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Visibility problems are central to many computer graphics applications. The most common examples include

hidden-part removal for view computation, shadow boundaries, mutual visibility of objects for lighting simula-

tion. In this paper, we present a theoretical study of 3D visibility properties for scenes of smooth convex objects.

We work in the space of light rays, or more precisely, of maximal free segments. We group segments that “see”

the same object; this defines the 3D visibility complex. The boundaries of these groups of segments correspond

to the visual events of the scene (limits of shadows, disappearance of an object when the viewpoint is moved,

etc.). We provide a worst case analysis of the complexity of the visibility complex of 3D scenes, as well as a

probabilistic study under a simple assumption for “normal” scenes. We extend the visibility complex to handle

temporal visibility. We give an output-sensitive construction algorithm and present applications of our approach.

Categories and Subject Descriptors: I.3.7 [Computing Methodologies]: Computer Graphics—Three-Dimensional

Graphics and Realism

General Terms: Global Visibility

Additional Key Words and Phrases: line-space, visibility classification, Visibility Complex, Visibility Skeleton

1. INTRODUCTION

Visibility computations are central in many computer graphics algorithms. Some of the

most common include the determination of the objects visible from a viewpoint, and the

computation of umbra and penumbra. Recent techniques such as global illumination sim-

ulations require a more global approach, since the mutual visibility of all pairs of points

of a scene must be determined. In many cases, visibility is the computation bottleneck,

requiring the development of efficient solutions [Holzschuch et al. 1994].

Part of this article builds upon the material from a Eurographics rendering workshop paper [Durand et al. 1996]

and a paper at CCCG’97 [Durand et al. 1997a]. A more detailed discussion and comparison with related work

has been added (section 6). The catalogue of adjacencies has been added in appendix A. In section 3.2 we have

included a probabilistic study of the complexity of our structure in scenes with reasonable assumptions, and in

section 4 we discuss extensions of the 3D visibility complex to handle moving objects.

iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.

Address: iMAGIS/GRAVIR, INRIA Rhône-Alpes, ZIRST, 655 avenue de l’Europe, Montbonnot, F-38334 Saint

Ismier Cedex, France

{Fredo.Durand|George.Drettakis|Claude.Puech}@imag.fr
http://www-imagis.imag.fr/
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Unfortunately, visibility is intricate and hard to comprehend. It is by nature global; a

far away object can be visible, and spatially distant objects can have complex interactions.

Previous approaches have focused on answering precise queries, and have not really sought

to understand the coherence and the globality of visibility. This has led to efficient solu-

tions, but the specificity of visibility issues has often been occluded. We believe that it is

useful to better understand visibility, leading to more efficient algorithms.

The computational geometry research community has shown great interest in planar

visibility. Work such as the visibility complex by Pocchiola and Vegter [1996b] provides

a powerful and elegant framework to comprehend visibility properties in the plane, where

visibility problems and coherence are expressed naturally.

Unfortunately, theoretical literature is poorer when 3D visibility is concerned. Re-

searchers typically study the theoretical complexity of problems such as view computation

or ray-shooting. The results available are often reductions of algorithms. Even in theory,

the approach is mostly constructive and not analytical.

Our aim is first to develop a framework which describes the visibility properties of a

three dimensional scene. Any query or visibility property must be easily and naturally

expressed. This should be true both for simple (point seen by a ray) or more global queries

or properties (limits of shadows, parts of the scene visible from a volume, set of possible

views of an object). The notion of coherence must also be explicit, clearly explaining

where and how a change occurs. Our approach builds upon the 2D visibility structure and

framework developed by Pocchiola and Vegter [Pocchiola and Vegter 1996b; Pocchiola

and Vegter 1996a; Durand and Puech 1995].

We borrow the metaphor of function analysis from Koenderink and vanDoorn [1976].

Most visibility methods permit the calculation of the values of a function: What is the point

visible along this ray? Are these two points mutually visible? Nonetheless, these queries

at a point do not provide more global or structural information which would permit a better

description of the function: is it monotonic, continuous, are there inflexions, etc.?

When studying a question or a system, information is not encoded in “uniform”, contin-

uous regions where by definition nothing occurs. The organization or structure are defined

by discontinuities, boundaries or catastrophes (in the sense of Thom [1972]). We will

attempt to determine the sets of rays for which visibility properties remain invariant, and

those for which these properties change. In practice, we will determine which rays see the

same object, as well as the boundaries of these sets.

This paper proposes a mainly morphological and phenomenological study of visibility.

Our approach is topological. Topology is based on the notion of neighbourhood. It is

particularly well suited to formal study of the notion of coherence. We will however not

use a strict mathematical formalism, even though the underlying notions will be present;

We have chosen a more descriptive and concrete language.

1.1 Overview

In the next section, we express visibility in line and segment space, and introduce a new

data structure, the 3D visibility complex. In Section 3, we analyse the complexity of this

data structure: We demonstrate a worst-case bound of O(n 4), and a probabilistic bound of

O(n
8
3 ) based on a reasonable model of “normal” scenes. Section 4 informally discusses

the extension of these concepts to the temporal domain, in order to study visibility among

moving objects. We then describe a output-sensitive construction algorithm in Section 5.

The review of previous work is postponed until Section 6, which allows us to discuss and
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interpret previous within the framework we introduce. We conclude with a discussion of

future work issues.

2. INTRODUCTION TO THE 3D VISIBILITY COMPLEX

We will be dealing with scenes composed of convex smooth algebraic surfaces (we do

not address their precise representation, which is irrelevant for our purpose). We consider

algebraic surfaces of bounded degree. The approach can however be extended to larger

class of surfaces. In particular, we have extended it to polygons [Durand et al. 1997a],

and piecewise concave algebraic surfaces could be handled using results from singularity

theories. See, e.g., the Ph.D. thesis of the first author [Durand 1999], the work by Kergosien

[1981], Rieger [1992, 1993] and Petitjean et al. [1992, 1992]. We consider scenes in

general configurations. In our context, this means that we exclude incidences (tangency)

between lines and objects that are not stable under small perturbations of the scene.

2.1 Line vs. ray visibility

Visibility will be defined in terms of ray-object intersections. If we consider the objects

to be transparent, a ray passing through them is not blocked and all the objects a line

intersects must be considered. However, if we want to take occlusions into account, only

the first object intersected by a ray is relevant. Nevertheless, considering rays also induces

redundant information since many collinear rays “see” the same object: Consider a ray r

with origin A which intersects an object at point B (Fig. 1(a)). All the rays collinear to r

with an origin A′ between A and B “see” the same point B. We can thus group these rays

into a segment S (Fig. 1(b)).

A S
B

A'

(a) (b)

S' S''r

Fig. 1. Maximal free segment. (a) All the rays collinear to r whose origin is between the two spheres “see”

point B. (b) These rays are grouped into a maximal free segment S. Two other maximal free segments S′ and S′′

are collinear to S.

We will consider maximal free segments which are segments having no intersection with

the inside of the objects and whose length is maximal, i.e. their two extremities lie on

the boundary of two objects or are at infinity. In what follows we will often refer to them

simply as segments. Examples of maximal free segments are given in Fig. 1(b). Segments

can also be interpreted as rays which can see the two objects at their extremities. A 3D

line can be collinear to many segments, separated by the objects the line intersects (see

Fig. 1(b)). In this article, we will first introduce concepts in terms of line visibility, where

all the objects intersected by a line are considered, and then in terms of segment visibility,

where the occlusions are taken into account.

Since sets of segments are not intuitive objects, we will represent them in an appropriate

space which will afford a better understanding of intricate visibility relationships. A suit-

able parameterization will be used for the purposes of illustration and presentation, and for

the construction algorithm.
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Fig. 2. Line parameterization using two spherical angles for the direction and the Cartesian coordinates of the

intersection with an orthogonal plane.

2.2 Parameterization for visualization

We use a parameterization which maps lines in 3D space onto points in IR4. We have

chosen to decompose the 4 dimensions of line space into two dimensions of direction (the

spherical coordinates (θ,ϕ) of the direction vector of the lines) and a projection (u,v)
onto the plane perpendicular to the line and going through the origin (Fig. 2). The axes

of the planes are chosen such that u is along �t ×�y. Our mapping is thus into [0,2π]×
[−π/2,π/2]× IR2. Singularities occur at ϕ = ± π

2
, but since we use this parameteriza-

tion for the purpose of presentation and visualization we can ignore them without loss of

generality.

Visualizing 4D space is very hard. One approach is to use slices or cross sections. In

this paper we will fix ϕ = ct. Such a slice will be called a ϕ-slice. Since each slice will

be a 3D space (θ,u,v), it will sometimes be useful to cut one more time and consider ϕ
and θ constant. We will obtain a 2D slice where only u and v vary, composed of all the

lines which are parallel and have the direction (θ,ϕ). Such a slice will be called a θϕ-slice.

These two-dimensional θϕ-slices are easier to visualize. They justify in part the choice

of the parameterization because they can be interpreted as orthographic projections of the

scene.

Note that this parameterization will be used mainly for illustrative and presentation pur-

poses. The concepts presented in Section 2 through 4 are not inherent to any parameter-

ization of lines (except when slices are involved). They could be expressed using only

topological notions, although we believe that visualizing in IR 4 greatly helps their under-

standing. However, the construction sweep introduced in Section 5 will explicitly use the

parameterization.

2.3 Tangency volumes

Line visibility. Visibility changes whenever a line becomes tangent to an object: A line

which is tangent to an object is the limit between lines which intersect the object and lines

which do not intersect it.

The set of lines tangent to one object is a 3-D set in the four-dimensional line space.

This means, more intuitively, that a line has 3 degrees of freedom while staying tangent

to one object (see Fig. 3). We will call the set of lines tangent to an object the tangency
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Fig. 3. To remain tangent to an object, a line has three degrees of freedom: (Rotation along the contact point,

rotation backward or forward and side translation.

ϕ=π/2

θ=0

θ=-π/2

ϕ=0

v

uθ

θ=π/2

ϕ

ϕ=π/2

ϕ=0

ϕ1

ϕ2

ϕ1

ϕ2

D

D

Fig. 4. Tangency Volume of a sphere visualized in IR4. The θ axis (u = 0, v = 0) is shown for each ϕ-slice

providing a better 3D visualization. In the left-hand ϕ-slice, which corresponds to the discontinuity in the param-

eterization for ϕ = π
2

, the “cylinder” just turns around the θ axis. The line D intersects the object and is inside the

tangency volume.

volume of this object.

Fig. 4 shows a representation of the tangency volume of a sphere. For each ϕ-slice, the

set of tangents is a sort of 2D “tube”, forming a 3D structure in IR 4. If we consider a 2D

θϕ-slice (horizontal in Fig. 4), the set of tangents sharing that direction is mapped to a

circle in IR4. This is also true in the general case: Because of the definition of u and v, the

visualization of the set of tangents in one direction has the shape of the silhouette of the

object along the corresponding orthographic projection. More precisely, the visualization

of the set of tangents in one direction correspond to the fold) along that direction. The

fold is the “silhouette” of a semi-transparent version of the object [Petitjean 1992], which

is logical since we deal with line visibility and do not take occlusion into account at this

point.



6 · F. Durand, G. Drettakis and C. Puech

front

back

do not intersect

intersect

do not intersect

front

back

front

back

scene

dual θϕ-slice

slice for v=ct of

the θϕ-slice

line visibility segment visibility

Fig. 5. Visibility for θ = ct and ϕ = ct. If we consider lines (on the left), visibility can be described by a planar

structure (below). But if we consider segments (on the right) we have different levels on this plane depending on

the side of the object. The set of segments which do not intersect and the sets of those that intersect the front or

the back of the object share the same boundary, the tangents to the object which correspond to its silhouette.

If a line lies on the tangency volume, it means that it is tangent to the object. If the line

lies “inside” the 4D set bounded by the tangency volume, the line intersects the object. An

example is line D in Fig. 4.

Segment visibility and auxiliary complex. Let us now consider visibility with occlusion,

that is, segment visibility rather than line visibility. A line which intersects the object is

collinear to two segments, one before and one after the object.

Consider a θϕ-slice such as that on the lower left of Fig. 5. Viewed in that slice, the sets

of lines that intersect, and those that do not intersect the object are bounded by the fold

of the object. For segment visibility we have to consider the segments that see the front

of the object and those that see its back. Since such segments are collinear to the same

line, they are both visualized with the same point in IR4, as shown in the left of Fig. 5.

The set of tangents to the object for the chosen θ and ϕ is incident to the three sets (front,

back and no intersection). This means that a segment tangent to the object has topological

neighbourhood composed of segments that do not intersect the objects, some that see the

front, and some that see the back.

To differentiate the segments in our visualization, we need to add a pseudo-dimension.

This is not a continuous dimension since it is only used to sort all the collinear segments.

If we impose θ = ct, ϕ = ct and v = ct, the sets of segments can be represented by the

embedding of a graph shown on the lower right. Each tangent corresponds to a vertex of

the graph. This graph is a 1D structure embedded in the uv real plane.

We recall that a n-manifold is a set for which the neighbourhood of each point is homeo-

morphic to IRn. The embedding of a graph is manifold almost everywhere (homeomorphic

to IR), except at nodes of valence greater than 2, where the branching needs to be embedded

in a higher dimensional space.

Similarly, for a θϕ-slice, the sets of segments is a 2-manifold almost everywhere, except
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ϕ=π/2

v

uθ

ϕ=0

ϕ

ϕ=π/2

ϕ=0

ϕ1

ϕ2

ϕ1

ϕ2

L R

L

R

L

R

L

R

L

R

bitangents

D

D

Fig. 6. Dual arrangement for two spheres.

at the tangents. We call the partition of the segments of direction (θ,ϕ) according to their

visibility the auxiliary complex for (θ,ϕ) (see also Fig. 7). It can be seen as a generalized

orthographic view where all the objects, hidden or visible, are organized into layers. It is

a 2-dimensional cellular decomposition, but it is not formally a cell-complex (a.k.a. CW-

complex) because its faces are not necessarily homeomorphic to disks [Hatcher 2001] (e.g.,

they can have holes if one object is in front of another object).

In a similar manner, the space of maximal free segments of a scene is a 4-manifold

almost everywhere, except at the branchings on the tangency volumes.

2.4 Bitangents dual arrangement and the Visibility Complex

Line visibility and the dual arrangement. We now consider two objects. If a line is

inside the tangency volumes of both objects, it intersects them both. The tangency volumes

give us a partition of the space of lines according to the objects they intersect.

Definition: The Dual Arrangement is the partition of the lines of 3D space into con-

nected components according to the objects they intersect.

Its 4-faces are 4D sets of lines which intersect the same objects. They are bounded by

portions of the tangency volumes which are 3D. The intersection of two tangency volumes

is the 2D set of lines tangent to the two objects (bitangents). A bitangent corresponds to a
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A

EC
DF

B

A

D F

B

A

F

B

C
D E

scene θϕ-slice of the dual space of the segments
Auxiliary complex

Fig. 7. Auxiliary Complex for two spheres. In the lower representation, only the points on the surfaces rep-

resented are associated with segments. In the upper view, the faces of the auxiliary complex have been moved

outwards to make their incidences easier to understand. Face F is infinite.

t-vertex in an image, that is, the visual intersection of two object folds.

For a ϕ-slice, the set of bitangents is mapped onto a space curve. This is shown as a

dashed line in Fig. 6 on the two ϕ-slices on the right. It corresponds to the intersection

of the two “cylinders” which are the ϕ-slices of the tangency volumes. The visualization

slice of a 4D face is a volume corresponding to the intersection of the interior of the two

cylinders.

Segment visibility and the Visibility Complex. An auxiliary complex for two objects

is visualized on Fig. 7 for a given direction. Its visualization is still delimited by the

“silhouette” (corresponding to tangents) of the objects, but for example the “silhouette” of

the upper sphere has no influence on the set B of segments that see the back of the lower

sphere. Note that the two bitangents (shown in fat black lines) are incident to all faces.

Definition: The 3D visibility complex is the partition of the maximal free segments of

3D space into connected components according to the objects they touch.

The 4-faces of the complex are 4D sets of segments with the same objects at their ex-

tremities. They are bounded by portions of the tangency volumes which are 3D. Note that

the elements of the visibility complex and those of the dual arrangement are not the same.

A line can be tangent to two objects and not correspond to a bitangent segment because of

occlusions.

The 3D visibility complex is a 4-dimensional cellular decomposition, but like the aux-

iliary complex, it is not formally a cell-complex [Hatcher 2001] because of the complex

topology of its faces. In contrast, the 2D visibility complex [Pocchiola and Vegter 1996b]

is actually a cell-complex.
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v

uθ
A B C D E F

L

R

Fig. 8. ϕ-slice for ϕ = 0 of the faces of the visibility complex of the previous scene (Fig. 6 and 7). A is the set of

segments that see the front of R, B is the set of segments that see the back of L. C is the set of segments between

L and R. It can be interpreted as the intersection of set of lines that see L and the set of lines that see R, and in

line space it has the shape of A∩B. D is the set of segments that see the front of L. Since visibility is occluded by

R in this direction, D has the shape of B−A. Similarly, E is the set of segments that see the back of R. Finally, F

is the set of segments that see neither of the two spheres. It is the complement of A∪B.

Fig. 8 is a ϕ-slice for ϕ = 0 of all the faces of the 3D visibility complex for the scene

composed of two spheres of Fig. 6. The view in a given direction is shown on the left of the

cylinders, and we consider the associated auxiliary complex shown six times on the top of

the schema. Each time, a face is hatched and a volume is drawn below which corresponds

to the ϕ-slice of the face of the visibility complex at ϕ = 0.

Note that in our visualization, some of these slices overlap in IR3, since many collinear

segments are mapped onto the same point. A ϕ-slice of the complex is not manifold at the

branchings of the tangency volumes.

2.5 Tritangents

Consider now a scene of three objects. A line tangent to the three objects is at the intersec-

tion of the three tangency volumes. A set of connected tritangents is a 1D set in 4D line

space. In a ϕ -slice it corresponds to a point. The set of tritangents can be also interpreted

as the intersection of the three sets of bitangents.

Fig. 9 shows part of the visibility complex of a scene of three spheres. On the ϕ-slice

ϕ = 0, two orthographic views of the scene for θ = 0 (View 0) and for θ = θ 2 (View 2) are

drawn next to the corresponding θ in the ϕ-slice. The set F of segments that see the spheres

R and B is shown by its two slices F0 and Fϕ1. It is the intersection of the tangency volume

of R and B minus the tangency volume of G. The tritangents are the points in white. Note

that because of occlusion by the sphere G, lines that are bitangents of the R and B do not

correspond to bitangent segments. This is shown in Fig. 10 which is a zoomed view of the

ϕ-slice ϕ = 0. The set of bitangents B0 is cut because bitangent lines such as D intersect G

and do not correspond to bitangent segments. We can thus see that the tritangent T0 and T ′
0

are the intersection of the ϕ-slices of the three tangency volumes, and are also incident to

the three sets of bitangents B0, B′
0 and B′′

0 .
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Fig. 9. Visibility Complex of a scene of three spheres.

D

B
0

T'
0

D

B'
0

B''
0

T
0

T'
0

T
0

Fig. 10. Zoomed view of the ϕ-slice ϕ = 0.

Tritangents induce visual events or visibility events, e.g. [Rieger 1987; Rieger 1990; Pe-

titjean 1992; Petitjean et al. 1992]. Visual events describe the qualitative (or topological)

changes in visibility. Consider the example in Fig. 11. As the viewpoint moves down-

wards, sphere A becomes hidden by the conjunction of B and C. This occurs when the

viewpoint lies on a tritangent. In what follows, we will interchangeably refer to a visual

events or to the set of lines inducing it.
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1

2

3

CB
A

Fig. 11. Tritangency visual event. At viewpoint 2, sphere A becomes hidden by sphere B and C. This occurs as

the viewpoint lies on a line tangent to the three spheres.

(a) (b) (c)

Fig. 12. Tangent crossing singularity. As the viewpoint moves downwards, the back sphere becomes hidden by

the front-most one. At viewpoint (b) a singularity occurs (highlighted with a point): the two spheres are visually

tangent.

Note that a scene does not necessarily contain tritangents (this is for example the case in

Fig. 13(a) page 13).

2.6 Tangent crossing

There is another type of visual event called a tangent crossing. It is induced by planes

tangent to two objects, and to the lines going through the corresponding two points of

tangency. Consider the case of a sphere hidden behind another sphere. If the viewpoint is

moved, the sphere will become visible when the two spheres are visually tangent (Fig. 12).

The line going through the viewpoint and the point of visual tangency is contained in a

plane tangent to the two spheres.

How is this interpreted in our parameterization? These tangent crossing critical lines

are subsets of bitangents. They correspond to minima or maxima with respect to θ in the

ϕ-slices. To understand why, remember that a (ϕ,θ)-slice of the complex corresponds to

an orthographic view. Consider a rotation at ϕ = ct starting at a direction for which the

two objects are distinct in the view. Bitangents (t-vertices) will appear in the orthographic

view at a tangent crossing. The tangent crossing thus corresponds to the first θ at which a

set of bitangents starts.

The same reasoning can be applied to show that tangent crossings are also minima or

maxima in θ-slices. If occlusion occurs because of a third object, the tangent crossing can

be discarded and the minimum or maximum of a bitangent set can be another event, as is

the case in Fig. 10 where the tritangent T ′
0 is the maximum of the set B0.

Tangent crossings, as all visual events, are induced by 1D sets of lines. These events
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Dimension Scene configuration ϕ-slice in line space Name Notation

4 4-face

3 tangency volume T

2 bitangency face T+T

1 tritangency arc T+T+T

1 tangent crossing T++T

0 vertex T+T+T+T

0 vertex T++T+T

Table 1. Elements of the visibility complex

are crucial for dynamic maintenance of views, aspect graphs and discontinuity meshes.

Triple-tangency and tangent-crossing are the only visual events for convex smooth objects

(see e.g. the catalogue of Kergosien [1981] or Petitjean [1992] and his co-authors [1992]).

2.7 Notation and vertices

Before describing the 0-dimensional faces of the 3D visibility complex, we introduce a no-

tation for the different faces and the corresponding events, which we borrow from Petitjean

et al. [1992, 1992]. The tangency between an object and a line is noted T , and multiple

tangencies are noted using +. A bitangent is noted T + T , and a tritangent is T + T + T .

The higher-order incidence at a tangent crossing is denoted by ++. A tangent crossing is

thus noted T ++T .

Using this notation, the first kind of 0-faces of the complex are T +T +T +T segments

(tangent to four objects). The second sort of vertices are T ++T + T segments, which are

tangent to 3 three objects, two of them sharing a tangent plane.

The dimensions and incidences of the boundaries of the faces of the 3D Visibility Com-

plex are summarized in table 2.7. Note that a scene can have a visibility complex with

neither vertex nor tritangency arc.

3. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the 3D visibility complex. The algebraic

objects are assumed to have bounded degree. In what follows, n represents the number of

smooth convex objects.



The 3D Visibility Complex · 13

(a) (b)

Fig. 13. Lower and upper bound scenes for the visibility complex (a) Scene with an O(n) Visibility Complex.

(b) Scene with a O(n4) Visibility Complex (an example of T +T +T +T critical segment is shown).

3.1 Lower and upper bound

THEOREM 1. The size of the 3D visibility complex is Ω(n) and O(n4) where n is the

number of objects of the scene.

The Ω(n) bound is trivial since there exists at least one tangency volume for each 3D

object. The O(n4) bound comes from the number of T + T + T + T events. However, we

have to prove that the size of the complex is dominated by their number 1. For this purpose,

we need to prove that the number of faces of dimension 4, 3 and 2 is bounded by a constant

factor of the number of faces of dimension 1. A sketch of the proof can be found in the

appendix.

The size of the complex is thus bounded by the number of 1-faces which are not adjacent

to a 0-face plus the number of 0-faces. For each event type, the number of possible systems

of algebraic equations depends on the number of objects implicated, the T + T + T + T

critical line sets are thus the most numerous with their number being bounded by O(n 4).
We show in figure 13(a) an example of a scene with a visibility complex of size O(n):

there is one T ++T face for each pair of neighbours spheres. Note there is no T + T + T -

face in this case because of the decreasing radius of the spheres. There is no 0-face because

there can be no T ++T +T nor T +T +T +T segment. The scene in figure 13(b) is similar

to the one given by Plantinga and Dyer [1990] and has a O(n 4) visibility complex. There

are two “grids”, each one composed of two very slightly perturbed (to avoid degeneracies)

orthogonal sets of n
4

parallel thin ellipsoids. Consider an ellipsoid in each of the four sets:

there is always a T + T + T + T critical segment.

3.2 Probabilistic complexity

Unfortunately, these theoretical bounds do not provide much information about practical

complexity in the case of “normal” scenes. The scenes shown in figure 13 are very different

from scenes typically used in computer graphics. Some probabilistic approaches using a

model of “reasonable” scenes in the spirit of de Berg et al. [1997] should be made.

1for example, the size of a tetrahedralisation is not necessarily dominated by the number of vertices, it can be

quadratic. See, e.g. the book by Boissonnat and Yvinec [1998], chapter 13
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As a first step, we study the number of triples of objects generating tritangents in “rea-

sonable” scenes. Potentially, any triple of object can interact and generate tritangents.

However, in order to obtain scenes exhibiting O(n 3) triple interactions, one has to consider

asymptotically infinitely thin objects, such as in Fig. 13(b). In contrast, implementations

by e.g. Drettakis and Fiume [1994] or Durand et al. [1997b] have shown that the practical

scenes they tried do not contain O(n3) triple-tangent interactions. This discrepancy can be

explained because, in typical computer graphics scenes, the size of the objects is bounded,

and the geometric complexity is increased by adding smaller details or by placing many

objects next to each other, not by adding many interleaved infinite lines. We propose here

a simplified probabilistic model for these “reasonable” scenes, and show that under our

assumptions the mean number of triples of objects generating tritangents is O
(

n
7
3

)

.

We consider a scene model where objects of bounded extent are uniformly distributed

inside a finite sphere. R is the radius of the scene, and r is the maximum radius of an object.

The density of objects is constant as their number varies: If n is the number of objects we

have R
r

= Θ( 3
√

n). We first study the probability that, given two objects, a third object

generates a tritangent with them. We will show that this can be expressed as a volume

ratio. We will then integrate over all objects to get a bound on the mean total number of

interacting triples. To simplify our calculation, we use bounding spheres enclosing the

objects.

Probability given two objects. Consider two objects A and B separated by a distance

x. We want to obtain a bound on the probability PAB,x that a third object C generates a

tritangent with A and B. This will happen only if the sphere bounding C intersects the

hourglass volume formed by two cones and a cylinder tangent to the two spheres enclosing

A and B (Fig. 14). The probability that a sphere of radius r intersects this volume is equal

to the probability that the center of the sphere intersects an hourglass volume dilated by r

(i.e. the Minkowski sum of the hourglass and the sphere). Since we assume that the object

centers are uniformly distributed, this probability is equal to the ratio between the volume

of the dilated hourglass and the volume of the sphere bounding the scene.

��

�

��
� �

�
�

Fig. 14. An object C can generate a tritangent with A and B only if it intersects the hourglass volume. D does

not generate tritangents with A and B.

We now compute the volume of the dilated hourglass. Recall that x is the distance

between the centers of the bounding spheres of A and B. We distinguish the case where
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(a) (b)

Fig. 15. (a) Dilated hourglass volume. (b) Construction of one cone of the dilated hourglass.

x ≤ 4r and the case where x > 4r. In the first case we trivially bound the volume by the

volume of the scene sphere, i.e., PAB,x≤4r ≤ 1. We will see that this case is asymptotically

negligible.

In the latter case, we bound the volume of the dilated hourglass by the sum of a cylinder

of length x and diameter 4r and two cones with apex at the centers of A and B and height

2R, as shown in Fig. 15. The volume of the cylinder is vol cylinder = 4πr2x.

Let us now bound the volume of one cone. We compute its radius r ′ at height x, using

similar right-angle triangles:

r′

2r
=

x

y

r′ = 2r
x√

x2 −4r2

To show that r′ is a decreasing function of x, we compute the derivative:

dr′

dx
=

−2r

(x2 −4r2)
√

x2−4r2

x2

And since x > 4r, this derivative is always negative and r ′ is a decreasing function of x.

We can thus bound it by its value for x = 4r, that is less than r ′ ≤ 4√
3
r. The volume of one

cone is then:

volcone = π
(

r′
2R

x

)2
2R

3
≤ π

(

4
√

(3)
r

2R

x

)2
2R

3
≤

128 πr2 R3

9x2

The total volume of the dilated hourglass is then bounded by:

volhourglass ≤ 2volcone + volcylinder

≤ 4πr2 + 2
128πr2R3

9x2
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We divide by the volume of the scene sphere to obtain a bound on the probability:

PAB,x ≤ volhourglass

volsphere

≤
3r2x

R3
+

64r2

3x2

Probability for all the objects. We now have a bound on the probability, given a pair

of objects at distance x that a third object C generates a tritangent with them. We have to

compute the total mean number of such triples, that is consider every possible C, and every

possible pair A,B at every possible distance x.

Until now, we have considered that the distance x between A and B is fixed. Consider

now a random pair A,B. We have to take into account the probability that they lie at

distance x. We use a result of integral geometry by Santaló ([1976], page 212, or see also

the book by Mathai [1999], page 296) on the probability distribution of distances of pairs

of points inside a sphere of radius R:

µ(x) =
x2

R3

(

3−
9x

4R
+

3x3

16R3

)

, 0 ≤ x ≤ 2R,

that is, the probability that two random points in a sphere of radius R lie at a distance

between x and x+ dx is µ(x)dx.

To obtain the total mean number of triples M we integrate over x and multiply by the

number of triples of objects,
n(n−1)(n−2)

6
. Recall that we have distinguished the case x ≤ 4r

where the probability is bounded by 1 and the case x > 4r where the probability is given

by a ratio of volumes.

M <
n(n−1)(n−2)

6

2RZ

x=0

PAB,x µ(x) dx

<
n(n−1)(n−2)

6





4rZ

x=0

1∗ µ(x)dx+

2RZ

x=4r

(

3r2x

R3
+

64r2

3x2

)

µ(x)dx





(1)

We now derive bounds on the two integrals in inequality (1). The first integral is:

4rZ

x=0

x2

R3

(

3−
9x

4R
+

3x3

16R3

)

dx =
(4r)3

R3
−

9(4r)4

16R4
+

3(4r)6

96R6

= 128
r6

R6
−144

r4

R4
+ 64

r3

R3

(2)

The second integral in inequality 1 is:

2RZ

x=4r

(

3r2x

R3
+

64r2

3x2

)

µ(x)dx =

2RZ

x=4r

3r2x

R3

x2

R3

(

3−
9x

4R
+

3x3

16R3

)

dx+

2RZ

x=4r

64r2

3x2

x2

R3

(

3−
9x

4R
+

3x3

16R3

)

dx

(3)

Since the integrand is positive, we can bound the first term by extending the lower limit to
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0:

2RZ

x=4r

3r2x3

R6

(

3−
9x

4R
+

3x3

16R3

)

dx ≤
2RZ

x=0

3r2x3

R6

(

3−
9x

4R
+

3x3

16R3

)

dx

≤
3r2

R6

(

3(2R)4

4
−

9(2R)5

20R
+

3(2R)7

112R3

)

≤
108r2

35R2

(4)

The second term in Eq. 3 gives:

2RZ

x=4r

64r2

3R3

(

3−
9x

4R
+

3x3

16R3

)

dx ≤
2RZ

x=0

64r2

3R3

(

3−
9x

4R
+

3x3

16R3

)

dx

≤
64r2

3R3

(

3(2R)−
9(2R)2

8R
+

3(2R)4

64R3

)

≤
48r2

R2

(5)

Combining the results of equations (1), (2), (4) and (5) we obtain:

M ≤
n(n−1)(n−2)

6

(

128
r6

R6
−144

r4

R4
+ 64

r3

R3
+

108r2

35R2
+

48r2

R2

)

M = O
(

n3 r2

R2

)

And since we assumed that
R

r
= Θ( 3

√
n), we obtain

M = O

(

n3
(

1
3
√

n

)2
)

= O
(

n
7
3

)

The mean number of triples of objects generating tritangents is O

(

n
7
3

)

(that is, O
(

n2.33
)

)

in our model instead of O(n3) when objects of unbounded extent are considered. In the

statistics which we have obtained for a set of test scenes [Durand et al. 1997b], the number

of T + T + T is closer to quadratic than to cubic, confirming our probabilistic bound.

Similar arguments can be used to compute the mean number of T + T + T + T 0-faces.

Since the presence of a second sphere inside the hourglass is independent of the presence

of the first sphere, we can show that the bound is then O

(

n
8
3

)

(i.e., O
(

n2.67
)

) instead of

O(n4).

4. EXTENSION TO TEMPORAL VISIBILITY

In this section we describe an informal extension of the Visibility Complex to dynamic

scenes. The formal analysis of temporal visibility requires the handling of higher-order

singularities, which are to our knowledge still poorly understood.

We however show that a framework similar to the static case provides an intuition about

the changes in visibility as objects move smoothly. We consider any smooth movement of

the objects (including deformations), and that all objects can be dynamic. The temporal
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dimension is considered continuous, even though a representation at certain time steps will

be necessary for clarity.

4.1 Temporal visual event

We adopt the same approach as for the static case: we try to determine when visibility

changes in a dynamic 3D scene. We are interested in the topological changes of the visi-

bility complex as the objects move. Consider the situation depicted in Fig. 16(a). Sphere

A moves upward. At time t1, there is no segment with extremities on A and C because of

the occlusion by B. At time t3, some segments see A and C because A has moved. The

limit configuration occurs at time t2 where a plane is tangent to the three spheres. Segment

A++B++C corresponds to this tritangent plane. It is a temporal visual event. It is similar

to the 0-faces of the static complex, with one additional incidence.

In Fig. 16(b) we represent the 0 and 1-dimensional faces of the static visibility complex

for some timestep. At time t1 the complex only has two 1-faces and no 0-face. At time

t3 six T + +T + T 0-faces have appeared, as well as some new T ++T and T + T + T

1-faces. A topological change in the structure of the 3D visibility complex has occurred.

4.2 The Temporal Visibility Complex

We add the temporal dimension to the space of maximal free segments. A temporal seg-

ment is defined as a maximal free segment in space together with a time value. Temporal

segment space for a dynamic scene is thus a 5-manifold almost everywhere, except at the

tangents.

We define the Temporal Visibility Complex as the partition of the temporal maximal free

segments according to the object that they touch.

The k-faces of the Temporal Visibility Complex correspond to the (k-1)-faces of the

static Visibility Complex. A time-slice of the temporal Visibility complex is an instance of

static Visibility Complex. The 0-faces of the Temporal Visibility Complex correspond to

the temporal visual events. These correspond to changes in the topological structure of the

visibility complex. Maintaining the Visibility Complex as objects move is equivalent to a

time-sweep of the Temporal Visibility Complex.

Fig. 16(c) shows the 0, 1 and 2-faces of the temporal complex for the scene in Fig.

16(a). At the temporal visual event, the slice of the temporal complex is modified, new

T + T ++T faces appear as well as some 1-faces of the static complex. Temporal visual

events are summarized in table 2 for scenes of smooth objects. They are very similar to

the 0-faces of the static visibility complex. As aforementioned, the study of their precise

catalogue and adjacencies may require the treatment of complex singularities.

5. OUTPUT-SENSITIVE SWEEP

We now present an output-sensitive construction algorithm for the static Visibility Complex

of convex algebraic surfaces. This algorithm has not be implemented, but gives a bound on

the complexity of the construction of the complex. The algorithm can easily be extended

to handle polyhedra as well [Durand et al. 1997a].

Because our surfaces have bounded degree, the computation of tangency and other dif-

ferential properties can be performed in constant time. Our algorithm is a double sweep

with a preprocessing phase. First the scene is swept by a horizontal plane and a 2D Visi-

bility Complex [Pocchiola and Vegter 1996b] of the ϕv-slice is maintained (figure 17(b)).

We then sweep ϕ (figure 17(c)), but some 0-faces cannot be detected during this sweep and
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A

B

C

A++B B++C A++B B++C

A++B++C

A++B++C

B++C

A+B++C

A++B
B++C

A++B+C'

A++B+C A+B++C

A+B++C'

A+B++C'

A++C+B

A++C+B

A++C

t2 t3t1

(a)

(b)

(c)

A++B

B++C

A+B++C'

A++C+B'

A++B+C'

Fig. 16. Temporal visual events and the Temporal Visibility Complex. (a) Situation in 3D space. As A moves

upward, it becomes visible from C at time t2 where a segment (A++B++C) lies in a plane tangent to the three

spheres. The envelope of B + +C is represented as a cone. Only two T + +T + T 0-faces are represented, but

there are actually 6. (b) 1 and 0-dimensional faces of the visibility complex for each timestep. (Note that this

is a projection, not a slice of line space. 1D sets are actually represented as 1D curves). At time t3 we have not

labeled all the 1-faces. Note that the graph of 1-faces is not planar (it is 4-dimensional), to draw it the figure must

contain the crossings of A++C. (c) Structure of a part of the Temporal Visibility Complex in temporal segment

space. Only 0, 1, and 2-dimensional faces are represented. The faces of the static complex represented in (b)

are slices of the temporal complex. The 1-faces of the temporal complex are represented as thin cylinders. Note

that they correspond to the 0-faces of the static complex and that they appear only at t2 . Note also that due to the

non-planarity of the slice, we cannot represent the 2-faces of the temporal complex without intersections in the

middle.

have to be preprocessed.

5.1 Sweeping the initial slice

To build the initial ϕ-slice, we first maintain a ϕv-slice of the 3D visibility complex which

corresponds to the 2D visibility complex of the sweeping plane.

The 2D visibility complex. We first briefly review the 2D visibility complex (e.g. Poc-

chiola and Vegter [1996b, 1996a], Rivière [1997a] or Durand and Puech [1995]) and its

relation with the 3D visibility complex. The 2D visibility complex is the partition of the

maximal free segments of the plane according to the objects they touch. Its 2D faces are
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Type Configuration

T+T+T+T+T

T++T+T+T

T++T++T

Table 2. Vertices of the temporal visibility complex. These configurations can occur because of the movement

of any (or all) of the involved objects.

ϕ

θ

u

v

θ
ϕ

(a) (b (c)

Fig. 17. (a) Parameterization of the directions. (b) Initial v sweep. (c) ϕ sweep.

connected components of segments touching the same objects (they are ϕv-slices of the

4-faces of the 3D visibility complex). They are bounded by edges which correspond to

segments tangent to one object (ϕv-slices of the 3-faces T ) and vertices which are free

bitangents of the 2D scene (ϕv-slices of 2-faces T + T ).

Since a view around a point corresponds to the extremities of the segments going through

this point, it corresponds to the traversal of the 2D visibility complex along the 1D path of

these segments. The object seen along a ray changes when the path traverses a new face,

which occurs at an edge of the 2D complex.

Sweep. The 2D visibility complex has to be updated when the sweeping plane is tangent

to an object and when three 2D slices of objects share a tangent.

When the sweeping plane starts intersecting an object, we have to “insert” this object in

our 2D complex. This is done by computing a 2D view around the point of tangency or

around the vertex using the current 2D visibility complex. This can be done in O(v logn)
where v is the size of the view using the techniques described by Rivière [1997b]. When

the path of this view crosses an edge of the 2D complex it corresponds to a new T + T or

V + T face of our 3D complex.

Symmetrically, when an object stops intersecting the sweeping plane, the corresponding

faces of the 2D visibility complex are collapsed. These faces are those along the chains of

edges in line space corresponding to segments tangent to this object. Their removal can be

done in O(v) where v is again the size of the view.
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As the plane moves, three slices of objects can share a tangent (corresponding to a

T + T + T face of the 3D complex), in which case the 2D visibility complex is updated

using the technique of Rivière [1997b]. Basically, for each bitangent we compute the value

of v where it will become tangent to a third object and store these sweep-events in a queue,

which requires time O(logn) whenever a bitangent is created.

Finally, a bitangent of the 2D complex can correspond to a common tangent plane. For

each bitangent, we compute the value of v for which it will lie on a bitangent plane and

insert this sweep-event in the queue. Of course, these sweep-events have to be discarded if

the bitangent is collapsed before.

5.2 Principle of the ϕ sweep

We now have computed a ϕ-slice of the 3D visibility complex. It is the partition of the

segments contained in the set of horizontal planes. In this ϕ-slice, 1-faces of the complex

have dimension 0, 2-faces have dimension 1, and so on.

During the ϕ-sweep (Fig. 17(c)) we maintain this ϕ-slice as well as a priority queue

of sweep-events. In what follows, we will only describe the update of the 1-faces of the

visibility complex, the update of the higher dimensions is done at each sweep-event using

a catalogue of adjacencies of the 1-faces which can be found in appendix A. As stated

before, the number of adjacent upper-dimensional faces is bounded; their update does not

affect the complexity.

This ϕ sweep can also be understood by projecting the 1-faces and the vertices of the

visibility complex onto the direction sphere S 2 represented in Fig. 17. The sweep then

corresponds to the rotation of a great circle. Note that some intersections on S 2 are not

relevant for the complex (this is the same difference as a t-vertex in a view and an actual

vertex of the scene).

We first prove that some sweep-events are regular. A sweep event is regular if it corre-

sponds to the collapsing of a 1D element of the sweep front as its two extremities merge

[Mulmuley 1991]. Intuitively, this means that the event can be easily predicted from the

current sweep front. In our case, such sweep-events can be detected by computing the

value of ϕ for which it will collapse for each 1D component of the ϕ-slice. We will next

study the case of irregular sweep-events, which are harder to treat.

5.3 Regular 0-faces

Consider a T1 + T2 + T3 + T4 segments with extremities O0 and O5 and elevation angle ϕ0

(Fig. 18). Consider the 1D critical line set T1 + T2 + T3. We locally parameterize it by ϕ
and call it l(ϕ). The ruled surface described by l(ϕ) cuts O4 at ϕ0. Two 1-faces of the

complex are associated with l(ϕ), one for ϕ < ϕ 0 and one for ϕ > ϕ0; one has O5 at its

extremity, the other O4. Similarly for T2 +T3 +T4. Moreover the two 1-faces before ϕ 0 are

adjacent to a 2-face T2 + T3. In the ϕ-slice, this 2-face is a 1D set bounded by the slices of

T1 +T2 +T3 and T2 +T3 +T4. This 1D set collapses at ϕ0, it is thus a regular sweep-event. It

can be detected by considering the adjacent T +T +T faces in the ϕ-slice and maintaining

a priority queue.

The T ++T + T faces can be handled in the same way because they are adjacent to a

pair of T ++T and a pair of T +T +T 1-faces, and the faces of a pair are associated with

the same line set.

The projection of regular events onto S 2 is similar to that illustrated in Fig. 19(a).
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O1

O2

O3

O4ϕ0

T1+T2+T3+T4

T1+T2+T3

T1+T2+T3

O5

O0

Fig. 18. T +T +T critical line sets adjacent to a T +T +T +T critical line.

T1+T2+T3

T1+T2+T3

T2+T3+T4

T1+T2+T4 T1+T3+T4

T2+T3+T4

V1+T3

V2+T1

V1+T4

V2+T2

T1+T2+T3

(a) (b) (c)

Fig. 19. Different sweep-events represented in line space. The T +T +T +T event (a) is regular, but the V +V

event (b) has to be preprocessed as well as the null derivative with respect to ϕ of the T +T +T events (c).

5.4 Irregular 0-faces and non monotonic 1-faces

Unfortunately, not all the 0-faces are regular sweep-events. A 1-face of the complex can

appear during the sweep without a 0-face event. This is obviously the case for T + +T

events since they can be adjacent to no 0-face, but this can also be the case for T + T + T

events. Consider the associated line set; It is not necessarily monotonic with respect to ϕ
(see Fig. 19(c)).

These events thus have to be preprocessed by considering all the VV pairs and all the

Object-Object-V triples. This determines a potential 0-face, which is a line with coordi-

nates (θ0,ϕ0,u0,v0). ϕ0 is used to insert it in a sweep event queue. Note that this is just

a potential 0-face which then has to be tested for occlusion when the corresponding ϕ 0 is

swept. If an object lies between the generators, the 0-face has to be discarded.

For an efficient search, we order the slices of T + T faces using the v coordinate. For a

given v there are at most four bitangent segments in a ϕ-slice. This is true because a ϕv-

slice corresponds to a 2D visibility complex, and because two convex objects in the plane

have four common tangent lines. Moreover, since a 2D object lies entirely on the positive

or negative half-plane defined by such a line, we can classify these lines according to the

side of each of the objects. This defines four categories of bitangents. For each category,

there is at most one bitangent for each value of v in a ϕ-slice.

We thus use a search tree on the T +T faces of the current ϕ-slice sorted by their gener-
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ators, their category among the 4 possible categories and their v values.

5.5 Complexity of the algorithm

THEOREM 2. The 3D visibility complex can be built in time O((k + n3) logn) where n

is the complexity of the scene, and k the number of 0-faces of the complex.

During the initial v sweep, each view computation requires time O(v logn) where v is

the size of the view. A view corresponds to the number of 3-faces of the 3d visibility

complex adjacent to the appearing/disappearing 2 faces. The total cost is thus bounded by

O(k logn). Each tritangent event requires time O(logn). Here again the cost is bounded by

O(k logn).
During the ϕ sweep, each regular event requires O(logn) to maintain the priority queue.

The preprocessing of the non-monotonic 1-faces requires the enumeration of all the

triplets of objects and the insertion of the computed faces in the priority queue, it is there-

fore O(n3 logn).

6. INTERPRETATION OF VISIBILITY PROPERTIES AND RELATED WORK

In this section, we interpret many classical visibility properties and problems in the frame-

work of the visibility complex. We also compare our approach to related work. Unfor-

tunately, interpreting a visibility query does not always translate trivially to an efficient

algorithm. Because the Visibility Complex provides a natural framework for visibility, its

computational expense can match the difficulty of the visibility problem itself.

6.1 View computation

View computation is a good example of such difficulties. In what follows, we show that

views can be easily interpreted in segment space, but no trivial extraction algorithm can be

proposed.

A view around a point is defined by the extremities of the set of segments going through

this point. The set of segments going through a point is a 2-dimensional subset of segment

space. In our parameterization, u and v can be expressed with sin(θ) and sin(ϕ). The

view can be expressed as the intersection of the visibility complex with the 2-manifold

of segments going through the viewpoint. Each face intersected corresponds to an object

seen. An intersection with a tangency volume corresponds to a silhouette in the image.

The ray-tracing algorithm is equivalent to sampling such a manifold.

In Fig. 20, the set of lines going through viewpoint V is represented by its ϕ-slices which

are curves. The intersections of these curves with the tangency volumes are the points of

the view on the silhouette of the objects, such as D1, D2, D3, D4 and D5. However,all

the intersections do not necessarily correspond to a silhouette since the objects are not

transparent, and points such as D ′ must not be taken into account. Consider the ϕ-slice

ϕ = 0 and the slice V0 of the lines going through V with ϕ = 0. Fig. 21 shows the ϕ-slices

of the faces of the visibility complex and their traversal. We traverse the visibility complex

up and down along V0. Initially, the segments see nothing, since we are in the face F

(which is the set of segments which have both extremities at infinity). At D 1, we leave face

F and have to chose between face A and E. Since V lies in the front of the sphere R, we

now traverse A from D1 to D2. D′ lies on no boundary of face A and is thus not considered.

We then traverse face D and finally face F again. Once the ϕ-slice has been traversed, the

intersections with the boundaries of the faces are maintained while ϕ is swept. Visibility

changes will appear when Vϕ meets a bitangency edge or a new tangency volume.
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Fig. 20. The View around a point is the intersection of the visibility complex and the surface described by the

set of segments going through this point.

The recent technique of multiple center of projection images by Rademacher and Bishop

[1998] in fact corresponds to the intersection of the complex with other 2-manifolds.

For a walkthrough, the events where the visibility changes correspond to intersections

of the surface described by V with the 1-faces of the visibility complex. This approach is

similar to the one described by Coorg and Teller [1996, 1997] where conservative visibility

events are lazily computed.

6.2 Umbra and penumbra

The 1-faces inside the tangency volume of a light source correspond to the discontinuity

surfaces of the discontinuity meshing methods, that is, the limits of umbra and penumbra.

The visibility complex encodes all the events to compute a discontinuity mesh where all

the objects are considered as sources.

In section 7.3 we discuss an efficient method based on the visibility complex concepts

which uses visibility to guide the meshing and the refinement of a hierarchical lighting

simulation, resulting in high quality images [Durand et al. 1999].

6.3 Form-factors

The form factor Fi j used in radiosity algorithms [Sillion and Puech 1994] is the proportion

of light that leaves patch i which arrives at patch j. It can be expressed as the measure of

lines which intersect i and j divided by the measure of lines which intersect i [Santaló 1976;
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Fig. 21. Traversal of the ϕ-slice ϕ = 0 of the complex to compute the view around point V .

Sbert 1993]). It correspond to the measure of the 4-face of the Visibility Complex grouping

segments that touch i and j, divided by the measure of the interior of the tangency volume

of i. An equivalent interpretation has been proposed and used for radiosity computation in

2D [Orti et al. 1996; Durand et al. 1996].

6.4 Computer vision and the aspect graph

The aspect graph is a powerful viewer-centered data-structure which encodes all possible

views of an object [Koenderink and vanDoorn 1976; Koenderink and vanDoorn 1979;

Koenderink 1987; Plantinga and Dyer 1990; Gigus and Malik 1990; Petitjean et al. 1992;

Eggert et al. 1992]. It is based on the notion of visual events, which partition the space of

all possible viewpoints into cells where views are qualitatively equivalent.

The 1-faces of the visibility complex correspond to the visual events of the aspect graph.

The complexity of the aspect graph is O(n6) though the visibility complex is “only” O(n4)
because the aspect graph is an arrangement of the O(n 3) 1-faces of the complex.

This explains its larger size with respect to the complex. Consider the polygonal case.

There can be O(n3) triples of objects generating tritangents. In the visibility complex,

this induces a size O(n4) because these events are “split” only by T + T + T + T and

T + +T + T vertices. In the case of the aspect graph for orthographic projection, the

construction of the 2D arrangement on the sphere S 2 of directions can lead to as many

as O(n6) intersections between pairs of events. In the perspective case where the viewing

space is IR3, the size is O(n9) .

The visibility complex in fact implicitly contains the information encoded in the aspect

graph. The aspect graph can be built by projecting the 1-faces of the Visibility Complex

into the relevant viewpoint space and then computing their arrangement.

Visual events are also involved in the computation of the visual hull [Laurentini 1994],

or in the planning of visibility based pursuit motions in robotics [Guibas et al. 1999].
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6.5 The asp

The asp data structure was developed as an intermediate data-structure to build the aspect

graph [Plantinga and Dyer 1990]. Similar to our approach, it partitions line or ray space.

Two different definitions are considered depending on whether orthographic or perspective

projection is considered. In the orthographic case oriented lines are considered and the

asp is a 4D cellular decomposition of line-space according to the first object intersected

(starting from infinity). Information about visibility from inside the convex-hull of the

object is not encoded.

If perspective projection is used, the asp is a 5D cellular decomposition of ray-space

according to the first object a ray intersects. The same information is encoded as in the

visibility complex, but the information is redundant because many collinear rays “see” the

same object.

The visibility complex can be seen as offering the advantages of the two versions of the

asp. It encodes the optimal amount of information, by considering maximal free segments.

6.6 Plenoptic function, lumigraph and light-field

The plenoptic function is a function in 5D ray-space which describes the light traveling at

a point in a given direction [Adelson and Bergen 1991]. If light traveling in free-space is

assumed invariant and if the observer is constrained outside the scene, it can be simplified

into a function in 4D line space called lumigraph [Gortler et al. 1996] or light field [Levoy

and Hanrahan 1996]. They are in a sense very similar to the asp concept, except that

color information is encoded and that a discrete sampling is used instead of an analytic

subdivision. However, the underlying multidimensional ray-spaces are the same.

Langer and Zucker [1997] use similar topological concepts as ours to describe the light

field of a scene in a shape-from-shading context. As for the visibility complex, they note

that the manifold of rays is 4 dimensional with some branchings. They do not however

propose the analysis of the changes in visibility, nor the adjacencies between classes of

rays.

6.7 Plücker space

Plücker parameterization represents lines in a five dimensional projective space where hy-

perplanes are used to characterize line-line incidence. It has been extensively used to

compute visibility in polygonal scenes.

Note that the fifth dimension in Plücker space does not correspond to the pseudo-dimension

which we have introduced in section 2.3 for visualization purposes. Indeed, not all points

in Plücker space correspond to real lines: only those lying on the so-called Pl ücker hy-

persurface. The fifth dimension alleviates the problem of singularities which are always

present in a parameterization of lines in IR4 (as is also the case for any 2D parameterization

of the S 2 sphere).

Arrangements in Plücker space [Pellegrini 1993; Teller 1992b; Teller 1992a] are very

similar to the dual arrangement that we have presented. An arrangement of hyperplanes

is computed in 5D and intersected with the Plücker hypersurface to obtain a 4D structure.

This latter structure is in fact exactly the dual arrangement expressed in a different param-

eterization. This illustrates our claim in the introduction: the concepts described in this

paper do not rely on a particular parameterization of lines.

However, approaches in Plücker space have considered only equivalents of the dual

arrangement. They consider only line visibility, occlusion has not really been taken into
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account.

6.8 The 2D visibility complex

Our definition of the 3D visibility complex as the partition of maximal free segment is

the same as the 2D version introduced by Pocchiola and Vegter [1996b, 1996a]. We now

compare the 2D and the 3D data-structures, which illustrates the large differences between

2D and 3D visibility.

First of all, the space of lines in 3D is 4-dimensional. The increase in the dimensionality

of the problems is 2 and not only 1. Similarly, the theoretical complexity is O(n 4) instead

of O(n2) in 2D. In 2D, only tangent and bitangent segments are considered, while in 3D

the vertices of the complex are segments tangent to four object or T++T+T segments.

The property which most clearly explains why 3D visibility is much harder than in 2D,

is separability. In 2D, a line separates the plane into two half-planes. No such property

holds in 3D because lines are no longer hyperplanes.

The consequence is that some convexity or monotonicity properties which hold in 2D

do not hold in 3D. This is especially the case of the faces for the visibility complex. In 2D,

depending on the parameterization of lines, the faces are at least monotonic with respect to

direction. This has a number of useful consequences, including the possibility to perform

efficient optimal sweeps or walks along the complex.

As aforementioned, the 3D visibility complex is not formally a cell-complex [Hatcher

2001], while the 2D visibility complex is a 2-dimensional cell-complex. This means that

the faces of the 3D visibility complex can have a non 0-genus (they can have holes, like a

torus).

In addition to their complex topology, we have seen that some 0-faces are irregular for

the sweep of the 3D complex. The faces cannot be made monotonic with respect to one

parameter. This makes our algorithm far from optimal. This also explains the difficulty in

designing an efficient view extraction algorithm.

7. CONCLUSIONS

7.1 Summary

We have presented a new approach for visibility computation and described a powerful

data-structure, the 3D visibility complex, which encapsulates all the visibility information

in a 3D scene.

Its size k is Ω(n) and O(n4) Using a probabilistic approach, we have shown that in

scenes with reasonable assumptions, the number of tri-tangency events is O(n 2.33) instead

of O(n3).
We have also sketched the definition of the Temporal Visibility Complex which encodes

all the visibility of a time-varying 3D scene.

We have presented an output-sensitive algorithm to build the structure in time O((n 3 +
k) logn).

Finally, we have interpreted many visibility queries and data structures and shown that

visibility properties can be naturally expressed in this new framework.

7.2 Discussion

The Visibility complex is a useful framework because it permits an efficient encoding of

visibility information. We believe it is a valuable tool for the interpretation of visibility
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problems. By providing different insights to these questions, we hope it will permit a

better understanding and the development of new methods, as we discuss below.

Its direct practical interest is however more questionable. The implementation of a 4D

cellular subdivision is an intricate task, and traversing the adjacencies of such a complex

is not straightforward.

Moreover, sweep constructions, though efficient, are prone to numerical precision and

robustness problems. If an event of the sweep is not correctly handled, lost coherence will

make the entire algorithm fail.

7.3 Applications of the study

This theoretical work has led to practical implementations, described in companion papers.

The Visibility Skeleton. To avoid the treatment of a four dimensional cell-complex, we

have simplified the visibility complex of polygonal objects into a graph in line-space, the

visibility skeleton [Durand et al. 1997b]. Only faces of dimension 0 and 1 are kept, defining

the nodes and arcs of the graph.

The construction algorithm we implemented for the visibility skeleton is different from

the sweep described in Section 5. It is topological and local: compute the nodes of the

graph (corresponding to the vertices of the complex), and deduce the arcs using a catalogue

of adjacencies similar to the one given in appendix. Thanks to this algorithm, we have been

able to show that it is possible to implement a global visibility structure which is generic.

Once the structure is built, very efficient queries are possible: e.g., milliseconds for the

retrieval of exact umbra and penumbra boundaries (see Fig. 22).

(a) (b)

Fig. 22. (a) The discontinuity mesh with respect to the right source. (b) Limits of the occlusions caused by a

part of the plane between the computer screen and the right wall.

Visibility driven hierarchical radiosity. The application of the visibility skeleton to light-

ing simulation [Durand et al. 1999] permits higher quality images together with improved

computation time compared to previous algorithms. Previous methods compute visibility
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by sampling, which is costly and inaccurate, while the visibility skeleton affords an ef-

ficient exact computation of the amount of light leaving one polygon arriving at a point

(area-to-point form factor).

It also allows us to subdivide the mesh used to represent the lighting function along

the limits of umbra and penumbra, with respect to any polygon, while previous methods

were limited to a small number of primary light sources. In particular, we handle the

discontinuities of the lighting function caused by the limits of visibility of indirect lighting.

(a) (b)

Fig. 23. Images computed using our new hierarchical radiosity algorithm based on the Visibility Skeleton and

hierarchical triangulations. (a) A scene with multiple sources. The skeleton construction took 2min 23s and the

lighting simulation 8min. (b) A scene mainly lit by indirect light. The skeleton construction took 4min 12s and

the lighting simulation 6min 58s. Note the shadows caused by indirect illumination, cast by the books on the

back wall.

7.4 Future work

The faces of the Visibility Complex directly translate the intricate nature of 3D visibility.

They have no convexity nor monotonicity property, as illustrated by the irregular events

of our sweep algorithm. Enforcing such properties could be achieved by appropriately

subdividing the faces of the complex. The cylindrical partitions of Mulmuley [1991] or

the cylindrical algebraic decomposition of Collins [1975] are two examples of such ap-

proaches. Unfortunately, this would increase the space complexity of the structure.

The recent breakthrough by Koltun on vertical decomposition of arrangements of alge-

braic surfaces in 4D [Koltun 2001] could be of great help in this context. He showed that

the complexity of such a vertical decomposition is O(n 4+ε) for any ε > 0. A vertical de-

composition then permits logarithmic point-location queries, which translates into efficient

ray-shooting queries. The application to other visibility problems should be studied.

In particular, the definition of an efficient view computation retrieval using the complex

should be explored. We have not obtained such results because of the aforementioned

problems of non-monotonicity. View maintenance raises the same issues.

The design of an efficient view-computation algorithm is highly related to the problem

of an efficient construction of the complex. For polygonal scenes, another approach would

sweep the scene by planes rotating around the edges of the polygons while maintaining a
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k k-face (k+1)-faces (k+2)-faces (k+3)-faces (k+4)-faces

3 T 3 4-faces

2 T1 +T2 2 T1 6 4-faces

2 T2

1 T1 +T2 +T3 2 T1 +T2 3 T1 10-faces

1 T1 +T3 4 T2

2 T2 +T3 3 T3

T1 ++T2 1 T1 +T2 2 T1 6 4-faces

2 T2

0 T1 +T2 +T3 +T4 2 T1 +T2 +T3 3 T1 +T2 4 T1 15 4-faces

1 T1 +T2 +T4 4 T2 +T3 6 T2

1 T1 +T3 +T4 3 T3 +T4 6 T3

2 T2 +T3 +T4 2 T1 +T3 4 T4

2 T2 +T3 +T4 2 T2 +T4

2 T2 +T3 +T4 1 T1 +T4

T1 ++T2 +T3 2 T1 ++T2 2 T1 +T2 3 T1 10 4-faces

1 T1 +T2 +T3 2 T2 +T3 4 T2

3 T3

Table 3. Adjacencies of the faces of the visibility complex of polygons and smooth objects.

2D visibility complex. The sweeps have to be synchronized, and only the portion of the

scene visible from each vertex has to be maintained in the corresponding 2D complex. The

definition of a topological order to sweep the 0-faces of the complex is yet another issue

required to reach an optimal output-sensitive algorithm.

In the case of algebraic scenes, the work of Petitjean [1995, 1996] on enumerative ge-

ometry could be used to obtain tight bounds on the size of the complex depending on the

degree of the objects.
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APPENDIX

A. COMPLEXITY PROOF AND CATALOGUE OF ADJACENCIES

The number of (k + 1)-faces adjacent to a k-face is bounded. For example a 1-face T 1 +
T2 +T3 is adjacent to five 2-faces: two faces T1 +T2, T1 +T3 and two T2 +T3. There are two

different T1 + T2 faces because one extremity of the segments can either lie on the object

tangent at T3 or not. See Fig. 24). The same applies to T2 + T3. The other adjacencies are

summarized in table 3.

Each 4-face is adjacent to at least one 3-face, a 3-face to at least one 2-face, and a 2-face

to at least one 1-face. However, a 1-face may not be adjacent to a 0-face. We sketch the

demonstration. For a given k-face F of the complex (composed of segments), we consider

the associated set of lines S with the same tangency properties. For example, a T1 + T2

face is associated with the set of all lines tangent to T1 and T2. This set of lines contains

a subset S′ that has one more incidence: it is tangent to an additional object or some of

the lines tangent to two objects belongs to their common tangent plane. Consider now
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T1
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T3

O3

S

S'

Fig. 24. Adjacencies at a T1 + T2 + T3 face. Two different T1 + T2 sets of bitangents are adjacent: one with

extremity O3 (such as S) and one lying above T3 (such as S′).

a continuous path from the line associated with a segment s of F to one of S ′, and the

corresponding continuous path over the segments 2. If all the segments of this path have

the same extremities, F is adjacent to the face with one additional incidence associated

with S′, otherwise when the extremity changes there is a tangency local event and thus a

lower-dimensional face.

We illustrate this by the example of a T 3-face and a maximal free segment s of this

face (Fig. 25). We consider the case where s does not have an extremity lying at infinity.

Consider a plane P containing s. We define l to be the first line in a polar order tangent to

both the object at T and the object O1 at one of the extremity of s (see Fig. 25). Consider

a continuous path l(t) in the line space from the line defined by s to l. A corresponding

continuous path can be defined over the segments by considering for each l(t) the segment

s(t) tangent to the object at T . If s(t) always has the two same objects at its extremities,

it belongs to the same T 3-face as s and this face is thus adjacent to a T + T 2-face at

segment s′(Fig. 25(a)), otherwise when the object at one extremity changes the segment is

tangent to two objects and there is also a T +T 2-face (Fig. 25(b)). The other cases can be

demonstrated in a similar manner.

Note that a 1-face is not necessarily adjacent to a 0-face (the scene in Figure. 13(a) does

not have a 0-face). This is why the 3D Visibility Complex is not a CW complex [Hatcher

2001].
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RIVIÈRE, S. 1997b. Dynamic visibility in polygonal scenes with the visibility complex. In Communica-

tion 13th Annual ACM Symposium on Computational Geometry (1997), pp. 421–423.
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