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The 4-Choosability of Plane Graphs without 4-Cycles*
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A graph G is called k-choosable if k is a number such that if we give lists of k
colors to each vertex of G there is a vertex coloring of G where each vertex receives
a color from its own list no matter what the lists are. In this paper, it is shown that
each plane graph without 4-cycles is 4-choosable. � 1999 Academic Press
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1. INTRODUCTION

In this paper, we consider only finite and simple graphs. Let G be a plane
graph. V(G), E(G), and F(G) shall denote the set of vertices, edges, and
faces of G, respectively. Vertices u and v are adjacent, denoted by uv # E(G),
if there is an edge in G joining them. NG(v), or N(v) if there is no possibility
of confusion, denotes the set of vertices adjacent to v in G, and �f denotes
the set of vertices incident with the face f. The degree of u in G, written as
dG(u), is the number of vertices in NG(v). A vertex u is called a k-vertex if
dG(u)=k. The minimum degree of G, min[dG(v) | v # V(G)], is denoted by
$(G). A face of a plane graph is said to be incident with all edges and
vertices on its boundary. Two faces are adjacent if they have an edge in
common. The degree of a face f of plane graph G, denoted by dG( f ), is the
number of edges incident with it, where each cut-edge is counted twice.
A k-face is a face of degree k. A triangle is synonymous with a 3-face.
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A list coloring of G is an assignment of colors to V(G) such that each
vertex v receives a color from a prescribed list L(v) of colors and adjacent
vertices receive distinct colors��see [8]. L(G)=(L(v) | v # V(G)) is called a
color-list of G. G is called k-choosable if G admits a list-coloring for all
color-lists L with k colors in each list. The choice number of G, denoted by
/l (G), is the minimum k such that G is k-choosable.

All 2-choosable graphs have been characterized by Erdo� s et al. [4].
N. Alon and M. Tarsi [1] proved that every plane bipartite graph is 3-
choosable. Thomassen [6, 7] proved that every plane graph is 5-choosable
and every plane graph of girth at least 5 is 3-choosable, where the girth of
a graph G is the length of the shortest cycle in G. Also, every plane graph
G without 3-cycles is 4-choosable because $(G)�3. Examples of plane
graphs which are not 4-choosable and plane graphs of girth 4 which are
not 3-choosable were given by Voigt [9, 10]. Voigt and Wirth [11] also
gave an example of a 3-colorable planar graph which is not 4-choosable.

In 1976, Steinberg (see [5, p. 229] or [2]) conjectured that every plane
graph without 4- and 5-cycles is 3-colorable. In 1990, Erdo� s (also see [5,
p. 229]) suggested the following relaxation of Steinberg's conjecture: Is
there an integer k�5 such that every plane graph without i-cycles,
4�i�k, is 3-colorable? In 1996, O. V. Borodin [2] proved that k=9 is
suitable. It would be significant to find an integer k�4 such that every
plane graph without i-cycles, 4�i�k, is 4-choosable. In this paper, we
shall show that k=4 is sufficient by proving the following theorem.

Theorem 1. Let G be a C4-free plane graph. Then G is 4-choosable.

In Section 2, we shall show that any C4-free plane graph contains a sub-
graph with a special configuration, and this fact will be used to prove
Theorem 2 in Section 3.

2. SPECIAL CONFIGURATION F 3
5

We use F 3
5 to denote a special C4-free plane graph consisting of a 5-face

with an exterior adjacent triangle. A subgraph H of G is called an F 3
5-sub-

graph if H is isomorphic to F 3
5 and dG(v)=4 for all v # V(H). We shall first

prove that any C4-free plane graph G with $(G)=4 contains an F 3
5-sub-

graph.
Let G be a C4-free plane graph with $(G)�4. The set of all 5-faces adja-

cent to exactly four triangles and the set of all 5-faces adjacent to five tri-
angles are denoted by F4 and F5 respectively. The subset of F4 (respectively
of F5) consisting only of faces incident with five 4-vertices is denoted by F� 4

(respectively F� 5).
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Let f # F� 5 _ F� 4 , and let T be a triangle adjacent to f. The vertex
u # �(T )"�( f ) is called an M*-vertex of f. Moreover, if dG(u)=5, then u is
called an M-vertex of f. Since a 5-vertex u can be incident with at most two
triangles, u can be an M-vertex of at most two faces in F� 5 _ F� 4 . If u is an
M-vertex of a face in F� 5 _ F� 4 , we denote by m*(u) the number of faces in
F� 5 _ F� 4 for which u is an M-vertex. It follows that m*(u)=1 or 2. A face
f $ is called an M*-face of f at the vertex u0 if �( f ) & �( f $)=[u0] and there
exist two triangles which are adjacent to both f and f $. If in addition,
dG( f $)=5, then f $ is called an M-face of f. If f $ is an M-face of f at u0 , then
dG(u0)=4. If G contains no F 3

5-subgraph and N(u0) & �f $=[u1 , u2], then
dG(ui)�5 for i=1 and 2. Therefore a 5-face f $ may be the M-face of at
most two faces f1 , f2 # F� 5 _ F� 4 . If f $ is an M-face of a face in F� 5 _ F� 4 , then
we denote by m*( f $) the number of faces in F� 5 _ F� 4 for which f $ is an
M-face. It also follows that m*( f )=1 or 2. Moreover, if m*( f $)=2, then
f $ is incident with three vertices of degree five or higher.

In [2], Borodin proved that $(G)�4 for each plane graph without adja-
cent triangles. The following lemma is proved using the method of Borodin.
Note that if a graph is C4-free, then it has no 4-face and no adjacent
triangles.

Lemma 1. Let G be a plane graph without 4-faces and without adjacent
triangles. If $(G)=4, then G contains an F 3

5-subgraph.

Proof. Suppose there exists a plane graph satisfying all assumptions of
the Lemma and containing no F 3

5-subgraph. Let G be a graph of minimum
order among such graphs.

Claim 1. Each f # F� 5 has at least two M-vertices. If f has exactly two
M-vertices which are incident with the same M*-face f $ of f , then all
M*-faces of f, with the possible exception of f $, are M-faces.

Proof of Claim 1. Let f # F� 5 be surrounded by triangles as in Fig. 1a.
Because G contains no F 3

5-subgraph, we have dG(vi)�5 for i=1, ..., 5.

FIGURE 1
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FIGURE 2

If f has no M-vertex, then put H=G&[u1 , ..., u5]+[w, v1w, v2 w, v3w,
v4w, v5 w]��Fig. 2a. If f has only one M-vertex v1 , then put H=G&
[u2 , u3 , u4]+[u1v3 , u5v4]��Fig. 2b. In both cases, $(H)=4; |V(H)|<
|V(G)|; dH (vi)�5 for i=1, ..., 5; and H contains no 4-face, no adjacent
triangles, and no F 3

5-subgraph; contradicting the choice of G. Therefore f
contains at least two M-vertices.

Suppose f has exactly two M-vertices v1 and v2 which are incident with
the same M*-face f1 of f. If dG( f3)�6, and w is the vertex other than u3

such that wv4 is an edge of f3��Fig. 2c, then put H=G&[u3 , u4]+[u2w,
u5 v4]. If dG( f2)�6, then put H=G&[u2 , u3 , u4]+[u5v4 , u1v3 , v2v3]��
Fig. 2d. The same contradiction as above establishes the latter part of
Claim 1.

Claim 2. Each f # F� 4 has at least one M-vertex, and one of the two
M*-faces of f denoted by f1 and f3 in Fig. 3b is an M-face.

The proof of Claim 2 is similar to that of Claim 1. If f has no M-vertex,
then put H=G&[u1 , u2 , u3]+[v2u5 , v3 u4]��Fig. 3a. If both dG( f1)�6

FIGURE 3
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and dG( f3)�6, then put H=G&[u1 , u2 , u3]+[v2v1 , v2u5 , v3u4 , v3v4]��
Fig. 3b. This completes the proof of Claim 2.

Claim 3. If u is an M-vertex of a face f # F� 4 _ F� 5 and is incident with
a face f * # F5 , then f * must be an M-face of f .

Proof of Claim 3. Since u is an M-vertex of f , it is incident with one tri-
angle and two non-triangular faces f $ and f ", all of which share at least one
vertex with f. The remaining two faces incident with u must be adjacent to
either f $ or f " and therefore cannot be in F5 . Therefore if a face f * # F5 is
incident with u, then f * has to be either f $ or f ", and it is an M-face of f.
This completes the proof of Claim 3.

Now by Euler's formula, |V(G)|+|F(G)|&|E(G)|=2, we have

:
v # V(G)

\dG(v)
8

&
1
2++ :

f # F(G)
\dG( f )

8
&

1
2+

=
1
8 \ :

v # V(G)

dG(v)+ :
f # F(G)

dG( f )+&
1
2

( |V(G)|+|F(G)| )

=
1
8

(2 |E(G)|+2 |E(G)| )&
1
2

( |E(G)|+2)=&1.

For each x # V(G) _ F(G), let _(x)=(dG(x)�8)&(1�2) be a weight
assigned to x. Then

:
x # V(G) _ F(G)

_(x)=&1. (1)

We shall modify _ to a new weight _* according to the following rules:

(R-1) Every non-triangular face transfers 1�24 to each of its adjacent
triangles.

(R-2) Let k�6. Every k-vertex v transfers 1�12 to each of its incident
faces f $ adjacent to two triangles, each of which shares with f $ a common
edge incident with v; and transfers 1�24 to each of its incident faces f " adja-
cent to exactly one triangle which shares with f " a common edge incident
with v.

(R-3) Let v be a 5-vertex of G.

(a) If v is incident with one 5-face f1 # F5 and two 5-faces
f2 , f3 # F4 , then transfer 1�12 to f1 from v and transfer 1�48 to each of f2

and f3 .
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(b) If v is incident with one 5-face f1 # F5 and up to one 5-face
f2 # F4 , then transfer 1�12 to f1 from v and transfer 1�24 to f2 , if necessary.

(c) If v is not incident with any 5-face in F5 , then transfer 1�24
from v to each face in F4 which is incident with v.

Note that a 5-vertex v cannot be incident with two 5-faces in F5 because
otherwise there are adjacent triangles. Now, it follows that

:
x # V(G) _ F(G)

_*(x)= :
x # V(G) _ F(G)

_(x)= &1. (2)

If v is a vertex of degree at least 6, then v is incident with l�wdG(v)�2x
faces which receives 1�12 from v, and incident with at most w 2

3 (dG(v)&2l )x
faces which receive 1�24 from v, where wxx is the largest integer not
exceeding x. Therefore,

_*(v)�_(v)&
l

12
&\2

3
(dG(v)&2l )� }

1
24

�_(v)&
l

12
&

1
36

(dG(v)&2l )

=
7dG(v)&36&2l

72

=
(6dG(v)&36)+(dG(v)&2l )

72
�0.

Let v be a 5-vertex. If v is incident with one 5-face in F5 and two 5-faces
in F4 , then _*(v)�_(v)&(1�12)&2 } (1�48)=0. If v is incident with one
5-face in F5 and at most one 5-face in F4 , then _*(v)�_(v)&(1�12)&
(1�24)=0. If v is not incident with any 5-face of F5 , then v is incident with
at most three 5-faces in F4 and _*(v)�_(v)&3 } (1�24)=0.

Let f # F(G). If dG( f )=3, then _*( f )=_( f )+3 } (1�24)=0. If dG( f )�6,
then _*( f )�_( f )&dG( f ) } (1�24)=(2dG( f )&12)�24�0. If dG( f )=5 and
f � F5 _ F4 , then _*( f )�_( f )&3 } (1�24)=0. If f # F5"F� 5 , then there is at
least one vertex of degree 5 or more incident with f and _*( f )�_( f )+
(1�12)&5 } (1�24)=0. If f # F4"F� 4 , then there is also at least one vertex of
degree 5 or higher incident with f. Suppose u is such a vertex.

If 1�24 or more is transferred from u to f , which will be the case if
dG(u)>5 or if transfer is done according to (R-3)(b) or (R-3)(c), then
_*( f )�_( f )+(1�24)&4 } (1�24)=0. Otherwise dG(u)=5 and u is incident
with a face f1 in F5 and another face f2 in F4 in addition to f. Thus we have
the situation of Fig. 4 and dG(w)�5 because otherwise the triangles T and
T $ are adjacent. It follows that _*( f )�_( f )+(1�48)+(1�48)&4 } (1�24)=0.

122 LAM, XU, AND LIU



File: 582B 189307 . By:XX . Date:14:07:07 . Time:07:26 LOP8M. V8.B. Page 01:01
Codes: 2676 Signs: 1624 . Length: 45 pic 0 pts, 190 mm

FIGURE 4

Up to now, we have _*(x)�0 for each x # V(G) _ F(G)&F� 5 _ F� 4 ,
_*(x)=&1�12 for each x # F� 5 and _*(x)=&1�24 for each x # F� 4 .

For each f # F� 5 _ F� 4 , let M*( f )=[vertex(face) which is an M-ver-
tex(face) of f ]. If we can prove that for each f # F� 5 _ F� 4 , the inequality

_*( f )+ :
x # M*( f )

_*(x)
m*(x)

�0, (3)

holds, then we have �x # V(G) _ F(G) _*(x)�0. This will contradict (2) and
will complete the proof.

Suppose f # F� 5 as in Fig. 1a. Then _*( f )=&1�12. Let ri, j be the value
transferred from vi to fj according to (R2) and (R3), where i, j=1, ..., 5.

By Claim 1, f has at least two M-vertices. Suppose v1 is an M-vertex
of f. In the sequel, we want to show that

_*(v1)
m*(v1)

+
_*( f5)
m*( f5)

+
_*( f1)
m*( f1)

�
1

24
. (4)

(i) If f1 # F5 , then r1, 1=r2, 1=1�12 and _*( f1)�1�12. Hence
(_*( f1)�m*( f1))�(_*( f1)�2)�1�24. Similarly, if f5 # F5 , then (_*( f5)�
m*( f5))�1�24. In the following, we shall assume that f1 and f5 are both
not in F5 , and hence by Claim 3, v1 is not incident with any face in F5 .

(ii) If f1 # F4 and f5 � F4 , then r1, 1=1�24, r1, 5=0, and at most 1�24
is transferred to one non-triangular face (other than f1 and f5) incident
with v1 . Hence _*(v1)�1�24 and (_*(v1)�m*(v1))�(_*(v1)�2)�1�48.
Because f1 # F4 , we have r2, 1�1�48. If m*( f1)=1, then (_*( f1)�m*( f1))=
_*( f1)�1�48. If m*( f1)=2, then f1 is incident with three vertices with
degree 5 or higher. Hence there is vertex w � [v1 , v2] incident with f1 and
dG(w)�5, so each of w and v2 will transfer at least 1�48 to f1 and (_*( f1)�
m*( f1))=(_*( f1)�2)�1�48. It follows that (_*(v1)�m*(v1))+(_*( f1)�
m*( f1))�1�24. Similarly, if f1 � F4 and f5 # F4 , then (_*(v1)�m*(v1))+
(_*( f5)�m*( f5))�1�24.
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(iii) If f1 � F4 and f5 � F4 , then r1, 1=r1, 5=0 and v1 will transfer at
most 1�24 to one non-triangular face incident with it, and therefore
_*(v1)�1�12. It follows that (_*(v1)�m*(v1))�(_*(v1)�2)�1�24.

Thus the proof of (4) is complete.
Similarly, if v3 is an M-vertex of f, then (_*(v3)�m*(v3))+(_*( f2)�

m*( f2))+(_*( f3)�m*( f3))�1�24. Combining this with (4), we get (3). An
analogous conclusion can be made if v4 is an M-vertex of f.

Suppose that f has exactly two M-vertices v1 and v2 . By Claim 1, f2 , f3 ,
f4 and f5 are all 5-faces. We also have dG(vj)�6 for j=3, 4 and 5. If f3 # F5 ,
then as in (i) above, we have _*( f3)�1�12. If f3 � F5 , then r3, 3�1�24 and
r4, 3�1�24, and hence _*( f3)�1�24. Similarly, we have _*( f4)�1�24. It
follows that (_*( f3)�m*( f3))+(_*( f4)�m*( f4))�(_*( f3)�2)+(_*( f4)�2)
�1�24. Combining this with the argument made on v1 , we also have (3).

Now suppose f # F� 4 as in Fig. 1b. Then _*( f )=&1�24. Let ri, j be the
weight transferred from vi to f j according to (R2) and (R3), where
i=1, ..., 4 and j=1, ..., 5.

By Claim 2, f has at least one M-vertex. If v2 is an M-vertex of f, then
we can show as before that (_*(v2)�m*(v2))+(_*( f1)�m*( f1))+(_*( f2)�
m*( f2))�1�24, and (3) follows. Similarly if v3 is an M-vertex of f, then
(_*(v3)�m*(v3))+(_*( f2)�m*( f2))+(_*( f3)�m*( f3))�1�24 and (3) follows
also. If both v2 and v3 are not M-vertices of f, then without loss of generality,
we may assume that v1 is an M-vertex of f. Also by Claim 2, either f1 or f3

is an M-face of f.
Suppose f1 is an M-face of f. If f1 # F5 then r1, 1=r2, 1=1�12. So

_*( f1)�1�12 and (_*( f1)�m*( f1))�(_*( f1)�2)�1�24. Suppose f1 # F4 ,
then by Claim 3, v1 is not incident with any face in F5 and therefore
r1, 1=1�24. If v1 is not incident with two triangles adjacent to f1 , then v2

is incident with two triangles adjacent to f1 . Since v2 is not an M-vertex
of f, dG(v2)�6 and so r2, 1=1�12. Hence _*( f1)�1�12. It follows that
(_*( f1)�m*( f1))�(_*( f1)�2)�1�24. If v1 is incident with two triangles
adjacent to f1 , then f5 is adjacent to at least two non-triangular face and
hence r1, 5=0. Since we transfer at most 1�24 from v1 to one non-triangular
face (other than f1 and f5) incident with v1 , we have _*(v1)�1�24. Since
r2, 1�1�24, we have _*( f1)�1�24. It follows that (_*( f1)�m*( f1))+
(_*(v1)�m*(v1))�(_*( f1)�2)+(_*(v1)�2)�1�24. If f1 � F5 _ F4 , then
r1, 1=0 and because dG(v2)�6, r2, 1�1�24. It follows that _*(v1)�1�24
and _*( f1)�1�24, and that (_*(v1)�m*(v1))+(_*( f1)�m*( f1))�1�24. As
before, (3) holds.

Suppose f1 is not an M-face of f, then r1, 1=0 and _*(v1)�1�24. By
Claim 2, f3 must be an M-face of f. If f3 # F5 , or if v4 is also an M-vertex
of f, the same argument as above leads to (3). Suppose f3 � F5 and v4 is not
an M-vertex of f, then dG(v4)�6 and therefore r4, 3�1�24. Because v3 is
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not an M-vertex of f, we also have r3, 3�1�24 and hence _*( f3)�1�24. It
follows that (_*(v1)�m*(v1))+(_*( f3)�m*( f3))�(_*(v1)�2)+(_*( f3)�2)
�1�24 and that (3) again holds.

3. PROOF OF THEOREM 1

Suppose that G is a counterexample of minimum order, then $(G)=4.
Because G is C4-free, G has no adjacent triangles and has no 4-face. By
Lemma 1, G has a F 3

5-subgraph H with

V(H)=[u1 , ..., u6] and E(H)=[u1u2 , u2u3 , u3u4 , u4u5 , u5u6 , u6 u1 , u2 u6].

Let L=(L(v) | v # V(G)) be a color-list of G in which each list contains 4
colors. Then G$=G&V(H) admits a list coloring ,$ with color-list L
restricted to G$.

For all v # V(H), let L0(v)=L(v)"[,$(u) | u # V(G$) and vu # E(G)].
Then, |L0(ui)|�2, i=1, 3, 4, 5, |L0(u2)|�3 and |L0(u6)|�3. Let L* be a
subset of L0(u3) with |L*|=2. We shall choose at u2 a color c2 #
L0(u2)"L*, at u1 a color c1 # L0(u1)"[c2], at u6 a color c6 # L0(u6)"[c1 , c2],
at u5 a color c5 # L0(u5)"[c6], at u4 a color c4 # L0(u4)"[c5] and at u3 a
color c3 # L*"[c4].
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