3
C F˛ˇxF˛ˇ

.1� t2/.1� t3/

t2t3

�
:

Because of the relations
ı.1=t/D ı.t/D tı.t/ ;

the character (4-10) is invariant under the change of variables (0-2).

Since there is no T–fixed moduli away from the vertices, there is no K–theoretic data
associated to the edges.

4.6 Redistribution

We now redistribute the terms of the vertex (4-9) and edge (4-10) contributions so both
become Laurent polynomials in the variables ti .

The edge character (4-10) can be written as

(4-11)
G˛ˇ.t2; t3/

1� t1
C t�1

1

G˛ˇ.t2; t3/

1� t�1
1

;

Geometry & Topology, Volume 13 (2009)



The 3–fold vertex via stable pairs 1865

where the first term in (4-11) is expanded in ascending powers of t1 , and the second
term is expanded in descending powers. Here

G˛ˇ D�F˛ˇ �
xF˛ˇ

t2t3
C F˛ˇxF˛ˇ

.1� t2/.1� t3/

t2t3
:

Define a new vertex character V˛ by the modification

(4-12) V˛ D trR��.I�˛;I
�
˛/
C

3X
iD1

G˛ˇi
.ti0 ; ti00/

1� ti
;

where ˇ1; ˇ2; ˇ3 are the three neighboring vertices and

fti ; ti0 ; ti00g D ft1; t2; t3g:

The character V˛ depends only on the local data Q˛ . Similarly, we define

E˛ˇ D t�1
1

G˛ˇ.t2; t3/

1� t�1
1

�
G˛ˇ.t2 t

�m˛ˇ
1

; t3 t
�m0

˛ˇ

1
/

1� t�1
1

:

The term E˛ˇ is canonically associated to the edge. Formulas (4-9) and (4-10) yield
the following result.

Theorem 3 The T–character of TŒI�� over Q is given by

(4-13) trTŒI�� D
X

ŒX˛�2V.X /

V˛C
X

ŒC˛ˇ�2E.X /

E˛ˇ :

Lemma 4 Both V˛ and E˛ˇ are Laurent polynomials in the ti .

Proof The numerator of E˛ˇ vanishes at t1 D 1 and therefore is divisible by the
denominator. The claim for V˛ follows from

F˛ D

3X
iD1

F˛ˇi

1� t1
C : : : ;

where ˇ1 , ˇ2 and ˇ3 are the neighboring vertices and the dots stand for terms regular
at t1 D 1.
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4.7 The equivariant vertex

Let A�T denote the T–equivariant Chow ring of point. To the characters ti , we associate
line bundles Li on BT and Chern classes

si D c1.Li/ 2A�T

which generate the T–equivariant Chow ring

A�T D ZŒs1; s2; s3�:

Let .s1; s2; s3/ be the maximal ideal. Let

.A�T/loc DQŒs1; s2; s3�.s1;s2;s3/

denote the localization.

Following the notation of Section 2, denote by SM
E�

the set of components of the moduli
space of T–invariant submodules of M=OCE�

. Since the character (4-9) depends only
upon the local data at the vertex, VQ is well-defined for ŒQ� 2 SM

E�
. Let

w.Q/D
Z
Q

e.TQ/ � e.�VQ/ 2 .A
�
T/loc

be the integral of the evaluation of the contribution (4-9) on Q. The integral is well-
defined by Section 4.2.

Let `.Q/ denote the number of boxes12 in the labelled configuration associated to Q.
Let j E�j denote the renormalized volume13 of the partition � corresponding to ICE�

.
Finally, the stable pairs equivariant vertex is defined by

(4-14) WP
E�
D

X
ŒQ�2SM

E�

w.Q/ q`.Q/CjE�j 2Q.s1; s2; s3/..q//:

4.8 Vertex correspondence

The nonnormalized DT equivariant vertex W
DT;nn

E�
is defined in parallel terms in Section

4 of [10]. Define the normalized DT equivariant vertex by

WDT
E�
D

W
DT;nn

E�

W
DT;nn
∅;∅;∅

:

12As usual, unlabelled type III boxes count twice.
13 The renormalized volume j�j is defined by j�j D #f� \ Œ0; : : : ;N �3g� .N C1/

P3
1 j�

i j , N � 0 .
The renormalized volume is independent of the cut-off N as long as N is sufficiently large. The number
j�j so defined may be negative.
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The degree 0 series has been calculated in [10]:

W
DT;nn
∅;∅;∅ DM.�q/

�
.s1Cs2/.s1Cs3/.s2Cs3/

s1s2s3 ;

where M denotes the MacMahon function

M.�q/D
Y
n�1

1

.1� .�q/n/n
:

Conjecture 4 The equivariant vertices agree:

WP
E�
DWDT

E�
:

In fact, there is a straightforward approach to proving Conjecture 4 following the path14

already taken in DT theory [11; 12; 13]. Each DT step can very likely be followed by
the identical step in the theory of stable pairs. If the path is followed to the end, a proof
of Conjecture 4 will be obtained. The road is long and, even in DT theory, missing
foundation developments for the relative geometry. One could hope for a more direct
proof of Conjecture 4 via a wall-crossing analysis in the derived category.

4.9 Example

A basic example to consider is WP
.1/;∅;∅ . The calculation from the definition of the

stable pairs vertex is almost trivial.

Lemma 5 WP
.1/;∅;∅ D .1C q/.s2Cs3/=s1 :

Proof The outgoing partitions are �1 D .1/ and �2 D �3 D ∅. The component
set SM

.1/;∅;∅ is in bijective correspondence with the positive integers k . The T–fixed
point Qk corresponds to the length k box configuration in Figure 6.

The qk coefficient of W.1/;∅;∅ is obtained by simply expanding the definition of VQk .
The T–character FQk is

FQk D
t�k
1

1� t1

and the T–character associated to the single edge e along the x1 –axis is

Fe D 1:

14The DT path in turn follows the Gromov–Witten trail [2; 8].
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x1

x2

x3

Figure 6: The box configuration corresponding to Q5

Unwinding (4-12) yields

VQk D

kX
iD1

t�i
1 �

k�1X
iD0

t i
1

t2t3
:

In fact, only the first two terms of (4-9) contribute – the others cancel with the redistri-
bution. Then,

w.Qk/D

Z
Qk

e.�VQk /

D
.�s2� s3/.s1� s2� s3/ � � � ..k � 1/s1� s2� s3/

.�s1/.�2s1/ � � � .�ks1/

D
1

k!

�
s2C s3

s1

��
s2C s3

s1

� 1

�
� � �

�
s2C s3

s1

� .k � 1/

�
;

which is clearly the qk coefficient of .1C q/.s2Cs3/=s1 .

The result agrees with the DT calculation of WDT
.1/;∅;∅ in Section 6 of [13] and verifies

Conjecture 4. The intricacy of the DT argument using localization relations, divisibility,
and the Hilbert–Chow morphism shows the difference in the theories.

5 Toric Calabi–Yau vertex

5.1 Calabi–Yau torus

Let X be a toric Calabi–Yau 3–fold with canonical form ! . The main example is a
local Calabi–Yau toric surface, the total space of the canonical bundle

KS ! S
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of toric surface S . As in Section 3.2, let T0 � T be the torus preserving ! . The stable
pairs invariants take a much simpler form when computed T0 –equivariantly.

The direct approach to calculating the T0 –equivariant vertex is simply by restriction,

WP
E�;CY DWP

E�

ˇ̌
s1Cs2Cs3D0

:

The main drawback is the summation over ŒQ� 2 SM
E�

in the definition (4-14) of
WP
E�

has to be done before restriction as the individual summands may have poles
at s1 C s2 C s3 D 0. A better approach is to analyse the T0 –localization formula
geometrically.

5.2 T0–localization

Let SM
E�;0

be the set of connected components of the moduli space of T0 –invariant
submodules of M=OCE�

. By Conjecture 2, such components Q0 are nonsingular.15

The quotient torus
C� Š T=T0

acts on each Q0 . The C�–fixed loci of Q0 are elements of ŒQ� 2 SM
E�

. Conversely,
every element of ŒQ� 2 SM

E�
arises as a C�–fixed locus of a unique ŒQ0� 2 SM

E�;0
.

The scheme Q0 carries a T0 –fixed obstruction theory,

(5-1) .E�1
Q0
/T0 ! .E0

Q0
/T0 :

By the nonsingularity of Q0 , the virtual class ŒQ0� is the Euler class of an obstruction
bundle. By the self-duality of the obstruction theory (5-1),

ŒQ0�
vir
D e.�Q0

/\ ŒQ0�:

Then, by the virtual localization formula for the C�–action and self-duality again,

WP
E�

ˇ̌
s1Cs2Cs3D0

D

X
ŒQ0�2SM

E�;0

Z
Q0

e.�Q0
/ .�1/

rk.E0
Q0
/m0

D

X
ŒQ0�2SM

E�;0

�top.Q0/ .�1/dimCQ0.�1/
rk.E0

Q0
/m0
;

where rk.E0
Q0
/m0 is the rank of the summand with nontrivial T0 –weight.

15We assume the validity of Conjecture 2 throughout the Section.
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5.3 Theorem/Conjecture 2

Using the Euler characteristic identity

�top.Q0/D
X

ŒQ�2SM
E�
; Q�Q0

�top.Q/;

we can rewrite the Calabi–Yau vertex as

(5-2) WP
E�
js1Cs2Cs3D0 D

X
ŒQ0�2SM

E�;0

X
ŒQ�2SM

E�
;

Q�Q0

�top.Q/ .�1/dimCQ0.�1/rk.E
0
Q/

m0
:

Fix an element ŒQ� 2Q�Q0 . The calculation of

.�1/dimCQ0.�1/rk.E
0
Q
/m0

precisely follows Sections 4.10–4.11 of [9]. Let

VQ.t1; t2; t3/D VQjŒQ�;

where the restriction to the point ŒQ� 2 Q kills all the K–theory information. The
strategy of [9] is to split the vertex contribution as

VQ.t1; t2; t3/D VC
Q
CV�Q

VC
Q
D�V�Q:where

We use precisely the same formulas to define the splitting here; see Section 4.11 of [9].
Then,

VC
Q
.1; 1; 1/D Con.VC

Q
jt1t2t3D1/C rank.E0

Q/
m0 mod 2:

The constant term is treated exactly as in Section 4.11 of [9]. The conclusion, using
Conjecture 3, is

Con.VC
Q
jt1t2t3D1/D dimCQ0:

Finally, from the definition of the splitting,

VC
Q
.1; 1; 1/D `.Q/CjE�j;

where the second summand is the renormalized volume. We conclude

(5-3) WP
E�
js1Cs2Cs3D0 D

X
ŒQ�2SM

E�

�top.Q/ .�q/`.Q/CjE�j :

Our calculation of the T0 –vertex (5-3) is complete in the 1– and 2–leg cases and
conjectural in the 3–leg case (since Conjecture 2 and Conjecture 3 are unproven there).
In particular, the result is established for local Calabi–Yau toric surfaces. Though we
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have not found examples violating Conjecture 2, perhaps (5-3) holds without requiring
the nonsingularity of the components Q0 .

The statement of Theorem/Conjecture 2 follows formally from the vertex Equation
(5-3) and the edge calculus of Section 4.10 of [9]. The edge calculus is identical for
stable pairs and ideal sheaves.

5.4 Example

The example of the Calabi–Yau vertex with outgoing partitions

�1
D .1/; �2

D .1/; �3
D .1/

was worked out at the end of [14].

We consider here the vertex WP
.1/;.2/;.1/;CY with outgoing partitions

�1
D .1/; �2

D .2/; �3
D .1/:

The scheme-theoretic support curve C.1/;.2/;.1/ is pictured in Figure 7 with renormalized
volume �3. The module M=OCE�

is pictured in Figure 8. There is a single type II box

x1

x2

x3

Figure 7: The T–character of the support curve C.1/;.2/;.1/

at x3 and a single type III box at 1, over the origin.

We now count box configurations up to length 3. There is a unique empty box con-
figuration corresponding to the 0 submodule. There are 2 distinct configurations of
length 1:

(i) a box at 1 labelled by C � 10 2 P1 ,

(ii) a box supported at x3 .
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x1

x2

x3

Figure 8: The T–character of the module M=OC.1/;.2/;.1/

The box (i) is annihilated by multiplication by all the xi in the module structure. There
are 3 types of configurations of length 2:

(i) boxes at x�1
2

x3 and x3 ,

(ii) a box at 1 labelled with C � 10 and a box at x�1
1

,

(iii) a box at 1 with any label in P1 and a box at x3 .

The moduli space in (iii) is P1 . The configurations of length 3 are classified as follows:

(i) an unlabelled (length 2) box at 1 and a box at x3 ,

(ii) a box at 1 with any label in P1 and boxes at x�1
2

x3 and x3 ,

(iii) a box at x�1
1

, a box at 1 labelled by C � 10 and a box at x3 ,

(iv) a box at x�1
3

, a box at 1 labelled by C � 30 and a box at x3 ,

(v) a box at 1 labelled by C � 10 and boxes at x�2
1

and x�1
1

,

(vi) boxes at x�2
2

x3 , x�1
2

x3 and x3 .

The moduli space in (ii) is P1 .

Equation (5-3) for the Calabi–Yau vertex and the above box counting (including the
Euler characteristics) together yield16

.�q/3 WP
.1/;.2/;.1/;CY D 1C 2.�q/C 4.�q/2C 7.�q/3C � � � :

16 A closed formula for the Calabi–Yau vertex here can easily be found.
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Standard box counting yields the nonnormalized DT vertex

.�q/3 W
DT;nn
.1/;.2/;.1/;CY D 1C 3.�q/C 9.�q/2C 23.�q/3C � � �

(see [9]). Using the MacMahon series

M.�q/D 1C .�q/C 3.�q/2C 6.�q/3C � � � ;

we can check Conjecture 4 up to order 3:

1C 2.�q/C 4.�q/2C 7.�q/3C � � � D
1C 3.�q/C 9.�q/2C 23.�q/3C � � �

1C .�q/C 3.�q/2C 6.�q/3C � � �
:

6 Descendents

6.1 Chern characters

Let X be a nonsingular toric 3–fold. Consider the T–equivariant descendent invariants

(6-1)
˝
�i1
.1/ � � � �ik

.k/
˛X
n;ˇ
D

Z
Pn.X ;ˇ/

mY
kD1

�ik
.k/

�
ŒPn.X; ˇ/�

vir�
2A�T;

where i 2A�T.X;Z/. The operators �i. / are defined by

�P�

�
��X . / � ch2Ci.F/\ .�

�
P . � /

�
W AT
�.Pn.X; ˇ//!AT

�.Pn.X; ˇ//

where we follow the notation of Section 0.5.

In order to calculate (6-1) by T–localization, we must determine the action of the
operators �i. / on the T–equivariant cohomology of the T–fixed loci Q.

6.2 Local to global

Let Q be a component of the T–fixed locus of Pn.X; ˇ/ determined by the local data

fQ˛gŒX˛�2V.X /; f�˛ˇgŒC˛ˇ�2E.X / :

On the chart U˛ �X , the Chern character

chl.F˛/jQ˛�ŒX˛� 2K.Q˛/˝Z ZŒt˙1 ; t
˙
2 ; t
˙
3 �

is determined completely by the character F˛ ,

chl.F˛/jQ˛�ŒX˛� D chl.1CP˛/(6-2)

D chl

�
F˛ � .1� t1/.1� t2/.1� t3/

�
;
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where we follow the notation of Section 4.4. In particular, the second equality is (4-8).
For notational convenience, we denote (6-2) and the pullback to Q simply by chl.F˛/.

The contribution of Q to the descendent (6-1) is calculated by summing over all
distributions

� W j 7! ŒX�.j/� 2 V.X /

of the insertions �ij .j / to the vertices and integrating

X
�

Z
Q

e.TQ/ � e
�
�

X
V˛ �

X
E˛ˇ

�
�

kY
jD1

ch2Cij .F�.j//
j jŒX�.j/�

e.T�.j//

where T�.j/ is the T–equivariant tangent space to X�.j/ .

6.3 Descendent vertex

The descendent vertex W
p

E�
.�i1
� � � �ik

/ is obtained from the descendent weight

(6-3) w�i1
����ik

.Q/D
Z
Q

e.TQ/ � e.�VQ/ �

kY
jD1

ch2Cij

�
FQ � .1� t1/.1� t2/.1� t3/

�
taking values in .A�T/loc . By definition,

(6-4) WP
E�
.�i1
� � � �ik

/D
X

ŒQ�2SM
E�

w�i1
����ik

.Q/ q`.Q/CjE�j 2Q.s1; s2; s3/..q//:

6.4 Example

As an example, we calculate the descendent vertex

WP
.1/;∅;∅.�i/

from the definitions.

Following the notation of Lemma 5, we have

FQk � .1� t1/.1� t2/.1� t3/D t�k
1 .1� t2/.1� t3/:

Then, by Lemma 5 and (6-4),X
i��2

WP
.1/;∅;∅.�i/z

2Ci
D

X
k�0

X
i��2

w�i
.Qk/z2Ci

D .1� ezs2/.1� ezs3/ exp
�
� zs1q

d

dq

��
.1C q/.s2Cs3/=s1

�
:
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The ��2 and ��1 terms are included formally. The formulas for

WP
.1/;∅;∅.�i1

� � � �ik
/

are no more difficult.

Let ŒL� 2H2.P
3;Z/ be the class of a line. To calculate the T–equivariant descendent

series of P3 in degree 1, we can use the determination of WP
.1/;∅;∅.�5/:

(6-5) ZP3

P;ŒL�

� kY
jD1

�i.1/

�
2QŒs1; s2; s3�..q//:

Expansion of the T–contribution formula of Section 6.3 then immediately yields the
qualitative result that the descendent series (6-5) are rational in q :

ZP3

P;ŒL�

� kY
jD1

�i.1/

�
2QŒs1; s2; s3�˝Q Q.q/:

In the nonequivariant limit, the rationality provides evidence for Conjecture 1. How-
ever, we speculate, in the toric case, that rationality holds for all such T–equivariant
descendent series.

The descendent invariants for the theory of stable pairs appear much better behaved
than the descendents in DT theory. Because of the wandering points, the DT descendent
series corresponding to (6-5) – even in the nonequivariant case – contain significant
irrationalities. The Gromov–Witten descendent series also contain irrationalities. The
framework of the GW/DT correspondence for descendents was outlined in [10]. The
correspondence with the descendent theory of stable pairs remains to be fully explored.
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