
Mon. Not. R. Astron. Soc. 383, 1655–1670 (2008) doi:10.1111/j.1365-2966.2007.12685.x

The 3D skeleton: tracing the filamentary structure of the Universe
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ABSTRACT
The skeleton formalism, which aims at extracting and quantifying the filamentary structure of
our Universe, is generalized to 3D density fields. A numerical method for computing a local
approximation of the skeleton is presented and validated here on Gaussian random fields. It
involves solving equation (H∇ρ × ∇ρ) = 0, where ∇ρ and H are the gradient and Hessian
matrix of the field. This method traces well the filamentary structure in 3D fields such as
those produced by numerical simulations of the dark matter distribution on large scales, and
is insensitive to monotonic biasing.

Two of its characteristics, namely its length and differential length, are analysed for Gaus-
sian random fields. Its differential length per unit normalized density contrast scales like
the probability distribution function of the underlying density contrast times the total length
times a quadratic Edgeworth correction involving the square of the spectral parameter. The
total length-scales like the inverse square smoothing length, with a scaling factor given by
0.21 (5.28 + n) where n is the power index of the underlying field. This dependency implies
that the total length can be used to constrain the shape of the underlying power spectrum, hence
the cosmology.

Possible applications of the skeleton to galaxy formation and cosmology are discussed. As
an illustration, the orientation of the spin of dark haloes and the orientation of the flow near
the skeleton is computed for cosmological dark matter simulations. The flow is laminar along
the filaments, while spins of dark haloes within 500 kpc of the skeleton are preferentially
orthogonal to the direction of the flow at a level of 25 per cent.

Key words: cosmology: theory – dark matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

Recent galaxy surveys like 2dF (Colless et al. 2003) or Sloan Digital
Sky Survey (SDSS) (Gott et al. 2005) emphasized the complexity
of the matter distribution in the Universe which presents large-scale
structures such as filaments, clusters or walls on the boundaries of
low-density bubbles (voids). On the theoretical side, the currently
favoured scenario suggests that the Universe evolved from Gaussian
initial conditions to form the structures that are observed nowadays.
Numerical simulations have successfully captured the main features
of the observed filamentary distribution, both statistically and visu-
ally. The skeleton formalism in 2D was introduced in (Novikov,
Colombi & Doré 2006) (NCD) and aims at making possible the
extraction and analysis of these filamentary structures. This paper
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extends it to three dimensions in order to describe the Universe’s
large-scale matter distribution and its dynamical environment.

In the literature, various steps towards a quantitative descrip-
tion of the large structures have been suggested. Statistical tools
such as correlation functions (e.g. Peebles 1980) and power spectra
(e.g. Peacock 1998) have been widely used and have been success-
ful in describing matter distribution and constraining cosmological
parameter. Recently, fast algorithms have been designed for first and
second order (Szapudi et al. 2005), as well as higher order statistics
(counts in cells etc.) as in Croton et al. (2004) or Kulkarni et al.
(2007). The Minkowski functionals have also been very popular
since their first applications to matter density field topology (see
e.g. Gott, Melott & Dickinson 1986). By studying the average prop-
erties of excursion sets, they allow the extraction of characteristic
numbers that reflect the topology of the field such as the genus, com-
puted from the mean curvature of isodensity surfaces (see Hamilton,
Gott & Weinberg 1986). This approach is in fact very powerful and
has been used to test various properties of matter distribution such as
its Gaussianity in Doroshkevich (1970), Gott et al. (1986), Winitzki
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& Kosowsky (1998) or more recently in Hikage, Komatsu &
Matsubara (2006). They can also be used as so-called ‘shape finders’
(Sahni, Sathyaprakash & Shandarin 1998) and have been success-
fully applied to observed data sets (see e.g. Hikage et al. 2002;
Sheth & Sahni 2005; James, Lewis & Colless 2007 for application
to the SDSS and other galaxy distribution surveys). A large number
of good reviews on the subject can be found (e.g. Melott 1990 or
Kerscher 2000 and references therein).

These topological and statistical estimators analyse the distribu-
tion of observed galaxies globally and uniformly, and make little
attempt at recovering the precise geometry of the matter distribu-
tion, i.e. they do not focus on specific regions (such as clumps, voids
and filaments). Focusing on the identifiable regions of the Universe,
the peak patches theory (Bond & Myers 1996a) attempts to de-
scribe cosmic structures formation through the identification of the
collapse of the dense regions near the density peak and surrounding
patches. In this framework, the evolution of patches hierarchy can
be understood

from the measurement of only a few characteristics of the patches,
while assuming that their flow does not depend on their internal non-
linear dynamics.

This line of thought has been extended in the Cosmic Web
paradigm (Bond, Kofman & Pogosyan 1996), which has empha-
sized that the large-scale spatial distribution of galaxy clusters and
the filaments between them can be understood as mildly non-linear
enhancements of the high-density peaks and filamentary ridges al-
ready present in the initial Gaussian density field. Recently, Hanami
(2001) presented the so-called skeleton tree formalism: it analyses
the process of hierarchical merging and extends the language of the
peak patch through the analysis of the ridges of the density field
in an abstract space corresponding to the usual three dimensions
augmented by the smoothing length. The structure of voids in the
large-scale dark matter distribution also has an extended history of
theoretical modelling – see e.g. Hoffman & Shaham (1982), Icke
(1984) or Bertschinger (1985) – while various void identifiers have
been designed (see e.g. Platen, van de Weygaert & Jones 2007 and
references therein).

One of the first attempts to develop an algorithm to detect and
trace the filaments in the particle distribution has been the minimal
spanning tree technique proposed by Doroshkevich in Doroshke-
vich (1970) and Barrow, Bhavsar & Sonoda (1985). Starting from
a point distribution (a galaxy survey or a dark matter simulation),
this method constructs the graph that connects all the dots with the
property of never forming closed paths and being of minimal total
lengths. Interesting statistical features can be extracted from it like
the shape of the clusters or the length of the trunk (the longest path)
and branches which are characteristic of the filamentarity of the dis-
tribution (Pearson & Coles 1995). More recently, other techniques
with the same aim have been developed, such as Stoica et al. (2005),
which uses a marked point process in order to recover the filament
locations or Aragon-Calvo et al. (2007a) which provides an auto-
matic segmentation of the different galactic distribution components
using multiscale morphology filtering.

The 3D skeleton described in this paper focuses on the critical
lines of a distribution, i.e. the set of lines joining the critical points in
order to be able to compute the characteristic features of the underly-
ing field (such as the total length of the filaments in a cosmological
dark matter distribution). The skeleton provides a simple mathe-
matical definition of the filaments of a density field based on Morse
theory – see e.g. Milnor (1963), Colombi, Pogosyan & Souradeep
(2000), Jost (2002) or Novikov, Colombi & Doré (2006) – and thus
allows their extraction as well as their characterization.

Section 2 defines the local skeleton of large-scale structures.
Section 3 introduces the numerical algorithm for constructing the
local skeleton, and discusses its properties near the critical points
(Appendix A gives a more detailed description of the algorithm).
Section 4 investigates the evolution of its differential and total length
as a function of the properties of the underlying field. Appendix C
sketches the derivation of this differential length. Possible applica-
tions to cosmology and galaxy formation are discussed in Section 5,
where two illustrations regarding the nature of the dark matter flow
near the skeleton are given.

2 T H E L O C A L S K E L E TO N : T H E O RY

A comprehensive definition of the skeleton and how its local ap-
proximation in two dimensions is derived can be found in Novikov
et al. (2006). To sum up, the so-called ‘real’ skeleton is by defini-
tion the subset of critical lines joining the saddle points of a field to
its maxima while following the gradient’s direction (while critical
lines link all kinds of critical points together). It is easy to pic-
ture that applying this definition to a 2D field (an altitude map in a
mountainous region for instance) allows the extraction of the ridges
of that distribution. Although simple in appearance, this definition
presents the drawback that it is in essence non-local: the presence of
the skeleton in a given subregion may depend on the presence of a
saddle point in a different subregion. In order to enforce locality, an
approximation can in fact be derived using Taylor expansion in the
vicinity of the critical points (i.e. local maxima and saddle points),
leading to a second-order approximation of the skeleton: the local
skeleton.

2.1 The 2D local skeleton

Defining the local critical lines as the set of points where the gradient
of the field is an extremum along an isodensity contour, it can be
shown (Novikov et al. 2006) that this set of points obeys the equation

S ≡ ∂ρ

∂r1

∂ρ

∂r2

(
∂2ρ

∂r 2
1

− ∂2ρ

∂r 2
2

)

+ ∂2ρ

∂r1∂r2

([
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∂r2

]2

−
[

∂ρ

∂r1

]2
)

= 0,
(1)

where r1 and r2 denote space coordinates and ρ(r1, r2) is the density
field. Equation (1) can be rewritten as

S = det (H∇ρ, ∇ρ ) = 0, (2)

where H ≡ ∂2ρ/∂r1∂r2 is the Hessian (second derivatives matrix)
of the field. The solution to equation (2) can be interpreted math-
ematically as the set of points where the gradient of the field is an
eigenvector of the Hessian (i.e. gradient and main curvature axis are
aligned), which is clearly a local property of the field.

The local skeleton is defined as the subset of the local critical
lines that is an approximation of the skeleton. Selecting this subset
can be achieved by enforcing an additional condition: the gradient
should be minimal [i.e. every point of the local skeleton of coordi-
nates r should also be a local minimum of the isodensity contour at
density ρ(r )]. That is, the second eigenvalue of the Hessian should
be negative:

λ2 < 0, and H∇ρ = λ1∇ρ, (3)

where λi are the eigenvalues of the Hessian and λ2 < λ1.
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2.2 The 3D local skeleton

Let us now derive the generalization of the notion of the local skele-
ton to a 3D space. The philosophy is essentially the same but minor
differences arise.

Starting from the same definition as in 2D, the local skeleton
should be the set of points where the density is an extremum along
an isodensity contour. Let (u, v) be a coordinate system along an
isocontour (r1(u, v), r2(u, v), r3(u, v)) where ri, i ∈ {1..3} are the
three space coordinates. The definition of an isocontour implies that


∂ρ

∂r1

dr1

du
+ ∂ρ
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= 0
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= 0.

(4)

Moreover, as the gradient of the field ρ has to be an extremum:

d

du
(|∇ρ|2) = 0 and

d

dv
(|∇ρ|2) = 0. (5)

Using equations (4) and (5), let us derive the equation of the local
critical lines, which should only depend on the field and its first- and
second-order spatial derivatives, similarly to equation (1). To do so,
a coordinate system along the isocontour is needed but, as opposed
to the 2D case, any coordinate system defined on an isocontour will
be singular in some place as an isocontour is a closed surface. In
order to avoid this problem, we choose to define three coordinates
systems and swap from one to another when it becomes singular.

Defining three 1D coordinate systems si (see Fig. 1) so that for
different values of si , one remains in the plane (r j , rk) where i �= j �=
k and i, j, k ∈ {1..3}. The coordinate system si is singular wherever
∇ρ is proportional to ri . The 3D local critical lines satisfy equations
(4) and (5) for u ≡ si and v ≡ sj with i �= j. For any si , these read

d

dsi
(|∇ρ|2) = 0, and
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= 0. (6)

Choosing i �= j �= k ∈ {1. .3}, this system becomes after doing some
algebra
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One can check that equation (7) reduces to equation (1) in the 2D
case, assuming that the field is constant in the third dimension [the
first two terms of equation (7) are the same as in equation (1)]. The
local critical lines are thus the set of points that satisfies

S ≡
(

Si

S j

)
= 0, i �= j ∈ {1, 2, 3}. (8)

It is interesting to note that, as in the 2D case, equation (8) defines
the local critical line as the set of points where the gradient of the
density is an eigenvector of its Hessian matrix (the gradient and the
principal curvature axis are collinear):

S = (H · ∇ρ × ∇ρ ) = 0. (9)

Once again, in order to require that the skeleton traces only the ridges
of the distribution (i.e. the filaments in 3D), retrieving the subset of
local critical lines that define the local skeleton can be achieved by

Figure 1. Definition of the coordinate system on an isocontour.

enforcing a negativity condition on the weakest eigenvalues of the
Hessian:

λ2 < 0, λ3 < 0, H∇ρ = λ1∇ρ. (10)

That is, the local skeleton is the subset of the local critical where the
norm of the 3D gradient is minimal along the 2D isodensity contours
(as opposed to simply extremal). Note that from equation (8) it is
straightforward to show that any monotonic function of the field
will have exactly the same skeleton as the field itself.

3 I M P L E M E N TAT I O N A N D F E AT U R E S

3.1 Implementation

Equation (8) is at the basis of the numerical implementation of the
local skeleton determination developed here. The details of the al-
gorithm are described in Appendix A, while the optimal choice of
resolution and smoothing is presented in Appendix B. All the com-
putations were performed using a specially developed C package:
SKELEX1 (Skeleton Extractor). This package also includes a flexible
OpenGL visualization tool that was used for making the figures in
this paper.

Fig. 2 presents the skeleton obtained for a density field sam-
pled from a numerical simulation of dark matter distribution on a
50 h−1 Mpc box with 5123 particles using GADGET-2 (Springel 2005).
The lighter colours represent denser regions and the blue skeleton
appears to match quite well what one could identify as the filaments
by eye. Note that the skeleton is both a tracer of the topology (it
links a subset of the critical points) and the geometry of its under-
lying density. Hence it can be used to compare the geometrical and
topological properties of various fields, e.g. the temperature and the
dark matter distribution in hydrodynamical simulations. See also
Fig. A3 for a graphical description of how the local skeleton is
drawn.

3.2 The local skeleton branching properties

Let us now describe some global branching properties of the critical
lines and the local skeleton. Important ingredients of the skeleton

1 Available on request from the authors.
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1658 T. Sousbie et al.

Figure 2. The final 3D skeleton derived from a 50-Mpc standard 	CDM simulation run with sc gadget-2 using 5123 particles. This result is obtained after
post treating the skeleton using the method described in Appendix A.

are the extrema of the field. Indeed, the ‘real skeleton’ is defined as
a set of critical lines that connect maxima to saddle points. Much of
the topological behaviour of the skeleton is related to the distribution
of such extremal points. For the local skeleton described this paper,
the role of the extrema is similar but the whole set of critical lines
encompass additional branches linking all kind of field extrema
together.

Since the local skeleton is based on a local second-order approx-
imation of the density field, ρ, its properties can be understood
through the properties of the gradient ∇ρ and Hessian matrix H(ρ)
only. The eigenvalues of H define the local curvature at any point,
thus separating space into distinct regions depending on the sign of
these eigenvalues λi . Within a 3D space, as by definition λj < λi if
j > i, there exist four of these regions. Let I be the number of nega-
tive eigenvalues, then the regions where I is equal to 0, 1, 2 and 3.
This classification applies to critical points of the field in particular,
where ∇ρ = 0, the maxima (I = 3) and minima (I = 0) existing
within local clumps and voids, respectively, while two types of sad-
dle points can be distinguished: the filaments type saddle points (for
I = 2) and the pancake type ones (for I = 1).

Fig. 3 illustrates a second-order approximation of the density
field in the vicinity of the field extrema. The total set of critical lines
form a fully connected path linking all the critical points together
and exactly six branches pass through each of them in the direction
of the three eigenvectors of the Hessian. Empirically, it is possible
to picture the typical behaviour of the whole set of critical lines.
Defining E = {0, 1, 2, 3} and considering a given critical point
where I = n, if i < j < k ∈ E − {n}, this critical point Cn is usually
linked to three other pairs of critical points Ci , Cj and Ck (where
I = i, j and k, respectively) by critical lines aligned with eigenvectors
associated with eigenvalues λ1, λ2 and λ3, respectively, at point Cn .
Most of the time, each of these branches connect to critical points Ci ,
Cj and Ck along the eigenvectors associated with eigenvalues λ1, λ2

Figure 3. Illustration of a second-order approximation of the density field
around a maximum (I = 0), filament (I = 1) and pancake (I = 2) saddle
point and a minimum (I = 3). The colour stands for the density, ranging from
purple in low-density regions to red in high-density regions. The axes are
the eigenvectors of the Hessian, and give the direction of the six branches
of the local critical lines going through these critical points (i.e. where the
gradient of the field and the eigenvectors of H are aligned). The skeleton is
the subset of these critical lines linking maxima (Fig. 3a) and filament saddle
points (Fig. 3b), in the direction of the eigenvector associated with λ1.

and λ3, respectively, evaluated at points Ci , Cj and Ck , respectively.
In this picture, the critical lines can be seen as a fully connected path
linking all the different regions defined by the sign of the eigenvalues
of H.
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The overdense filamentary structure correspond to the subset of
the critical lines that constitute an approximation of the ‘real’ skele-
ton (i.e. the ‘ridges’ of the distribution). This part is the one which
links maxima (I = 3) and filamentary saddle points (I = 2). The
typical behaviour of such lines is the following: in the immediate
vicinity of a non-degenerate maximum, two branches of the skele-
ton exist, stretching in the eigendirection that corresponds to λ1.
Following one of the branches, denoting as λ|| an eigenvalue whose
eigenvector is parallel to the skeleton and λ⊥,1,2 as two eigenvalues
associated to eigenvectors in the perpendicular directions. Near the
maximum, 0 > λ|| = λ1 > λ⊥,1 > λ⊥,2. As one follows a branch
one probable outcome is the change of sign of λ||, in which case
the branch will typically end in a saddle point of a filamentary
type along its λ1 direction. There is always another branch that
starts from this saddle point on the other side, thus this type of
branches have a fully connected structure. However, another pos-
sible outcome is that one of the orthogonal eigenvalues changes
faster than λ|| as one moves away from the maximum and becomes
positive before the saddle point is reached. In this case the branch
of the local skeleton formally terminates, which however in real-
ity often means that the skeleton splits at this point in two new
branches.

Such branching of the skeleton is especially frequent near the
maxima of the field, where it accounts for how multiple filamen-
tary sections can end up in a single dark matter halo. Studying how
skeleton segments merge is relevant for questions such as the multi-
pole structure of matter inflow on to dark haloes (Aubert, Pichon &
Colombi 2004; Pichon & Aubert 2006). This property of skeleton
segments to end outside of the critical points is specific to the local
definition of the skeleton, in contrast to the ‘real’ skeleton whose
segments are always connected on both ends.

4 T H E S K E L E TO N L E N G T H F O R
S C A L E - F R E E G AU S S I A N R A N D O M F I E L D S

Before considering general cosmological density fields, the local
skeleton of scale-free Gaussian random fields ρ with null average
value 〈ρ〉 = 0 will be investigated. For convenience, it is useful to
define some spectral parameters that depend on the spectral index
n and on the smoothing length. In the statistical description of the
skeleton of a random density field (Appendix C), the following
spectral parameters appear to play a role:

σ 2
0 = 〈ρ2〉, (11)

σ 2
1 = 〈(∇ρ)2〉, (12)

σ 2
2 = 〈(�ρ)2〉, (13)

σ 2
3 = 〈(∇�ρ)2〉. (14)

This introduces three linear scales into the skeleton theory

R0 = σ0

σ1
, R∗ = σ1

σ2
, R̃ = σ2

σ3
, (15)

where the first two have a well-known meaning of typical separation
between zero crossing of the field R0 and mean distance between
extrema, R∗ (Bardeen et al. 1986), while the third one, R̃ is, by
analogy, the typical distance between the inflection points.

Out of three scales two dimensionless ratios may be constructed
that are intrinsic parameters of the theory

γ ≡ R∗
R0

= σ 2
1

σ0σ2
, γ̃ ≡ R̃

R∗
= σ 2

2

σ3σ1
, (16)
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Figure 4. Total length L of the skeleton per unit box size for different
smoothing lengths σ = 0.020, 0.027, 0.035; measured over 25 realizations
of Gaussian random fields as a function of the spectral index n. While L
depends linearly on the spectral index n, it grows as a power of σ . The
dotted lines represent the fits obtained using the function: L ≈ 0.21(n +
5.28)σ−2.

where γ says how frequent encountering a maximum between two
zero crossings of the field is, while γ̃ describes, on average, how
many inflection points are between two extrema. For Gaussian fields,
these parameters can be easily calculated from the power spectrum.
Both γ and γ̃ range from 0 up to 1. For reference, for the power-law
spectra with index n >−3, smoothed at small scales with a Gaussian
window,

γ =
√

n + 3

n + 5
, γ̃ =

√
n + 5

n + 7
. (17)

Note that cosmologically relevant density power spectra have n >

−3 and thus, while γ can attain low values, γ̃ are always close to
unity.2

Appendix C introduces a statistical description of the skeleton for
the Gaussian and non-Gaussian random field. This section presents
the numerical measurements of the properties of the skeleton for
scale-free Gaussian fields.

The first quantity of interest is the total length of the skeleton, Ltot.
In the context of cosmology, Ltot can be linked to the total length
of the filaments linking clusters together and in that sense reflects
the history of matter accretion as well as the initial distribution of
matter (which is supposed to be similar to a Gaussian random field
with a scale-dependent effective spectral index similar to the ones
considered here). Fig. 4 presents the result of the measurement of
the total length Ltot of the skeleton per unit box size as a function
of the spectral index and for different smoothing lengths σ (within
the range of validity of the algorithm as described in Appendix B).
These measurements are carried over 25 realizations of scale-free
2563 Gaussian random fields as a function of the spectral index n.
The sensitivity of the skeleton to the value of the spectral index is
clear on this plot and, if Ltot appears to be a linear function of the

2 Cosmological density fields, therefore, have of order one inflection point
per extremum, unlike, e.g. a mountain range, where one encounters many
inflection points on a way from a mountain top to the bottom.
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Figure 5. Difference between the PDF of the density field and the normal-
ized differential length of the skeleton dL/dη as a function of the density
contrast η = ρ/σ 0. Each curve represents the average value and variance
of the measured value of dL/dη over 25 different realizations of scale-free
Gaussian fields, for different values of the spectral index n = 0, −1, −2.
The dotted curves represent the estimation obtained by fitting data using
equation (19) (see Table 1 for values of the parameters).

spectral index, it is also clear that it grows as a power law of the
smoothing length. The dotted lines on Fig. 4 shows the result of
such a fit of the data and seems to work very well. A very good
approximation of Ltot per unit box size is thus given by the function:

L tot = 0.21(n + 5.28)σ−2.00. (18)

As expected, the exponent of σ is measured to be exactly 2. It
can be proved with a simple argument that this should be the case
for scale-free Gaussian fields. In fact, for such fields, computing
the skeleton over a grid of volume l3 and smoothed on a scale σ

is equivalent to computing the skeleton on a grid of volume (α l)3

while smoothing on a scale (ασ ) and rescaling the result by a factor
of 1/α. Because of the scale invariance, we also have L(σ ) = α−3

L(ασ ) and so L(σ ) ∝ σ/σ 3 = σ−2.
Interestingly, the dependence on the spectral index n is close to

n + 5 which argues for filaments being relatively straight between
extrema, see Appendix C. A visual examination of the filaments
confirms this picture.

Now consider the differential length of the skeleton, dL/dη(η)
where η ≡ ρ/σ 0 is the normalized density contrast. This quantity
represents the expected length of skeleton that can be measured
in a given distribution between density contrasts η and η + dη.
Fig. 5 shows the normalized function dL/dη(η) as a function of
the normalized density contrast η from which was subtracted the
probability distribution function (PDF) of the field (which, within
the range of sampling and finite volume effects approximations,
is a Gaussian function). These values were also averaged over 25
realizations of Gaussian fields with spectral index n = 0, −1, −2
sampled on 2563 pixel grids and for a smoothing length σ = 0.027.
This value was chosen as a compromise between finite volume effect
and differentiability of the field on a grid discussed in Appendix B.
Considering the error bars, it is clear that the value of dL/dη(η) is
directly linked to the spectral index n.

It is shown in Appendix C that dL/dη (η) can be written using
an Edgeworth expansion (see also Novikov et al. 2005 for the cor-

Table 1. Measured values of the first three non-null terms in the Edgeworth
expansion, equation (19), for three different values of the spectral index n =
0, − 1, − 2. These results are obtained by fitting equation (19) on the data
presented in Fig. 5 on which the dotted lines represent the fitted function.
The measurements show very good agreement, whatever the value of n.

C2 C4 C6

n = 0 0.219 0.006 −0.001
n = −1 0.212 0.002 −0.002
n = −2 0.206 −0.005 −0.008

0.21 ± 0.005 0.001 ± 0.005 −0.004 ± 0.003

responding proof and fit in 2D):

dL

dη
(η) = L tot√

2π
exp(−η2/2)

(∑
n�0

C2nγ
2n H2n

(
η/

√
2
))

, (19)

where Ltot is the total length of the skeleton, C0 = 1 and H2n are
Hermite polynomials (using the Probabilist’s convention). Fig. 4
demonstrates that this expansion also works very well in the 3D case.
Remarkably, equation (19) does not depend on γ̃ which again argues
for the picture of a stiff behaviour of the skeleton for cosmological
scale-invariant density fields (see Appendix C). Table 1 presents
the values of the first three coefficients C2n obtained by fitting the
measurements presented in Fig. 5 (the dotted line of Fig. 5 are the
result of these fits). Not only does equation (19) allows a very good fit
of the measured data, but it also appears that only the first-order term
is non-null and the differential length of the skeleton of a Gaussian
random field with spectral parameter γ is thus given by

dL

dη
(η) = L tot√

2π
exp(−η2/2)

[
1 + 0.21γ 2(η2 − 1)

]
. (20)

The only non-null coefficients in the expansion are thus C0 = 1 and
C2 =0.21, to be contrasted to C2 =0.17 in the 2D case. Equation (20)
can be used as a test of non-Gaussianity like any other topological
estimator, such as the genus, the PDF, etc. as discussed in Novikov
et al. (2006), since departure from the shape of equation (20) must
appear when the skeleton’s differential length is computed while the
underlying field is not Gaussian.3

For the matter distribution in the Universe, the filaments are over-
dense regions along which matter flows. In that sense, they are less
subject to numerical or observational noise and contain most of
the information about the underlying matter distribution. The skele-
ton length can thus be seen as a method for measuring the power
spectrum which naturally weights information in different regions
according to their importance.

5 I L L U S T R AT I O N : DY NA M I C A L
E N V I RO N M E N T O F F I L A M E N T S

Drawing the skeleton allows us to pin down the nature of the flow
around the filaments. Indeed one may roughly define three dynam-
ically distinct regions in large-scale structures: voids, clusters and
filaments. The first two have been investigated in some detail. The
filaments represent a fairly unexplored venue. Beyond the kinemat-
ics (velocity distribution, spin, etc.), the photometric and spectro-
scopic properties of galaxies (colour, age, metallicity, etc.), their
morphology (ellipticals versus spirals, Gini number, asymmetry) or

3 Of course, given the properties of the skeleton, this will not apply if the
non-Gaussianity involves only a (monotonic) bias.
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Figure 6. Top panels: PDF of the velocity field V of the dark matter along the skeleton as a function of its angle θ with the skeleton and its norm. The
measurements were achieved on a 100 h−1 Mpc and 1000 h−1 Mpc dark matter simulation featuring 5123 particles and a standard 	CDM model, smoothed
over a scale s = 1.2 and 12 h−1 Mpc (left- and right-hand panels, respectively). The skeleton is oriented in the direction of increasing density. Dark matter
appears to be flowing along the filaments in the direction of higher density regions (i.e. haloes). Bottom panels: PDF of main eigenvector of the velocity
dispersion tensor �Vi j as a function of its angle θ with the skeleton and its eigenvalue amplitude. The peak of the PDF corresponds to high velocity dispersion
orthogonal to the filaments, which is coherent with the picture of dark matter being accreted orthogonally by the filaments before flowing along them. Note the
increase in velocity dispersion with scale (left- and right-hand panels) as well as the larger angular dispersion in the dark matter flow. This trend is also found
while considering the same simulation at higher z.

the IGM (gas temperature, WHIM detection, fraction of gas/metals
in the filaments, etc.), could also be investigated as a function of the
distance to, and along the filaments.

In this section, two examples simply illustrate how the skeleton
can be used to explore the environment of filaments in cosmological
simulations.

5.1 Dark matter flow near the skeleton

Fig. 6 displays PDF of different characteristics of the dark matter
flow along the skeleton. In order to understand the correlations be-
tween the filaments and the velocity field, we computed the PDF of
its angle relative to the skeleton as a function of its intensity (top
panels), and the PDF of the angle between its largest eigenvector
and the skeleton as a function of the norm of the corresponding
eigenvalue (bottom panels). These measurements were achieved by
first sampling the field characteristics on a grid, averaging particles
velocities V ≡ 〈v〉 and dispersion tensor, �V2

ij ≡ 〈(vi − 〈vi〉)(vj

− 〈vj〉)〉 over each cell, and then computing for each segment the
distance-weighted average of their PDF. Left- and right-hand panels
yield the resulting PDF computed in a 100 h−1 and 1000 h−1 Mpc
dark matter standard Lambda cold dark matter (	CDM) model sim-
ulation, respectively, at redshift z = 0 and using 5123 particles. In
both cases, the density and velocity fields where sampled on a 5123

pixels grid and smoothed over σ p = 6 pixels (i.e. s = 1.2 h−1 Mpc
and s = 12 h−1 Mpc, respectively). The skeleton segments being
oriented in the direction of increasing density, an angle of θ = 0
means that dark matter is flowing along the filament in the direction
of higher density regions.

The flows appears to be laminar and its amplitude increases with
scale: this is expected since on larger scales the clusters are more
massive, the potential difference is larger, hence the flow towards
them is faster. Most dark matter particles have a mean velocity
of about 300 (respectively 400) km s−1 along the filament and a
dispersion of about 100 (respectively 150) km s−1 orthogonal to the
filaments for the two scales considered here. The angular spread
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Figure 7. Excess probability of spin alignment with the local skeleton com-
puted from the average of three 5123 50 h−1 Mpc 	CDM simulations at dif-
ferent distances: d ∈ [0, 500], [500, 1500], [1500, 2500] and [2500, 3500] h−1

kpc from the closest skeleton segments. This figure demonstrates that on av-
erage the spin of dark matter haloes tends to be orthogonal to the local
filaments at a level of 25 per cent for distances shorter than 500 kpc. The
simulation is analysed at redshift zero.

(panels 6a and b) also increases with scale, from about 30◦ to about
45◦, reflecting the larger internal heat of the filament, also seen in
Figs 6(c) and (d).

The qualitative shape of this PDF may be explained by the ad-
vection of new haloes on to the ‘highways’ corresponding to the
mean flow. The first eigenvector of the dispersion tensor is on av-
erage clearly orthogonal to the filament, reflecting the velocity of
dark matter falling on to the filaments. Note that the distribution
is decreasing monotonously with θ in Fig. 6(a): some dark matter
particles statistically even move downhill, and their relative frac-
tion decreases with scale. The filaments are collecting matter away
from the underdense regions. Smaller filaments empty smaller voids,
which tend to get depleted earlier than larger ones; hence this may
explain why the flow becomes more orderly at smaller scale as ac-
cretion diminishes.

Note that the redshift evolution (not shown here) of this distribu-
tion follows closely its scale evolution, the z = 15 PDF over 100 h−1

Mpc resembling the z = 0 PDF over 1000 h−1 Mpc (Sousbie 2006).
The detailed nature of the flow should eventually be investigated

in a smoothing scale-independent manner, in order to derive uni-
versal features which would only depend on the cosmology and
the initial power spectrum. Its evolution with redshift or with the
cosmology should also be systematically analysed.

5.2 Dark matter spin-skeleton connection

The geometric orientation of the spin of dark matter haloes corre-
sponds to another feature of the large-scale structure which can be
characterized using the skeleton. The spin of dark haloes was com-
puted using the classical friend-of-friend algorithm with 0.2 times
the interparticle distance as linking length and retaining only haloes
containing more than 100 particles. Fig. 7 displays the excess prob-

ability of alignment of the haloes’ spins with the closest skeleton
segment for different distances [0, 0.5], [0.5, 1.5], [1.5, 2.5] and [2.5,
3.5] h−1 Mpc. This probability reaches 25 per cent for an angle θ =
π/2 between the spin and the skeleton: the spin of dark matter haloes
is preferentially orthogonal to the filament they belong to. This trend
accounts for the fact that the filaments are the locus of laminar flow
where haloes coalesce along the direction of the filaments paral-
lel to the mean flow, hence acquiring momentum orthogonal to the
flow, as observed in Aubert et al. (2004) and Aragon-Calvo et al.
(2007b).

6 C O N C L U S I O N A N D P E R S P E C T I V E S

The 3D skeleton formalism is a well-defined framework for study-
ing the filamentary structure of a distribution. The ‘real’ skeleton
is defined as the set of critical lines joining saddle points to max-
ima of the field along the gradient. A local approximation of it
was introduced in Section 2 along with a numerical method al-
lowing a fast retrieval of the locus of the filaments from a sam-
pled field (see also Appendix A). This method involves computing
the null isodensity surfaces of each component of a function S =
(H · ∇ρ × ∇ρ) of the gradient, ∇ρ, and Hessian matrix, H of this
field.

The ability to localize and characterize the filamentary structure
of matter distribution in the Universe opens the prospect of many
applications for the skeleton as discussed in Sections 4 and 5. It
has been shown in Section 4 that for a Gaussian random field, the
total length of the skeleton per unit volume depended only of the
chosen smoothing length σ and spectral index n, with a specific
functional from which was both fitted from simulations and moti-
vated in Appendix C. In this sense, the local skeleton provides a
direct measurement of the local shape of the power spectrum, P(k),
on various scales depending on the smoothing applied to the un-
derlying field. Though there exist other ways to measure the power
spectrum of a given distribution, the skeleton length is promising as
it relies only on the filamentary structure of the distribution. A forth-
coming paper will investigate in more details the expected scalings
on the shape of the power spectrum. The analysis of the length of
the skeleton of the galaxy distribution in the SDSS as a measure-
ment of cosmological parameter �m can be found in Sousbie et al.
(2007). This paper addresses the issue of implementing the present
algorithm on observational data sets and mock catalogues. In par-
ticular, it is shown there that the effect of redshift distortion is well
accounted for by comparing data from large-scale surveys to such
catalogues.

The skeleton may also be used as an isotropy probe. It corresponds
in fact to a good candidate for the Alcock–Paczynski (Alcock &
Paczynski 1979) test, since the apparent longitudinal to transverse
length of skeleton segments should directly constrain the curvature
of space in a manner which is bias independent. This test will be
presented in a forthcoming paper.

It was demonstrated in Section 4 that the dark matter flow in the
vicinity of filaments was dominantly laminar along the filaments
and shows signs of orthogonal accretion corresponding to the infall
of dark matter collected from the voids. It was also shown that
the spin of dark matter haloes were preferentially orthogonal to
the filament’s direction, a feature which can be understood as a
consequence of merger events taking place along these filaments.
A clear virtue of the local skeleton is that since it relies on a local
expansion of the field, it can deal with truncated/masked fields,
segmented or vanishing ridges or isolated structures. Note finally
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that the fit, equation (20), opens the prospect of using the local
skeleton to estimate the bias in observed surveys. The idea is to
compute the PDF of galaxies on the one hand, which depends on
the mass to light ratio of the sample, and the differential length
(equation 20) on the other hand. Since the former depends on the
bias, whereas the later does not, comparing the two should give an
estimate of the bias. On the other hand, the local formulation of the
skeleton presents some limitations. Mainly, it is not fully connected:
it has by construction (since it is drawn from a second-order Taylor
expansion of the field) only two segments per maxima whereas full
connection would require three or more. A consequence is that it
cannot represent merging filaments.

One could also use the curvature and torsion of filaments as cos-
mological probes, since the acceleration of the Universe induced
by the cosmological constant is likely to straighten the filaments,
though the fact that the local skeleton has only two segments near its
maxima (the other segments must branch out) is likely to introduce
some artefacts. The topology and geometry of the skeleton near
the density peaks and the redshift evolution of the skeleton of the
large-scale structures may prove of interest, for instance to study
the frequency of reconnection, though again the local skeleton is
not ideal in this respect. It would also be interesting to construct the
skeleton in higher dimensions, for instance in space–time, to trace
the events lines, but again connection is critical. In a forthcoming
paper, an alternative algorithm for the identification of the skeleton,
loosely based on a least action formulation, will be presented. It
is complementary to the solution presented in this paper and will
allow us to tackle those points for which the local skeleton is less
efficient. Finally, the 3D skeleton algorithm could possibly be ap-
plied to other fields of research, such as neurology, in order to trace
the neural network.
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A P P E N D I X A : N U M E R I C A L I M P L E M E N TAT I O N

All the computations were performed using a specially developed C package: SKELEX4 (Skeleton Extractor). This package also includes a
flexible OpenGL visualization tool that was used for making the figures in this paper.

The first step before computing the skeleton requires obtaining a density field from a discrete point-like distribution. This is achieved by
smoothing appropriately the density field on a grid so that it is not singular (i.e. is sufficiently differentiable) but still contains all the topological
information. The density field is computed using cloud-in-cell interpolation and convolving the result with Gaussian windows of different
widths. As was shown in section B, the grid size and smoothing length are decisive parameters. It is then necessary to compute first and second
derivatives of the field on the grid, which can be done using finite difference or Fourier transform method. Choosing one method or the other
does not seem to have any influence on the resulting skeleton if the field is smooth enough (which is anyway a necessary condition).
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1664 T. Sousbie et al.

Figure A1. Illustration of the different possible configurations of a grid cell used for marching cube algorithm. Given a field f and isocontour f = 0, a blue ball
represents a vertex where f > 0. It is then easy to build the isocontour by linearly interpolating the value of f along the edges. This picture was borrowed from
James Sharman’s web site, http://www.exaflop.org/docs/marchcubes/ind.html.

Figure A2. Illustration of a drawback of marching cubes algorithm. The green surface is an isosurface solution of equation (7) and the light blue line is the
resulting skeleton. The red diamond represent a field maximum. It is clear on this picture that the algorithm misses the part close to that maximum, thus creating
a spurious hole in the skeleton.

The next step involves solving the system of equations (8); the solution of this system corresponding to the intersection of two of the three
solutions of equations (7). This is done by computing the 3D meshes of the 2D surfaces that are solution to these equations: the skeleton is at
the intersection of two of them, depending on the value of the gradient at the point considered. Solving equation (7) is equivalent to finding
the null isocontour of field Si , which can be done using the marching cube algorithm (Lorensen & Harvey 1987). The basic idea is to consider
every cell of the grid as an individual cube. One can then compute the value of every Si for the eight vertices and it is easy to check whether
the isosurface intersects the cube or not. In fact, every vertex is above or below a threshold value (in this case 0), which gives a total of 28 =
256 types of intersections (only 15 of them being intrinsically different) that can be pre-computed as illustrated in Fig. A1. The exact positions
of the intersections are computed using quadratic interpolation. This yields the position of the intersections of the grid and the isocontour, and
defines triangles that smartly link those intersection vertices: one can then reconstruct a very good approximation of what the isocontour is.

Which surfaces should be used for each cell is decided by computing dk = det (ri , r j , ∇ρ), i �= j �= k ∈ {1, 2, 3} and selecting only the
two Sk for which dk is maximal. This gives two surfaces defined by triangles whose intersection can be efficiently computed: it amounts to
computing the intersection of triangle pairs only. It is then straightforward to compute the eigenvalue of the Hessian for every segment and
keep or reject them depending on the previously defined criteria (equation 10) in order to draw the local skeleton. The exact same method
was used for efficiently and consistently finding the extrema and saddle points of the field. Indeed, if one defines three fields f i = ∂ρ/∂ri ,
those critical points are the intersections of the three isocontour surfaces f i = 0. One can then decide if a critical point is a maximum,
minimum or saddle point by checking the value of eigenvalues of the Hessian (i.e. the curvature). Although marching cubes algorithms are
very efficient for computing isodensity contour, they present some drawbacks for ambiguous configurations. Indeed, as illustrated on Fig. A2,
some configurations are degenerate and one cannot decide where the isosurface should pass. This problem happens most of the time around
critical points where the value of the field can go above and below the threshold within one cell. It induces the loss of small skeleton segments.

In order to obtain a smooth skeleton that does not present holes and to retrieve the connectivity information (i.e. to be able to follow the
skeleton from one point to another), a three steps post-processing is applied. Here the algorithm is based on a weighted marking system to
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(a) The three fields isosurfaces the intersection of which con-
stitutes the critical lines

(b) The resulting critical lines made of all the intersection of
any two of the three isosurfaces shown in 3(a).

(c) The local critical lines obtained by selecting only the two
least degenerate fields depending on the value of the gradient.

(d) The skeleton obtained after enforcing condition 10 on the
local critical lines: λ1 > 0 and λ2, λ3 < 0.

Figure A3. Illustration of the process of the skeleton computation. White points are dark matter particles extracted from a standard 	CDM simulation run
using sc gadget-2. The skeleton is defined as the intersection of two (among three) isosurfaces (Fig. 3a). Defining the curvature as λi with H∇ρ = λi ∇ρ and
∀ j > i, λj < λi (ρ being the density and H its Hessian), it is possible to select only some parts of the skeleton depending on the value of λi and retrieve only
the filaments (Fig. 3d). Using a simple post treatment, it is then possible to remove insignificant pieces and obtain the precise locus of the filaments (Fig. 2).

achieve this result (where the weights are assigned depending on the relative importance of the selection criteria). (i) The branches that were
missed around the extrema are regenerated using the fact that the skeleton around an extremum is along the main curvature axis (i.e. along
the first eigenvector of the Hessian). So for each extremum, marks are given to all skeleton segment, favouring those at small distances and
with similar orientation as the main eigenvector of H. Each extremum is eventually connected to the segment with the highest mark. (ii)
The gaps between segments in the sequence of skeleton branches are filled. Starting from segments connected to extrema, all segments are
visited iteratively: for the running segment, a mark is now assigned to all other unprocessed segments, based upon their relative distance, their
relative angle and relative orientation. Note that the corresponding cost functions are non-linear: for instance segments with too large a relative
angle are given an exponentially negative mark. (iii) Finally, all segments which have not been considered during step (ii) are dropped. The
process is illustrated on Fig. A3, and the resulting skeleton is shown on Fig. 2. A detailed accounting of all stages of the skeleton extraction,
including the post treatment is given in Sousbie (2006) (which gives the exact marking scheme described above), while the code is available
upon request from the authors.

From a performance point of view, this method presents the advantage of being both fast and robust. The computational cost in fact mainly
scales as the number of pixels in grid N3

g; the cost of computing the isosurfaces intersections is negligible given the possibility of computing
only the intersections of faces belonging to the same pixel. It is moreover memory efficient and can be trivially parallelized: the computation
can be done on subgrid regions and then merged. On a modern computer, the memory requirement corresponds to the requirement to store
one subgrid and its three isosurface, which can be arbitrarily small, and the computational time for a 1283 pixel grid is of the order of a few
seconds on a modern desktop computer while only a few tens of minutes is necessary for a grid of 10243 pixel.

A P P E N D I X B : S M O OT H I N G L E N G T H A N D R E S O L U T I O N

One aspect of the numerical implementation that deserves special attention is the issue of smoothing. In the main text, we consider the
total skeleton of Gaussian random fields, focusing mainly on two of its properties: its length L and differential length dL/dη. The algorithm
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Figure B1. Top: evolution of the measured spectral parameter γ (see equation 16) for 25 realizations of Gaussian random fields with spectral index n = 0
(red crosses), n = −1 (green triangles) and n = −1 (blue discs) as a function of the smoothing scale σ expressed in box size units. The three continuous lines
represent the expected theoretical values, measured by integrating the power spectrum truncated to grid limit frequencies. The dotted lines are the theoretical
expectations (equation 17) without accounting for finite volume effects. For higher values of σ , the finite box size effects have more influence and the measured
value of γ tends to differ from the correct one, thus limiting the maximal smoothing scale Bottom: evolution of the measured length of the total skeleton in box
size units as a function of the smoothing length in pixels σ p, for different values of the spectral index n and while keeping the smoothing scale to a constant
fraction of the box size σ ≈ 0.031. The measurements are obtained by resampling one initial realization of a Gaussian random field (generated over a 2563 pixel
grid) on smaller resolution grids and smoothing the resulting fields over the appropriate number of pixels. The measured length of the total skeleton appears to
become stable for values of σ p above a limit of 4 to 5 pixels at least, which corresponds to σ > 0.19 for a field sampled on a 2563 pixels grid.

presented in this paper deals with the numerical computation of the skeleton of a discretized realization of a given field. It is thus important in
the first instance to be able to deal with the influence of this discretization on the measured skeleton properties (see e.g. Colombi et al. 2000).

The statistical properties of a scale-free Gaussian random field can be described using only two numbers: its spectral index n and the
amplitude A of its power spectrum P(k) = Akn , where k is the wavenumber. The skeleton formalism is totally independent of the amplitude of
the field, so only the value of n is of interest to us. Consider a realization of a 3D scale-free Gaussian random field with spectral index n on a
N3

g pixel grid. In order to ensure sufficient differentiability, this field is convolved to a Gaussian kernel whose scale σ is expressed per unit box
size. The value of σ limits the size of the smallest scale that can be considered, while the finite size of the grid imposes an upper limit. Fig. B1
presents the measured value of the spectral parameter γ 2 = (n + 3)/(n + 5) as a function of σ , for 25 realizations of Gaussian random fields
with spectral index n ∈ {0, −1, −2}, together with the theoretical value, measured by integrating the power spectrum truncated to grid limit
frequencies. As expected, a departure from theory is observed for higher values of σ , especially for fields with lower spectral index where
most of the power is concentrated on small values of k (i.e. on large scales). This sets an upper limit on the value of the smoothing scale and
so we will only be considering fields smoothed on scales σ � 0.035.

The other constraint on the value of σ arises from the fact that the skeleton computation algorithm requires a field that is continuously
differentiable twice in the finite difference scheme sense. This means that the smoothing length should be large enough for the computational
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The 3D skeleton 1667

errors on field derivatives to be negligible. These considerations imply a lower limit on the smoothing length value expressed in number
of pixels σ p = σ Ng. In order to estimate this limit, we again generated Gaussian random fields with different spectral indices over a 2563

(Ng = 256) pixels grid and downsampled them on grids with eight different values of Ng ranging from Ng = 64 up to Ng = 224. Fig. B1
presents the evolution of the measured skeleton length for these realizations, each of them being computed for a smoothing scale corresponding
to a constant fraction of the box size σ ≈ 0.031 but to different values of σ p ranging from σ p = 1 up to σ p = 7. One would clearly expect the
length of the skeleton to depend only on the value of σ as long as the numerical approximations are negligible, which seems to be the case
only for values of σ p at least of order 5 pixels. For a given sampling Ng, this limits the possible smoothing scale to σ > 5/Ng. As was noted
previously, this exact value depends on the considered spectral index, so we chose to consider the worst case, n = 1, where the fluctuations
of the field do not dampen on small scales thus making the field naturally not smooth on any scale.

In this paper, all fields considered are sampled over Ng = 256 cubic grids, so in order to respect the constraints described above, the fields
are smoothed on scales in the range 0.02 < σ < 0.035.

A P P E N D I X C : T H E T H E O R E T I C A L D I F F E R E N T I A L L E N G T H O F T H E S K E L E TO N

C1 Average length of the skeleton per unit volume

To find the average length per unit volume, L(ρth), of the critical lines5 that are above the threshold ρ th consider the vicinity of the points
through which the local critical line passes, Si = 0, Sj = 0. (Since the sets of conditions (Si ,S j ) = (0, 0), i �= j is degenerate, without loss of
generality one can assume a particular choice for i and j). Define the set of points, E , in the excursion ρ > ρ th near the critical line solutions
that satisfy −�Si/2 � Si � �Si/2 and −�S j/2 � Sj � �S j/2 where �Si and �Sj are sufficiently small so that the linear expansion �Si

≈ ∇Si · d r , �Sj ≈ ∇Sj · d r holds.6 The fraction of the total volume the set E occupies (the filling factor) is

V(ρth, �Si , �S j ) =
∫

ρ>ρth

dρ

∫ �Si /2

−�Si /2

dSi

∫ �S j /2

−�S j /2

dS j

∫
d3(∇Si ) d3(∇S j )P(ρ,Si ,S j , ∇Si , ∇S j ), (C1)

where P(ρ,Si ,S j , ∇Si , ∇S j ) is the joint PDF of the quantities (ρ,Si ,S j , ∇Si , ∇S j ). Here the seemingly redundant distribution of the
gradients ∇Si and ∇Sj was introduced to have the expression for the fraction of the total volume occupied by a differential subset of E that
has specific values of the gradients ∇Si , ∇Sj [within d3(∇Si ) and d3(∇S j )]:

dV(ρth, �Si , �S j , ∇Si , ∇S j ) = d3(∇Si ) d3(∇S j )

∫
ρ>ρth

dρ

∫ �Si /2

−�Si /2

dSi

∫ �S j /2

−�S j /2

dS jP(ρ,Si ,S j , ∇Si , ∇S j ). (C2)

Since the area, �, of a section locally orthogonal to the such subset, is simply (modulo some trigonometry) given by

�(�Si , �S j , ∇Si , ∇S j ) = �Si�S j/|∇Si × ∇S j |,
dividing dV by �, integrating over all possible gradients ∇Si , ∇Sj and then taking the limit (�Si , �S j ) → (0, 0) yields the length per unit

volume of the skeleton that is above the threshold ρ th:

L(ρth) = lim
(�Si ,�S j )→(0,0)

∫
dV(ρth, �Si , �S j , ∇Si , ∇S j )

�(�Si , �S j , ∇Si , ∇S j )

=
∫

ρ>ρth

dρ

∫
d3(∇Si ) d3(∇S j ) |∇Si × ∇S j |P(ρ,Si = 0,S j = 0, ∇Si , ∇S j ).

(C3)

This generalizes the calculation of NCD to three dimensions: the length of the local skeleton is defined by the properties of the density field
and its partial derivatives up to third order, as expected.

In order to understand the scalings involved in the computation of L, let us rewrite this equation in terms of dimensionless quantities

σ0η ≡ ρth, σ0x ≡ ρ, σ1xi ≡ ∂ρ

∂ri
, σ2xi j ≡ ∂2ρ

∂ri∂r j
, σ3xi jk ≡ ∂3ρ

∂ri∂r j∂rk
, σ2σ

2
1 si ≡ Si , σ3σ

2
1 ∇si ≡ ∇Si , (C4)

with, following Bardeen et al. (1986),

σ 2
n ≡

∫
k2dk

2π2
P(k)k2n, (C5)

where P(k) is the power spectrum of ρ. Equation (9) and its gradient can be written more conveniently using the totally antisymmetric tensor,
εi jk , as

si =
∑

jkl

εi jk x jl xl xk, and ∇msi ≡ ∇ ŝi (xk, xkl , xklm) =
∑

jkl

εi jk
(

x jlm xl xk + γ̃ [x jl xlm xk + x jl xkm xl ]
)

. (C6)

5 the distinction is made here between the theoretical expectation, L(ρth), in this section and the estimator, L, in the main text.
6 In such small neighbourhood of a critical line there are no other critical lines since the solution for linearized skeleton equations is unique. Note that the linear
expansion of Si breaks near the extrema of the field, where ∇Si = 0, which allows several critical lines to intersect at such points. However, extremal points are
of measure zero as far as the computation of the length of the skeleton is concerned.
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The variances of all the random quantities defined in equation (C4) do not depend on spectral parameters (they are pure numbers) except for
∇si . Keeping that in mind, in this new notation, equation (C3) becomes

L(η) =
(

σ3

σ2

)2 ∫
x>η

dx

∫
d3(∇si ) d3(∇s j ) |∇si × ∇s j |P(x, si = 0, s j = 0, ∇si , ∇s j ). (C7)

Equation (C7) is the formal expression for the length per unit volume of the total set of critical lines above the threshold η.
Let us express the joint distribution function P(η, si , s j , ∇si , ∇s j ) in terms of the joint distribution function of the underlying field and its

derivatives P(x, xk , xkm , xklm). Expressions (C6) for si and ∇si involve up to third derivatives of the field x, thus, accounting for the symmetries
in the derivative tensors of the second and third order is, one deals with a set of 20 independent variables (x, xk , xkl , xklm). P is obtained as a
marginalization over the field distribution

P(η, si , s j , ∇si , ∇s j ) =
∫

dxd3xkd6xkld
10xklm P(x, xk, xkl , xklm)δD(x − η)δD(ŝi (xk, xkl ) − si )δD(ŝ j (xk, xkl ) − s j )

×δD(∇ ŝi (xk, xkl , xklm) − ∇si )δD(∇ ŝ j (xk, xkl , xklm) − ∇s j ), (C8)

which yields the appropriate 9D probability density. Substituting the expression (C8) into equation (C7), differentiating with respect to η, and
accounting for two delta functions in ∇si and ∇sj yields

∂L
∂η

=
(

1

R̃

)2 ∫
d3xkd6xkld

10xklm |∇ ŝi × ∇ ŝ j |P(η, xk, xkl , xklm) δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )), (C9)

where σ 3/σ 2 is rewritten in terms R̃ with the help of equation (16).
Expression (C9) gives the differential length per unit volume of the total set of critical lines. Note that ∇ ŝi and ∇ ŝ j are now functions of

(xk , xkl , xklm) and ŝi and ŝ j are function of (xk , xkl ) given by equation (C6). The two delta functions couple the different xk , xkl , accounting for
the fact that the integral should be restricted to the intersection of the two isosurfaces, i.e. along the critical lines. The modulus in |∇ ŝi × ∇ ŝ j |
makes the summation of skeleton segments non-algebraic, which complicates the further reduction of equation (C9). For the set of local
critical lines, there are no restriction to the region of integration. If one is interested in the local skeleton, the integration should be restricted
to regions where the condition given by equation (10) holds.

The total length of the critical lines per unit volume is

Ltot =
∫ ∞

−∞
dη

∂L
∂η

=
(

1

R̃

)2 ∫
d3xkd6xkld

10xklm |∇ ŝi × ∇ ŝ j |P(xk, xkl , xklm)δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )). (C10)

C2 ∂L/∂η for a Gaussian random field

Since at a point the value of a Gaussian field does not correlate with its derivatives of odd orders (this is easy to understand using symmetries
in Fourier space), the joint distribution function P(x, xk , xkl , xklm) can be factorized as

P(x, xk, xkl , xklm) = P0(x, xkl )P1(xk, xklm). (C11)

In P0, the only dependence on the power spectrum of the underlying field is in the parameter γ (cf. equation 16) that describes the correlation
between the field and its second derivatives. Similarly, P1(xi , xi jk) only involves γ̃ which describes the correlation between the gradient of the
field and its third derivatives. Therefore ∂L/∂η depends only on η, R̃, γ and γ̃ , as argued in the main text. Note that, by symmetry, ∂L/∂η

for the total set of critical lines should be an even function of η. The total length of the skeleton, Ltot, which follows from marginalization of
the equation (C9) over η may depend only on γ̃ and R̃ since the integration of P0(η, xkl ) over all η cancels the dependency on γ .

C2.1 The ‘stiff’ filament approximation

The 1/R̃2 scaling in equation (C9) reflects the basic fact that, by definition, the local skeleton lines are almost straight within a volume, ∼ R̃3,
that contains one inflection point. A straight segment through such volume has the length ∼ R̃, thus, the expected length per unit volume is
∼1/R̃2. The dependence on the spectral index is then 1/R̃2 ∝ (n + 7)/σ 2, where σ is the smoothing length. Is this the scaling with n that one
should expect in the simulations? Let us write formally

∇si × ∇s j = A(xk, xkl , xklm) + γ̃ B(xk, xkl , xklm) + γ̃ 2C(xk,xkl ). (C12)

Suppose the last term dominates statistically.7 Then, since γ̃ /R̃ = 1/R∗, and given that C(xk, xlm) does not depend on the third derivative of
the field (which can then be integrated out), equation (C12) becomes

∂L
∂η

≈
(

1

R∗

)2 ∫
d3xkd6xkl |C(xk,xlm)| P0(η, xkl ) P1(xk)δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )). (C13)

It is easy to foresee when this regime is valid. The same argument as before implies that the 1/R2
∗ scaling arises when the skeleton is almost

straight within a volume that contains one extremum, ∼ R3
∗, rather than one inflection point. This is supported by the fact that the integral

7 Or equivalently assume that the magnitude of derivative of the Hessian is negligible relative to the magnitude of the Hessian.
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does not depend on the third derivatives, thus inflection points play no role, and no dependence on γ̃ remains. This picture corresponds to a
skeleton connecting extrema with relatively straight segments. The scaling is then 1/R2

∗ ∝ (n + 5)/σ 2. We call this regime and the expression
(C13) that describes it ‘the stiff approximation’.

For the total length of the critical lines, integration over η gives

Ltot ≈
(

1

R∗

)2 ∫
d3xkd6xkl |C(xk,xlm)| P0(xkl )P1(xk)δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )) ∝ (n + 5)σ−2 (C14)

strictly, since the integral is just a pure number. This is very close to the scaling with n that was found in the numerical fit, equation (18). The
differential length in the stiff regime is then only the function of γ times Ltot. This demonstrates theoretical consistency between the scaling
∼ (n + 5) σ−2 of Ltot and insensitivity of ∂L/∂η to γ̃ for scale-free Gaussian random fields that was observed in the simulations.

C2.2 Joint distribution of the field and its derivatives for a Gaussian random field

The full expression P0(x, xkl ) is given in Bardeen et al. (1986). Introducing variables

u ≡ −�x = −(x11 + x22 + x33), v ≡ 1

2
(x33 − x11), w ≡

√
1

12
(2x22 − x11 − x33), (C15)

in place of diagonal elements of the Hessian (x11, x22, x33) one finds that u, v , w , x12, x13, x23 are uncorrelated. Importantly, the field, x is only
correlated with u = �x and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k �= l, (C16)

where γ is the same quantity as in equation (16). The full expression of P0(x, xkl ) is then

P0(x, xkl ) dx d6xkl = (15)5/2

(2π)7/2(1 − γ 2)1/2
exp

[
− (x − γ u)2

2(1 − γ 2)
− u2

2

]
exp

[
−15

2
(v2 + w2 + x2

12 + x2
13 + x2

23)

]
dx du dv dw dx12 dx13 dx23,

and is described by only one correlation parameter γ .
A similar procedure can be performed for the joint probability of the first and third derivatives of the fields, P1(xi , xi jk), by defining the

following nine parameters (see also Hanami 99):

ui ≡ ∇i u, vi ≡ 1

2
εi jk∇i (∇ j∇ j − ∇k∇k)x, with j < k, and wi ≡

√
5

12
∇i

(
∇i∇i − 3

5
�

)
x, (C17)

and replacing the variables (xi11, xi22, xi33) with (ui, vi, wi). In that case, the only cross-correlations in the vector (x1, x2, x3, u1, v1, w1, u2, v2,
w2, u3, v3, w3, x123) which do not vanish are between the same components of the gradient and the gradient of the Laplacian of the field:

〈xi ui 〉 = γ̃ /3, i = 1, 2, 3, (C18)

where γ̃ is the same quantity as in equation (16).
This allows us to write

P1(xi , xi jk)d3xi d10xi jk = 1057/233d3wi d3vi dx123

(2π)13/2(1 − γ̃ 2)3/2
exp

[
−105

2

(
x2

123 +
3∑

i=1

(v2
i + w2

i )

)]
3∏

i=1

dui dxi exp

[
−3(ui − γ̃ xi )2

2(1 − γ̃ 2)
− 3x2

i

2

]
.

C2.3 Dependence of the differential length on threshold and spectral parameters

What is the dependence of the skeleton differential length on the parameter γ and the threshold η? Let us look at the structure of the integrals
involved with respect to the variable u. Importantly, the arguments of the delta functions Si �= Si (u) and ∇Si × ∇Sj , given by equation (C12),
is ∼ √

Q4(u) where Q4(u) is a positive quartic in u. Inserting the expressions for P1 and P0 into equation (C9) one sees that the integral over
u in ∂L/∂η has the form

I(γ, η) =
∞∫

−∞

√
Q4(u) exp

(−u2/2
)

(2π)1/2(1 − γ 2)1/2
exp

[
− (η − γ u)2

2(1 − γ 2)

]
du, (C19)

where Q4(u), of course, also depends on v , w , uk, vk, wk, x123, xk<l and possibly γ̃ , but not on γ .
In the trivial limit γ → 0 the coupling between u and the field value η vanishes and the differential length is reduced to the PDF of η:

dL/dη ∝ exp

[
−η2

2

]
= Ltot

(2π)1/2
exp

[
−η2

2

]
. (C20)

For non-vanishing γ , following NCD, the differentiation of equation (C19) shows that I(γ, η) obeys the equation

γ
∂I
∂γ

= − ∂

∂η

[
ηI(γ, η) + ∂I

∂η

]
,
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whose solution involve even Hermite polynomials (retaining only the convergent solution at large η):

I(γ, η) =
∞∑

n=0

c2nγ
2n H2n(η/

√
2) exp

[
−η2

2

]
. (C21)

Due to the orthogonality property of Hermite polynomials, c2n is given by

c2n = lim
γ→1

∫
dx H2n(x/

√
2) exp(−x2/2)I(x, γ ) =

∫
dx H2n(x/

√
2) exp(−x2/2)

√
Q4(x) = c2n(v, w, ui , ui , wi , x123, xi j ). (C22)

The integration of equation (C21) over v , w , uk, uk, wk, x123, xk<l (while accounting for the rest of the integrant corresponding to P0 and P1

together with the two delta functions) yields the functional form of dL/dη, equation (19), where C2n is a pure number in the stiff approximation,
but may depend on γ̃ in general.

In the stiff approximation, equation (C13) can be investigated semi-analytically. This analysis is the subject of a subsequent paper.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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