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Abstract African societies are dependent on rainfall for agricultural and other water-dependent activities,

yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought,

can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate,

we have constructed a 30 year (1983–2012), temporally consistent rainfall data set for Africa known as

TARCAT (Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT)

African Rainfall Climatology And Time series) using archived Meteosat thermal infrared imagery, calibrated

against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10 day

(dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six

long-term precipitation data sets indicates that TARCAT replicates the spatial and seasonal rainfall patterns

and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit

and Global Precipitation Climatology Centre gridded-gauge analyses respectively in the interannual variability

of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to

TARCAT underestimating the Africa-wide mean annual rainfall on average by�0.37mmd�1 (21%) compared

to other data sets. As the TARCAT rainfall estimates are historically calibrated across large climatically

homogeneous regions, the data can provide users with robust estimates of climate related risk, even in

regions where gauge records are inconsistent in time.

1. Introduction

Climate change and variability present a global challenge, but it is the less developed regions, such as Africa,

where the population is most vulnerable [Washington et al., 2006]. The heavy reliance on rain-fed agriculture

and other water-related activities has resulted in many livelihoods being highly susceptible to rainfall

variability [Benson and Clay, 1998; Cooper et al., 2008]. Serious social and economic impacts arise when rainfall

characteristics such as amount, intensity, frequency, and timing (for example, onset and cessation of the rainy

season) differ from normal conditions. Moreover, the observed anthropogenic global warming over the last

century is well documented [Trenberth et al., 2007], but its effect on rainfall is less clear, particularly at regional

scales [e.g., Hulme et al., 2001; Fauchereau et al., 2003; Intergovernmental Panel on Climate Change, 2013]. In

addition, confidence in future precipitation scenarios is currently subject to large uncertainties [Christensen

et al., 2007] and can only be assured if there is a comprehensive understanding of the processes controlling

rainfall variability, made possible through reliable rainfall records. An accurate and reliable understanding of the

recent and present rainfall climate over Africa is therefore paramount. However, knowledge of the rainfall

climate over Africa is limited mainly by inadequate ground-based rain gauge observations and the difficulty

of detecting changes in a parameter that is highly variable in both space and time.

The lack or complete absence of surface observations has led to alternative, indirect methods of estimating

rainfall becoming increasingly important for Africa. Rainfall estimates using satellite-based algorithms [e.g.,

Xie and Arkin, 1997; Grimes et al., 1999; Huffman et al., 2009; Bergès et al., 2010; Novella and Thiaw, 2013]

capable of providing full spatial coverage, have been shown to perform well over many parts of Africa,

including West Africa [e.g., Laurent et al., 1998; Grimes et al., 1999; Nicholson et al., 2003a, 2003b; Roca et al.,

2010; Jobard et al., 2011], central and eastern Africa [e.g., Dinku et al., 2007, 2008; Maidment et al., 2013] and

southern Africa [e.g., Thorne et al., 2001; Dinku et al., 2008; Thiemig et al., 2012]. Satellite-based products

typically exploit a combination of data from thermal infrared (TIR) and passive microwave (PMW) observations,

as well as gauge observations. Since each of these data types has its own strengths, such as accuracy at a point
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(rain gauge) and full spatial coverage (TIR imagery from geostationary platforms), combining each of these data

types is often carried out to create an optimal product.

As satellite data archives now extend more than 30 years, such records potentially provide a powerful tool for

assessing the rainfall climate. Numerous satellite-based rainfall products providing estimates for Africa exist,

some of which are summarized in Table 1. Of these products, those that are considered temporally consistent,

a necessity for reliably tracking year-to-year changes in rainfall, only cover short time periods (typically less

than 15 years). Longer-term data products that are not calibrated against gauge data, such as the TIR

Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI) product [Arkin and

Meisner, 1987; Huffman et al., 1997; Joyce and Arkin, 1997], may be subject to time-varying biases due to

changing satellite data inputs that could introduce spurious artifacts. Satellite data sets that ingest

contemporaneous gauge data help to minimize these biases and are highly valuable and generally reliable

where sufficient gauge information is used. But the decline in gauge observations across Africa in recent

decades [Janowiak, 1988; Willmott et al., 1994; Nicholson, 2001] and erratic reporting rates of Global

Telecommunication System (GTS) stations [Washington et al., 2006] may introduce further temporal

inconsistencies, particularly in data-sparse regions where sampling errors are likely to be greater. For

example, it has been suggested by Yin and Gruber [2010] that the cause of a spurious downward trend in

rainfall over the Congo River Basin in the Global Precipitation Climatology Project (GPCP) version 2.1

Table 1. Overview of Widely Used Rain Gauge and Satellite Rainfall Data Sets Providing Coverage for Africa, Including TARCAT

Name Data Input
b

Spatial

Resolution

Temporal

Resolution

Spatial

Coverage Start Date

Primary

Function
c

Reference

GHCN gauge station daily, monthly global 19th Century climate Menne et al. [2012]

CRU
a

gauge 0.5° monthly global 1901 climate Harris et al. [2014]

GPCC First Guess gauge 1.0° monthly global 2005 climate Becker et al. [2013] and

Schneider et al. [2014]

GPCC monitoring

product

gauge 1.0°, 2.5° monthly global 2007 climate Becker et al. [2013] and

Schneider et al. [2014]

GPCC Full Data

Reanalysis
a

gauge 0.5°, 1.0°, 2.5° monthly global 1901 (end 2010) climate Becker et al. [2013] and

Schneider et al. [2014]

GPCC VASClimo gauge 0.5°, 1.0°, 2.5° monthly global 1951 (end 2000) climate Becker et al. [2013] and

Schneider et al. [2014]

PREC/L
a

gauge 0.5°, 1.0°, 2.5° monthly global 1948 climate Chen and Xie [2002]

University of

Delaware

gauge 0.5° monthly global 1900 climate Legates and Willmott [1990]

GPCP-1DD TIR, PMW, gauge 1° daily global 1996 weather Huffman et al. [2001]

GPI TIR 2.5° monthly 40°N–40°S 1986 climate Arkin and Meisner [1987]

GPCP
a

TIR, PMW, gauge 2.5° pentad, monthly global 1979 climate Huffman et al. [2009]

RFE TIR, PMW, gauge 0.1° daily 40°N–40°S,

20°W–55°E

1995 weather Herman et al. [1997]

ARC
a

TIR, gauge 0.1° daily 40°N–40°S,

20°W–55°E

1983 climate Novella and Thiaw [2013]

TRMM 3B42
a

TIR, VIS, PMW,

radar, gauge

0.25° 3 hourly, daily 50°N–50°S,

0°–360°E

1997 weather Huffman et al. [2007]

TRMM 3B43 TIR, VIS, PMW,

radar, gauge

0.25° monthly 50°N–50°S,

0°–360°E

1997 climate Kummerow et al. [2000]

CMORPH TIR, PMW 0.07° 30 min 60°N–60°S 2002 weather Joyce et al. [2004]

PERSIANN TIR, PMW 0.25° 6 hourly 60°N–60°S 2000 weather Hsu and Sorooshian [2008]

CMAP
a

TIR, PMW,

gauge, model

2.5° pentad, monthly global 1979 climate Xie and Arkin [1997]

EPSAT-SG TIR, PMW,

radar, gauge

0.0375° 15 min Africa 2004 weather Bergès et al. [2010]

MPE TIR, PMW 0.0375° 15 min Africa and Europe 2007 weather Heinemann and Gärtner [2012]

KNMI-PPP TIR, VIS, NIR 0.0375° 15 min (daytime) Africa and Europe 2004 weather Roebeling et al. [2012]

TARCAT
a

TIR, gauge 0.0375° dekadal Africa 1983 climate -

a
Data sets which are described in further detail in section 2 and used in the intercomparison study in section 4.
b
TIR = thermal infrared, NIR = near infrared, PMW=passive microwave, VIS = visible.

c
The primary function gives the intended use of the data set, although some data sets may have interchangeable use. Data sets designated as climate refer to

those products suited for climate applications, such as climate research and long-term monitoring analysis, while data sets designated weather refer to those
products aimed at weather analysis, such as event-scale rain rates and rainfall coverage.
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[Adleret al., 2003; Huffman et al., 2009] was partially a result of very few gauges used in the analyses.Wan et al.

[2013] who investigated the effect of the spatial and temporal coverage of global in situ gauge observations

on the estimation of mean, variance, and trend in rainfall also demonstrated that over data-sparse regions

such as Africa, large sampling errors in total precipitation and trend magnitude may exist. These issues

mean that, although there are clear advantages to including ground-based rainfall measurements in satellite-

based products, the method by which gauge measurements are incorporated is likely to impact the rainfall

estimates. The methodology used for combining satellite imagery with gauge measurements, furthermore,

may affect the suitability of the data product for assessing long-term trends. This is especially the case in

regions where the gauge records are sparse and temporally inconsistent.

In this paper, we report on the development of a new gridded 30 year TIR-based precipitation data set called

the Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) African

Rainfall Climatology And Time series (TARCAT). The TARCAT data set (1983–2012) is based on the TAMSAT

rainfall estimation algorithm [Dugdale et al., 1991; Milford et al., 1996; Grimes et al., 1999] that was originally

developed over West Africa during the 1980s and has recently been extended to all parts of Africa for all

months [Tarnavsky et al., 2014]. TAMSAT’s primary objective has been to provide historic and near real-time

rainfall estimates for drought monitoring over sub-Saharan Africa. The method depends on two inputs,

namely TIR imagery and gauge observations. The high temporal sampling (15 or 30min) provided by

Meteosat TIR imagery is suitable for capturing the rapid development of convective storms that is not

possible from TIR and PMW sensors on low Earth-orbiting platforms. Unlike the majority of combined

satellite-gauge algorithms (see Table 1), in creating TARCAT, gauge information is only used to generate

climatological calibrations that vary spatially andmonthly to reflect the geographical and temporal variations

in the average rainfall climate across Africa. An important prerequisite of the TAMSAT system is that these

empirically derived calibration parameters do not change from year to year, eliminating the need for

contemporaneous gauge data. The temporal variation in rainfall, inferred from the TARCAT data set, is

therefore largely unaffected by gauge sampling biases. Rainfall estimates are then obtained by applying

the predetermined calibration parameters to cold cloud duration (CCD) fields calculated from TIR data

(see section 3.3), on the assumption that cold clouds produce the majority of rainfall across Africa. This

TAMSAT technique has been shown to perform well over many parts of Africa when compared to gauge

data, and despite the relative simplicity of the TAMSAT algorithm has comparable skill to other satellite-

based products [Laurent et al., 1998; Thorne et al., 2001; Dinku et al., 2007; Chadwick et al., 2010; Jobard et al.,

2011; Maidment et al., 2013]. This skill underlines the suitability of TIR-based algorithms over Africa and

highlights the importance of adjusting the algorithm to local climatic conditions [Dugdale et al., 1991; Todd

et al., 1995, 1999; Dybkjær, 2003; Chadwick et al., 2010]. Because the TAMSATmethod has good skill, we have

not modified the original algorithm for the development of TARCAT, for example, by using more complex

techniques of estimating rainfall using TIR brightness temperatures [e.g., Kidd et al., 2003].

TIR-based algorithms, such as TAMSAT, are well suited for Africa because of the overwhelming dominance of deep

convective systems that are responsible for most of the precipitation across the continent [Mohr and Zipser, 1996;

Mohr et al., 1999; Nesbitt et al., 2000; Mathon et al., 2002]. These convective systems range from isolated

cumulonimbus cells that may last for a couple of hours to large-scale organized mesoscale convective systems

thatmay persist for several days. TIR-based algorithms are successful overmuch of Africa because there is a strong

relationship between the cold cloud tops (or cloud top temperature derived indices such as CCD) of these

systems and precipitation. Such cold cloud tops are easily distinguishable from warmer nonprecipitating

shallower clouds and the land surface below and hence provide a useful indicator of rainfall occurrence.

Because these rain-bearing convective systems are associated with the seasonal migration of the Intertropical

Convergence Zone (ITCZ), the resulting annual cycle in rainfall is often consistent from year to year at any one

location making it permissible to use a climatology-based calibration approach, as used in generating TARCAT.

In order to meet the requirements of drought monitoring, TAMSAT dekad rainfall estimates and

subsequent anomalies (with respect to the 1983–2012 average) are created every 10 days (accessible

from http://www.met.reading.ac.uk/~tamsat/data) at a spatial resolution of 0.0375° (approximately

4 km) at nadir, consistent with TARCAT. While the retrieval error can be considerably large at this

resolution compared to areal averages [Grimes et al., 2003], provision of the data at this scale allows

users to aggregate the data to suitable scales for specific applications. While TARCAT is a 30 year data set,

the near real-time TAMSAT estimates generated since January 2013 use the same calibrations used in TARCAT
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and are therefore consistent with the long-term data set. The remainder of this paper details the steps taken to

construct the TARCAT data set and compares TARCAT with some widely used long-term satellite and gauge

rainfall data sets.

2. Overview of Rainfall Data Sets

An overview of some widely used observation based (satellite and gauge) data sets that provide rainfall

estimates for Africa is given in Table 1 while those data sets used in this paper are described here. The

majority of the satellite products give global or near-global coverage, but few are tailored solely for Africa.

Jobard et al. [2011] demonstrated that over West Africa, the data sets tailored for Africa, including TAMSAT,

generally have greater skill than global products. Numerical weather prediction reanalysis model products

are not discussed here as it is well documented that over Africa modeled rainfall is less accurate than

satellite-based products, especially at subcontinental scales [e.g., Lim and Ho, 2000; Poccard et al., 2000;

Funk and Verdin, 2003; Diro et al., 2009; Maidment et al., 2013]. This is because forecast and general

circulation models, which operate at relatively course resolutions (typically 50 km or greater), are not able

to explicitly resolve the small-scale processes associated with tropical convection and precipitation.

Instead, they rely on parameterizations that approximate precipitation processes across a model grid

square, such as the cloud microphysics and determining how much rainfall is generated. However,

uncertainties in these approximations and model physics can lead to large errors in the estimated

precipitation [Pope et al., 2000; Yang and Slingo, 2001; Allan et al., 2007; Flato et al., 2013; Pearson et al.,

2014]. Moreover, the inability of these models to simulate small-scale precipitation accurately highlights

the advantage of the high spatial resolution of the TARCAT data set in capturing the spatial variability of

convective rainfall across Africa.

2.1. Rain Gauge Observations

Gauge-only products can be categorized into either point or gridded data sets. Such data sets are, in some

cases, later merged with satellite-only rainfall estimates to improve the accuracy of the satellite estimates.

There are several archives that maintain original gauge records, for example, the Global Historical Climate

Network (GHCN) [Menne et al., 2012]. Such data sets are an amalgamation of records from numerous

sources, including records from national meteorological services and Surface Synoptic Observations

reports via the GTS network. These data sets can provide long-term station records and are excellent for

climate analysis at their individual point locations. However, such records are rarely complete and can be

susceptible to time-dependent biases such as changes in the device and the surrounding environment

[Sevruk, 1982; Legates and Willmott, 1990].

More often used are gridded-gauge products that include the Climate Research Unit (CRU) precipitation

data set [Mitchell and Jones, 2005; Harris et al., 2014], those from the Global Precipitation Climatology

Centre (GPCC) [Becker et al., 2013; Schneider et al., 2014] and the National Oceanographic and Atmospheric

Administration (NOAA) PRECipitation REConstruction over Land (PREC/L) [Chen and Xie, 2002]. Like GHCN,

these gridded data sets combine observations from multiple sources. Because of the longevity of these

data sets (see Table 1), they are best suited for climate-based analysis, including evaluation of climate

models. Such products generally perform well in places where the density of the gauge network is high, for

example, in Europe and North America [Schneider et al., 2014]. However, in much of Africa where the gauge

network is sparse and unevenly distributed, conversion from point to areal averages may be subject to large

representativeness errors [Flitcroft et al., 1989; Rudolf et al., 1994; Willmott et al., 1994; Xie and Arkin, 1995].

The high spatial variability associated with convective rainfall exacerbates this problem.

While much effort is made to ensure consistency of gridded-gauge data sets, the station density is rarely

consistent over time. In the current GPCC Full Data Reanalysis gauge analysis [Becker et al., 2013; Schneider

et al., 2014], the total number of gauges used across Africa has decreased by approximately 80% from 1983 to

2010 (see discussion in section 3.5). It is possible that due to data latency, additional records may become

available for the most recent years. Nonetheless, such a reduction may increase sampling errors of gridded

products, particularly in data-sparse regions, increasing uncertainty in trends derived over such regions

[e.g., Wan et al., 2013]. This has potential significance as many combined satellite-gauge products depend

on such gridded-gauge analyses.
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2.2. Satellite-Based Observations

The monthly GPCP precipitation analysis [Adler et al., 2003; Huffman et al., 2009] provides global coverage since

1979 at 2.5° resolution and is particularly useful for climate research, including model evaluation. The estimation

algorithm uses GPI rainfall estimates adjusted against PMW observations (since 1987) over the Tropics using

themethod described by Adler et al. [1994] and augmented by sounding observations at higher latitudes. Finally,

the combined satellite estimates are adjusted to gauge measurements where available (the latest GPCP version

2.2 uses the GPCC’s Full Data Reanalysis product). It should be noted that none of the satellite inputs span

the entire period (from 1979 to the present), and therefore, changes in the rainfall estimation scheme has taken

place (details: ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf). Lau and Wu [2007] suggest that

the decrease in GPCP rainfall over Equatorial Africa since 1987 may be related to the inclusion of PMW data.

The NOAAClimate Prediction Center African Rainfall Estimation Algorithm (NOAA-RFE) produces rainfall estimates

in near real-time to assist drought monitoring across sub-Saharan Africa. Estimates are created by linearly

combining TIR (GPI estimates) and PMW rainfall estimates using predetermined weighting coefficients before

mergingwith GTS gauge records (full description: http://www.cpc.ncep.noaa.gov/products/fews/RFE2.0_tech.pdf).

Merging of the satellite estimates and GTS gauge data follows the method of Reynolds [1988] whereby an

attempt is made to remove the bias in the satellite estimates using the gauge data, while retaining the spatial

distribution of precipitation given by the satellite estimates. As of January 2001, a major change in the

product occurred with NOAA-RFE version 1.0 [Herman et al., 1997] being replaced by NOAA-RFE version 2.0.

NOAA-RFE version 1.0 only used TIR (i.e., GPI) and GTS observations while NOAA-RFE version 2.0 utilizes two

types of PMW data as described above. A daily climatological version of NOAA-RFE known as the African

Rainfall Climatology (ARC) is available from 1983 to the present which uses the NOAA-RFE version 1.0 algorithm

[Love et al., 2004; Novella and Thiaw, 2013]. Because ARC has a relatively long time series, it has functions in

both climate research and long-term monitoring applications.

The Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) [Xie and Arkin, 1997] provides rainfall

estimates from 1979 at 2.5° resolution and is similar to GPCP and NOAA-RFE in that it utilizes TIR, PMW, and gauge

records but also incorporates model reanalysis outputs. While CMAP provides a long time series, which is

important for climate analysis, the data set is known to suffer from temporal discontinuities due to changes in

calibration methods and inclusion of new data types during the record [Yin et al., 2004; Lau and Wu, 2007].

The Tropical Rainfall Measuring Mission (TRMM) is aimed at improving observations of precipitation across the

Tropics [Kummerow et al., 2000; Huffman et al., 2007]. The TRMM satellite is equipped with a precipitation radar

(PR), the TRMM microwave imager, and a visible-infrared scanner from which different TRMM precipitation

products are generated. The PR is perhaps the best satellite instrument to date at capturing precipitation

features such as intensity, distribution, and type, but temporal sampling is low, with up to two overpasses daily

for a given location. The most widely used outputs are the TRMM Multisatellite Precipitation Analysis (TMPA)

3-hourly (3B42) and monthly (3B43) products. These precipitation estimates, classed as level 3 products, use

TRMM level 1 and 2 products to calibrate and adjust merged-TIR imagery from geostationary and polar-orbiting

platforms and are then adjusted against GPCC gauge information where possible to provide near-global

coverage at a spatial resolution of 0.25°. While studies have shown these TRMM products perform well over

Africa [Nicholson et al., 2003b; Dinku et al., 2007; Jobard et al., 2011], estimates are only available since 1997

which is arguably too short a period for inference of long-term climate trends. TRMM products, in particular

3B42, are perhaps best suited for event-based applications, such as estimates of rain rates and rainfall coverage.

3. Development of the TARCAT Data Set

The 30 years of TAMSAT rainfall estimates that constitute the TARCAT data set required Meteosat TIR imagery

to generate the CCD fields and gauge records for calibrating the CCD fields. TheMeteosat TIR data set starting

in 1981 was obtained from the European Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT) archives. Incomplete records and unavailable sensor calibration information meant that the first

2 years (1981 and 1982) were not retained. Corrupt files in the remaining data were identified and removed

manually. Data from January 1983 to June 2006 originated from the Meteosat First Generation (MFG) satellites

(Meteosat 2–7), while subsequent data came fromMeteosat SecondGeneration (MSG) satellites (Meteosat 8–9).

As of January 2013, real-time data are received from Meteosat-10. The central wavelengths of the window

channels used are 11.5μmand 10.8μm for MFG andMSG, respectively. The gauge archive used to generate the
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regional monthly calibration parameters comprised of around 4300 stations (see Appendix A) providing over

350 000 records of 10 day rainfall totals from 1983 to 2010, the majority of which have been obtained from

numerous African National Meteorological and Hydrological Centres during workshops since the early 1990s.

The TARCAT data set has been created by firstly generating CCD fields, which are used in conjunction with the

gauge records to derive the spatially and temporally varying climatological calibration parameters, and secondly,

applying the TAMSAT algorithm and derived calibration parameters to the CCD fields from 1983 to 2012. The

following subsections detail the steps and quality control procedures taken during the data set development.

3.1. Meteosat Calibration and Conversion to Brightness Temperature

The methodology for converting raw radiometric counts to brightness temperature is longstanding [e.g.,

van de Berg et al., 1995; Picon et al., 2003; Novella and Thiaw, 2013]. Adopting the notation of Picon et al. [2003],

the MFG relationship between radiance and radiometric counts is given by equation (1);

R ¼ α C � C0ð Þ (1)

where R is radiance, α is the calibration coefficient, C is the observed digital Meteosat radiometric count, and C0 is

the background space count. The calibration coefficient and space count valueswere obtained from the EUMETSAT

web site (http://www.eumetsat.int/website/home/Data/Products/Calibration/MFGCalibration/index.html).

An analytical approximation of Planck’s law (equation (2)) was then applied to convert the radiances to

brightness temperature T.

T ¼
B

ln R� Að Þ
(2)

The nonlinear coefficients A and B were determined by EUMETSAT using radiance and brightness

temperature lookup reference tables for each satellite and were sourced online (ftp://gerb.oma.be/Documents/

imager_dictionary.pdf) and from historic calibration reports issued by EUMETSAT. The conversion from

radiometric counts to radiance for MSG data is identical to MFG data (equation (1)), but the radiance-brightness

temperature relationship is given by a three parametric formulation of the inverse Planck function [Govaerts

et al., 2001, Equation (3)];

T ¼
1

α

c2νC

ln 1þ ν3
C

c1
R

� �� β

2

4

3

5 (3)

where vc is the representative wave number (inverse of the channel wavelength) and α, β, C1, and C2 are

coefficients that are radiometer dependent (available from: http://www.eumetsat.int/website/home/Data/

Products/Calibration/MSGCalibration/index.html). Due to changes in Meteosat data in May 2008, including

radiance definition (see previous reference for details), an error up to �0.35 K is expected for MSG data from

July 2006 to May 2008. However, the resultant error is very small (~2%) for TAMSAT rainfall estimates (see

section 3.3). During the conversion process, all images were projected onto a latitude-longitude grid and

parallax corrections applied. A caveat of geostationary imagery is the change in ground resolution (and thus

the cloud-fraction observed) with zenith angle; however, most of the area where rainfall is estimated is

generally within the middle of the satellite disk view where this has least effect.

3.2. Meteosat Brightness Temperature Record

An analysis of the full Meteosat TIR time series is extremely valuable for the climate community, particularly

since it is used in many climate data sets [e.g., Schiffer and Rossow, 1985; Rossow and Schiffer, 1999], including

precipitation data sets. However, exploiting the Meteosat TIR archive for climate analysis presents its own

challenges. Using imagery from eight different satellites over the 30 year period (see Figures 1a–1d (top))

can introduce artificial temporal discontinuities, either during the life time of a single instrument or from a

change of instrument. Such instrument-dependent biases may result in misleading trends in rainfall. These

discontinuities have different causes, such as differences in the spectral response functions of the channel,

spectral degradation over time, or spectral shifts over time. In addition, the space agencies operating the

satellites regularly adapt the calibration techniques employed. All the above reasons motivated the initiative

taken by the World Meteorological Organization to establish the Global Space-based Inter-Calibration

System, which aims to ensure consistent calibration and intercalibration of operational meteorological
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satellite instruments [Goldberg et al., 2011]. While significant biases in the Meteosat water vapor channel

exist [Picon et al., 2003], no such studies have yet been conducted on the full Meteosat TIR archive. Because a

temporally consistent satellite record is essential for the long-term reliability of TARCAT, particularly as no

contemporaneous gauge adjustment to the satellite estimates is incorporated, it was necessary to carefully

evaluate the Meteosat TIR archive for any time-dependent biases.

An assessment was carried out by extracting daily brightness temperature statistics from the TIR archive over a

domain coveringmost of the African continent where deep tropical convection occurs (20°S–20°N, 15°W–40°E).

The statistics considered were the spatial mean and pixel value corresponding to the 1st (cold scene) and 99th

(warm scene) percentiles. The latter two were included to represent the full range of scene temperatures

and to determine if biases were temperature dependent. The coldest and warmest pixels were also considered

but were not found to provide sufficiently robust statistics. Here the 1st percentile is representative of the

cloud top temperature of cumulonimbus or cirrus clouds, which are thought to offer a stable calibration

target [e.g., Doelling et al., 2004; Zelinka and Hartmann, 2011], while the 99th percentile is sensitive to land

surface temperature and emissivity. The final statistic considered over this domain was the 3rd percentile,

which corresponds, on average to 228 K. This is the midpoint of the cloud top temperature range that the

TAMSAT method considers (see Appendix A) and is a useful measure relevant to the TAMSAT algorithm.

The deseasonalized time evolution of these statistics from 1983 to 2011 is presented in Figure 1. The mean

brightness temperature for each Meteosat satellite for each statistic considered is superimposed onto the

time series (see Table 2 and Table S1 in the supporting information). Themean brightness temperature provides

a useful measure to assess any temporal discontinuities associated with a change in satellite, particularly where

the time period considered is relatively short.

It is evident from Figure 1 that satellite-dependent biases do exist. For the warm scene (Figure 1b), sudden

changes occurwith the transition toMeteosat-3, toMeteosat-7, and toMeteosat-8/9. Since a typical satellite view

Figure 1. Deseasonalized time series of Meteosat brightness temperature (BT) daily statistics (grey dots) over the domain

(20°S–20°N, 15°W–40°E) for (a) mean brightness temperature, (b) 99th percentile, (c) 1st percentile, and (d) 3rd percentile.

The data were deseasonalized by subtracting the daily climatology (computed over all instruments from 1983 to 2011

period) from each daily value for each statistic. The vertical lines indicate the satellite changes. The horizontal solid lines

give the mean brightness temperature for each satellite. There were occasional periods, typically only lasting a couple of

days, when the operational satellite was replaced with a preexisting Meteosat satellite. These are not illustrated here but

are included in the calculation of the mean brightness temperature for each satellite. (top) A reference for the Meteosat

satellite in operation during each period over which the mean brightness temperature has been computed. Full details of

the operational history of the Meteosat satellites can be found on the EUMETSAT website (http://www.eumetsat.int/website/

home/Satellites/PastSatellites/index.html).
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over the domain considered is generally dominated by warm scenes, a similar scenario exists for the mean

brightness temperature (Figure 1a). An apparent cold bias exists for Meteosat-3 as well as Meteosat-7, although

the latter is well documented [Hewison, 2013;Hewison andMuller, 2013;Hewison et al., 2013]. For cold scenes, the

1st (Figure 1c) and 3rd (Figure 1d) percentiles both indicate a possible cold (wet) bias for Meteosat-3 in

the order of 2–3K, but there is no indication that a considerable bias exists for any other satellites, including

Meteosat-7. However, there is large variability for cold scenes compared to the warmer scenes making it more

difficult to detect biases.

It is plausible that relatively cold Meteosat-3 3rd percentile brightness temperature may be explained by

increased rainfall and cold cloud relating to La Niña conditions [Nicholson and Selato, 2000]. Similarly, a warmer

3rd percentile during 1983/1984 (evident in Figure 1a) coincided with drier than average conditions across the

continent [Lamb and Peppler, 1992; Hoerling et al., 2006]. Percentiles corresponding to 243K, 233 K, 223K, and

213K (temperature thresholds used by the TAMSAT method) yielded similar results to the 3rd percentile (not

shown). Although not investigated in this study, observing differences between satellites can be due to factors

such as changes in the spectral response function, spatial resolution, radiometric noise, quantization of the

instruments, and satellite drift. Efforts are currently underway by EUMETSAT to assess the aforementioned

factors [Roebeling et al., 2013]. These results indicate that although different satellites have contributed to the

Meteosat record, the calibration information supplied by EUMETSAT yields a stable TIR satellite record adequate

for generatingTARCAT. There is, however, a gradual but statistically significant (at the 99% confidence level using

a Mann-Kendall trend test) decreasing trend in the satellite-mean brightness temperature for the 1st and 3rd

percentile (see Figure 1 and Tables 2 and S1), suggesting an increase in cold cloud from 1983 to 2011 (discussed

in section 4.3). Despite the apparent stability of the full TIR data set, the Meteosat record was not originally

intended for climate research, and therefore, potentially large TIR calibration uncertainties may mask weak

rainfall signals. Biases in rainfall estimates due to the change from MFG to MSG imagery were also investigated

but were found to be significantly smaller compared to other sources of error discussed in subsequent sections.

3.3. TAMSAT Algorithm and Algorithm Sensitivity

The TAMSAT algorithm [Dugdale et al., 1991; Milford et al., 1996; Grimes et al., 1999] is an example of a cloud-

indexing technique. Using Meteosat TIR imagery, the length of time over a 10 day period where the cloud top

temperature is colder than a predetermined optimum temperature threshold (Tt) is calculated, known as

CCD. CCD is used as the proxy for rainfall. Provided sufficient temporal and/or spatial averaging, the 10 day

CCD total is then linearly related to rainfall R;

R ¼
a0 þ a1CCD

0

�

CCD > 0

CCD ¼ 0
(4)

where a0 and a1 are the regression calibration coefficients. These coefficients and the optimum temperature

threshold are derived locally (known as calibration zones [e.g., Thorne et al., 2001]) on a monthly basis using the

extensive archive of gauge records (see Appendix A for details on the derivation of the calibration parameters).

It is assumed that zero CCD corresponds to zero rainfall. During the CCD calculation, if there is a temporal

gap between two temperature measurements, half the period is taken to be at the temperature of the earlier

time and the other half at the temperature of the later time to form a step-change. Hence, for a regular MSG

Table 2. Brightness Temperature Summary Statistics (Mean, Standard Deviation (SD) and Standard Error (SE)) for Each

Meteosat Satellite for Each of the Statistics Presented in Figure 1
a

Satellite

Mean BT (K) 99th Percentile (K) 1st Percentile (K) 3rd Percentile (K)

Mean SD SE Mean SD SE Mean SD SE Mean SD SE

2 282.93 2.65 0.06 316.11 3.91 0.09 213.29 4.88 0.11 228.81 6.77 0.15

3 281.06 2.81 0.14 315.40 4.24 0.21 209.73 4.56 0.23 224.25 6.57 0.33

4 281.88 2.29 0.06 314.50 3.70 0.09 212.57 4.70 0.12 228.13 6.56 0.17

5 281.78 2.37 0.07 314.84 3.43 0.10 212.51 4.75 0.14 227.56 6.58 0.20

6 281.44 2.90 0.13 315.01 3.88 0.18 211.28 4.84 0.22 226.22 6.83 0.31

7 280.95 2.45 0.05 314.04 3.98 0.07 210.82 4.58 0.08 226.23 6.48 0.12

8 282.46 2.16 0.19 314.43 3.09 0.27 211.10 4.73 0.42 227.13 6.24 0.55

9 282.70 2.26 0.05 315.74 3.46 0.08 209.69 4.90 0.11 225.75 6.72 0.16

a
The deseasonalized statistics are available in the supporting information.
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15min gap between temperaturemeasurements, a temperaturemeasurement below the threshold temperature

contributes 7.5min before and 7.5min after its time, a total of 15min.

To test the significance a possible satellite instrument biasmight have on TAMSAT rainfall estimates, temperature

thresholds used in the monthly operational calibrations were perturbed (by ±1 to 5K) to simulate an apparent

change in the satellite brightness temperature. Rainfall estimates using the adjusted temperature thresholds

were then compared to rainfall estimates using the operational temperature thresholds.

The mean errors (see Appendix B for formulae) computed for all dekads in 2002 are given in Table 3 (and in

Figure S1a). Warmer (cooler) Meteosat TIR retrievals result in less (more) cold cloud detected, leading to a

dry (wet) bias. On average, a perturbation of 1 K results in an offset in rainfall of ±0.13mmd�1 (6.5%). In the

case of a possible 3 K cold bias for Meteosat-3, a wet bias of 0.41mmd�1 (20.4%) may be expected. Such

biases are systematic across the satellite disk view, although larger errors are expected for colder temperature

thresholds (see Figure S1b). For example, a perturbation of 3 K at a threshold of 213 K gives an error of

0.57mmd�1 (28.0%) compared to 0.31mmd�1 (14.6%) at 243 K. The increased sensitivity at colder thresholds

is explained by fewer occurrences of cold cloud exceeding 213 K compared to 243 K. These findings indicate

that the TAMSAT algorithm is quite insensitive to small changes in cloud top temperature due to the indirect

use of Meteosat radiances in rainfall estimation.

3.4. Recovery of Missing Rainfall Dekads

Due to missing satellite imagery, particularly during the 1980s and early 1990s (Figure 2), a complete set of

dekadal rainfall estimates from 1983 to the present has not been possible. By using the standard TAMSAT

approach which allows gaps in TIR data of up to 3 h, rainfall estimates for 207 dekads would not be generated.

However, by employing two procedures, we recovered 179 (86%) of these missing dekads. If up to 6 h of TIR

data are missing, daily CCD fields are estimated as described in section 3.3 using data from time slots on either

side of the missing data interval. A longer gap (>6h) increases the chance of missing a storm, and thus, 6 h is

the largest acceptable gap; if more than 6 h of TIR data are missing, the daily CCD field is not estimated. At

the end of a dekad, if up to two daily CCD fields are missing, they are replaced with daily mean CCD for the

dekad. We have quantified the likely errors

associated with data recovery (see Appendix

C for details); these errors therefore apply to

the 179 recovered dekads, less than 20% of

the total (existing and recovered) dekads

that constitute the TARCAT data set. The

estimated root-mean-square error (RMSE)

did not exceed 0.64mmd�1 (17.3%) at 0.5°

resolution, which is much smaller than the

typical errors in TAMSAT rainfall estimates

reported in validation studies [cf. Laurent

et al., 1998; Dinku et al., 2007; Chadwick et al.,

2010; Maidment et al., 2013]. The TAMSAT

webpage and header of each file provides

users with quality flags where recovery

procedures have been used.

Figure 2. The annual percentage of missing TIR time slots calculated

as the percentage difference between existing slots (i.e., images

obtained from the Meteosat archive) and all possible slots.

Table 3. Sensitivity of TAMSAT Rainfall Estimates to Systematic Changes in the Satellite Brightness Temperature
a

Temperature Change (K)

1 2 3 4 5

MAE (mm/d) 0.13 0.27 0.41 0.54 0.67

MAPE (%) 6.52 13.47 20.37 26.79 33.38

a
The reported error statistics (mean absolute error (MAE) and mean absolute percentage error (MAPE)) are derived by

perturbing the Africa-wide calibration temperature thresholds by ±1 to 5K to simulate an apparent systematic bias in
Meteosat brightness temperature and computing the overall difference between the perturbed rainfall estimate and the
unperturbed rainfall estimate. Study based on all rainfall dekads in 2002; 72 dekads were used to compute each statistic.
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3.5. Temporal Stability of the TAMSAT Calibration Parameters

The primary objective in generating TARCAT is to create a temporally consistent rainfall data set. For this

purpose, a one-off calibration was imposed, which varies for each month and calibration zone, but remains

constant over all years. Hence, any interannual variability in rainfall can be accounted for by fluctuations in the

amount of cold cloud rather than a continually changing calibration. It is reasonable to assume that a fixed

monthly calibration may not accurately reflect submonthly changes in precipitation systems and that the same

rainfall-CCD relationship may not occur at the same time every year. While it is nontrivial accounting for such

changes without additional information (e.g., gauge or PMW), TAMSAT validation studies have demonstrated

that using a single monthly calibration applied over several years yields reliable rainfall estimates [Laurent et al.,

1998; Thorne et al., 2001; Dinku et al., 2007; Chadwick et al., 2010; Jobard et al., 2011; Maidment et al., 2013].

The calibrations are derived using all available gauge observations from 1983 to 2010. Formany parts of Africa, the

gauge records used do not span this full time period, and therefore, the calibration may be biased to the gauge

observation period. The resulting calibration can be considered to be a climatological calibration representing

the mean rain-CCD relationship over the years where gauge observations were available. Since Dugdale et al.

[1991] demonstrated that over the Sahel, the calibration can vary from year to year depending on whether it

is a dry or wet year (using data from 1986 to 1989), a single climatological calibration may underestimate

the year-to-year variance in rainfall. However,Dugdale et al. [1991] indicated that the change in calibration is not

important for rainfall totals less than 2mmd�1. Furthermore, Dugdale et al. [1991] based the “wet” calibration

on a period (1988–1989) that was considerably wetter than average [Nicholson and Selato, 2000]. It is therefore

important to assess whether a single calibration is representative of the rain-CCD relationship across all 30 years

over Africa. Furthermore, if a prolonged shift in rainfall regime has occurred, this may alter the rain-CCD

relationship, particularly in a changing climate where precipitation processes are unlikely to remain constant.

We have tested the temporal stability of the calibration using an empirical approach by validating TARCAT

with a reference data subset over southern Africa, to detect any periods where a systematic bias may exist

(Figure 3). The reference data set used was the GPCC Full Data Reanalysis v6.0 gridded-gauge analysis

[Becker et al., 2013; Schneider et al., 2014] (hereinafter referred to as GPCC-FDR; see Table 1). GPCC-FDR was

used as it overlaps with most of the TARCAT years and over southern Africa, the gauge density remained

comparatively high for most of the period (Figure 3d) suggesting that the resulting gridded GPCC-FDR rainfall

estimates are unlikely to suffer from any large sampling errors. While the gauge data used in GPCC-FDR is

likely to overlap with that used in the TAMSATcalibration, the data sets are fundamentally different as it is the

satellite observations that drive the year-to-year changes in TARCAT. It is clear that TARCAT is able to reproduce

the rainfall amounts given by GPCC-FDR reasonably well (Figures 3a and 3f). The two data sets disagree by less

than 0.6mmd�1 (monthly rainfall) 90% of the time and 0.85mmd�1 on average the other 10% of the time.

The monthly anomaly (Figure 3b) and annual rainfall (Figure 3c) time evolutions provide no evidence of

inhomogeneity or trends (in the monthly anomaly) indicating that the TAMSAT calibration over this region is

acceptable from 1983 to 2010. Figure 3c also shows that TARCAT is able to track the interannual variability

given by GPCC-FDR well (r= 0.90), although TARCAT is drier than GPCC-FDR (discussed in section 4.2).

Figure 3e gives the number of gauges from the region used in the TAMSAT calibrations. Since the majority of

these observations cover the 1990s with very little data from the 2000s and negligible data from 1980s, the

good agreement between TARCAT and GPCP-FDR demonstrates that for this region, the calibration is not

biased to the rainfall climate of the 1990s and can be applied to other time periods. The mean annual cycle is

also given (Figure 3g) and shows that TARCAT is very similar to GPCC-FDR. A validation of rainfall estimates

over Uganda by Maidment et al. [2013] demonstrated that the TAMSAT rainfall estimates calibrated using

1993–2000 gauge records performedwell for the years from 2001 to 2005 indicating that at least for this region,

a single calibration can perform well for other years independent of the calibration data set.

4. Evaluation of Rainfall Climatology and Interannual Variability

Here we present the mean rainfall climatology and interannual variability (1983–2010) depicted by the

TARCAT data set and those of six long-term satellite precipitation and gridded-gauge data sets (described

in section 2). The satellite data sets are GPCP v2.2 [Adler et al., 2003; Huffman et al., 2009], CMAP v1201

[Xie and Arkin, 1997] and ARC v2.0 [Novella and Thiaw, 2013; hereinafter ARC2]. The gauge data sets are

CRU v3.10 [Harris et al., 2014], GPCC-FDR, and NOAA’s PREC/L (updated January 2011) [Chen and Xie, 2002].
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Figure 3. The time evolution of (a) TARCAT and GPCC Full Data Reanalysis monthly rainfall estimates averaged over the domain�28°S to�18°S, 22°E to 28°E (south-

ern Africa), (b) the resulting anomaly computed as TARCAT-GPCC FDR (using deseasonalized values; annual running mean in bold line), (c) the annual rainfall esti-

mates, (d) number of GPCC FDR rain gauges over the domain, and (e) the number of rain gauges over the domain used in the TAMSAT calibration. Using the same

data, comparisons of (f) monthly rainfall estimates (dashed line denotes the one-to-one correspondence and red line denotes the linear regression best fit) and

(g) mean monthly annual cycle.
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Three gauge data sets were chosen to highlight the variation in gauge data sets brought about by differences

in sampling of gauge records and data set construction techniques.

All of these data sets (except ARC2) providemonthly mean rainfall at 2.5° resolution. ARC2 data (daily totals on a

0.1° grid) and TARCAT data (dekadal totals on a 0.0375° grid) were converted tomonthlymeans on a regular 2.5°

by 2.5° grid. To address the missing TARCAT dekads, we interpolated anomalies across each of the remaining

28 missing dekads and conducted an anomaly adjustment to the TARCAT climatology for the missing dekad.

TARCAT is the only satellite data set considered here that does not combine contemporaneous gauge data

with the satellite estimates. Themerging of gauge data into the other satellite productsmeans that comparisons

against GPCC-FDR, CRU, and PREC/L cannot be interpreted as independent validations. It is, moreover, to

be expected that satellite products produced in this way would agree closely with gauge based data sets.

In contrast, although TARCAT does include gauge data in its calibration, its year-to-year variability is purely

based on the signal from satellite imagery. To some extent, therefore, the comparisons of TARCATagainst the

gauge-only data sets can be considered a validation.

4.1. Climatology

The spatial annual rainfall climatology for TARCAT and the other precipitation data sets is presented in Figure 4.

Despite being only available since the late 1990s, the TMPA 3B42 v7.0 data set [Kummerow et al., 2000; Huffman

Figure 4. Spatial annual rainfall climatology (mmd
�1

) over the period 1983 to 2010 for (a) TARCAT, (b) GPCP, (c) CMAP, (d) ARC2, (e) TMPA (using 1998–2010 estimates),

(f) CRU, (g) GPCC-FDR, and (h) PREC/L at 2.5° resolution.
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et al., 2007, 2010; hereinafter TMPA] has been included because of its wide use. The 3-hourly TMPA estimates

were summed to monthly averages and regridded to 2.5° resolution, consistent with the remaining data sets.

It can be seen that the rainfall distribution given by TARCAT is similar to other data sets, with rainfall maxima

in the same regions, namely, Guinea coastal regions, Congo Basin, Ethiopian highlands, and Madagascar.

However, it is noticeably drier than the other data sets, particularly along parts of the Guinea coast and

northern Madagascar. The annual mean bias between TARCAT and the other data sets is �0.37mmd�1

(21%) and the seasonal mean biases are �0.38mmd�1 (22%), �0.31mmd�1 (17%), �0.34mmd�1 (23%),

and �0.44mmd�1 (24%) for December, January, and February (DJF), March, April, and May (MAM), June, July,

and August (JJA), and September, October, and November (SON), respectively (see Table 4). There is little to

differentiate between the other data sets, but as was explained above, this is likely attributed to each of the data

sets ingesting similar contemporaneous gauge data.

The mean monthly annual cycle of the eight data sets is shown in Figure 5. All data sets have been masked

using identical land-only grids available in all data sets. TARCAT follows the same annual cycle given by the

other data sets with peak rainfall in March and August. The TARCAT dry bias is clearly evident but is generally

consistent throughout most months except the months of February, May, and November, which have larger

biases. Regional analyses (not shown) show that the larger biases in February, May, and November occur only

over the Congo Basin where very few gauges exist. Elsewhere, TARCAT is more consistent with the other data

sets throughout all months. The other satellite-based data sets agree well with the seasonal pattern given by

the gauge data sets in terms of magnitude and seasonality of rainfall. The exception is the dry bias of ARC2

during the boreal summer months which

has been explained by a lack of GTS

gauge records over West Africa [Novella

and Thiaw, 2013].

4.2. TARCAT Dry Bias

TIR-based products are known to

underestimate high-intensity rainfall

events [Kidd and Huffman, 2011; Kidd and

Levizzani, 2011]; however, this alone

would not lead to the ~20% dry bias

observed. The bias can be explained by

the approach used for calibrating the

TAMSAT algorithm. Since TAMSAT is

geared toward drought monitoring

where accurately representing low

rainfall amounts is given priority, the

median rainfall for given CCD bins is

chosen to regress against the midpoint

for each CCD bin (see Grimes et al. [1999]

and Appendix A for further calibration

details). Because rainfall amounts are

Figure 5. Africa-wide area-average monthly annual cycle of rainfall for

TARCAT, GPCP, CMAP, ARC2, TMPA (using 1998–2010 estimates), CRU,

GPCC-FDR, and PREC/L over 1983 to 2010 using land-values only. Solid lines

represent satellite-based data sets while dashed lines represent gauge-

only data sets. The thin solid black line denotes TARCAT dekadal values.

Table 4. Africa-Wide Annual and Seasonal Mean Rainfall (Using Land-Only Values) From 1983 to 2010 (Units: mm d
�1

)

Annual DJF MAM JJA SON

TARCAT 1.37 1.37 1.33 1.43 1.36

GPCP 1.82 1.85 1.71 1.85 1.89

CMAP 1.69 1.68 1.59 1.77 1.73

ARC2 1.64 1.72 1.59 1.53 1.74

TMPA
a

1.82 1.83 1.67 1.88 1.89

CRU 1.73 1.69 1.64 1.79 1.80

GPCC-FDR 1.71 1.73 1.62 1.76 1.76

PRECL 1.75 1.72 1.68 1.80 1.79

a
TMPA values computed from 1998 to 2010.
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typically skewed toward low values, the median rainfall is chosen as it is insensitive to the occasional high

rainfall event, while being more representative of typical, lower rainfall amounts. The latter has been

demonstrated in studies such as Dinku et al. [2007], Jobard et al. [2011], and Maidment et al. [2013] and in

Figure 3f. This approach, however, leads to an overall dry bias as median rainfall is almost always less than

mean rainfall (e.g., Figure 6) and becomes more apparent when rainfall totals are integrated over large

temporal and spatial scales (e.g., annual and Africa wide). While selecting the mean rainfall would yield

estimates similar to those given by the other data sets, it would usually result in higher rainfall (as opposed to

using the median rainfall) for any given amount of CCD and therefore overestimate the more frequent low

rainfall amounts. For example, using monthly GPCC-FDR rainfall (August data from 1983 to 2010 across West

Africa between 10°N and 20°N) as the reference, rainfall amounts of 5mmd�1 or less were overestimated

by 0.54mmd�1 on averagewhen CCDwere calibrated using themean rainfall, as opposed to an overestimate

of just 0.06mmd�1 when using the median rainfall (not shown). The reduced skill this would have during

low rainfall dekads is undesirable for drought monitoring, and therefore, the observed underestimation in

total precipitation caused by using median rainfall is not corrected for.

The amount by which the TAMSATalgorithm underestimates rainfall varies according to the rainfall characteristics

of different regions. This is demonstrated in Figure 6 where twoWest Africa regions are contrasted for August.

The Sahel zone (Figure 6b) is characterized by a narrower distribution of rainfall amounts compared to the

Guinea zone (Figure 6c). This implies that the amount by which the median rainfall (blue line in Figures 6b

and 6c) is lower than the mean rainfall (red line in Figures 6b and 6c) will be greater over the Guinea zone

than over the Sahel zone, resulting in a larger dry bias over the former. This is evident in Figure 4 when

TARCAT is compared to the other data sets. Calibrating the CCD using the median rainfall results in an

(b) (c)

(d) (e)

(a)

mean=3.19

(16% less)

mean=3.80

mean=6.32

(19% less)

mean=7.79

Figure 6. (a) Two August TAMSAT calibrations zones for West Africa; Sahel, and Guinea—chosen for their contrasting rainfall

climates. Histograms of gauge observations used in the TAMSAT calibrations for the (b) Sahel zone and (c) Guinea zone.

Histograms of all the August TAMSAT rainfall estimates (pixel resolution) from 1983 to 2012 over the (d) Sahel zone and

(e) Guinea zone calculated when calibrated using median rainfall (top) and mean rainfall (bottom). Blue (red) vertical lines

denotes median (mean) rainfall.
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underestimate of 16% and 19% over the Sahel and Guinea coastal zones respectively, as opposed to when CCD

is calibrated using the mean rainfall instead (Figures 6d and 6e); this difference is similar in magnitude to the

average difference between TARCAT and the other data sets considered.

The effect of nonconvective or warm rain (denoted here as rain from cloud tops warmer than what is

considered cold cloud by the algorithm) which is known to occur over the Guinea zone [Herman et al., 1997;

Nicholson et al., 2003b; Schumacher and Houze, 2003, 2006; Sealy et al., 2003; Liu and Zipser, 2009] and orographic

enhancement over the Guinea Highlands results in the observed rainfall distribution of this region. Usually,

the average contribution warm rain and or orographic enhancement provides is taken into account during

the calibration stage (provided cold cloud is present during the 10 day period) by increasing the intercept

coefficient (a0). However, on inspection of gauge records and coincident CCD values over the Guinea zone

(not shown), high rainfall events are not always associated with high CCD values. This indicates that warm rain

and orographic enhancement cause or at least contribute to the high rainfall events and thus the relatively

large underestimation by TARCAT over this region of West Africa. Because the accuracy of TARCAT is based on

the premise that rainfall is closely associatedwith the occurrence of cold cloud tops of deep convective systems

(see section 1), TARCAT is likely to be less skilful in locations where rainfall from shallow convective systems

and warm rain processes are important, such as the Guinea Coast, northern Madagascar, and over the complex

topography of the Ethiopia Highlands.

Another possible source of underestimation is that no gauge corrections have been applied to the gauge records

used in the TAMSATcalibrations. These corrections attempt to correct for an undercatch of the actual rainfall due

to both instrument and certain weather conditions [Sevruk, 1982; Legates and Willmott, 1990]. However, the

magnitude of these corrections is likely to be relatively small in theTropics because of high rainfall intensities, lower

wind speeds, and no snowfall—conditions which are typically not associatedwith causing a significant undercatch

Figure 7. Twelve month running mean of deseasonalized Africa-wide area-average monthly rainfall for (a) GPCP, (b) CMAP,

(c) ARC2, (d) CRU, (e) GPCC-FDR, and (f) PREC/L compared to TARCAT (black solid line). Shown are the correlations between

the deseasonalized monthly rainfall. Values in parentheses denote the correlation where linear detrending to the time

series has been applied.
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in rainfall measured by gauges. Since adjustments for possible rainfall undercatch are applied to GPCC-FDR

[Schneider et al., 2014] but not to CRU or PREC/L and that all three products have similar annual and seasonal

mean rainfall (see Table 4), suggests that accounting for rain gauge undercatch is not that important over Africa.

4.3. Interannual Variability

In the following we present the interannual variability of TARCATand the six comparison precipitation data sets.

The 12 month running average of deseasonalized Africa-wide area-average monthly rainfall is given in Figure 7

(data set correlation matrix of the monthly and annual rainfall anomalies is given in Table 5). It is evident

that there are differences between the data sets, emphasizing the sensitivity of rainfall estimates (and inferred

trends) to the methodology of generating the data set.

TARCAT closely follows the gauge-only data sets, particularly CRU, where both the short and long-term

changes are tracked well. Correlations of 0.68 and 0.85 with CRU were found for the monthly and annual

rainfall anomalies respectively. A wetting trend during the whole period is evident in both products (CRU:

22.9mm decade�1; TARCAT: 27.8mm decade�1), consistent with a gradual cooling of the 3rd percentile in

the Meteosat TIR record in Figure 1d and Table 2. Even with this positive trend removed, respectable correlations

of 0.65 (monthly) and 0.77 (annual) with CRU were found. Correlations of 0.63 and 0.70 were found with FDR

for the monthly and annual totals respectively. This level of agreement suggests that TARCAT is sensitive

to year-to-year and long-term changes in rainfall, despite the initial concerns that TIR calibration uncertainties

may conceal such signals and the use of a climatological calibrationmay fail to accurately capture interannual

fluctuations in rainfall. Since GPCP and CMAP incorporate gauge information (GPCC gauge analysis) in

their final estimates, the correlations with the gauge-only data sets are higher than TARCAT. Despite the fact

that it includes merging with contemporaneous gauge data, ARC2 has similar correlation coefficients to

TARCAT with the gauge-only data sets at monthly scales but TARCAT correlation coefficients are greater at

annual totals (e.g., the correlation with GPCC-FDR is 0.70 for TARCAT and 0.47 for ARC2).

While some of the disagreement between TARCAT and the other data sets is caused by limitations of the

TAMSAT algorithm, there are also errors in the other data sets. For example, although it is to be expected that

the gauge-only data sets agreewell with each other, there appears to be less agreement between CRU, GPCC-FDR,

and PREC/L during 2000–2010. The lower agreement coincides with a sharp drop off in gauge coverage and

thus perhaps reflects sampling errors arising from fewer gauges in this period compared to earlier decades.

In summary, these analyses demonstrate that despite some limitations of the TAMSATalgorithm, TARCATskillfully

represents interannual and decadal variability.

5. Discussion

Improving our understanding of the present and historical rainfall climate across Africa is required as there is

large uncertainty in how rainfall in this part of the world is responding to a warming climate. Furthermore,

real-time monitoring of the rainy season is important in many sectors, but detection of above or below

average rainfall is only possible through reliable long-term climatologies.

Table 5. Data Set Correlation Matrix of the Area-AverageMonthly (Below Diagonal) and Annual (Above Diagonal) Rainfall

Anomalies From 1983 to 2010
a

TARCAT GPCP CMAP ARC2 CRU FDR PREC/L

TARCAT - 0.69 (0.68) 0.41 (0.71) 0.28 (0.52) 0.85 (0.77) 0.70 (0.71) 0.80 (0.72)

GPCP 0.64 (0.64) - 0.77 (0.88) 0.42 (0.50) 0.85 (0.86) 0.98 (0.98) 0.84 (0.83)

CMAP 0.51 (0.59) 0.85 (0.87) - 0.63 (0.61) 0.54 (0.76) 0.81 (0.92) 0.65 (0.85)

ARC2 0.53 (0.61) 0.68 (0.70) 0.74 (0.74) - 0.37 (0.55) 0.47 (0.54) 0.42 (0.58)

CRU 0.68 (0.65) 0.84 (0.84) 0.70 (0.75) 0.60 (0.64) - 0.87 (0.88) 0.91 (0.87)

FDR 0.63 (0.64) 0.99 (0.98) 0.85 (0.87) 0.68 (0.70) 0.84 (0.85) - 0.88 (0.88)

PRECL 0.62 (0.59) 0.80 (0.79) 0.73 (0.77) 0.64 (0.67) 0.80 (0.79) 0.80 (0.80) -

a
The monthly anomaly has been computed by subtracting the monthly climatological values from each month while

the annual anomaly represents the deviation from the long-term average. Both climatologies were computed from 1983
to 2010. Values in parentheses denote the correlation where the time series has been detrended while values in bold
indicate statistically significant correlations at the 99% level.
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The scarcity of records from the existing gauge network means that the current rainfall climatology across

Africa is poorly understood compared to other regions such as Europe and North America. Satellite-based

rainfall data sets exist, some of which have shown to perform well in parts of Africa, but many of these only

cover short time spans and thus cannot yet be used to infer long-term variability. Those covering longer time

spans merge rain gauge data contemporaneously. Arguably, such an approach makes maximal use of

both satellite and gauge data, and indeed, these data sets have proved invaluable tools for the operational

monitoring of rainfall, both for flood and drought applications [e.g., Herman et al., 1997; Verdin et al., 2005;

Novella and Thiaw, 2013]. In Africa, however, the temporal inconsistency of the gauge record means that

products that merge contemporaneous data may not robustly represent rainfall trends over long periods.

The lack of independent gauge data means that it is difficult to quantify the effect of this artifact in Africa.

However, the systematic bias introduced by changing gauge coverage has been demonstrated, for example,

in Balan Sarojini et al. [2012] and Wan et al. [2013].

By using a historical calibration rather than merging contemporaneous data, the TARCAT data set provides a

complementary approach to the existing products. TARCAT loses some skill by not merging contemporaneous

gauge data. It cannot, for example, represent individual extreme rainy events and thus underestimates

variability which data sets that merge contemporaneous gauge data, such as GPCP, CMAP, and ARC2, may

represent better where gauge coverage is sufficient. Countering this, the long-term trends inferred from

TARCAT are not biased by temporally inconsistent gauge records, and the rainfall monitoring product, TAMSAT,

is not corrupted by individual inaccurate gauge readings.

Given the differences between existing gauge and satellite-based rainfall data sets, such as demonstrated

in this study, objective intercomparisons of all available data sets is required to quantitatively evaluate rainfall

patterns and trends over Africa. Only then, can steps be made to further our understanding of the processes

controlling rainfall variability and improve our knowledge of the rainfall climate.

6. Conclusions

Since Meteosat TIR data have been available since the early 1980s, it has been possible to generate a time

series of rainfall estimates for the last 30 years using a consistent algorithm for all of Africa known as TARCAT

—a more complete and consistent time series of TAMSAT rainfall estimates than has previously been possible.

An evaluation of the Meteosat TIR archive has demonstrated that few significant time-dependent biases exist

as a result of multiple satellites operating during the Meteosat Earth observation program suggesting the

instruments’ calibration are stable over time. An intercomparison of TARCAT and six widely used satellite

and gauge long-term rainfall data sets demonstrated that TARCAT does well in replicating the mean spatial

and seasonal rainfall patterns and following the interannual variability over 1983 to 2010. However, optimizing

TAMSAT’s calibration approach for drought leads to estimates having an Africa-wide average dry bias of ~20%

relative to other widely used data sets.

TARCAT differs from existing long-term data sets because the data inputs and calibration do not change from year

to year. The omission of contemporaneous gauge information is compensated for by the derivation of regional

and monthly calibration parameters that ensure the estimates are tuned to the local rainfall climate. TARCAT is

therefore a useful complement to existing products. As TARCAT only requiresMeteosat TIR imagery and is updated

in near real-time (every 10 days), it also serves as a valuable monitoring product that has a climatology based on

over 30 years of observations [e.g., Boyd et al., 2013, Figure 1; Kucera et al., 2013, Figure 7]. This is especially the

case over gauge-sparse regions and in places where political instability may jeopardize timely access to gauge

measurements. The provision of the TARCAT data at 10 day totals and 0.0375° spatial resolution, which can be

aggregated to resolutions that meet users’ requirements make TARCAT suitable for regional/district level and

drought/agricultural applications, sectors where reliable and timely rainfall data are especially needed.

The current version of the TARCAT data set represents the first attempt at generating a long-term rainfall data

set using the TAMSAT algorithm. As more historic gauge data becomes available, further improvements in

the calibration and independent validations are planned. Identifying changes in the rainfall climate will also

help diagnose whether time-varying amendments to the calibration are required. The current calibration

approach could also be adapted for other purposes (e.g., hydrological monitoring) where rainfall information

is required but is impeded by difficulty in accessing historical and/or real-time gauge information.
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Appendix A: Derivation of the

TAMSAT Calibration Parameters

The derivation of the regional and monthly

calibration parameters has been performed

in three stages as follows: (1) identification

of calibration zones, (2) selection of the

optimum temperature threshold Tt for each

zone, and (3) obtaining the regression

parameters slope (a0) and offset (a1) for

each zone. For this purpose, coincident cold

cloud duration (CCD) pixels (at temperature

thresholds of 213 K, 223 K, 233 K, and 243 K)

are extracted for each rain gauge location

(see Figure A1) where a 10 day rainfall total

record is available.

A1. Stage 1: Identification

of Calibration Zones

The TAMSAT estimation method is based on

calibration zones that vary spatially and

seasonally to reflect changes in the rainfall

climate. The variation in rainfall climate is

largely determined by the passage of the

ITCZ, modulated locally by features such

as topography and proximity to lakes and the ocean. Such variations imply changes in the average storm

characteristics and hence CCD-rainfall relationships [Dugdale et al., 1991; Todd et al., 1995, 1999; Dybkjær,

2003; Chadwick et al., 2010]. Temporal variations are dealt with by producing calibrations for each

calendar month. It is assumed that the rainfall climate across each zone is climatologically homogeneous;

hence, the calibration parameters Tt, a1, and a0 remain constant across each zone.

Zones are empirically determined using

gauge observations. The frequency bias

between all gauge-CCD pairs (at each of

the four temperature thresholds) is

calculated based on rainfall and CCD

occurrence at thresholds of 0mm and 0 h

respectively. Inspection of the spatial

variation of these point-based bias scores

provides the basis of the zone

boundaries. Supporting information such

as topography and knowledge of the local

climate allows these boundaries to be tuned

accordingly, particularly where gauge

observations are sparse or nonexistent. Due

to the constraints posed by a sparse gauge

network, defining the zones is based on a

compromise between making the zones

small enough to represent the local

climate while being large enough to

contain sufficient gauges to generate a

robust calibration. An example of the

calibration zones for May is given

in Figure A2.

Figure A1. The distribution of the gauge network (approximately

4300 stations) used to derive the TAMSAT calibrations. Each gauge is

represented by a dot.

Figure A2. The TAMSAT calibration zones for May. For this month,

Africa including Madagascar, has been split into 27 zones. Zone

boundaries and the number of zones vary for each calendar month.
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A2. Stage 2: Selection of the Optimum

Temperature Threshold for Each Zone

The optimum temperature threshold Tt is

defined as the cloud top temperature that

best distinguishes between rain and no

rain. For selecting the appropriate Tt, all gauge-CCD pairs within each zone are sorted into contingency

tables where the Tt corresponding to the highest level of agreement between rainfall and CCD

occurrence is chosen according to the criteria given in Table A1 and equations (A1) and (A2). The

occurrence threshold is set at zero for both rainfall (mm) and CCD (hours). All gauge-CCD pairs are split

into one of four possible groups with the counts for each group recorded. Each group (n11:n22) is defined

as follows.

1. n11 is the number of occasions where both zero rainfall and CCD is observed.

2. n12 is the number of occasions where zero rainfall is recorded but CCD is detected.

3. n21 is the number of occasions where rainfall is recorded but no CCD is detected.

4. n22 is the number of occasions where both rainfall and CCD are greater than zero.

Given the above criteria, n11 and n22 correspond to agreement between the gauge and CCDwhile n12 and n21

represent disagreement. Therefore, for the selection of Tt, the occasions of agreement need to be significantly

higher than occasions of disagreement. Furthermore, since n12 counts represent false alarms (i.e., algorithm

gives nonzero CCD when no rainfall was observed, resulting in overestimation of rainfall) and n21 counts

represent misses (i.e., algorithm gave zero CCD hours when rainfall was observed, resulting in underestimation

of rainfall), ideally n12 and n21 should be roughly equal in magnitude so that these biases in rainfall occurrence

compensate. Thus, the conditions for selecting Tt are

n11 þ n22 >> n12 þ n21 (A1)

n12 ≅ n21 (A2)

This procedure is carried out at each of the four temperature thresholds considered and repeated for each

zone for all calendar months.

A3. Stage 3: Obtaining the Regression Parameters for Each Zone

After selection of Tt, a regression is carried out on all gauge-CCD pairs for CCD values at the chosen Tt.

Regression is only carried out for CCD values greater than zero. A minimum of 100 gauge-CCD pairs have

been suggested for generating a reliable calibration [Dugdale et al., 1991; Milford et al., 1996]. The CCD

data are binned to reduce the large amount of scatter between gauge-CCD pairs before a linear model

is fitted to the data to obtain the linear regression parameters a0 and a1. The median rainfall for given CCD

bins is chosen to regress against the midpoint for each CCD bin, weighted by the number of gauge-CCD

pairs in each bin. This step is repeated for each zone for all calendar months. Other models such as

quadratic and logarithmic and the use of multiple regression have previously been tested, but did not

yield significantly better results to warrant a change to the regression approach [Dugdale et al., 1991;

Milford et al., 1996].

The zone definition approach results in spatial discontinuities between zones in the rainfall estimates.

Artificial smoothing between the zones boundaries (applied over distances of 1 or 0.5°, depending on the size

of the zone) of the calibration parameters is applied to help reduce this, although discontinuities inevitably

persist. Despite the visual problems, the block approach attempts to establish the optimal CCD-rainfall

relationship across many years for a given location, given the available gauge data. In reality, variations in the

CCD-rainfall relationship may change gradually as a function of space, but representing this Africa wide in

the calibration is limited by a lack of gauges. However, the block method used makes optimal use of existing

gauges, especially where few exist. When interpreting spatial variability from TAMSAT data, the existence

of these discontinuities should be accounted for. Nevertheless, the rainfall estimates, devised using this

calibration approach, have greater skill than if a single homogeneous calibration is used, even though the

data would undoubtedly have a more spatially homogeneous appearance.

Table A1. Contingency Table for Determining Tt

CCD=0 CCD> 0

Gauge= 0 n11 n12
Gauge> 0 n21 n22
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The reliability of the calibration parameters is dependent upon the availability of the gauge records which

presents a problem in areas such as the Congo Basin and Angola. Here calibration parameters are based on

the available data and neighboring calibration zones.

Appendix B: Formulae for Quantifying Errors

Quantification of the differences between the perturbed and unperturbed rainfall estimates in sections 3.3 and 3.4

were basedon at least one of the following error statistics;mean error (ME),mean absolute error (MAE),mean absolute

percentage error (MAPE), root-mean-square error (RMSE), and percentage root-mean-square error (PRMSE).

Error analysis was performed on a pixel basis for each rainfall dekad according to the formulae given below:

ME ¼
1

N

X

N

i¼1

Pi � Oið Þ (B1)

MAE ¼
1

N

X

N

i¼1
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100
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where Pi and Oi represent respectively the perturbed rainfall estimate and operational rainfall estimate for

pixel i and N is the total number of pixels in each rainfall field. Collocated zero rainfall pixels from the

perturbed rainfall estimate and operational rainfall estimate were removed to restrict the study to rainy areas

only over the African continent.

Appendix C: Recovery of Missing Rainfall Dekads

C1. Recovery Scheme 1: Extending the Temporal Interpolation Across Missing Slots

The TAMSAT method is able to cope with missing imagery by temporally interpolating between missing slots

as described in section 3.3. The standard TAMSAT approach can allow up to 3 h of consecutive missing TIR

slots, but we have increased the allowed gap to 6 h. Interpolating over such gaps will naturally lead to

sampling errors, particularly if missing slots occur when the cloud top temperature is close to the cold cloud

temperature threshold and/or if there is a rapid change in the cloud top temperature. Dugdale et al. [1991]

demonstrated that accounting for a gap of 3 h by temporal interpolation gave the smallest error—as

opposed to applying no correction or using observed cold cloud as a fraction of the daily total number of

existing slots. To quantify the expected error when interpolating over 6 h, gaps were artificially introduced

into the TIR archive for a period when all slots exist. The gaps introduced were centered on each hour over all

10 days in each dekad resulting in an ensemble of 240 estimates for the dekad. Each ensemble estimate was

compared to the operational rainfall estimate, which used all available slots. Gaps of 3 and 9 h were also

computed although the latter is not implemented into the TARCAT data set.

Table C1 provides the ensemble average for the mean absolute error (MAE) and root-mean-square error

(RMSE) for each of the gap sizes considered for the three dekads in August 2008. At a resolution of 0.5°,

an average RMSE of 0.04mmd�1 (0.83%) and 0.13mmd�1 (2.63%) were found for 3 and 6 h gaps respectively,

although the sign of themean error follows a diurnal cycle (Figure C1) explained by the daily cycle in convection

and resulting cold cloud development which is dependent uponmeteorological regime. Missing slots around
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late morning tends to result in the largest overestimate in rainfall while the largest underestimate occurs

during late afternoon/early evening. For other times, no particular sign of mean error is favored. Gaps of up to

6 h were found to occur randomly, irrespective of time of day suggesting no systematic bias results from this

recovery scheme. To illustrate an example of this recovery scheme, Figure C2 gives the rainfall estimate for

the 2nd dekad in August 2008 along with an example of the error when a gap of 6 h is removed (Figure C2b).

This example reveals that at pixel resolution, differences greater than 2mmd�1 (~40%) exist; however, on

average across all simulations with a gap of 6 h, 95% of rainy pixels are within 0.42mmd�1. There is, however, a

tendency for errors of opposite sign to exist side by side such that spatial averaging minimizes these errors

considerably (Figures C2b and C2c). Larger errors can be expected when few storm events or the existence of

more than one gap exists in a dekad. Six hours was chosen as an increase to the maximum time to interpolate

across as it allowed a further 99 dekads (~10%) to be recovered while the errors remain considerably less

than the error in TAMSAT rainfall estimates reported in validation studies [Laurent et al., 1998; Dinku et al., 2007;

Chadwick et al., 2010; Jobard et al., 2011;Maidment et al., 2013]. These studies reported RMSE values in the range

of 36% to 48% at 0.5° resolution; representative of the error arising from the indirect relationship between

cloud top temperature and surface rainfall. Extending to 9 h was not implemented based on physical

grounds as the likelihood of missing entire storms increases, evidence perhaps in a doubling of the error

magnitude from 6 to 9 h, despite being only a 50% increment in time.

C2. Recovery Scheme 2: Replacing the Missing Daily CCDs With the Dekad Mean

No daily cold cloud duration (CCD) fields have been calculated for gaps exceeding 6 h. For TARCAT, we have

recovered a further 80 dekads (~8%) containing up to 2 days of missing CCD information by substituting

the missing days with the mean from the remaining days in the respective dekad in the assumption that

rainfall of the missing days is similar to that of the dekad. Such an approach has been used previously for

TAMSAT estimates [Dugdale et al., 1991] and offers a computationally easy approach that would otherwise

result in no dekad estimate or would require supporting information such as gauges to supplement the

Figure C1. (a) The average ME across all simulations in the three dekads in August 2008 (n=760) as a function of time of

day when gaps of 3, 6, and 9 h are introduced into the satellite archive. The average RMSE as a function of spatial resolution

expressed as (b) rainfall amount and (c) percentage.

Table C1. Average Error Statistics When Gaps of 3, 6, and 9 h are Introduced Into the Satellite Archive
a

Gap Introduced (h) Spatial Resolution (°)

MAE RMSE

(mm/d) (%) (mm/d) (%)

3 0.0375 0.02 0.60 0.07 1.57

6 0.0375 0.06 1.79 0.18 3.90

9 0.0375 0.12 3.31 0.30 6.60

3 0.5 0.02 0.36 0.04 0.83

6 0.5 0.06 1.27 0.13 2.63

9 0.5 0.11 2.52 0.25 4.80

a
Errors calculated based on all rainfall dekads and possible substitutions (see section 3.4 for details) at satellite pixel

resolution (0.0375°) and a coarser resolution (0.5°). 720 dekads were used to compute each statistic. See Appendix B
for error calculation details.
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missing days—which in itself would be a challenge. Estimates of the expected error were computed when up

to three daily CCD fields were artificially removed (using a random sample of combinations (n= 1000) of

missing days within a dekad for each number of days missing) from 36 dekads in 2000, 2002, and 2009 where

all daily CCD fields exist.

Table C2 summarizes the ensemble of errors over all substitutions considered for 1, 2, and 3 days of CCD fields

removed. An average RMSE of 0.42mmd�1 (11.4%) and 0.64mmd�1 (17.3%) are expected for 1 and 2 days

missing respectively at 0.5° resolution. For 2 days missing at pixel resolution, 95% of rainy pixels are estimated

within 1.32mmd�1, although spatial averaging reduces the errors (Figure C3). Of the years considered,

there is no evidence to suggest that the errors vary significantly on an intraseasonal or interannual basis

(not shown). This recovery scheme, illustrated in Figures C2d and C2e when two random days of CCD are

removed, demonstrates that errors of opposite sign exist, although larger in spatial extent than Recovery

Scheme 1. This occurs when the removed CCD field coincides with either a rainfall event or dry spell, which is

not well represented by the mean of the remaining days resulting in an underestimate or overestimate

respectively. Where many storms have passed, the relative error is typically small. However, large errors may

Table C2. Average Error Statistics When 1, 2, and 3 Days of Daily CCD FieldsWere Removed FromComplete Rainfall Dekads
a

No. of Days Missing Spatial Resolution (°)

MAE RMSE

(mm/d) (%) (mm/d) (%)

1 0.0375 0.26 11.11 0.41 13.64

2 0.0375 0.40 19.45 0.62 20.63

3 0.0375 0.54 27.20 0.81 27.15

1 0.5 0.29 9.51 0.42 11.44

2 0.5 0.46 15.84 0.64 17.30

3 0.5 0.60 21.59 0.83 22.86

a
Error statistics calculated for all rainfall dekads and possible substitutions (see section 3.4 for details) from rainfall

dekads in 2000, 2002, and 2009 at satellite pixel resolution (0.0375°) and a coarser resolution (0.5°). A random sample
(n=1000) was used to estimate the error for each number of days missing; hence, for 1 (2) day missing, 1096 (5027)
substitutions were possible across the years sampled. See Appendix B for error calculation details.

(a)

(b)

(c)

(d)

(e)

Figure C2. (a) The rainfall estimate for the 2nd dekad in August 2008, (b) the error between the original estimate (using all TIR slots, Figure C2a) and the estimate

obtained when a 6 h gap is introduced into the satellite archive on the 4th day of the dekad centred at 18:00 h and (c) the corresponding percentage error, (d) the

error between the original estimate (Figure C2a), and the estimate obtained when the 3rd and 9th days of CCD fields in the dekad are removed and replaced with the

mean of the existing daily CCD fields in the dekad and (e) the corresponding percentage error.
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result if there are few or only a single rainfall event within a dekad that happens to correspond with the

missing daily CCD field(s). While the errors for this method are greater than those from the first recovery

scheme, they are still less than half of the typical range in errors associated with TAMSAT rainfall estimates

[Laurent et al., 1998; Dinku et al., 2007; Chadwick et al., 2010; Jobard et al., 2011; Maidment et al., 2013]. The

recovery scheme was not extended to 3 days for an obvious increase in error and that only less than 1% of

dekads would be recovered.
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