The 4-Choosability of Plane Graphs without 4-Cycles*

Peter Che Bor Lam
Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong
E-mail: cblam@math.hkbu.edu.hk

and

Baogang Xu and Jiazhuang Liu

Institute of Mathematics, Shandong University, Jinan, 250100, People's Republic of China
Received October 2, 1997

Abstract

A graph G is called k-choosable if k is a number such that if we give lists of k colors to each vertex of G there is a vertex coloring of G where each vertex receives a color from its own list no matter what the lists are. In this paper, it is shown that each plane graph without 4-cycles is 4-choosable. © 1999 Academic Press Key Words: list coloring; choosability; plane graph; 4-cycle.

1. INTRODUCTION

In this paper, we consider only finite and simple graphs. Let G be a plane graph. $V(G), E(G)$, and $F(G)$ shall denote the set of vertices, edges, and faces of G, respectively. Vertices u and v are adjacent, denoted by $u v \in E(G)$, if there is an edge in G joining them. $N_{G}(v)$, or $N(v)$ if there is no possibility of confusion, denotes the set of vertices adjacent to v in G, and ∂f denotes the set of vertices incident with the face f. The degree of u in G, written as $d_{G}(u)$, is the number of vertices in $N_{G}(v)$. A vertex u is called a k-vertex if $d_{G}(u)=k$. The minimum degree of $G, \min \left\{d_{G}(v) \mid v \in V(G)\right\}$, is denoted by $\delta(G)$. A face of a plane graph is said to be incident with all edges and vertices on its boundary. Two faces are adjacent if they have an edge in common. The degree of a face f of plane graph G, denoted by $d_{G}(f)$, is the number of edges incident with it, where each cut-edge is counted twice. A k-face is a face of degree k. A triangle is synonymous with a 3 -face.

[^0]A list coloring of G is an assignment of colors to $V(G)$ such that each vertex v receives a color from a prescribed list $L(v)$ of colors and adjacent vertices receive distinct colors-see [8]. $L(G)=(L(v) \mid v \in V(G))$ is called a color-list of $G . G$ is called k-choosable if G admits a list-coloring for all color-lists L with k colors in each list. The choice number of G, denoted by $\chi_{l}(G)$, is the minimum k such that G is k-choosable.

All 2-choosable graphs have been characterized by Erdős et al. [4]. N . Alon and M. Tarsi [1] proved that every plane bipartite graph is 3choosable. Thomassen [6,7] proved that every plane graph is 5-choosable and every plane graph of girth at least 5 is 3 -choosable, where the girth of a graph G is the length of the shortest cycle in G. Also, every plane graph G without 3 -cycles is 4 -choosable because $\delta(G) \leqslant 3$. Examples of plane graphs which are not 4 -choosable and plane graphs of girth 4 which are not 3 -choosable were given by Voigt [9,10]. Voigt and Wirth [11] also gave an example of a 3-colorable planar graph which is not 4-choosable.

In 1976, Steinberg (see [5, p. 229] or [2]) conjectured that every plane graph without 4 - and 5 -cycles is 3 -colorable. In 1990, Erdős (also see [5, p. 229]) suggested the following relaxation of Steinberg's conjecture: Is there an integer $k \geqslant 5$ such that every plane graph without i-cycles, $4 \leqslant i \leqslant k$, is 3-colorable? In 1996, O. V. Borodin [2] proved that $k=9$ is suitable. It would be significant to find an integer $k \geqslant 4$ such that every plane graph without i-cycles, $4 \leqslant i \leqslant k$, is 4 -choosable. In this paper, we shall show that $k=4$ is sufficient by proving the following theorem.

Theorem 1. Let G be a C_{4}-free plane graph. Then G is 4-choosable.
In Section 2, we shall show that any C_{4}-free plane graph contains a subgraph with a special configuration, and this fact will be used to prove Theorem 2 in Section 3.

2. SPECIAL CONFIGURATION F_{5}^{3}

We use F_{5}^{3} to denote a special C_{4}-free plane graph consisting of a 5 -face with an exterior adjacent triangle. A subgraph H of G is called an F_{5}^{3}-subgraph if H is isomorphic to F_{5}^{3} and $d_{G}(v)=4$ for all $v \in V(H)$. We shall first prove that any C_{4}-free plane graph G with $\delta(G)=4$ contains an F_{5}^{3}-subgraph.

Let G be a C_{4}-free plane graph with $\delta(G) \geqslant 4$. The set of all 5 -faces adjacent to exactly four triangles and the set of all 5 -faces adjacent to five triangles are denoted by F_{4} and F_{5} respectively. The subset of F_{4} (respectively of F_{5}) consisting only of faces incident with five 4 -vertices is denoted by \bar{F}_{4} (respectively \bar{F}_{5}).

Let $f \in \bar{F}_{5} \cup \bar{F}_{4}$, and let T be a triangle adjacent to f. The vertex $u \in \partial(T) \backslash \partial(f)$ is called an M^{*}-vertex of f. Moreover, if $d_{G}(u)=5$, then u is called an M-vertex of f. Since a 5 -vertex u can be incident with at most two triangles, u can be an M-vertex of at most two faces in $\bar{F}_{5} \cup \bar{F}_{4}$. If u is an M-vertex of a face in $\bar{F}_{5} \cup \bar{F}_{4}$, we denote by $m^{*}(u)$ the number of faces in $\bar{F}_{5} \cup \bar{F}_{4}$ for which u is an M-vertex. It follows that $m^{*}(u)=1$ or 2 . A face f^{\prime} is called an M^{*}-face of f at the vertex u_{0} if $\partial(f) \cap \partial\left(f^{\prime}\right)=\left\{u_{0}\right\}$ and there exist two triangles which are adjacent to both f and f^{\prime}. If in addition, $d_{G}\left(f^{\prime}\right)=5$, then f^{\prime} is called an M-face of f. If f^{\prime} is an M-face of f at u_{0}, then $d_{G}\left(u_{0}\right)=4$. If G contains no F_{5}^{3}-subgraph and $N\left(u_{0}\right) \cap \partial f^{\prime}=\left\{u_{1}, u_{2}\right\}$, then $d_{G}\left(u_{i}\right) \geqslant 5$ for $i=1$ and 2 . Therefore a 5 -face f^{\prime} may be the M-face of at most two faces $f_{1}, f_{2} \in \bar{F}_{5} \cup \bar{F}_{4}$. If f^{\prime} is an M-face of a face in $\bar{F}_{5} \cup \bar{F}_{4}$, then we denote by $m^{*}\left(f^{\prime}\right)$ the number of faces in $\bar{F}_{5} \cup \bar{F}_{4}$ for which f^{\prime} is an M-face. It also follows that $m^{*}(f)=1$ or 2 . Moreover, if $m^{*}\left(f^{\prime}\right)=2$, then f^{\prime} is incident with three vertices of degree five or higher.

In [2], Borodin proved that $\delta(G) \leqslant 4$ for each plane graph without adjacent triangles. The following lemma is proved using the method of Borodin. Note that if a graph is C_{4}-free, then it has no 4 -face and no adjacent triangles.

Lemma 1. Let G be a plane graph without 4 -faces and without adjacent triangles. If $\delta(G)=4$, then G contains an F_{5}^{3}-subgraph.

Proof. Suppose there exists a plane graph satisfying all assumptions of the Lemma and containing no F_{5}^{3}-subgraph. Let G be a graph of minimum order among such graphs.

Claim 1. Each $f \in \bar{F}_{5}$ has at least two M-vertices. If f has exactly two M-vertices which are incident with the same M^{*}-face f^{\prime} of f, then all M^{*}-faces of f, with the possible exception of f^{\prime}, are M-faces.

Proof of Claim 1. Let $f \in \bar{F}_{5}$ be surrounded by triangles as in Fig. 1a. Because G contains no F_{5}^{3}-subgraph, we have $d_{G}\left(v_{i}\right) \geqslant 5$ for $i=1, \ldots, 5$.

FIGURE 1

FIGURE 2

If f has no M-vertex, then put $H=G-\left\{u_{1}, \ldots, u_{5}\right\}+\left\{w, v_{1} w, v_{2} w, v_{3} w\right.$, $\left.v_{4} w, v_{5} w\right\}$-Fig. 2a. If f has only one M-vertex v_{1}, then put $H=G-$ $\left\{u_{2}, u_{3}, u_{4}\right\}+\left\{u_{1} v_{3}, u_{5} v_{4}\right\}$-Fig. 2b. In both cases, $\delta(H)=4 ;|V(H)|<$ $|V(G)| ; d_{H}\left(v_{i}\right) \geqslant 5$ for $i=1, \ldots, 5$; and H contains no 4 -face, no adjacent triangles, and no F_{5}^{3}-subgraph; contradicting the choice of G. Therefore f contains at least two M-vertices.

Suppose f has exactly two M-vertices v_{1} and v_{2} which are incident with the same M^{*}-face f_{1} of f. If $d_{G}\left(f_{3}\right) \geqslant 6$, and w is the vertex other than u_{3} such that $w v_{4}$ is an edge of f_{3}-Fig. 2c, then put $H=G-\left\{u_{3}, u_{4}\right\}+\left\{u_{2} w\right.$, $\left.u_{5} v_{4}\right\}$. If $d_{G}\left(f_{2}\right) \geqslant 6$, then put $H=G-\left\{u_{2}, u_{3}, u_{4}\right\}+\left\{u_{5} v_{4}, u_{1} v_{3}, v_{2} v_{3}\right\}-$ Fig. 2d. The same contradiction as above establishes the latter part of Claim 1.

Claim 2. Each $f \in \bar{F}_{4}$ has at least one M-vertex, and one of the two M^{*}-faces of f denoted by f_{1} and f_{3} in Fig. 3b is an M-face.

The proof of Claim 2 is similar to that of Claim 1. If f has no M-vertex, then put $H=G-\left\{u_{1}, u_{2}, u_{3}\right\}+\left\{v_{2} u_{5}, v_{3} u_{4}\right\}$-Fig. 3a. If both $d_{G}\left(f_{1}\right) \geqslant 6$

FIGURE 3
and $d_{G}\left(f_{3}\right) \geqslant 6$, then put $H=G-\left\{u_{1}, u_{2}, u_{3}\right\}+\left\{v_{2} v_{1}, v_{2} u_{5}, v_{3} u_{4}, v_{3} v_{4}\right\}-$ Fig. 3b. This completes the proof of Claim 2.

Claim 3. If u is an M-vertex of a face $f \in \bar{F}_{4} \cup \bar{F}_{5}$ and is incident with a face $f^{*} \in F_{5}$, then f^{*} must be an M-face of f.

Proof of Claim 3. Since u is an M-vertex of f, it is incident with one triangle and two non-triangular faces f^{\prime} and $f^{\prime \prime}$, all of which share at least one vertex with f. The remaining two faces incident with u must be adjacent to either f^{\prime} or $f^{\prime \prime}$ and therefore cannot be in F_{5}. Therefore if a face $f^{*} \in F_{5}$ is incident with u, then f^{*} has to be either f^{\prime} or $f^{\prime \prime}$, and it is an M-face of f. This completes the proof of Claim 3.

Now by Euler's formula, $|V(G)|+|F(G)|-|E(G)|=2$, we have

$$
\begin{aligned}
\sum_{v \in V(G)} & \left(\frac{d_{G}(v)}{8}-\frac{1}{2}\right)+\sum_{f \in F(G)}\left(\frac{d_{G}(f)}{8}-\frac{1}{2}\right) \\
& =\frac{1}{8}\left(\sum_{v \in V(G)} d_{G}(v)+\sum_{f \in F(G)} d_{G}(f)\right)-\frac{1}{2}(|V(G)|+|F(G)|) \\
& =\frac{1}{8}(2|E(G)|+2|E(G)|)-\frac{1}{2}(|E(G)|+2)=-1 .
\end{aligned}
$$

For each $x \in V(G) \cup F(G)$, let $\sigma(x)=\left(d_{G}(x) / 8\right)-(1 / 2)$ be a weight assigned to x. Then

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} \sigma(x)=-1 . \tag{1}
\end{equation*}
$$

We shall modify σ to a new weight σ^{*} according to the following rules:
(R-1) Every non-triangular face transfers $1 / 24$ to each of its adjacent triangles.
(R-2) Let $k \geqslant 6$. Every k-vertex v transfers $1 / 12$ to each of its incident faces f^{\prime} adjacent to two triangles, each of which shares with f^{\prime} a common edge incident with v; and transfers $1 / 24$ to each of its incident faces $f^{\prime \prime}$ adjacent to exactly one triangle which shares with $f^{\prime \prime}$ a common edge incident with v.
(R-3) Let v be a 5 -vertex of G.
(a) If v is incident with one 5-face $f_{1} \in F_{5}$ and two 5-faces $f_{2}, f_{3} \in F_{4}$, then transfer $1 / 12$ to f_{1} from v and transfer $1 / 48$ to each of f_{2} and f_{3}.
(b) If v is incident with one 5 -face $f_{1} \in F_{5}$ and up to one 5 -face $f_{2} \in F_{4}$, then transfer $1 / 12$ to f_{1} from v and transfer $1 / 24$ to f_{2}, if necessary.
(c) If v is not incident with any 5 -face in F_{5}, then transfer $1 / 24$ from v to each face in F_{4} which is incident with v.

Note that a 5 -vertex v cannot be incident with two 5 -faces in F_{5} because otherwise there are adjacent triangles. Now, it follows that

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} \sigma^{*}(x)=\sum_{x \in V(G) \cup F(G)} \sigma(x)=-1 . \tag{2}
\end{equation*}
$$

If v is a vertex of degree at least 6 , then v is incident with $l \leqslant\left\llcorner d_{G}(v) / 2\right\rfloor$ faces which receives $1 / 12$ from v, and incident with at most $\left\lfloor\frac{2}{3}\left(d_{G}(v)-2 l\right)\right\rfloor$ faces which receive $1 / 24$ from v, where $\lfloor x\rfloor$ is the largest integer not exceeding x. Therefore,

$$
\begin{aligned}
\sigma^{*}(v) & \geqslant \sigma(v)-\frac{l}{12}-\left\lfloor\frac{2}{3}\left(d_{G}(v)-2 l\right)\right\rfloor \cdot \frac{1}{24} \\
& \geqslant \sigma(v)-\frac{l}{12}-\frac{1}{36}\left(d_{G}(v)-2 l\right) \\
& =\frac{7 d_{G}(v)-36-2 l}{72} \\
& =\frac{\left(6 d_{G}(v)-36\right)+\left(d_{G}(v)-2 l\right)}{72} \geqslant 0 .
\end{aligned}
$$

Let v be a 5 -vertex. If v is incident with one 5 -face in F_{5} and two 5 -faces in F_{4}, then $\sigma^{*}(v) \geqslant \sigma(v)-(1 / 12)-2 \cdot(1 / 48)=0$. If v is incident with one 5-face in F_{5} and at most one 5-face in F_{4}, then $\sigma^{*}(v) \geqslant \sigma(v)-(1 / 12)-$ $(1 / 24)=0$. If v is not incident with any 5 -face of F_{5}, then v is incident with at most three 5 -faces in F_{4} and $\sigma^{*}(v) \geqslant \sigma(v)-3 \cdot(1 / 24)=0$.

Let $f \in F(G)$. If $d_{G}(f)=3$, then $\sigma^{*}(f)=\sigma(f)+3 \cdot(1 / 24)=0$. If $d_{G}(f) \geqslant 6$, then $\sigma^{*}(f) \geqslant \sigma(f)-d_{G}(f) \cdot(1 / 24)=\left(2 d_{G}(f)-12\right) / 24 \geqslant 0$. If $d_{G}(f)=5$ and $f \notin F_{5} \cup F_{4}$, then $\sigma^{*}(f) \geqslant \sigma(f)-3 \cdot(1 / 24)=0$. If $f \in F_{5} \backslash \bar{F}_{5}$, then there is at least one vertex of degree 5 or more incident with f and $\sigma^{*}(f) \geqslant \sigma(f)+$ $(1 / 12)-5 \cdot(1 / 24)=0$. If $f \in F_{4} \backslash \bar{F}_{4}$, then there is also at least one vertex of degree 5 or higher incident with f. Suppose u is such a vertex.

If $1 / 24$ or more is transferred from u to f, which will be the case if $d_{G}(u)>5$ or if transfer is done according to $(\mathrm{R}-3)(\mathrm{b})$ or $(\mathrm{R}-3)(\mathrm{c})$, then $\sigma^{*}(f) \geqslant \sigma(f)+(1 / 24)-4 \cdot(1 / 24)=0$. Otherwise $d_{G}(u)=5$ and u is incident with a face f_{1} in F_{5} and another face f_{2} in F_{4} in addition to f. Thus we have the situation of Fig. 4 and $d_{G}(w) \geqslant 5$ because otherwise the triangles T and T^{\prime} are adjacent. It follows that $\sigma^{*}(f) \geqslant \sigma(f)+(1 / 48)+(1 / 48)-4 \cdot(1 / 24)=0$.

FIGURE 4

Up to now, we have $\sigma^{*}(x) \geqslant 0$ for each $x \in V(G) \cup F(G)-\bar{F}_{5} \cup \bar{F}_{4}$, $\sigma^{*}(x)=-1 / 12$ for each $x \in \bar{F}_{5}$ and $\sigma^{*}(x)=-1 / 24$ for each $x \in \bar{F}_{4}$.

For each $f \in \bar{F}_{5} \cup \bar{F}_{4}$, let $M^{*}(f)=\{\operatorname{vertex}($ face $)$ which is an M-vertex(face) of $f\}$. If we can prove that for each $f \in \bar{F}_{5} \cup \bar{F}_{4}$, the inequality

$$
\begin{equation*}
\sigma^{*}(f)+\sum_{x \in M^{*}(f)} \frac{\sigma^{*}(x)}{m^{*}(x)} \geqslant 0, \tag{3}
\end{equation*}
$$

holds, then we have $\sum_{x \in V(G) \cup F(G)} \sigma^{*}(x) \geqslant 0$. This will contradict (2) and will complete the proof.

Suppose $f \in \bar{F}_{5}$ as in Fig. 1a. Then $\sigma^{*}(f)=-1 / 12$. Let $r_{i, j}$ be the value transferred from v_{i} to f_{j} according to $\left(R_{2}\right)$ and $\left(R_{3}\right)$, where $i, j=1, \ldots, 5$.

By Claim $1, f$ has at least two M-vertices. Suppose v_{1} is an M-vertex of f. In the sequel, we want to show that

$$
\begin{equation*}
\frac{\sigma^{*}\left(v_{1}\right)}{m^{*}\left(v_{1}\right)}+\frac{\sigma^{*}\left(f_{5}\right)}{m^{*}\left(f_{5}\right)}+\frac{\sigma^{*}\left(f_{1}\right)}{m^{*}\left(f_{1}\right)} \geqslant \frac{1}{24} . \tag{4}
\end{equation*}
$$

(i) If $f_{1} \in F_{5}$, then $r_{1,1}=r_{2,1}=1 / 12$ and $\sigma^{*}\left(f_{1}\right) \geqslant 1 / 12$. Hence $\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right) \geqslant\left(\sigma^{*}\left(f_{1}\right) / 2\right) \geqslant 1 / 24$. Similarly, if $f_{5} \in F_{5}$, then $\left(\sigma^{*}\left(f_{5}\right) /\right.$ $\left.m^{*}\left(f_{5}\right)\right) \geqslant 1 / 24$. In the following, we shall assume that f_{1} and f_{5} are both not in F_{5}, and hence by Claim 3, v_{1} is not incident with any face in F_{5}.
(ii) If $f_{1} \in F_{4}$ and $f_{5} \notin F_{4}$, then $r_{1,1}=1 / 24, r_{1,5}=0$, and at most $1 / 24$ is transferred to one non-triangular face (other than f_{1} and f_{5}) incident with v_{1}. Hence $\sigma^{*}\left(v_{1}\right) \geqslant 1 / 24$ and $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right) \geqslant\left(\sigma^{*}\left(v_{1}\right) / 2\right) \geqslant 1 / 48$. Because $f_{1} \in F_{4}$, we have $r_{2,1} \geqslant 1 / 48$. If $m^{*}\left(f_{1}\right)=1$, then $\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right)=$ $\sigma^{*}\left(f_{1}\right) \geqslant 1 / 48$. If $m^{*}\left(f_{1}\right)=2$, then f_{1} is incident with three vertices with degree 5 or higher. Hence there is vertex $w \notin\left\{v_{1}, v_{2}\right\}$ incident with f_{1} and $d_{G}(w) \geqslant 5$, so each of w and v_{2} will transfer at least $1 / 48$ to f_{1} and $\left(\sigma^{*}\left(f_{1}\right) /\right.$ $\left.m^{*}\left(f_{1}\right)\right)=\left(\sigma^{*}\left(f_{1}\right) / 2\right) \geqslant 1 / 48$. It follows that $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right)+\left(\sigma^{*}\left(f_{1}\right) /\right.$ $\left.m^{*}\left(f_{1}\right)\right) \geqslant 1 / 24$. Similarly, if $f_{1} \notin F_{4}$ and $f_{5} \in F_{4}$, then $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right)+$ $\left(\sigma^{*}\left(f_{5}\right) / m^{*}\left(f_{5}\right)\right) \geqslant 1 / 24$.
(iii) If $f_{1} \notin F_{4}$ and $f_{5} \notin F_{4}$, then $r_{1,1}=r_{1,5}=0$ and v_{1} will transfer at most $1 / 24$ to one non-triangular face incident with it, and therefore $\sigma^{*}\left(v_{1}\right) \geqslant 1 / 12$. It follows that $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right) \geqslant\left(\sigma^{*}\left(v_{1}\right) / 2\right) \geqslant 1 / 24$.

Thus the proof of (4) is complete.
Similarly, if v_{3} is an M-vertex of f, then $\left(\sigma^{*}\left(v_{3}\right) / m^{*}\left(v_{3}\right)\right)+\left(\sigma^{*}\left(f_{2}\right) /\right.$ $\left.m^{*}\left(f_{2}\right)\right)+\left(\sigma^{*}\left(f_{3}\right) / m^{*}\left(f_{3}\right)\right) \geqslant 1 / 24$. Combining this with (4), we get (3). An analogous conclusion can be made if v_{4} is an M-vertex of f.

Suppose that f has exactly two M-vertices v_{1} and v_{2}. By Claim $1, f_{2}, f_{3}$, f_{4} and f_{5} are all 5 -faces. We also have $d_{G}\left(v_{j}\right) \geqslant 6$ for $j=3,4$ and 5 . If $f_{3} \in F_{5}$, then as in (i) above, we have $\sigma^{*}\left(f_{3}\right) \geqslant 1 / 12$. If $f_{3} \notin F_{5}$, then $r_{3,3} \geqslant 1 / 24$ and $r_{4,3} \geqslant 1 / 24$, and hence $\sigma^{*}\left(f_{3}\right) \geqslant 1 / 24$. Similarly, we have $\sigma^{*}\left(f_{4}\right) \geqslant 1 / 24$. It follows that $\left(\sigma^{*}\left(f_{3}\right) / m^{*}\left(f_{3}\right)\right)+\left(\sigma^{*}\left(f_{4}\right) / m^{*}\left(f_{4}\right)\right) \geqslant\left(\sigma^{*}\left(f_{3}\right) / 2\right)+\left(\sigma^{*}\left(f_{4}\right) / 2\right)$ $\geqslant 1 / 24$. Combining this with the argument made on v_{1}, we also have (3).

Now suppose $f \in \bar{F}_{4}$ as in Fig. 1b. Then $\sigma^{*}(f)=-1 / 24$. Let $r_{i, j}$ be the weight transferred from v_{i} to f_{j} according to $\left(R_{2}\right)$ and $\left(R_{3}\right)$, where $i=1, \ldots, 4$ and $j=1, \ldots, 5$.

By Claim $2, f$ has at least one M-vertex. If v_{2} is an M-vertex of f, then we can show as before that $\left(\sigma^{*}\left(v_{2}\right) / m^{*}\left(v_{2}\right)\right)+\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right)+\left(\sigma^{*}\left(f_{2}\right) /\right.$ $\left.m^{*}\left(f_{2}\right)\right) \geqslant 1 / 24$, and (3) follows. Similarly if v_{3} is an M-vertex of f, then $\left(\sigma^{*}\left(v_{3}\right) / m^{*}\left(v_{3}\right)\right)+\left(\sigma^{*}\left(f_{2}\right) / m^{*}\left(f_{2}\right)\right)+\left(\sigma^{*}\left(f_{3}\right) / m^{*}\left(f_{3}\right)\right) \geqslant 1 / 24$ and (3) follows also. If both v_{2} and v_{3} are not M-vertices of f, then without loss of generality, we may assume that v_{1} is an M-vertex of f. Also by Claim 2, either f_{1} or f_{3} is an M-face of f.

Suppose f_{1} is an M-face of f. If $f_{1} \in F_{5}$ then $r_{1,1}=r_{2,1}=1 / 12$. So $\sigma^{*}\left(f_{1}\right) \geqslant 1 / 12$ and $\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right) \geqslant\left(\sigma^{*}\left(f_{1}\right) / 2\right) \geqslant 1 / 24$. Suppose $f_{1} \in F_{4}$, then by Claim 3, v_{1} is not incident with any face in F_{5} and therefore $r_{1,1}=1 / 24$. If v_{1} is not incident with two triangles adjacent to f_{1}, then v_{2} is incident with two triangles adjacent to f_{1}. Since v_{2} is not an M-vertex of $f, d_{G}\left(v_{2}\right) \geqslant 6$ and so $r_{2,1}=1 / 12$. Hence $\sigma^{*}\left(f_{1}\right) \geqslant 1 / 12$. It follows that $\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right) \geqslant\left(\sigma^{*}\left(f_{1}\right) / 2\right) \geqslant 1 / 24$. If v_{1} is incident with two triangles adjacent to f_{1}, then f_{5} is adjacent to at least two non-triangular face and hence $r_{1,5}=0$. Since we transfer at most $1 / 24$ from v_{1} to one non-triangular face (other than f_{1} and f_{5}) incident with v_{1}, we have $\sigma^{*}\left(v_{1}\right) \geqslant 1 / 24$. Since $r_{2,1} \geqslant 1 / 24$, we have $\sigma^{*}\left(f_{1}\right) \geqslant 1 / 24$. It follows that $\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right)+$ $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right) \geqslant\left(\sigma^{*}\left(f_{1}\right) / 2\right)+\left(\sigma^{*}\left(v_{1}\right) / 2\right) \geqslant 1 / 24$. If $f_{1} \notin F_{5} \cup F_{4}$, then $r_{1,1}=0$ and because $d_{G}\left(v_{2}\right) \geqslant 6, r_{2,1} \geqslant 1 / 24$. It follows that $\sigma^{*}\left(v_{1}\right) \geqslant 1 / 24$ and $\sigma^{*}\left(f_{1}\right) \geqslant 1 / 24$, and that $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right)+\left(\sigma^{*}\left(f_{1}\right) / m^{*}\left(f_{1}\right)\right) \geqslant 1 / 24$. As before, (3) holds.

Suppose f_{1} is not an M-face of f, then $r_{1,1}=0$ and $\sigma^{*}\left(v_{1}\right) \geqslant 1 / 24$. By Claim 2, f_{3} must be an M-face of f. If $f_{3} \in F_{5}$, or if v_{4} is also an M-vertex of f, the same argument as above leads to (3). Suppose $f_{3} \notin F_{5}$ and v_{4} is not an M-vertex of f, then $d_{G}\left(v_{4}\right) \geqslant 6$ and therefore $r_{4,3} \geqslant 1 / 24$. Because v_{3} is
not an M-vertex of f, we also have $r_{3,3} \geqslant 1 / 24$ and hence $\sigma^{*}\left(f_{3}\right) \geqslant 1 / 24$. It follows that $\left(\sigma^{*}\left(v_{1}\right) / m^{*}\left(v_{1}\right)\right)+\left(\sigma^{*}\left(f_{3}\right) / m^{*}\left(f_{3}\right)\right) \geqslant\left(\sigma^{*}\left(v_{1}\right) / 2\right)+\left(\sigma^{*}\left(f_{3}\right) / 2\right)$ $\geqslant 1 / 24$ and that (3) again holds.

3. PROOF OF THEOREM 1

Suppose that G is a counterexample of minimum order, then $\delta(G)=4$. Because G is C_{4}-free, G has no adjacent triangles and has no 4 -face. By Lemma 1, G has a F_{5}^{3}-subgraph H with

$$
V(H)=\left\{u_{1}, \ldots, u_{6}\right\} \text { and } E(H)=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{6}, u_{6} u_{1}, u_{2} u_{6}\right\} .
$$

Let $L=(L(v) \mid v \in V(G))$ be a color-list of G in which each list contains 4 colors. Then $G^{\prime}=G-V(H)$ admits a list coloring ϕ^{\prime} with color-list L restricted to G^{\prime}.

For all $v \in V(H)$, let $L^{0}(v)=L(v) \backslash\left\{\phi^{\prime}(u) \mid u \in V\left(G^{\prime}\right)\right.$ and $\left.v u \in E(G)\right\}$. Then, $\left|L^{0}\left(u_{i}\right)\right| \geqslant 2, i=1,3,4,5,\left|L^{0}\left(u_{2}\right)\right| \geqslant 3$ and $\left|L^{0}\left(u_{6}\right)\right| \geqslant 3$. Let L^{*} be a subset of $L^{0}\left(u_{3}\right)$ with $\left|L^{*}\right|=2$. We shall choose at u_{2} a color $c_{2} \in$ $L^{0}\left(u_{2}\right) \backslash L^{*}$, at u_{1} a color $c_{1} \in L^{0}\left(u_{1}\right) \backslash\left\{c_{2}\right\}$, at u_{6} a color $c_{6} \in L^{0}\left(u_{6}\right) \backslash\left\{c_{1}, c_{2}\right\}$, at u_{5} a color $c_{5} \in L^{0}\left(u_{5}\right) \backslash\left\{c_{6}\right\}$, at u_{4} a color $c_{4} \in L^{0}\left(u_{4}\right) \backslash\left\{c_{5}\right\}$ and at u_{3} a color $c_{3} \in L^{*} \backslash\left\{c_{4}\right\}$.

ACKNOWLEDGMENT

The authors acknowledge the valuable comments and suggestions of the referees.

REFERENCES

1. N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12, No. 2 (1992), 125-134.
2. O. V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 12, No. 2 (1996), 183-186.
3. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, London, 1976.
4. P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979), 125-157.
5. R. Steinberg, The state of the three color problem, in "Quo Vadis: Graph Theory?" (J. Gimbel, J. W. Kennedy, and L. V. Quintas, Eds.), Ann. Discrete Math., Vol. 55, pp. 211-248, North-Holland, Amsterdam, 1993.
6. C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994), 180-181.
7. C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B $\mathbf{6 4}$ (1995), 101-107.
8. V. G. Vizing, Vertex coloring with given colors, Diskret. Anal. 29 (1976), 3-10. [In Russian]
9. M. Voigt, List colouring of planar graphs, Discrete Math. 120 (1993), 215-219.
10. M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995), 325-328.
11. M. Voigt and B. Wirth, On 3-colorable non-4-choosable planar graphs, J. Graph Theory 24, No. 3 (1997), 233-235.

[^0]: * Research is partially supported by Research Grant Council, Hong Kong; by Faculty Research Grant, Hong Kong Baptist University and by the Doctoral Foundation of the Education Commission of the The People's Republic of China.

