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Abstract. The 4.2 ka BP event is defined as a phase of en-
vironmental stress characterized by severe and prolonged
drought of global extent. The event is recorded from the
North Atlantic through Europe to Asia and has led scientists
to evoke a 300-year global mega-drought. For the Mediter-
ranean and the Near East, this abrupt climate episode rad-
ically altered precipitation, with an estimated 30 %–50 %
drop in rainfall in the eastern basin. While many studies
have highlighted similar trends in the northern Mediterranean
(from Spain to Turkey and the northern Levant), data from
northern Africa and the central-southern Levant are more nu-
anced, suggesting a weaker imprint of this climate shift on
the environment and/or different climate patterns. Here, we
critically review environmental reconstructions for the Lev-
ant and show that, while the 4.2 ka BP event also corresponds
to a drier period, a different climate pattern emerges in the
central-southern Levant, with two arid phases framing a wet-
ter period, suggesting a W-shaped event. This is particularly
well expressed by records from the Dead Sea area.

1 Introduction

While severe climate changes have been recorded during
the Holocene (e.g., Mayewski et al., 2004; Wanner et al.,
2008; Magny et al., 2013; Solomina et al., 2015; Guiot and
Kaniewski, 2015) with uncertain overall effects, one period
of increasing aridity, termed the 4.2 ka BP event (e.g., Weiss,

2016, 2017), has fueled debates on the causal link between
climate shifts and societal upheavals during the Bronze Age
(e.g., Finné et al., 2011; Butzer, 2012; Clarke et al., 2016).
The 4.2 ka BP event, which lasted ∼ 300 years (from 4200
to 3900 cal yr BP), is probably one of the Holocene’s best
studied climatic events (e.g., Weiss et al., 1993; Cullen et
al., 2000; deMenocal, 2001; Weiss and Bradley, 2001; Staub-
wasser and Weiss, 2006; Weiss, 2017; Manning, 2018; and
references therein), although its chronology may be much
wider than traditionally reported, extending from 4500 to
3500 BP (Gasse, 2000; Booth et al., 2005). This phase of
aridity, considered to be of global extent (Booth et al., 2005,
2006; Fisher et al., 2008; Baker et al., 2009; Wanner et al.,
2011, 2015), is now used as a formal boundary to separate
the Middle and Late Holocene (Late Holocene Meghalayan
Age; Walker et al., 2012; Zanchetta et al., 2016; and letter
from the International Union of Geological Sciences). Ac-
cording to Arz et al. (2006), most records show a gradual
climate shift rather than a specific abrupt event. Drought co-
occurs with widespread cooling in the North Atlantic from
4300 to 4000 BP, as attested in Iceland (lake Hvítárvatn and
lake Haukadalsvatn; Geirsdóttir et al., 2013; Blair et al.,
2015). The event is also characterized by two short spikes
of negative-type North Atlantic oscillations (NAOs) at 4300
and 3950 BP (Olsen et al., 2012). During this interval, the
Atlantic subpolar and subtropical surface waters cooled by 1
to 2 ◦C (Bond et al., 1997, 2001; Bianchi and McCave, 1999;
deMenocal, 2001).
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Focusing on the 4.2 ka BP event in the Mediterranean,
a detailed vegetation-based model shows that a signifi-
cant drop in precipitation began in the eastern basin at ∼

4300 BP. These drier conditions lasted until 4000 BP with
peaks in drought during the period 4300–4200 BP (Guiot and
Kaniewski, 2015). Based on these modeling data (and the
selected datasets), the western Mediterranean does not ap-
pear to have been significantly affected by the precipitation
anomaly. A climate model reported by Brayshaw et al. (2011)
also suggests that the eastern Mediterranean was drier, while
the whole Mediterranean exhibited an increase in precipita-
tion for the period 6000–4000 BP. A bipolar east–west “cli-
mate seesaw” was proposed to explain these contrasting spa-
tiotemporal trends during the last millennia, with the hydro-
climatic schemes across the basin being mediated by a com-
bination of different climate modes (Roberts et al., 2012).
It has been argued that the 4.2 ka BP event resulted from
changes in the direction and intensity of the cyclonic North
Atlantic westerlies, controlled by the NAO (e.g., Cullen et al.,
2002; Kushnir and Stein, 2010; Lionello et al., 2013). These
westerlies modulate moisture transport across the Mediter-
ranean and western Asia (see full map in Weiss, 2017) and,
in the Mediterranean, interact with the tropical (monsoonal)
climatic system (e.g., Rohling et al., 2002; Lamy et al., 2006;
Lionello et al., 2006; Magny et al., 2009). The “climate see-
saw” model further suggests that precipitation regimes could
not have solely been modulated by NAO forcing, but also by
other patterns (e.g., polar Eurasia and the eastern Atlantic–
western Russia) that acted in synergy (see full details in
Roberts et al., 2012). For instance, other climate regimes,
such as shifts in the Intertropical Convergence Zone (ITCZ),
may also have played roles in mediating climate in the south-
ern Mediterranean. In the Mediterranean basin, the 4.2 ka BP
event could thus be a combination of different forcing fac-
tors (depending on the location and on seasonality) acting
in tandem (e.g., Di Rita et al., 2018). Even if such hypothe-
ses (Brayshaw et al., 2011; Roberts et al., 2012; Guiot and
Kaniewski, 2015) are based merely on modeling data, they
are useful in trying to understand the geographic dimensions
of climate change during this period and to identify the mech-
anisms driving this important event.

Here, we examine several records from the Levant to criti-
cally review the climate context of the 4.2 ka BP event in the
eastern Mediterranean (Fig. 1). Our review is based on the
core area of the central-southern Levant comprising Israel,
the West Bank, and Jordan, as well as on the northern Lev-
ant with Syria and Lebanon. Other regions have also been
integrated into our analysis, including Egypt (Nile Delta)
and the Red Sea. All data (biotic and abiotic) were z score
transformed to facilitate inter-site comparisons (see citations
for the original curves). The curves were directly drawn
using the original values (when the data were available in
open access repositories) or extracted from the publications
when the raw data were not available (using the software
GraphClick). This comprehensive west–east/north–south re-

view of the Mediterranean data places emphasis on different
climate patterns and climatic modes.

2 Chronology

The comparison of multiple 4.2 ka BP records involves as-
sumptions regarding the relative weight of such variables
in shaping the final outcomes and also requires strong evi-
dence regarding the sensitivity of each proxy to fully record
the environmental parameters. Our review also underscores
the importance of robust chronologies in examining the spa-
tial dimensions of the 4.2 ka BP event and its driving mecha-
nisms. The age model of some of the climate proxies is built
on radiocarbon (14C) chronologies, with sometimes broad
chronological windows due to the 2σ calibrations. Telford
et al. (2004) have previously shown that any single value,
not its intercept or any other calculation, adequately de-
scribes the complex shape of a 14C probability density func-
tion and that the use of the full probability distribution is
recommended. Because it is impossible to critically reval-
uate each sequence mentioned in this review, one must refer
to the original papers for further information. To reduce the
uncertainties resulting from the calibration of 14C measure-
ments, high-resolution chronological datasets (e.g., Sharifi et
al., 2015; Cheng et al., 2015) here serve as anchor points for
other sequences.

3 A west–east gradient – northern Mediterranean

While Mediterranean climate models (Brayshaw et al., 2011;
Guiot and Kaniewski, 2015) suggest that the 4.2 ka BP event
is best expressed in the eastern Mediterranean and western
Asia, drought nonetheless seems to be recorded in both west-
ern and eastern areas. A short review of the paleoclimate data
from Spain to Turkey puts these drier conditions in a wider
perspective.

In Spain, drier environmental conditions were recorded at
several locations such as the Doñana National Park (Jiménez-
Moreno et al., 2015), Sierra de Gádor (Carrión et al., 2003),
Borreguiles de la Virgen (Jiménez-Moreno and Anderson,
2012), and Lake Montcortès (Scussolini et al., 2011). Fur-
ther east, in Italy, several sites such as Renella Cave (Fig. 2;
Drysdale et al., 2006; Zanchetta et al., 2016), Corchia Cave
(Fig. 2; Regattieri et al., 2014), and Lake Accesa (Magny
et al., 2009; revised chronology in Zanchetta et al., 2018)
clearly point to a drought event. In Croatia, a drier climate is
attested at Lake Vrana (Island of Cres; Schmidt et al., 2000),
Bokanjačko blato karst polje (Dalmatia; Ilijanić et al., 2018),
and at Mala Špilja Cave (island of Mljet; Lončar et al., 2017).
In the Balkan Peninsula, Lake Shkodra (Fig. 2; Albania,
Montenegro; Zanchetta et al., 2012), Lake Prespa (Republics
of Macedonia, Albania, and Greece; Wagner et al., 2010),
Lake Ohrid (Republics of Macedonia and Albania; Wagner
et al., 2010), and Lake Dojran (Fig. 2; Macedonia, Greece;
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Figure 1. Geographical location of some of the main Levantine sites discussed in this study. Nearby sites in Turkey and Egypt are also
displayed on the map (see the text for full references).

Francke et al., 2013; Thienemann et al., 2017; Rothacker et
al., 2018) were also hit by drought, but of varying intensities.
In Albania, a pollen-based model underscores a moderate de-
cline in precipitation at Lake Maliq (Korçë; Bordon et al.,
2009). In Greece, the Mavri Trypa Cave (Peloponnese; Finné
et al., 2017) and the Omalos Polje karstic depression (Crete;
Styllas et al., 2018) displayed a period of drier conditions
centered on the 4.2 ka BP event. In Turkey, the last “north-
ern geographic step” before the Levant, drought is suggested
at several locations. At Nar Gölü (Dean et al., 2015), Lake
Van (Lemcke and Sturm, 1996; Wick et al., 2003), Gölhisar
Gölü (Eastwood et al., 1999), and Eski Acıgöl (Roberts et al.,
2008), drier conditions seem to prevail.

These data from the northern Mediterranean point to a
drought episode broadly correlated with the chronological
window of the 4.2 ka BP event. This climate shift was re-
cently framed by the Agnano–Mt. Spina (∼ 4400 BP) and the
Avellino tephra layers (∼ 3900 BP) in cores from the central
Mediterranean (Zanchetta et al., 2018). As a consequence,
the chronology of previous paleoenvironmental studies, in-
cluding Lake Accesa, have been revised in line with this
tephrostratigraphy (Zanchetta et al., 2018).

Knowledge gaps remain regarding the teleconnections and
synergy between different climate patterns and their relative
weight, according to the geographical location of the sites
considered. The potential climate changes that may have im-
pacted the northern Mediterranean during the 4.2 ka BP event
have been extensively reviewed in the literature (e.g., Drys-
dale et al., 2006; Magny et al., 2009; Dean et al., 2015;
Zanchetta et al., 2016; Di Rita et al., 2018) and will be dis-
cussed elsewhere in this special issue.

4 A west–east gradient – southern Mediterranean

Even if the 4.2 ka BP event is clearly delineated in the north-
ern basin, the southern Mediterranean shows different trends
due to the influence of Saharan climate. While similar dry
conditions occurred concurrently in Morocco (Tigalmamine,
Middle Atlas; Lambs et al., 1995; Cheddadi et al., 1998)
and Algeria (Gueldaman GLD1 Cave; Ruan et al., 2016), the
same arid conditions led to enhanced sediment delivery me-
diated by flash-flood activity (mainly due to poor vegetation
cover) during the 4.2 ka BP event. Such extreme hydrological
events are documented in fluvial stratigraphy from northern
Africa (both in Morocco and Tunisia), especially during the
period 4100–3700 BP (Faust et al., 2004; Benito et al., 2015).
These hydrological events have also been identified in central
Tunisia, a desert margin zone characterized by a transition
from the subhumid Mediterranean to arid Saharan climate.
Increased flood activity in river systems also occurred locally
during the period 4100–3700 BP (Zielhofer and Faust, 2008).
In the central Medjerda basin (northern Tunisia), enhanced
fluvial dynamics started earlier, at ∼ 4700 BP, and lasted un-
til ∼ 3700 BP (Faust et al., 2004).

Further east in Libya, the most dramatic environmental
change in the area related to the onset of dry conditions took
place earlier, at ∼ 5000 years BP in Tadrart Acacus (Libyan
Sahara; Cremaschi and Di Lernia, 1999). In the Jefara Plain,
northwestern Libya, the “late Holocene arid climate period”
started after 4860–4620 BP (Giraudi et al., 2013). These two
distant Libyan areas are both dominated by Saharan cli-
mate, even though the Mediterranean is only 100 km from
the Jefara Plain. This is consistent with data from Giraudi
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Figure 2. Paleoclimate series (z score transformed), with the type
of climate proxy noted. The orange vertical band represents the
4.2 ka BP event. From top to bottom: Renella Cave (Italy; Drysdale
et al., 2006; Zanchetta et al., 2016), Corchia Cave (Italy; Regattieri
et al., 2014), Lake Shkodra (Albania and Montenegro; Zanchetta
et al., 2012), Lake Dojran (Macedonia and Greece; Francke et al.,
2013; Thienemann et al., 2017), and the eastern Mediterranean
(Kaniewski et al., 2013).

et al. (2013), indicating that the Saharan climate extends to
the coast of the Mediterranean Sea in Libya. Focusing on the
Saharan climate and the African monsoon, a general deterio-
ration of the terrestrial ecosystem is indicated at Lake Yoa,
northern Chad, during the period ∼ 4800–4300 BP. Since
4300 BP, widespread dust mobilization and the rapid transi-

tion (4200–3900 BP) from a freshwater habitat to a salt lake
are both recorded (Kröpelin et al., 2008).

In Egypt, the last “southern step” before the Levant, no
major changes have been recorded at Lake Qarun (the deep-
est part of the Faiyum Depression; Baioumy et al., 2010), in-
cluding the desiccation of Nile-fed Lake Faiyum occurring
at ∼ 4200 BP according to Hassan (1997). A recent study
showed that Lake Qarun was low during the 4.2 ka BP event
and that its level continued to fall until 3200 BP, in accor-
dance with the conclusions of Hassan (1997). The lake was
finally cut off from the Nile, with only rare inflows suggested
by clayey silt depositions (Marks et al., 2018). The level
of Lake Moeris (Faiyum Depression) dropped at ∼ 4400 BP
and rose again at ∼ 4000 BP (Hassan, 1986). During the
4.2 ka BP event, Nile base-flow conditions changed consid-
erably with reduced inputs from the White Nile, a dominant
contribution from the Blue Nile, and diminished precipitation
(Stanley et al., 2003; Véron et al., 2013). The source of the
Blue Nile, Lake Tana (Fig. 3), also manifests a drier phase,
leading to a reduction in Nile flow during the same period
(Marshall et al., 2011), in phase with other regional paleo-
climate archives (Chalié and Gasse, 2002; Thompson et al.,
2002). This drop in and/or failure of Nile floods was recorded
by a decreased Nile sediment supply (Fig. 3; Marriner et al.,
2012), while in the Burullus Lagoon (Nile Delta), reduced
flow directly impacted marshland vegetation (Bernhardt et
al., 2012). The Nile Delta region is not directly affected
by monsoonal rainfall (this was also the case during the
Holocene and at longer Pleistocene timescales; Rossignol-
Strick, 1983; Arz et al., 2003; Felis et al., 2004; Grant et
al., 2016). However, the Nile’s hydrological regime is es-
sentially mediated by river discharge upstream, i.e., by the
East African monsoon regime, and only secondarily by in
situ Mediterranean climatic conditions (Flaux et al., 2013;
Macklin et al., 2015). In the northern Red Sea, located be-
tween the Mediterranean and African–SW Asian monsoonal
rainfall regimes, the 4.2 ka BP event has been identified by
enhanced evaporation and increased salinity in the Shaban
Deep basin (Fig. 3; Arz et al., 2006).

All of this evidence from the southern Mediterranean and
northern Africa points to hydrological instability, both during
and around the 4.2 ka BP event, due to multiple climate influ-
ences, mainly from Saharan Africa. In many North African
cases, records show that climate changes at ∼ 4200 BP are
not characterized by abrupt events, but rather are part of ei-
ther a long-term trend or multicentennial-scale variations, as
suggested by Arz et al. (2006) for the Red Sea. Focusing on
Nile flow, variations seem mainly to result from a shift in
the dynamics of the ITCZ, which migrates latitudinally in
response to both orbitally controlled climatic patterns (see
Gasse, 2000; Ducassou et al., 2008; Kröpelin et al., 2008;
Verschuren et al., 2009; Revel et al., 2010; Flaux et al., 2013;
Marriner et al., 2013) and from changes in the El Niño–
Southern Oscillation (ENSO; see Moy et al., 2002; Leduc et
al., 2009; Wolff et al., 2011), an important driver of decadal
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Figure 3. Paleoclimate series (z score transformed), with the type
of climate proxy noted. The orange vertical band represents the
4.2 ka BP event. From top to bottom: Sofular Cave (Turkey; Gök-
türk et al., 2011), Neor Lake (Iran; Sharifi et al., 2015), Tell Tweini
(Syria; Kaniewski et al., 2008), the Nile (Egypt; Marriner et al.,
2012), Lake Tana (Marshall et al., 2011), and the Shaban Deep (Red
Sea; Arz et al., 2006).

variations in precipitation over large parts of Africa (Indeje
et al., 2000; Nicholson and Selato, 2000). The period encom-
passing the 4.2 ka BP event is consistent with a decrease in
ENSO-like frequency and a southern shift in the mean sum-
mer position of the ITCZ (Mayewski et al., 2004; Marshall
et al., 2011) that may have reduced the interactions between

ENSO-like frequency and the Ethiopian monsoon (Moy et
al., 2002; Marriner et al., 2012).

5 The 4.2 ka BP event in the northern Levant

Environmental data from the northern Levant derive from
several locations in Syria and Lebanon, spatially distributed
from the coastal strip to the dry inland areas.

5.1 Syria

The northern coastal lowlands of Syria, where Tell Tweini
(Fig. 3) and Tell Sukas are located, are separated from the
Ghab Depression to the east by the Jabal an Nuşayriyah, a
140 km long north–south mountain range 40 to 50 km wide
with peaks culminating at ∼ 1200 m above sea level. At Tell
Tweini (Jableh), the pollen-based environmental reconstruc-
tion (TW-1 core) shows that drier conditions prevailed dur-
ing the 4.2 ka BP event with weaker annual inputs of fresh-
water and ecological shifts induced by lower winter precip-
itation. The drier conditions ended at ∼ 3950 BP (Fig. 3;
Kaniewski et al., 2008). At Tell Sukas, ∼ 10 km south of
Tell Tweini, an increase in dryness during the 4.2 ka BP event
only coincides with a decline in olive exploitation, implying
milder conditions (Sorrel et al., 2016). Olive abundances re-
main fairly high at Tell Tweini during the event, although
the Olea pollen type originated from the wild variety (oleast-
ers; Kaniewski et al., 2009), a tree species extremely resis-
tant to drought that can survive in arid habitats (Lo Gullo
and Salleo, 1988) and that cannot unequivocally be used as a
proxy for “olive exploitation” (Kaniewski et al., 2009). In
the Ghab Valley (e.g., van Zeist and Woldring, 1980; Ya-
suda et al., 2000), no reliable conclusions on climate shifts
can be reported due to a floating chronology (e.g., Meadows,
2005). In continental Syria at Qameshli (near the Turkish–
Iraqi border), modeled precipitation estimates (not based on
paleoclimate proxy data) evoke a potential regional crisis in
the rainfall regime beginning at around 4200 BP (Bryson and
Bryson, 1997; Fiorentino et al., 2008), echoing Lake Neor
(flank of the Talesh–Alborz Mountains, Iran), where a major
dust event resulting from drier conditions is clearly depicted
(Fig. 3; Sharifi et al., 2015). The Qameshli climate model
was used to calculate a potential decline in precipitation at
Tell Breda (near Ebla) and Ras El-Ain. The two sites show
similar trends to Qameshli, with a major dry event at 4200 BP
(Fiorentino et al., 2008). These “time series” (Bryson and
Bryson, 1997; Fiorentino et al., 2008) are somewhat ques-
tionable as they derive solely from the macrophysical climate
model developed by Bryson (1992; corrected by Fiorentino
et al., 2008). More datasets are therefore needed to test the
veracity of the Forientino et al. conclusions. Taking into ac-
count the outcomes of these published models, the data from
Syria suggest that while the coastal area (Tell Sukas and Tell
Tweini) was less affected by aridity, drought was potentially
widespread inland during the 4.2 ka BP event from the south
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of Aleppo to the Turkish–Iraqi border. Unfortunately, no pa-
leoenvironmental data are available for Tell Leilan despite its
importance in narratives on the 4.2 ka BP event (e.g., Weiss
et al., 1993; Weiss, 2016, 2017).

5.2 Lebanon

In Lebanon, the main paleoclimatic data in support of the
4.2 ka BP event derive from Jeita Cave (Fig. 4) and Al Jourd
marsh (Fig. 4). Jeita Cave is located on the western flank
of central Mount Lebanon. While the JeG-stm-1 stalagmite
record (δ18O and δ13C) does not show compelling evidence
for a rapid climate shift around 4200 BP (Verheyden et al.,
2008), new records (termed J1-J3; also based on δ18O and
δ13C) reveal that the 4.2 ka BP event is well defined, with a
pronounced phase of climate change from 4300 to 3950 BP
(Fig. 4; Cheng et al., 2015). According to Verheyden et
al. (2008), due to the low time resolution of this part of
the JeG-stm-1 stalagmite (one sample every 180 years), the
short-lived 4.2 ka BP event may have been missed. Further
north at Sofular Cave (Turkey; Fig. 3), while the stalagmite
So-1 is not affected by this low temporal resolution, no con-
sistent and convincing signature for the 4.2 ka BP event was
recorded (Göktürk et al., 2011), echoing the JeG-stm-1 sta-
lagmite record. The absence of a 4.2 ka BP signal at Sofu-
lar Cave may result from the orography of the Black Sea
and high precipitation that does not reflect the surrounding
Mediterranean westerlies. The climate reconstruction from
Al Jourd marsh, based on environmental data from the Al
Jourd reserve (∼ 70 km northeast of Jeita Cave), shows the
same trends as the J1-J3 cores (Cheddadi and Khater, 2016).
The reconstructed precipitation results display a drier phase
starting at ∼ 4220 BP and lasting until ∼ 3900 BP. At Am-
miq (the Bekaa Valley), a strong decline in precipitation is
recorded from ∼ 4700 to ∼ 3850 BP, while at Chamsine–
Anjar (Bekaa Valley), the dry phase is centered on 4400 BP
before a gradual return to wet conditions that peak at ∼

3930 BP (Cheddadi and Khater, 2016). The chronological
discrepancies arising from Ammiq and Chamsine may poten-
tially be the result of recalculated age models somewhat dif-
ferent from the original studies (Hajar et al., 2008, 2010). The
age–depth models for the two records (Cheddadi and Khater,
2016) were modified and adjusted according to the marine
chronostratigraphy proposed by Rossignol-Strick (1995).

Data from Lebanon suggest that a drier period centered on
the 4.2 ka BP event was recorded (Cheng et al., 2015; Ched-
dadi and Khater, 2016). Sites in the Bekaa Valley (Ammiq,
Chamsine) indicate that the drier phase started earlier, be-
tween 4700 and 4400 BP, but these sequences are built upon
revised age models. The original interpretations suggest ei-
ther an imprint of the 4.2 ka BP event at ∼ 4000 BP (Hajar et
al., 2008) or strong human impacts on the environment (Ha-
jar et al., 2010).
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Figure 4. Paleoclimate series (z score transformed), with the type
of climate proxy noted. The orange vertical band represents the
4.2 ka BP event. From top to bottom: Al Jourd (Lebanon; Cheddadi
and Khater, 2016), Jeita Cave (Lebanon; Cheng et al., 2015), Tel
Dan (Israel; Kaniewski et al., 2017), Tel Akko (Israel; Kaniewski
et al., 2013), Soreq Cave (Israel; Bar-Matthews et al., 2003; Bar-
Matthews and Ayalon, 2011), and the Dead Sea (Israel; Bookman
(Ken-Tor) et al., 2004; Migowski et al., 2006; Kagan et al., 2015).
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6 The 4.2 ka BP event in the central-southern Levant

In this section, the 4.2 ka BP event is presented from northern
to southern Israel.

Located in the foothills of Mount Hermon in the Galilee
Panhandle at the sources of the Jordan River, the site of
Tel Dan (Israel) shows clear signatures of an arid event. A
pollen-based environmental reconstruction depicts drier con-
ditions characterized by a sharp drop in surface water be-
tween ∼ 4100 and ∼ 3900 BP, with two main inflections at
∼ 4050 and ∼ 3950 BP (Fig. 4; Kaniewski et al., 2017). Ap-
proximately 10 km from Tel Dan, cores from the Birkat Ram
crater lake (northern Golan Heights; Schwab et al., 2004),
also located in the foothills of Mount Hermon, were used to
reconstruct climate trends during the last 6000 years (Neu-
man et al., 2007a). The authors demonstrate that annual pre-
cipitation is comparatively uniform with no distinctive fluc-
tuations during the study period (Neuman et al., 2007a). The
pollen diagram from the Hula Nature Reserve (northwestern
part of former Lake Hula, Israel) shows an expansion in Olea

before ∼ 4110 BP (Baruch and Bottema, 1999; Van Zeist et
al., 2009) but, because no distinction can be made between
the wild or cultivated variety, this would suggest either (i) the
expansion of olive orchards or (ii) drier conditions that fa-
vored drought-resistant trees, especially during a period char-
acterized by decreasing cereals (see diagram in Van Zeist
et al., 2009). A pollen-based environmental reconstruction
from the Sea of Galilee (Lake Kinneret, Israel; e.g., Baruch,
1986; Miebach et al., 2017) shows two decreases in the oak–
pollen curve, interpreted as drier climate conditions at 4300
and 3950 BP (Langgut et al., 2013), which may fit within the
broader framework of the 4.2 ka BP event. In the same core, a
decrease in tree-pollen scores was recorded around 4000 BP.
According to the authors, it is unclear whether this environ-
mental signal is related to the 4.2 ka BP event (Schiebel and
Litt, 2018).

Along the coast at Tel Akko (Acre, Israel), a pollen-based
climate reconstruction shows negative precipitation anoma-
lies centered on the period ∼ 4200–4000 BP, correspond-
ing to an approximate 12 % decrease in annual precipita-
tion (Fig. 4; Kaniewski et al., 2013, 2014). At Soreq Cave
(Judaean Mountains, Israel), rainfall was ∼ 30 % lower for
the period 4200–4050 BP (Fig. 4; Bar-Matthews et al., 1997,
1999, 2003; Bar-Matthews and Ayalon, 2011). While it has
been noted that oxygen isotope ratios in speleothems can-
not be used as a simple rainfall indicator (Frumkin et al.,
1999; Kolodny et al., 2005; Litt et al., 2012), a similar value
was suggested for the eastern Mediterranean with a decrease
in annual precipitation of ∼ 30 % (Fig. 2; Kaniewski et al.,
2013).

Focusing on the Dead Sea (Israel, Jordan, and the West
Bank), a lake-level reconstruction points to two sea-level
drops at ∼ 4400 and ∼ 4100 BP, separated by a short rise at ∼
4200–4150 BP (Fig. 4; e.g., Bookman (Ken-Tor) et al., 2004;
Migowski et al., 2006; Kagan et al., 2015). A similar short
wet phase is recorded at Tel Akko at ∼ 4100 BP (Kaniewski
et al., 2013) and ∼ 4000 BP at Tel Dan (Kaniewski et al.,
2017), suggesting that minor chronological discrepancies can
result from radiocarbon dating. The pollen-based environ-
mental reconstruction from Ze’elim Gully (Dead Sea) echoes
the Dead Sea level scores and suggests that drier climate con-
ditions prevailed at ∼ 4300 BP and ∼ 3950 BP, engendering
an expansion of olive horticulture during the period ∼ 4150–
3950 BP, which implies milder conditions (Neuman et al.,
2007a; Langgut et al., 2014, 2016). Pollen data from a core
drilled on the Ein Gedi shore (Dead Sea) were also used to
reconstruct temporal variations in rainfall (Litt et al., 2012).
While the 4.2 ka BP event corresponds to a relatively wet and
cool period, two slightly drier phases were also recorded at
∼ 4400–4300 BP and ∼ 3900 BP (Litt et al., 2012). Even if
some issues persist, the chronology of the Dead Sea (Ze’elim
and Ein Feshkha sections) was strongly improved by Kagan
et al. (2010, 2011), who produced Bayesian age–depth de-
position models using the OxCal P -sequence model. The
refined chronology of the Ze’elim Gully sequence and the
Dead Sea are described in detail in Kagan et al. (2015).

The core DS 7-1 SC (Dead Sea; Heim et al., 1997), the
core from Ein Feshkha (Dead Sea; Neuman et al., 2007b),
and the marine cores off the Israeli coast (Schilman et al.,
2001) were not included in our analysis because they do not
cover the period under consideration.

Data from the southern Levant are complex compared to
those from the northern Mediterranean. While the sites sug-
gest that drier conditions were recorded during the 4.2 ka BP
event from the Mediterranean coast to the Dead Sea, they
nonetheless show that drought must be integrated into a
broader chronological framework disrupted by a short wet-
ter period. This W-shaped event is attested at several sites,
suggesting that the W shape is not “noise” but a regional phe-
nomenon spanning the central-southern Levant. A W-shaped
event is clearly highlighted in the Dead Sea records (Litt et
al., 2012; Langgut et al., 2014, 2016; Kagan et al., 2015;
see Fig. 4) as well as at Soreq Cave (δ18O, Fig. 4; Bar-
Matthews et al., 2003; Bar-Matthews and Ayalon, 2011) and
is more or less attested in the Sea of Galilee (Langgut et al.,
2013; Schiebel and Litt, 2018), at Tel Dan, and Tel Akko
(Kaniewski et al., 2013, 2017). This W-shaped event may be
a local expression of the North Atlantic Bond event 3 (Bond
et al., 1997) because it has already been demonstrated that
drier–wetter phases in the eastern Mediterranean were asso-
ciated with cooling–warming periods in the North Atlantic
during the past 55 kyr (Bartov et al., 2003).
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7 Climatic hypotheses to explain the 4.2 ka BP event

in the Levant

7.1 North Atlantic

Kushnir and Stein (2010) have clearly noted that variabil-
ity in southern Levant precipitation is closely linked with a
seesaw pressure gradient between the eastern North Atlantic
and Eurasia. Furthermore, they also evoke the apparent link
between Atlantic multidecadal variability (Atlantic multi-
decadal sea surface temperature (SST) variability) and atmo-
spheric circulation (see Kushnir, 1994; Ziv et al. 2006; Kush-
nir and Stein, 2010). Slowly paced Holocene variability is
generally modulated by a colder than normal North Atlantic,
resulting in higher than normal precipitation in the central
Levant, while a warmer than normal North Atlantic leads to
lower precipitation. This suggests that (i) the North Atlantic
is a key pacemaker in driving the long-term hydroclimatic
variability of the Levant during the Holocene, and (ii) there
is a nonlinear response to global climatic events, such as the
4.2 ka BP event, consistent with pronounced cooling in east-
ern Mediterranean winter SSTs and cold events in northern
latitudes (Kushnir and Stein, 2010). It appears that sudden
Northern Hemisphere cold episodes contrast with milder and
more slowly paced Holocene variability.

7.2 A climate “seesaw” model

A bipolar southeast–southwest “climate seesaw” in the
Mediterranean is one of the climatic modes that explains the
spatiotemporal variability of precipitation over the basin dur-
ing the winter (Kutiel et al., 1996; Xoplaki et al., 2004), in
connection with a positive or negative NAO. The dipole pre-
cipitation pattern results from both local cyclogenesis and
southward shifts of storm tracks from western Europe to-
wards the Mediterranean (and vice versa). Drier conditions in
the eastern Mediterranean mainly derive from high-pressure
systems over Greenland and Iceland and relatively low pres-
sure over southwestern Europe (Roberts et al., 2012), point-
ing to a weakening of the zonal atmospheric circulation over
Europe (Guiot and Kaniewski, 2015). According to Xoplaki
et al. (2004), the outcomes of such a pattern over most of the
Mediterranean region result in above normal precipitation,
with peak values on the western seaboard and lower values
in the southeastern part of the basin. This scheme fits with
the Brayshaw et al. (2011) model that displays wetter condi-
tions over large parts of the Mediterranean basin, while the
eastern Mediterranean was drier. These conclusions are sup-
ported by Guiot and Kaniewski (2015). According to Roberts
et al. (2012), this mode also prevailed during the Little Ice
Age, with drier conditions over the eastern Mediterranean
and wetter patterns over the western Mediterranean (with an
opposite scheme during the Medieval Climate Anomaly).

7.3 Cyprus lows

While a dominant NAO forcing may explain western
Mediterranean aridity, the eastern Mediterranean appears to
be mostly mediated by other climatic modes. In particular,
precipitation variability has not been uniform due to shifts in
cyclone migration tracks (northern–southern). Rainfall in the
Levant mostly originates from midlatitude cyclones (Cyprus
lows) during their eastward passage over the eastern Mediter-
ranean (Enzel et al., 2003; Zangvil et al., 2003; Saaroni et al.,
2010). During wet years, more intense cyclones frequently
migrate over the eastern Mediterranean (and vice versa), re-
flecting variations in the long-term mean low pressure, with
positive pressure anomalies consistent with reduced cyclonic
activity near the surface. Under this scenario, the most prob-
able cause for drought events in the Levant is the fact that the
500 hPa (upper-level anomalies) and sea-level pressure pat-
terns were not conducive to cyclone migration over the east-
ern Mediterranean. Instead, their tracks were probably fur-
ther to the north, potentially impacting western Turkey and
Greece (Enzel et al., 2003).

8 Conclusions

At the scale of the Levant, a climate shift is clearly docu-
mented by sediment records during the chronological frame
of the 4.2 ka BP event. Nonetheless, some locations show that
other regional and/or local forcing agents may be involved,
yielding different outcomes that must be more closely ad-
dressed in the future. Concerning the climate mechanism
driving the 4.2 ka BP event, we can assume that, despite
the clear geographical dimensions of the 4.2 ka BP event
(Zanchetta et al., 2016; Di Rita et al., 2018), the patterns
responsible for the event are not yet fully understood. This
also raises a key question: how did societies adapt to this
∼ 300-year (or longer) drought? This knowledge gap is still
widely debated and must be addressed using high-resolution
local records in proximity to archeological sites to fully un-
derstand the resilience and adaptive strategies of the Levant’s
diverse peoples and polities.
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