The 4-Choosability of Plane Graphs without 4-Cycles*

Peter Che Bor Lam

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong E-mail: cblam@math.hkbu.edu.hk

and

Baogang Xu and Jiazhuang Liu

Institute of Mathematics, Shandong University, Jinan, 250100, People's Republic of China Received October 2, 1997

A graph G is called k-choosable if k is a number such that if we give lists of k colors to each vertex of G there is a vertex coloring of G where each vertex receives a color from its own list no matter what the lists are. In this paper, it is shown that each plane graph without 4-cycles is 4-choosable. © 1999 Academic Press $Key\ Words$: list coloring; choosability; plane graph; 4-cycle.

1. INTRODUCTION

In this paper, we consider only finite and simple graphs. Let G be a plane graph. V(G), E(G), and F(G) shall denote the set of vertices, edges, and faces of G, respectively. Vertices u and v are adjacent, denoted by $uv \in E(G)$, if there is an edge in G joining them. $N_G(v)$, or N(v) if there is no possibility of confusion, denotes the set of vertices adjacent to v in G, and ∂f denotes the set of vertices incident with the face f. The degree of u in G, written as $d_G(u)$, is the number of vertices in $N_G(v)$. A vertex u is called a k-vertex if $d_G(u) = k$. The minimum degree of G, $\min\{d_G(v) \mid v \in V(G)\}$, is denoted by $\delta(G)$. A face of a plane graph is said to be incident with all edges and vertices on its boundary. Two faces are adjacent if they have an edge in common. The degree of a face f of plane graph G, denoted by $d_G(f)$, is the number of edges incident with it, where each cut-edge is counted twice. A k-face is a face of degree k. A triangle is synonymous with a 3-face.

* Research is partially supported by Research Grant Council, Hong Kong; by Faculty Research Grant, Hong Kong Baptist University and by the Doctoral Foundation of the Education Commission of the The People's Republic of China.

A *list coloring* of G is an assignment of colors to V(G) such that each vertex v receives a color from a prescribed list L(v) of colors and adjacent vertices receive distinct colors—see [8]. $L(G) = (L(v) \mid v \in V(G))$ is called a *color-list* of G. G is called k-choosable if G admits a list-coloring for all color-lists L with k colors in each list. The *choice number* of G, denoted by $\chi_I(G)$, is the minimum k such that G is k-choosable.

All 2-choosable graphs have been characterized by Erdős *et al.* [4]. N. Alon and M. Tarsi [1] proved that every plane bipartite graph is 3-choosable. Thomassen [6, 7] proved that every plane graph is 5-choosable and every plane graph of girth at least 5 is 3-choosable, where the *girth* of a graph G is the length of the shortest cycle in G. Also, every plane graph G without 3-cycles is 4-choosable because $\delta(G) \leq 3$. Examples of plane graphs which are not 4-choosable and plane graphs of girth 4 which are not 3-choosable were given by Voigt [9, 10]. Voigt and Wirth [11] also gave an example of a 3-colorable planar graph which is not 4-choosable.

In 1976, Steinberg (see [5, p. 229] or [2]) conjectured that every plane graph without 4- and 5-cycles is 3-colorable. In 1990, Erdős (also see [5, p. 229]) suggested the following relaxation of Steinberg's conjecture: Is there an integer $k \ge 5$ such that every plane graph without *i*-cycles, $4 \le i \le k$, is 3-colorable? In 1996, O. V. Borodin [2] proved that k = 9 is suitable. It would be significant to find an integer $k \ge 4$ such that every plane graph without *i*-cycles, $4 \le i \le k$, is 4-choosable. In this paper, we shall show that k = 4 is sufficient by proving the following theorem.

THEOREM 1. Let G be a C_4 -free plane graph. Then G is 4-choosable.

In Section 2, we shall show that any C_4 -free plane graph contains a subgraph with a special configuration, and this fact will be used to prove Theorem 2 in Section 3.

2. SPECIAL CONFIGURATION F_5^3

We use F_5^3 to denote a special C_4 -free plane graph consisting of a 5-face with an exterior adjacent triangle. A subgraph H of G is called an F_5^3 -subgraph if H is isomorphic to F_5^3 and $d_G(v) = 4$ for all $v \in V(H)$. We shall first prove that any C_4 -free plane graph G with $\delta(G) = 4$ contains an F_5^3 -subgraph.

Let G be a C_4 -free plane graph with $\delta(G) \geqslant 4$. The set of all 5-faces adjacent to exactly four triangles and the set of all 5-faces adjacent to five triangles are denoted by F_4 and F_5 respectively. The subset of F_4 (respectively of F_5) consisting only of faces incident with five 4-vertices is denoted by \overline{F}_4 (respectively \overline{F}_5).

Let $f \in \overline{F}_5 \cup \overline{F}_4$, and let T be a triangle adjacent to f. The vertex $u \in \partial(T) \setminus \partial(f)$ is called an M^* -vertex of f. Moreover, if $d_G(u) = 5$, then u is called an M-vertex of f. Since a 5-vertex u can be incident with at most two triangles, u can be an M-vertex of at most two faces in $\overline{F}_5 \cup \overline{F}_4$. If u is an M-vertex of a face in $\overline{F}_5 \cup \overline{F}_4$, we denote by $m^*(u)$ the number of faces in $\overline{F}_5 \cup \overline{F}_4$ for which u is an M-vertex. It follows that $m^*(u) = 1$ or 2. A face f' is called an M^* -face of f at the vertex u_0 if $\partial(f) \cap \partial(f') = \{u_0\}$ and there exist two triangles which are adjacent to both f and f'. If in addition, $d_G(f') = 5$, then f' is called an M-face of f. If f' is an M-face of f at u_0 , then $d_G(u_0) = 4$. If G contains no F_5^3 -subgraph and $N(u_0) \cap \partial f' = \{u_1, u_2\}$, then $d_G(u_i) \geqslant 5$ for i = 1 and 2. Therefore a 5-face f' may be the M-face of at most two faces $f_1, f_2 \in \overline{F}_5 \cup \overline{F}_4$. If f' is an M-face of a face in $\overline{F}_5 \cup \overline{F}_4$, then we denote by $m^*(f')$ the number of faces in $\overline{F}_5 \cup \overline{F}_4$ for which f' is an M-face. It also follows that $m^*(f) = 1$ or 2. Moreover, if $m^*(f') = 2$, then f' is incident with three vertices of degree five or higher.

In [2], Borodin proved that $\delta(G) \leq 4$ for each plane graph without adjacent triangles. The following lemma is proved using the method of Borodin. Note that if a graph is C_4 -free, then it has no 4-face and no adjacent triangles.

LEMMA 1. Let G be a plane graph without 4-faces and without adjacent triangles. If $\delta(G) = 4$, then G contains an F_5^3 -subgraph.

Proof. Suppose there exists a plane graph satisfying all assumptions of the Lemma and containing no F_5^3 -subgraph. Let G be a graph of minimum order among such graphs.

CLAIM 1. Each $f \in \overline{F}_5$ has at least two M-vertices. If f has exactly two M-vertices which are incident with the same M^* -face f' of f, then all M^* -faces of f, with the possible exception of f', are M-faces.

Proof of Claim 1. Let $f \in \overline{F}_5$ be surrounded by triangles as in Fig. 1a. Because G contains no F_5^3 -subgraph, we have $d_G(v_i) \ge 5$ for i = 1, ..., 5.

FIGURE 1

FIGURE 2

If f has no M-vertex, then put $H = G - \{u_1, ..., u_5\} + \{w, v_1w, v_2w, v_3w, v_4w, v_5w\}$ —Fig. 2a. If f has only one M-vertex v_1 , then put $H = G - \{u_2, u_3, u_4\} + \{u_1v_3, u_5v_4\}$ —Fig. 2b. In both cases, $\delta(H) = 4$; |V(H)| < |V(G)|; $d_H(v_i) \geqslant 5$ for i = 1, ..., 5; and H contains no 4-face, no adjacent triangles, and no F_5^* -subgraph; contradicting the choice of G. Therefore f contains at least two M-vertices.

Suppose f has exactly two M-vertices v_1 and v_2 which are incident with the same M^* -face f_1 of f. If $d_G(f_3) \ge 6$, and w is the vertex other than u_3 such that wv_4 is an edge of f_3 —Fig. 2c, then put $H = G - \{u_3, u_4\} + \{u_2w, u_5v_4\}$. If $d_G(f_2) \ge 6$, then put $H = G - \{u_2, u_3, u_4\} + \{u_5v_4, u_1v_3, v_2v_3\}$ —Fig. 2d. The same contradiction as above establishes the latter part of Claim 1.

CLAIM 2. Each $f \in \overline{F}_4$ has at least one M-vertex, and one of the two M^* -faces of f denoted by f_1 and f_3 in Fig. 3b is an M-face.

The proof of Claim 2 is similar to that of Claim 1. If f has no M-vertex, then put $H = G - \{u_1, u_2, u_3\} + \{v_2u_5, v_3u_4\}$ —Fig. 3a. If both $d_G(f_1) \ge 6$

FIGURE 3

and $d_G(f_3) \ge 6$, then put $H = G - \{u_1, u_2, u_3\} + \{v_2v_1, v_2u_5, v_3u_4, v_3v_4\}$ —Fig. 3b. This completes the proof of Claim 2.

Claim 3. If u is an M-vertex of a face $f \in \overline{F}_4 \cup \overline{F}_5$ and is incident with a face $f^* \in F_5$, then f^* must be an M-face of f.

Proof of Claim 3. Since u is an M-vertex of f, it is incident with one triangle and two non-triangular faces f' and f'', all of which share at least one vertex with f. The remaining two faces incident with u must be adjacent to either f' or f'' and therefore cannot be in F_5 . Therefore if a face $f^* \in F_5$ is incident with u, then f^* has to be either f' or f'', and it is an M-face of f. This completes the proof of Claim 3.

Now by Euler's formula, |V(G)| + |F(G)| - |E(G)| = 2, we have

$$\begin{split} \sum_{v \in V(G)} \left(\frac{d_G(v)}{8} - \frac{1}{2} \right) + \sum_{f \in F(G)} \left(\frac{d_G(f)}{8} - \frac{1}{2} \right) \\ &= \frac{1}{8} \left(\sum_{v \in V(G)} d_G(v) + \sum_{f \in F(G)} d_G(f) \right) - \frac{1}{2} \left(|V(G)| + |F(G)| \right) \\ &= \frac{1}{8} \left(2 |E(G)| + 2 |E(G)| \right) - \frac{1}{2} \left(|E(G)| + 2 \right) = -1. \end{split}$$

For each $x \in V(G) \cup F(G)$, let $\sigma(x) = (d_G(x)/8) - (1/2)$ be a weight assigned to x. Then

$$\sum_{x \in V(G) \cup F(G)} \sigma(x) = -1. \tag{1}$$

We shall modify σ to a new weight σ^* according to the following rules:

- (R-1) Every non-triangular face transfers 1/24 to each of its adjacent triangles.
- (R-2) Let $k \ge 6$. Every k-vertex v transfers 1/12 to each of its incident faces f' adjacent to two triangles, each of which shares with f' a common edge incident with v; and transfers 1/24 to each of its incident faces f'' adjacent to exactly one triangle which shares with f'' a common edge incident with v.
 - (R-3) Let v be a 5-vertex of G.
- (a) If v is incident with one 5-face $f_1 \in F_5$ and two 5-faces f_2 , $f_3 \in F_4$, then transfer 1/12 to f_1 from v and transfer 1/48 to each of f_2 and f_3 .

- (b) If v is incident with one 5-face $f_1 \in F_5$ and up to one 5-face $f_2 \in F_4$, then transfer 1/12 to f_1 from v and transfer 1/24 to f_2 , if necessary.
- (c) If v is not incident with any 5-face in F_5 , then transfer 1/24 from v to each face in F_4 which is incident with v.

Note that a 5-vertex v cannot be incident with two 5-faces in F_5 because otherwise there are adjacent triangles. Now, it follows that

$$\sum_{x \in V(G) \cup F(G)} \sigma^*(x) = \sum_{x \in V(G) \cup F(G)} \sigma(x) = -1.$$
 (2)

If v is a vertex of degree at least 6, then v is incident with $l \leq \lfloor d_G(v)/2 \rfloor$ faces which receives 1/12 from v, and incident with at most $\lfloor \frac{2}{3}(d_G(v)-2l) \rfloor$ faces which receive 1/24 from v, where $\lfloor x \rfloor$ is the largest integer not exceeding x. Therefore,

$$\begin{split} \sigma^*(v) &\geqslant \sigma(v) - \frac{l}{12} - \left\lfloor \frac{2}{3} \left(d_G(v) - 2l \right) \right\rfloor \cdot \frac{1}{24} \\ &\geqslant \sigma(v) - \frac{l}{12} - \frac{1}{36} \left(d_G(v) - 2l \right) \\ &= \frac{7d_G(v) - 36 - 2l}{72} \\ &= \frac{(6d_G(v) - 36) + (d_G(v) - 2l)}{72} \geqslant 0. \end{split}$$

Let v be a 5-vertex. If v is incident with one 5-face in F_5 and two 5-faces in F_4 , then $\sigma^*(v) \geqslant \sigma(v) - (1/12) - 2 \cdot (1/48) = 0$. If v is incident with one 5-face in F_5 and at most one 5-face in F_4 , then $\sigma^*(v) \geqslant \sigma(v) - (1/12) - (1/24) = 0$. If v is not incident with any 5-face of F_5 , then v is incident with at most three 5-faces in F_4 and $\sigma^*(v) \geqslant \sigma(v) - 3 \cdot (1/24) = 0$.

Let $f \in F(G)$. If $d_G(f) = 3$, then $\sigma^*(f) = \sigma(f) + 3 \cdot (1/24) = 0$. If $d_G(f) \ge 6$, then $\sigma^*(f) \ge \sigma(f) - d_G(f) \cdot (1/24) = (2d_G(f) - 12)/24 \ge 0$. If $d_G(f) = 5$ and $f \notin F_5 \cup F_4$, then $\sigma^*(f) \ge \sigma(f) - 3 \cdot (1/24) = 0$. If $f \in F_5 \setminus \overline{F}_5$, then there is at least one vertex of degree 5 or more incident with f and $\sigma^*(f) \ge \sigma(f) + (1/12) - 5 \cdot (1/24) = 0$. If $f \in F_4 \setminus \overline{F}_4$, then there is also at least one vertex of degree 5 or higher incident with f. Suppose f is such a vertex.

If 1/24 or more is transferred from u to f, which will be the case if $d_G(u) > 5$ or if transfer is done according to (R-3)(b) or (R-3)(c), then $\sigma^*(f) \ge \sigma(f) + (1/24) - 4 \cdot (1/24) = 0$. Otherwise $d_G(u) = 5$ and u is incident with a face f_1 in F_5 and another face f_2 in F_4 in addition to f. Thus we have the situation of Fig. 4 and $d_G(w) \ge 5$ because otherwise the triangles T and T' are adjacent. It follows that $\sigma^*(f) \ge \sigma(f) + (1/48) + (1/48) - 4 \cdot (1/24) = 0$.

FIGURE 4

Up to now, we have $\sigma^*(x) \ge 0$ for each $x \in V(G) \cup F(G) - \overline{F}_5 \cup \overline{F}_4$, $\sigma^*(x) = -1/12$ for each $x \in \overline{F}_5$ and $\sigma^*(x) = -1/24$ for each $x \in \overline{F}_4$.

For each $f \in \overline{F}_5 \cup \overline{F}_4$, let $M^*(f) = \{ \text{vertex(face) which is an } M\text{-vertex(face) of } f \}$. If we can prove that for each $f \in \overline{F}_5 \cup \overline{F}_4$, the inequality

$$\sigma^*(f) + \sum_{x \in M^*(f)} \frac{\sigma^*(x)}{m^*(x)} \ge 0,$$
(3)

holds, then we have $\sum_{x \in V(G) \cup F(G)} \sigma^*(x) \ge 0$. This will contradict (2) and will complete the proof.

Suppose $f \in \overline{F}_5$ as in Fig. 1a. Then $\sigma^*(f) = -1/12$. Let $r_{i,j}$ be the value transferred from v_i to f_j according to (R_2) and (R_3) , where i, j = 1, ..., 5.

By Claim 1, f has at least two M-vertices. Suppose v_1 is an M-vertex of f. In the sequel, we want to show that

$$\frac{\sigma^*(v_1)}{m^*(v_1)} + \frac{\sigma^*(f_5)}{m^*(f_5)} + \frac{\sigma^*(f_1)}{m^*(f_1)} \ge \frac{1}{24}.$$
 (4)

- (i) If $f_1 \in F_5$, then $r_{1,1} = r_{2,1} = 1/12$ and $\sigma^*(f_1) \geqslant 1/12$. Hence $(\sigma^*(f_1)/m^*(f_1)) \geqslant (\sigma^*(f_1)/2) \geqslant 1/24$. Similarly, if $f_5 \in F_5$, then $(\sigma^*(f_5)/m^*(f_5)) \geqslant 1/24$. In the following, we shall assume that f_1 and f_5 are both not in F_5 , and hence by Claim 3, v_1 is not incident with any face in F_5 .
- (ii) If $f_1 \in F_4$ and $f_5 \notin F_4$, then $r_{1,1} = 1/24$, $r_{1,5} = 0$, and at most 1/24 is transferred to one non-triangular face (other than f_1 and f_5) incident with v_1 . Hence $\sigma^*(v_1) \geqslant 1/24$ and $(\sigma^*(v_1)/m^*(v_1)) \geqslant (\sigma^*(v_1)/2) \geqslant 1/48$. Because $f_1 \in F_4$, we have $r_{2,1} \geqslant 1/48$. If $m^*(f_1) = 1$, then $(\sigma^*(f_1)/m^*(f_1)) = \sigma^*(f_1) \geqslant 1/48$. If $m^*(f_1) = 2$, then f_1 is incident with three vertices with degree 5 or higher. Hence there is vertex $w \notin \{v_1, v_2\}$ incident with f_1 and $d_G(w) \geqslant 5$, so each of w and v_2 will transfer at least 1/48 to f_1 and $(\sigma^*(f_1)/m^*(f_1)) = (\sigma^*(f_1)/2) \geqslant 1/48$. It follows that $(\sigma^*(v_1)/m^*(v_1)) + (\sigma^*(f_1)/m^*(f_1)) \geqslant 1/24$. Similarly, if $f_1 \notin F_4$ and $f_5 \in F_4$, then $(\sigma^*(v_1)/m^*(v_1)) + (\sigma^*(f_5)/m^*(f_5)) \geqslant 1/24$.

(iii) If $f_1 \notin F_4$ and $f_5 \notin F_4$, then $r_{1,1} = r_{1,5} = 0$ and v_1 will transfer at most 1/24 to one non-triangular face incident with it, and therefore $\sigma^*(v_1) \ge 1/12$. It follows that $(\sigma^*(v_1)/m^*(v_1)) \ge (\sigma^*(v_1)/2) \ge 1/24$.

Thus the proof of (4) is complete.

Similarly, if v_3 is an M-vertex of f, then $(\sigma^*(v_3)/m^*(v_3)) + (\sigma^*(f_2)/m^*(f_2)) + (\sigma^*(f_3)/m^*(f_3)) \ge 1/24$. Combining this with (4), we get (3). An analogous conclusion can be made if v_4 is an M-vertex of f.

Suppose that f has exactly two M-vertices v_1 and v_2 . By Claim $1, f_2, f_3, f_4$ and f_5 are all 5-faces. We also have $d_G(v_j) \ge 6$ for j = 3, 4 and 5. If $f_3 \in F_5$, then as in (i) above, we have $\sigma^*(f_3) \ge 1/12$. If $f_3 \notin F_5$, then $r_{3,3} \ge 1/24$ and $r_{4,3} \ge 1/24$, and hence $\sigma^*(f_3) \ge 1/24$. Similarly, we have $\sigma^*(f_4) \ge 1/24$. It follows that $(\sigma^*(f_3)/m^*(f_3)) + (\sigma^*(f_4)/m^*(f_4)) \ge (\sigma^*(f_3)/2) + (\sigma^*(f_4)/2) \ge 1/24$. Combining this with the argument made on v_1 , we also have (3).

Now suppose $f \in \overline{F}_4$ as in Fig. 1b. Then $\sigma^*(f) = -1/24$. Let $r_{i,j}$ be the weight transferred from v_i to f_j according to (R_2) and (R_3) , where i = 1, ..., 4 and j = 1, ..., 5.

By Claim 2, f has at least one M-vertex. If v_2 is an M-vertex of f, then we can show as before that $(\sigma^*(v_2)/m^*(v_2)) + (\sigma^*(f_1)/m^*(f_1)) + (\sigma^*(f_2)/m^*(f_2)) \ge 1/24$, and (3) follows. Similarly if v_3 is an M-vertex of f, then $(\sigma^*(v_3)/m^*(v_3)) + (\sigma^*(f_2)/m^*(f_2)) + (\sigma^*(f_3)/m^*(f_3)) \ge 1/24$ and (3) follows also. If both v_2 and v_3 are not M-vertices of f, then without loss of generality, we may assume that v_1 is an M-vertex of f. Also by Claim 2, either f_1 or f_3 is an M-face of f.

Suppose f_1 is an M-face of f. If $f_1 \in F_5$ then $r_{1,1} = r_{2,1} = 1/12$. So $\sigma^*(f_1) \geqslant 1/12$ and $(\sigma^*(f_1)/m^*(f_1)) \geqslant (\sigma^*(f_1)/2) \geqslant 1/24$. Suppose $f_1 \in F_4$, then by Claim 3, v_1 is not incident with any face in F_5 and therefore $r_{1,1} = 1/24$. If v_1 is not incident with two triangles adjacent to f_1 , then v_2 is incident with two triangles adjacent to f_1 . Since v_2 is not an M-vertex of f, $d_G(v_2) \geqslant 6$ and so $r_{2,1} = 1/12$. Hence $\sigma^*(f_1) \geqslant 1/12$. It follows that $(\sigma^*(f_1)/m^*(f_1)) \geqslant (\sigma^*(f_1)/2) \geqslant 1/24$. If v_1 is incident with two triangles adjacent to f_1 , then f_5 is adjacent to at least two non-triangular face and hence $r_{1,5} = 0$. Since we transfer at most 1/24 from v_1 to one non-triangular face (other than f_1 and f_5) incident with v_1 , we have $\sigma^*(v_1) \geqslant 1/24$. Since $r_{2,1} \geqslant 1/24$, we have $\sigma^*(f_1) \geqslant 1/24$. It follows that $(\sigma^*(f_1)/m^*(f_1)) + (\sigma^*(v_1)/m^*(v_1)) \geqslant (\sigma^*(f_1)/2) + (\sigma^*(v_1)/2) \geqslant 1/24$. It follows that $\sigma^*(v_1) \geqslant 1/24$ and $\sigma^*(f_1) \geqslant 1/24$, and that $(\sigma^*(v_1)/m^*(v_1)) + (\sigma^*(f_1)/m^*(f_1)) \geqslant 1/24$. As before, (3) holds.

Suppose f_1 is not an M-face of f, then $r_{1,1} = 0$ and $\sigma^*(v_1) \ge 1/24$. By Claim 2, f_3 must be an M-face of f. If $f_3 \in F_5$, or if v_4 is also an M-vertex of f, the same argument as above leads to (3). Suppose $f_3 \notin F_5$ and v_4 is not an M-vertex of f, then $d_G(v_4) \ge 6$ and therefore $r_{4,3} \ge 1/24$. Because v_3 is

not an *M*-vertex of f, we also have $r_{3,3} \ge 1/24$ and hence $\sigma^*(f_3) \ge 1/24$. It follows that $(\sigma^*(v_1)/m^*(v_1)) + (\sigma^*(f_3)/m^*(f_3)) \ge (\sigma^*(v_1)/2) + (\sigma^*(f_3)/2) \ge 1/24$ and that (3) again holds.

3. PROOF OF THEOREM 1

Suppose that G is a counterexample of minimum order, then $\delta(G) = 4$. Because G is C_4 -free, G has no adjacent triangles and has no 4-face. By Lemma 1, G has a F_5^3 -subgraph H with

$$V(H) = \{u_1, ..., u_6\}$$
 and $E(H) = \{u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_6, u_6u_1, u_2u_6\}.$

Let $L = (L(v) \mid v \in V(G))$ be a color-list of G in which each list contains 4 colors. Then G' = G - V(H) admits a list coloring ϕ' with color-list L restricted to G'.

For all $v \in V(H)$, let $L^0(v) = L(v) \setminus \{\phi'(u) \mid u \in V(G') \text{ and } vu \in E(G)\}$. Then, $|L^0(u_i)| \ge 2$, i = 1, 3, 4, 5, $|L^0(u_2)| \ge 3$ and $|L^0(u_6)| \ge 3$. Let L^* be a subset of $L^0(u_3)$ with $|L^*| = 2$. We shall choose at u_2 a color $c_2 \in L^0(u_2) \setminus L^*$, at u_1 a color $c_1 \in L^0(u_1) \setminus \{c_2\}$, at u_6 a color $c_6 \in L^0(u_6) \setminus \{c_1, c_2\}$, at u_5 a color $c_5 \in L^0(u_5) \setminus \{c_6\}$, at u_4 a color $c_4 \in L^0(u_4) \setminus \{c_5\}$ and at u_3 a color $c_3 \in L^* \setminus \{c_4\}$.

ACKNOWLEDGMENT

The authors acknowledge the valuable comments and suggestions of the referees.

REFERENCES

- 1. N. Alon and M. Tarsi, Colorings and orientations of graphs, *Combinatorica* 12, No. 2 (1992), 125–134.
- O. V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 12, No. 2 (1996), 183–186.
- J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, London, 1976.
- P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979), 125–157.
- R. Steinberg, The state of the three color problem, in "Quo Vadis: Graph Theory?"
 (J. Gimbel, J. W. Kennedy, and L. V. Quintas, Eds.), Ann. Discrete Math., Vol. 55, pp. 211–248, North-Holland, Amsterdam, 1993.
- C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994), 180–181.
- C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995), 101–107.

- 8. V. G. Vizing, Vertex coloring with given colors, *Diskret. Anal.* **29** (1976), 3–10. [In Russian]
- 9. M. Voigt, List colouring of planar graphs, Discrete Math. 120 (1993), 215-219.
- M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995), 325–328.
- 11. M. Voigt and B. Wirth, On 3-colorable non-4-choosable planar graphs, *J. Graph Theory* **24**, No. 3 (1997), 233–235.