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Abstract
The survival and progression of prostate cancer is generally dependent on expression of the
androgen receptor (AR), as well as the availability of endogenous AR agonists. Originating from
the gonads, testosterone is released into circulation and is converted by steroid-5α-reductase
(SRD5A) in prostate cancer to 5α-dihydrotestosterone (DHT), potently activating AR and driving
tumor progression. Advanced prostate cancer is initially treated with gonadal testosterone
depletion, which suppresses this cascade of events and typically leads to a treatment response.
Eventually, resistance to testosterone deprivation occurs with “castration-resistant” prostate cancer
(CRPC) and is driven by the intratumoral synthesis of DHT. The generation of DHT occurs in
large part from adrenal 19-carbon precursor steroids, which are dependent on expression of
CYP17A1. Although the path from adrenal precursor steroids to DHT was generally thought to
require 5α-reduction of testosterone, recent data suggest that it instead involves conversion from
Δ4-androstenedione by SRD5A isoenzyme-1 to 5α-androstanedione, followed by subsequent
conversion to DHT. The 5α-androstanedione pathway to DHT therefore bypasses testosterone
entirely. Abiraterone acetate effectively inhibits CYP17A1, blocks the synthesis of androgens and
extends the survival of men with CRPC. Further progress in the hormonal treatment of CRPC is
dependent on an understanding of the mechanisms that underlie CRPC and resistance to
abiraterone acetate.
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The androgen axis is central to the progression and treatment of prostate cancer. Essential
components of this axis require the expression of the androgen receptor (AR) and the
generation of endogenous AR agonists. The androgen signaling pathway is intimately
involved from tumor initiation and invasion, to the development of metastatic disease.
Translocation of the androgen-controlled TMPRSS2 regulatory region proximal to a
member of the ETS-family oncogenes occurs in the transition between high grade prostatic
intraepithelial neoplasia and invasive prostate cancer, driving oncogene expression1. The
requirement for expression of these oncogenes, elicited by the androgen axis, continues to
very late and resistant states of disease2. Therefore, the mechanisms that regulate the
androgen axis, from the generation of ligand, to AR expression, to the response of AR-
regulated genes, all represent steps that are potential points of intervention for the
development of new pharmacologic therapies. A precise understanding of this pathway is
required for further advances in the treatment of prostate cancer.
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Gonadal testosterone deprivation
Physiologic serum concentrations of total testosterone (T) are generally > 300 ng/dl (10.4
nmol/l)3. In prostatic tissue, T is converted by steroid-5α-reductase (SRD5A) to 5α-
dihydrotestosterone (DHT). T is capable of binding AR in the absence of metabolism to
DHT but the latter is several fold more potent and is the major androgen bound to AR in the
prostate cell nucleus4,5. Although two isoenzymes exist, in the prostate expression of
SRD5A2 is greater than that of SRD5A16. In prostatic tissue, SRD5A enzymatic activity
results in DHT concentrations that are several fold higher than T and this ratio is reversed
upon treatment with pharmacologic blockade of SRD5A7,8. The effect of gonadal
testosterone deprivation is therefore likely due in large part to the depletion of intratumoral
DHT. However, despite 94% reductions in serum T with medical castration, intraprostatic T
and DHT are reduced by only 70 and 80%, respectively9. The apparent availability of
precursors for the synthesis of residual intraprostatic androgens with medical castration
provides a clue as to the mechanisms of resistance to depletion of gonadal T10. Nonetheless,
responses to gonadal T depletion therapy occur in the majority of cases, although the
response in the metastatic setting is nearly always temporary11.

Castration-resistant prostate cancer
Disease that progresses in the presence of gonadal T depletion is termed “castration-
resistant” prostate cancer (CRPC). Multiple lines of evidence suggest that the switch from
hormone-responsive to CRPC is regulated by a gain-of-function in AR12-14. A multitude of
mechanisms have been implicated in increasing AR-driven transcription. These vary from
alterations in coactivator/corepressor expression, ligand-independent function or ligand-
sensitization through growth factors or their receptors, post-translational modification of
AR, increased AR expression, AR mutations that broaden the specificity for ligand, and
intratumoral steroidogenesis that increases the availability of T and/or DHT 15-22. All of
these factors may contribute to some extent to the development of CRPC in a manner that is
probably highly dependent on the molecular pathogenesis of individual tumors. However,
the finding of biologically significant concentrations of intratumoral androgens common to
the majority of tumors, coupled with clinical responses to depletion of these androgens,
implicates intratumoral steroidogenesis as a major and frequent driver of CRPC21-24.

Essential components of intratumoral steroidogenesis
The synthesis of all steroids originates from cholesterol25. The structural features of the
initial substrate and the final product(s) must be considered in the pathway(s) from
cholesterol to T and/or DHT. Cholesterol has a 27-carbon, 3β-hydroxyl, Δ5-structure (double
bond between carbons 5 and 6). Eventual conversion to 19-carbon T and/or DHT
necessitates the departure of 8 carbons through 2 enzymes, 3β-hydroxyl oxidation to 3-keto,
Δ5 isomerization to Δ4, and 17-keto reduction to a 17β-hydroxysteroid. In the adrenal,
P450scc cleaves cholesterol to 21-carbon pregnenolone, which is then a substrate for
CYP17A1 hydroxylase and 17, 20-lyase activity, yielding 19-carbon
dehydroepiandrosterone (DHEA). DHEA and its sulfate are the major androgen precursor
steroids in serum and the probable major source(s) of intratumoral androgens in CRPC26,27.
In CRPC, DHEA is converted to Δ4-androstenedione (AD) by 3β-hydroxysteroid
dehydrogenase/isomerase (3βHSD), which is encoded by two isoenzymes28. 3βHSD1 is
generally thought to be expressed in peripheral tissues and 3βHSD2 the responsible enzyme
in steroidogenic organs29,30. However, expression of transcripts encoding both isoenzymes
has been detected in CRPC tissues21,31.

It generally had been assumed that the next step in the CRPC pathway is conversion of AD
to T12,32. The presumptive conversion of AD to T was implied in part from the observations
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that intratumoral T concentrations and expression of AKR1C3, which is capable of
converting AD to T, are both increased in CRPC21,33. Expression of SRD5A1 is increased in
CRPC and was generally thought to be required for the conversion from T to DHT21,32-34.

An alternative possibility to synthesis from adrenal precursor steroids is de novo androgen
synthesis from cholesterol, taking place entirely in CRPC tissue. This has been reported in
CRPC cell lines35. However, the abundance of adrenal precursors in serum, the requirement
for only 2-3 enzymes for the conversion from DHEA to T and DHT, and comparisons of
flux through both pathways, together suggest that the adrenals are the main source for
intratumoral androgens in CRPC27.

Abiraterone acetate
CYP17A1 enzymatic activity is required for the conversion of 21-carbon steroids to 19-
carbon androgens, no matter the relative contribution of the adrenal vs. de novo pathways to
intratumoral T and DHT. Abiraterone acetate potently blocks both CYP17A1 hydroxylase
and 17, 20-lyase activity36. Initial clinical studies of abiraterone acetate demonstrated
declines in serum T and AD concentrations; however, pituitary compensation by luteinizing
hormone hypersecretion, resulted in some gonadal testosterone recovery in eugonadal
males37. In phase I/II trials in men with CRPC, PSA declines greater than 50% occurred in
approximately two-thirds of patients who had not been previously treated with
chemotherapy23,38. Pretreatment concentrations of DHEA, DHEA-S and AD in serum were
associated with treatment response23. In a phase III trial of abiraterone acetate plus
prednisone versus placebo plus prednisone in CRPC patients previously treated with
docetaxel, overall survival was 3.9 months longer in the abiraterone acetate-prednisone
group39. Progression-free survival, PSA response rate and time to PSA progression were all
in favor of the abiraterone acetate-prednisone group. On the basis of these data, abiraterone
acetate was approved by the United States Food and Drug Administration in April 2011 for
the treatment of metastatic CRPC in men previously treated with docetaxel. Notably,
progression-free survival in the abiraterone acetate-prednisone arm was 5.6 months, raising
the issue of treatment options in resistant tumors. Abiraterone acetate is administered orally,
is generally well-tolerated and clinically active, all suggesting that widespread use of this
drug will lead to a large population of men with abiraterone acetate-resistant CRPC.
Therefore, this is an urgent area of investigation. Although early preclinical data in mouse
xenograft models suggest that sustained steroidogenesis is in part responsible, there is very
little insight into the mechanisms that may permit androgen synthesis in clinical tumors
under abiraterone acetate treatment conditions40.

The 5α-androstanedione pathway to DHT
Defining potential points of intervention in abiraterone acetate resistant tumors must be
preceded by a firm understanding of the mechanisms underlying abiraterone acetate- and
castration-resistance. Increased concentrations of T and overexpression of AKR1C3 in
clinical CRPC appear to support the notion that AD is converted to T, which is the
immediate precursor to DHT32. However, AD is also a 3-keto, Δ4-steroid, similar to T,
making it a substrate for SRD5A1 that is possibly even better than T41,42. An alternative
possibility to synthesis through T is that 5α-reduction of AD results in synthesis of 5α-
androstanedione (5α-dione), which may be 17-keto reduced to DHT (Figure 1). We have
recently shown that AD is preferentially 5α-reduced to 5α-dione, rather than 17-keto
reduced to T, in multiple models of CRPC, as well as freshly biopsied tissue from 2 patients
with metastatic CRPC43. Any T that is synthesized from AD is actually a poorer substrate
for SRD5A compared to AD. Therefore, the preferred route from adrenal precursors to DHT
is AD → 5α-dione → DHT (5α-dione pathway), rather than AD → T → DHT (conventional
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pathway). Furthermore, silencing the expression of SRD5A1 blocks the conversion of AD to
5α-dione and the eventual synthesis of DHT in CRPC43. This suggests that the SRD5A1 up-
regulation described in multiple clinical studies of CRPC tissue, serves to increase flux from
AD → 5α-dione, rather than T → DHT, as previously assumed32. The increase in
expression of AKR1C3, which reduces 17-keto to 17-hydroxysteroids, may serve to convert
5α-dione → DHT, rather than AD → T44. These unanticipated findings on the origins of
DHT in CRPC suggest that there should be a reevaluation of current strategies of assessing
response and resistance to various hormonal therapies, including abiraterone acetate, as well
as a reconsideration of the consequences of potential points of pharmacologic intervention.

Clinical implications of the 5α-androstanedione pathway
An understanding of the relevant and required intratumoral intermediates en route to DHT is
necessary in order to accurately characterize androgen depletion downstream of abiraterone
acetate. Intratumoral T is probably not the best marker of response or resistance to
abiraterone acetate, given that this is not the major DHT precursor45. The spectrum of
intermediate metabolites as markers of response or resistance should be expanded to include
5α-dione and probably other 5α-reduced androgens, particularly given that several 5α-
reduced androgens are reversibly interconvertible to DHT27.

Intratumoral synthesis of DHT through the 5α-dione, rather than the conventional pathway
via T, alters the consequences of current and potential pathway inhibitors. Trials of dual
SRD5A inhibitors in CRPC only demonstrated very modest clinical activity46,47. This might
be interpreted to indicate that DHT is unimportant in driving CRPC. Alternatively, the
effects of blocking the 5α-dione pathway through genetically or pharmacologically
inhibiting SRD5A1, results in diverting AD instead to increased synthesis of T43. The
diverted pathway resulting in increased intratumoral concentrations of T probably
substitutes in part for the inhibition of DHT synthesis, despite the more modest AR agonist
activity of the former androgen. One possible solution to this pitfall of SRD5A inhibition is
the move one step upstream in the pathway of DHT synthesis. Pharmacologic inhibition of
3βHSD blocks the conversion of DHEA to AD, AR nuclear translocation, expression of AR-
responsive genes and cell growth28. Similar to diversion of AD by 17-keto reduction to T
with SRD5A inhibition, it is possible that DHEA is also diverted by 17-keto reduction to Δ5-
androstenediol with 3βHSD inhibition. However, just as with DHEA, Δ5-androstenediol
must also be metabolized by 3βHSD in order to induce the AR-response, for both wild-type
and the LNCaP mutant AR28. Several pharmacologic inhibitors of 3βHSD exist but they all
have problems, such as partial AR agonism, that make them untenable for use in the
treatment of CRPC13.

Conclusion
The presence of intratumoral DHT in CRPC was first noted over 30 years ago. The survival
benefit conferred by treatment with abiraterone acetate is the clearest evidence yet that
intratumoral androgens are a main driver of the development of resistance to hormonal
therapy and progression with CRPC. Although the pathway from adrenal precursor steroids
to intratumoral synthesis of DHT was widely believed to require T, the main route instead
circumvents T through the 5α-dione pathway and requires expression of SRD5A1.
Strategies for the development of better therapeutic approaches should account for the
unanticipated dominance of the 5α-dione pathway in CRPC.
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Figure 1.
The pathway overview of DHT synthesis. The synthesis of intratumoral DHT requires
enzymatic modification of the 3-, 5-, and 17-positions of the steroid backbone by 3β-
hydroxysteroid dehydrogenase (3βHSD), steroid 5α-reductase (SRD5A) and 17β-
hydroxysteroid dehydrogenase (17βHSD) isoenzymes. The widely accepted conventional
pathway requires conversion of AD to T (red arrows). An alternative possibility circumvents
the requirement for T by 5α-reduction of AD to 5α-dione (green arrows).
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