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The 4-Choosability of Plane Graphs without 4-Cycles*
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A graph G is called k-choosable if k is a number such that if we give lists of k
colors to each vertex of G there is a vertex coloring of G where each vertex receives
a color from its own list no matter what the lists are. In this paper, it is shown that
each plane graph without 4-cycles is 4-choosable.  © 1999 Academic Press

Key Words: list coloring; choosability; plane graph; 4-cycle.

1. INTRODUCTION

In this paper, we consider only finite and simple graphs. Let G be a plane
graph. V(G), E(G), and F(G) shall denote the set of vertices, edges, and
faces of G, respectively. Vertices u and v are adjacent, denoted by uv € E(G),
if there is an edge in G joining them. N 4(v), or N(v) if there is no possibility
of confusion, denotes the set of vertices adjacent to v in G, and Jf denotes
the set of vertices incident with the face f. The degree of u in G, written as
dg(u), is the number of vertices in Ng(v). A vertex u is called a k-vertex if
dg(u) =k. The minimum degree of G, min{d(v) | ve V(G)}, is denoted by
0(G). A face of a plane graph is said to be incident with all edges and
vertices on its boundary. Two faces are adjacent if they have an edge in
common. The degree of a face f of plane graph G, denoted by dg( f), is the
number of edges incident with it, where each cut-edge is counted twice.
A k-face is a face of degree k. A triangle is synonymous with a 3-face.
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A list coloring of G is an assignment of colors to V(G) such that each
vertex v receives a color from a prescribed list L(v) of colors and adjacent
vertices receive distinct colors—see [8]. L(G) = (L(v) | ve V(G)) is called a
color-list of G. G is called k-choosable if G admits a list-coloring for all
color-lists L with k colors in each list. The choice number of G, denoted by
x:(G), is the minimum k such that G is k-choosable.

All 2-choosable graphs have been characterized by Erdés et al. [4].
N. Alon and M. Tarsi [1] proved that every plane bipartite graph is 3-
choosable. Thomassen [ 6, 7] proved that every plane graph is 5-choosable
and every plane graph of girth at least 5 is 3-choosable, where the girth of
a graph G is the length of the shortest cycle in G. Also, every plane graph
G without 3-cycles is 4-choosable because J(G)< 3. Examples of plane
graphs which are not 4-choosable and plane graphs of girth 4 which are
not 3-choosable were given by Voigt [9, 10]. Voigt and Wirth [11] also
gave an example of a 3-colorable planar graph which is not 4-choosable.

In 1976, Steinberg (see [5, p. 229] or [2]) conjectured that every plane
graph without 4- and 5-cycles is 3-colorable. In 1990, Erdés (also see [5,
p- 229]) suggested the following relaxation of Steinberg’s conjecture: Is
there an integer k>5 such that every plane graph without i-cycles,
4 <i<k, is 3-colorable? In 1996, O. V. Borodin [2] proved that k=9 is
suitable. It would be significant to find an integer k>4 such that every
plane graph without i-cycles, 4 <i<k, is 4-choosable. In this paper, we
shall show that k=4 is sufficient by proving the following theorem.

THEOREM 1. Let G be a Cy-free plane graph. Then G is 4-choosable.

In Section 2, we shall show that any C,-free plane graph contains a sub-
graph with a special configuration, and this fact will be used to prove
Theorem 2 in Section 3.

2. SPECIAL CONFIGURATION F?

We use F3 to denote a special C,-free plane graph consisting of a 5-face
with an exterior adjacent triangle. A subgraph H of G is called an F3-sub-
graph if H is isomorphic to F?2 and dg(v) =4 for all ve V(H). We shall first
prove that any C,-free plane graph G with J(G)=4 contains an F3-sub-
graph.

Let G be a C,-free plane graph with 6(G) = 4. The set of all 5-faces adja-
cent to exactly four triangles and the set of all 5-faces adjacent to five tri-
angles are denoted by F, and F5 respectively. The subset of F, (respectively
of Fs) consisting only of faces incident with five 4-vertices is denoted by F,
(respectively Fs).
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Let feFsUF,, and let T be a triangle adjacent to f. The vertex
ued(T)\O(f) is called an M*-vertex of f. Moreover, if d(u) =35, then u is
called an M-vertex of f. Since a 5-vertex u can be incident with at most two
triangles, u can be an M-vertex of at most two faces in Fsu F,. If u is an
M-vertex of a face in F5u F,, we denote by m*(u) the number of faces in
Fs U F, for which u is an M-vertex. It follows that m*(u)=1 or 2. A face
S is called an M*-face of f at the vertex u, if 0(f) N d(f") ={u,} and there
exist two triangles which are adjacent to both f and f’. If in addition,
dg(f") =35, then " is called an M-face of f. If f" is an M-face of f at u,, then
dg(uy) =4. If G contains no Fi-subgraph and N(u,) n9f" ={u,, u,}, then
dg(u;) =5 for i=1 and 2. Therefore a 5-face /' may be the M-face of at
most two faces f,, foe Fsu F,. If f is an M-face of a face in F5 U F,, then
we denote by m*(f’) the number of faces in Fsu F, for which f’ is an
M-face. It also follows that m*(f)=1 or 2. Moreover, if m*(f')=2, then
f" 1s incident with three vertices of degree five or higher.

In [2], Borodin proved that 6(G) <4 for each plane graph without adja-
cent triangles. The following lemma is proved using the method of Borodin.
Note that if a graph is C,-free, then it has no 4-face and no adjacent
triangles.

Lemma 1. Let G be a plane graph without 4-faces and without adjacent
triangles. If 6(G) =4, then G contains an F 3-subgraph.

Proof. Suppose there exists a plane graph satisfying all assumptions of
the Lemma and containing no F3i-subgraph. Let G be a graph of minimum
order among such graphs.

CrLamMm 1. Each feFs has at least two M-vertices. If f has exactly two
M-vertices which are incident with the same M*-face f' of f, then all
M*-faces of f, with the possible exception of f', are M-faces.

Proof of Claim 1. Let f'e Fs be surrounded by triangles as in Fig. la.
Because G contains no F3-subgraph, we have dg(v,) =5 for i=1, .., 5.

FIGURE 1
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FIGURE 2

If f has no M-vertex, then put H=G— {uy, .., us} + {w, v;w, v,w, vsw,
vaw, vsw}—Fig. 2a. If f has only one M-vertex v,, then put H=G—
{ty, us, uy} + {u 05, usvy}—Fig. 2b. In both cases, o(H)=4; |[V(H)|<
|V(G)|; dy(v;)=5 for i=1,..,5; and H contains no 4-face, no adjacent
triangles, and no FI-subgraph; contradicting the choice of G. Therefore f
contains at least two M-vertices.

Suppose f has exactly two M-vertices v, and v, which are incident with
the same M*-face f; of f. If d4(f;) =6, and w is the vertex other than u,
such that wo, is an edge of f5—Fig. 2¢c, then put H=G — {u;, us} + {u>w,
usva}. If dg(f>) =6, then put H=G —{u,, us, uy} + {usv,, u v, 0505} —
Fig. 2d. The same contradiction as above establishes the latter part of
Claim 1.

CramM 2. Each feF, has at least one M-vertex, and one of the two
M*-faces of f denoted by f, and f5 in Fig.3b is an M-face.

The proof of Claim 2 is similar to that of Claim 1. If f has no M-vertex,
then put H=G —{uy, u,, us} + {v,us, vsu,}—Fig. 3a. If both ds(f;)>6

@) ®)

FIGURE 3
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and dg(f3) =6, then put H=G— {uy, uy, uz} + {v,0,, 0yus, V3ity, 0304} —
Fig. 3b. This completes the proof of Claim 2.

CramM 3. If u is an M-vertex of a face f e F, U Fs and is incident with
a face f*eFs, then f* must be an M-face of f.

Proof of Claim 3. Since u is an M-vertex of f, it is incident with one tri-
angle and two non-triangular faces f’ and f”, all of which share at least one
vertex with f. The remaining two faces incident with ¥ must be adjacent to
either /" or f” and therefore cannot be in Fs. Therefore if a face f* € Fs is
incident with u, then f* has to be either /' or f”, and it is an M-face of f.
This completes the proof of Claim 3.

Now by Euler’s formula, |V(G)| + |F(G)| — |E(G)| =2, we have

5 <dcév>_;>+ v <d6éf>_;>

ve V(G) feF(G)

1
= < Y de(v)+ X dc(f)>—2(|V(G)I+IF(G)I)

ve V(G) feF(G)

O | —

_ 1

(2 [E(G)| +2 [E(G)]) —5 (|E(G)[+2)= — L.

oo | —
0o |

For each xe V(G)u F(G), let o(x)=(dg(x)/8)—(1/2) be a weight
assigned to x. Then

o(x)=—1. (1)

x e V(G)u F(G)
We shall modify ¢ to a new weight ¢* according to the following rules:

(R-1) Every non-triangular face transfers 1/24 to each of its adjacent
triangles.

(R-2) Let k>6. Every k-vertex v transfers 1/12 to each of its incident
faces /' adjacent to two triangles, each of which shares with f’ a common
edge incident with v; and transfers 1/24 to each of its incident faces /" adja-
cent to exactly one triangle which shares with f” a common edge incident
with v.

(R-3) Let v be a 5-vertex of G.
(a) If v is incident with one 5-face f,€Fs and two 5-faces

f>, fs€F,, then transfer 1/12 to f; from v and transfer 1/48 to each of f,
and f3.
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(b) If v is incident with one 5-face f; € Fs and up to one 5-face
f>€ F,, then transfer 1/12 to f; from v and transfer 1/24 to f,, if necessary.

(c) If v is not incident with any 5-face in Fs, then transfer 1/24
from v to each face in F, which is incident with v.

Note that a 5-vertex v cannot be incident with two 5-faces in F5 because
otherwise there are adjacent triangles. Now, it follows that

> o*(x) = > o(x)= —1. (2)
xe V(G) U F(G) x e V(G)u F(G)

If v is a vertex of degree at least 6, then v is incident with /<| dg(v)/2 ]
faces which receives 1/12 from v, and incident with at most | 2(dg(v) —2/) |
faces which receive 1/24 from v, where | x| is the largest integer not
exceeding x. Therefore,

/ 2 1
() > _—_|Z — .
74(0) > ol0) ~ 5 h(ddv) 21| 5
(v) — l (d (v)=2I)
=T 36 10
_ Tdg(v)—36—21
B 72
=(6dG(U)_36)+(dG(U)_2[)20
72
Let v be a 5-vertex. If v is incident with one 5-face in F5 and two 5-faces
in F,, then o*(v)=o(v)—(1/12)—2-(1/48)=0. If v is incident with one
5-face in F5 and at most one S5-face in F,, then o*(v)=a(v)—(1/12) —

(1/24) =0. If v is not incident with any 5-face of Fs, then v is 1n01dent with
at most three 5-faces in F, and ¢*(v) = o(v) —3-(1/24)=0.

Let fe F(G). If dg(f) =3, then 6*(f)=0a(f)+3-(1/24)=0. If d5(f) = 6,
then o*(f) = 0a(f)—ds(f)- (1/24 (2dg(f)—12)/24=0. If d5(f) =5 and
f¢FsUF,, then o*(f)=0(f)—3-(1/24)=0. If f € F;\F, then there is at
least one vertex of degree 5 or more incident with f and ¢*(f)>=a(f) +
(1/12)—5-(1/24)=0. If f € F,\F,, then there is also at least one vertex of
degree 5 or higher incident with f. Suppose u is such a vertex.

If 1/24 or more is transferred from u to f, which will be the case if
dg(u) >S5 or if transfer is done according to (R-3)(b) or (R-3)(c), then
o*(f)=za(f)+(1/24)—4-(1/24) =0. Otherwise dg(u) =5 and u is incident
with a face f; in F5 and another face f, in F, in addition to f. Thus we have
the situation of Fig. 4 and dg(w) =5 because otherwise the triangles 7 and
T' are adjacent. It follows that o*( ) > a(f) + (1/48) + (1/48) —4-(1/24) =0
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FIGURE 4

Up to now, we have o*(x)>0 for each xe V(G)u F(G)—FsUF,,
g*(x)= —1/12 for each x e F5 and ¢*(x) = — 1/24 for each xe F,.

For each feFsuUF,, let M*(f)={vertex(face) which is an M-ver-
tex(face) of /'}. If we can prove that for each f e Fs U F,, the inequality

o+ X

xeM*(f)

=0, (3)

holds, then we have ¥ _ ) 6 0*(x) = 0. This will contradict (2) and
will complete the proof.
Suppose f € Fs as in Fig. la. Then o*(f)= —1/12. Let r;, ; be the value
transferred from v, to f; according to (R,) and (R;), where z ]—1 .5 5.
By Claim 1, f has at least two M-vertices. Suppose v, is an M—Vertex
of /. In the sequel, we want to show that

o), o ) L
oy () TR () D 24 ©®

(i) If fieFs, then r, =r, ;=1/12 and o*(f,)>1/12. Hence
(a*(f0)/m*(f1)) = (a*(f1)/2) = 1/24. Similarly, if f5eFs, then (a*(f5)/
m*(f5))=1/24. In the following, we shall assume that f; and f5 are both
not in Fs, and hence by Claim 3, v, is not incident with any face in Fs.

(i) If fieF, and f5¢ F,, then r, =1/24, r; =0, and at most 1/24
is transferred to one non-triangular face (other than f; and f5) incident
with v,. Hence o*(v,)=1/24 and (¢*(v,)/m*(v,))=(c*(v,)/2)=1/48.
Because f) € F,, we have r, | > 1/48. If m*(f,) =1, then (a*(f,)/m*(f1)) =

a*(f1)=1/48. If m*(f,)=2, then f; is incident with three vertices with
degree 5 or higher. Hence there is vertex w¢ {v,, v,} incident with f1 and
dg(w) =5, so each of w and v, will transfer at least 1/48 to f, and (a*(f;)/

m*(f1))=(a*(f1)/2) =2 1/48. It follows that (o*(v,)/m*(v,))+ ( *()/
m*(fl))>1/24. Similarly, if f, ¢ F, and fseF,, then (¢*(v,)/m*(v,))+
a*(f5)/m*(fs)) = 1/24.
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(i) If fi ¢ F, and f5¢ F,, then r; =7, s=0 and v, will transfer at
most 1/24 to one non-triangular face incident with it, and therefore
o*(v,)>1/12. It follows that (a*(v,)/m*(v,)) = (¢*(v,)/2) > 1/24.

Thus the proof of (4) is complete.

Similarly, if vy is an M-vertex of f, then (c*(v;)/m*(v3))+ (a*(f3)/
m*( f5)) + (a*( f3)/m*(f3)) = 1/24. Combining this with (4), we get (3). An
analogous conclusion can be made if v, is an M-vertex of f.

Suppose that f has exactly two M-vertices v, and v,. By Claim 1, f,, f3,
Jfa4 and f5 are all 5-faces. We also have dg(v;) > 6 for j=3, 4 and 5. If f3€ Fs,
then as in (i) above, we have o*(f3) > 1/12. If f5 ¢ Fs, then r; ;> 1/24 and
43> 1/24, and hence o*(f3) > 1/24. Similarly, we have o*(f,;) >1/24. It
follows that (a*(f3)/m*(f3)) 4+ (6*(fa)/m*( 1)) Z (6*(13)/2) + (6*(14)/2)
> 1/24. Combining this with the argument made on v;, we also have (3).

Now suppose f € F, as in Fig. 1b. Then o*(f)= —1/24. Let r, ; be the
weight transferred from v; to f; according to (R,) and (R;), where
i=1,.,4and j=1, .., 5.

By Claim 2, f has at least one M-vertex. If v, is an M-vertex of f, then
we can show as before that (a*(v,)/m*(v,)) + (a*(f1)/m*(f1)) + (6*(f3)/
m*(f5))=1/24, and (3) follows. Similarly if vy is an M-vertex of f, then
(0*(v3)/m*(v3)) + (a*(f2)/m*(f2)) + (6*(f3)/m*(f3)) = 1/24 and (3) follows
also. If both v, and v are not M-vertices of £, then without loss of generality,
we may assume that v; is an M-vertex of f. Also by Claim 2, either f; or f;
is an M-face of f.

Suppose f; is an M-face of f. If fieFs then ry=r,;=1/12. So
o*(f1)=1/12 and (a*(f1)/m*(f1)) = (a*(f1)/2) = 1/24. Suppose f,€ Fy,
then by Claim 3, v, is not incident with any face in F5 and therefore
ri.1=1/24. If v, is not incident with two triangles adjacent to f;, then v,
is incident with two triangles adjacent to f,. Since v, is not an M-vertex
of f, ds(v,) =6 and so r, ;=1/12. Hence o*(f,)=1/12. It follows that
(a*(f1)/m*(f1)) = (c*(f1)/2)=1/24. If v, is incident with two triangles
adjacent to f;, then f5 is adjacent to at least two non-triangular face and
hence r; 5 =0. Since we transfer at most 1/24 from v, to one non-triangular
face (other than f; and f5) incident with v,, we have o*(v,) > 1/24. Since
ry1=1/24, we have o*(f1)>1/24. It follows that (a*(f1)/m*(f))+
(a*(v)/m*(vy)) = (6*(/1)/2) + (a*(v,)/2) =2 1)24. If [ ¢FsUF,, then
r1,1 =0 and because ds(v,) =6, ry =>1/24. It follows that o*(v,)>1/24
and *(f,)>1/24, and that (o*(v;)/m*(v,)) + (a*(f,)/m*(f1)) > 1/24. As
before, (3) holds.

Suppose f; is not an M-face of f, then r; ;=0 and o*(v,)>1/24. By
Claim 2, f; must be an M-face of f. If f;€ Fs, or if v, is also an M-vertex
of £, the same argument as above leads to (3). Suppose f5 ¢ Fs and v, is not
an M-vertex of f, then dg(v,)>6 and therefore r, ;> 1/24. Because v; is
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not an M-vertex of f, we also have r; 3>1/24 and hence o*( f3) = 1/24. It

follows that (a*(vy)/m*(vy)) + (a*(f3)/m*(f3)) = (6%(v,)/2) + (6*(/3)/2)
>1/24 and that (3) again holds.

3. PROOF OF THEOREM 1

Suppose that G is a counterexample of minimum order, then J6(G) =4.
Because G is C,-free, G has no adjacent triangles and has no 4-face. By
Lemma 1, G has a Fi-subgraph H with

V(H) = {”1, “ ue} and E(H) = {“1”2; UpUs, UsUy, UylUs, Uslg, Uglly, “2“6}-

Let L=(L(v) | ve V(G)) be a color-list of G in which each list contains 4
colors. Then G'=G— V(H) admits a list coloring ¢’ with color-list L
restricted to G'.

For all ve V(H), let L%v)=L(v)\{¢'(u) | ueV(G') and vueE(G)}.
Then, |L%u;)| =2, i=1,3,4,5, |L%u,)| =3 and |L°%ug)| =3. Let L* be a
subset of L%u;) with |L*| =2. We shall choose at u, a color c,e
L%u,)\L*, at u, a color ¢, € L%uy)\{c,}, at ug a color cs€ L%(us)\{ ¢y, ¢,},
at us a color ¢se L%us)\{ce}, at u, a color c,e L%uy)\{cs} and at u; a
color c3€ L*¥\{c4}.
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