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Abstract

The AI City Challenge was created with two goals in

mind: (1) pushing the boundaries of research and devel-

opment in intelligent video analysis for smarter cities use

cases, and (2) assessing tasks where the level of perfor-

mance is enough to cause real-world adoption. Trans-

portation is a segment ripe for such adoption. The fifth

AI City Challenge attracted 305 participating teams across

38 countries, who leveraged city-scale real traffic data and

high-quality synthetic data to compete in five challenge

tracks. Track 1 addressed video-based automatic vehicle

counting, where the evaluation being conducted on both al-

gorithmic effectiveness and computational efficiency. Track

2 addressed city-scale vehicle re-identification with aug-

mented synthetic data to substantially increase the train-

ing set for the task. Track 3 addressed city-scale multi-

target multi-camera vehicle tracking. Track 4 addressed

traffic anomaly detection. Track 5 was a new track ad-

dressing vehicle retrieval using natural language descrip-

tions. The evaluation system shows a general leader board

of all submitted results, and a public leader board of results

limited to the contest participation rules, where teams are

not allowed to use external data in their work. The public

leader board shows results more close to real-world situ-

ations where annotated data is limited. Results show the

promise of AI in Smarter Transportation. State-of-the-art

performance for some tasks shows that these technologies

are ready for adoption in real-world systems.

1. Introduction

The proliferation of sensors has led to the production of

fast and voluminous data, along with the emergence and in-

creasing adoption of 5G technologies. The ability to pro-

cess such voluminous data at the edge has created unique

opportunities for extracting insights using the Internet of

Things (IoT) for increased operational efficiencies and im-

proved overall outcomes. Intelligent Transportation Sys-

tems (ITS) seem ripe to benefit from the adoption of ar-

tificial intelligence (AI) applied at the edge. The AI City

Challenge was intended to bridge the gap between real-

world city-scale problems in ITS and the cutting edge re-

search and development in intelligent video analytics. The

challenge is based on data that reflect common scenarios in

city-scale traffic management. It also provides an evalua-

tion platform for algorithms to be compared using common

metrics. Throughout the past four years of this challenge,

we have developed progressively more complex and rele-

vant tasks [29, 30, 31, 32].

The fifth edition of this annual challenge, in conjunc-

tion with CVPR 2021, continues to push the envelope of

research and development in the context of real-world ap-

plication in several new ways. First, the challenge has in-

troduced a new track for multi-camera retrieval of vehicle

trajectories based on natural language descriptions of the

vehicles of interest. To our knowledge, this is the first such

challenge that combines computer vision and natural lan-

guage processing (NLP) for city-scale retrieval implementa-

tions needed by the Departments of Transportation (DOTs)

for operational deployments. The second change in this edi-

tion is the expansion of training and testing sets in several



challenge tracks. Finally, the vehicle counting track now

requires an online, rather than batch algorithm approach to

qualify for winning the challenge. Deployment on an edge

IoT device helps bring the advances in this field closer to

real-world deployment.

The five tracks of the AI City Challenge 2021 are sum-

marized as follows:

• Multi-class multi-movement vehicle counting using

IoT devices: Vehicle counting is an essential and pivotal

task in various traffic analysis activities. The capability

to count vehicles under specific movement patterns or

categories from a vision-based system is useful yet chal-

lenging. This task counts four-wheel vehicles and freight

trucks that follow pre-defined movements from multi-

ple camera scenes with online algorithms which should

run efficiently on edge devices. The dataset contains 31

video clips of about 9 hours in total that are captured

from 20 unique traffic camera views.

• Vehicle re-identification with real and synthetic train-

ing data: Re-identification (ReID) [58, 60] aims to es-

tablish identity correspondences across different cam-

eras. Our ReID task is evaluated on an expanded version

of the previous dataset, referred to as CityFlowV2-ReID,

which contains over 85,000 vehicle crops captured by 46

cameras placed in multiple traffic intersections. Some

of the images are as small as 1,000 pixels. A synthetic

dataset [53, 46] along with a simulation engine is pro-

vided for teams to form augmented training sets.

• City-scale multi-target multi-camera vehicle track-

ing: Teams are asked to perform multi-target multi-

camera (MTMC) vehicle tracking, whose evaluation is

conducted on an updated version of our dataset, re-

ferred to as CityFlowV2. The annotations on the training

set have been refined to include ∼60% more bounding

boxes to align with the labeling standard of the test set.

There are in total 313, 931 bounding boxes for 880 dis-

tinct annotated vehicle identities.

• Traffic anomaly detection: In this track, teams are re-

quired to detect anomalies in videos such as crashes,

stalled vehicles, etc. The dataset used in this track is

obtained from video feeds captured at multiple intersec-

tions and highways in Iowa, USA. The training set con-

sists of 100 videos, including 18 anomalies, while the

test set consists of 150 videos. Each video is in 800×410

resolution and around 15 minutes long.

• Natural language-based vehicle retrieval: This newly

added task offers natural language (NL) descriptions for

teams to specify corresponding vehicle track queries.

Participant teams need to perform vehicle retrieval given

single-camera tracks and the NL labels. The perfor-

mance is evaluated using standard retrieval metrics.

Continuing the trend of previous editions, this year’s AI

City Challenge has attracted strong participation, especially

with regards to the number of submissions to the evaluation

server. We had a total of 305 participating teams that in-

cluded more than 700 individual researchers from 234 rec-

ognized institutions in 38 countries. There were 194, 235,

232, 201, and 155 participation requests received for the

5 challenge tracks, respectively. Of all requesting teams,

137 registered for an account on the evaluation system, and

21, 51, 35, 15, and 20 teams submitted results to the leader

boards of the 5 tracks, respectively. Overall, the teams com-

pleted 1,685 successful submissions to the evaluation sys-

tem across all tracks.

This paper presents a detailed summary of the prepara-

tion and results of the fifth AI City Challenge. In the fol-

lowing sections, we describe the challenge setup (§ 2), chal-

lenge data preparation (§ 3), evaluation methodology (§ 4),

analysis of submitted results (§ 5), and a brief discussion of

insights and future trends (§ 6).

2. Challenge Setup

The fifth AI City Challenge was set up following a sim-

ilar format as in previous years. The training and test

sets were made available to the participants on January 22,

2021. All challenge track submissions were due on April

9, 2021. Similar to the earlier editions, all candidate teams

for awards were requested to submit their code for valida-

tion. The performance on the leader boards has to be repro-

ducible without the use of external data.

In the released datasets, private information such as vehi-

cle license plates and human faces have been redacted man-

ually. Detailed descriptions of the challenge tasks are as

follows.

Track 1: Multi-class multi-movement vehicle count-

ing. Teams were asked to count four-wheel vehicles and

freight trucks that followed pre-defined movements from

multiple camera scenes. For example, teams performed ve-

hicle counting separately for left-turning, right-turning, and

through traffic near a given intersection. This helps traffic

engineers understand the traffic demand and freight ratio on

individual corridors. Such knowledge can be used to design

better intersection signal timing plans and the consideration

of traffic congestion mitigation strategies when necessary.

To maximize the practical value of the challenge outcome,

both vehicle counting effectiveness and the program execu-

tion efficiency contributed to the final score evaluation. Ad-

ditionally, to mimic the performance of in-road hardware

sensor-based counting systems, methods were required to

run online in real-time. While any system could be used to

generate solutions to the problem for general submissions,

the final evaluation of the top methods will be executed on

an IoT device. The team with the highest combined effi-

ciency and effectiveness score will win this track.



Track 2: Vehicle ReID with real and synthetic train-

ing data. Teams were requested to perform vehicle ReID

based on vehicle crops from multiple cameras placed at sev-

eral road intersections. This helps traffic engineers under-

stand journey times along entire corridors. Similar to the

previous edition of the challenge, the training set was com-

posed of both real and synthetic data. The usage of synthetic

data was encouraged as the simulation engine was provided

to create large-scale training sets. The team with the highest

accuracy in identifying vehicles that appeared in different

cameras will be declared the winner of this track.

Track 3: City-scale MTMC vehicle tracking. Teams

were asked to track vehicles across multiple cameras at a

single intersection and across multiple intersections spread-

ing out in a mid-size city. Results can be used by traffic en-

gineers to understand traffic conditions at a city-wide scale.

The team with the highest accuracy in tracking vehicles that

appear in multiple cameras will be declared as the winner.

In the event that multiple teams perform equally well in this

track, the algorithm needing the least amount of manual su-

pervision will be chosen as the winner.

Track 4: Traffic anomaly detection. Based on more

than 62 hours of videos collected from different camera

views at multiple freeways by the DOT of Iowa, each team

was asked to submit a list of at most 100 detected anoma-

lies. The anomalies included single and multiple vehicle

crashes and stalled vehicles. Regular congestion was not

considered as an anomaly. The team with the highest aver-

age precision and the most accurate anomaly starting time

prediction in the submitted events will become the winner

of this track.

Track 5: NL based vehicle retrieval. In this new chal-

lenge track, teams were asked to perform vehicle retrieval

given single-view tracks and corresponding NL descriptions

of the targets. The performance of the retrieval task was

evaluated using the standard metrics of retrieval tasks (e.g.,

Mean Reciprocal Rank (MRR), Recall@N, etc.), while am-

biguities caused by similar vehicle types, colors, and mo-

tion types were considered as well. The NL based vehi-

cle retrieval task offered unique challenges versus action

recognition tasks and content-based image retrieval tasks.

In particular, different from prior content-based image re-

trieval systems [11, 14, 28], retrieval models for this task

needed to consider both the relation contexts between ve-

hicle tracks and the motion within each track. While tra-

ditional action recognition by NL description [2] localizes

a moment within a video, the NL based vehicle retrieval

task requires both temporal and spatial localization within a

video.

3. Datasets

The data used in this challenge were collected from traf-

fic cameras placed in multiple intersections of a mid-size

city in USA and the state highways in Iowa. Video feeds

have been synchronized manually and the GPS information

for some cameras were made available for researchers to

leverage the spatio-temporal information. The majority of

these video clips are of high resolution (1080p) at 10 frames

per second. We have addressed the privacy issues by care-

fully redacting all vehicle license plates and human faces.

In addition to the datasets used in the previous editions of

the challenge, a new NL based vehicle retrieval dataset was

added for a separate challenge track this year.

Specifically, the following datasets were provided for the

challenge this year: (1) CityFlowV2 [47, 31, 32] for Track

2 ReID and Track 3 MTMC tracking, (2) VehicleX [53, 46]

for Track 2 ReID, (3) Iowa DOT dataset [30] for Track 1

vehicle counting and Track 4 anomaly event detection, and

(4) CityFlow-NL [8] for Track 5 NL based vehicle retrieval.

3.1. The CityFlowV2 dataset

The CityFlow benchmark [47, 31] was first introduced

in the third AI City Challenge in 2019. To the best of our

knowledge, it was the first benchmark to address MTMC

vehicle tracking in a city scale. A subset of image crops was

also created for the task of vehicle ReID. However, there

were several issues with this initial release. (1) Many an-

notations were labeled not properly or missing especially

for small-sized objects. (2) The training set was too small

compared with the test set, and a validation set was needed.

(3) The leading teams in previous years have saturated the

performance on the ReID test set.

To continue to challenge the participants, we have up-

graded the benchmark in multiple ways this year, and the

new version is referred to as CityFlowV2. First, we man-

ually refined the annotations of the dataset, especially for

the training set, to correct mislabeled objects and include

bounding boxes that are as small as 1, 000 pixels. Besides,

a new test set containing 6 cameras at multiple intersec-

tions on a city highway was introduced in the fourth AI

City Challenge. The distance between the two furthest cam-

eras was 4 km. Moreover, the original test set was adapted

to be the validation set for teams to better analyze and im-

prove their models. The number of total bounding boxes has

thus grown from 229, 680 to 313, 931, whereas the distinct

vehicle identities also increased from 666 to 880. Finally,

we re-sampled the ReID set for Track 2 with small-sized

bounding boxes included, and now there are 85, 058 images

versus 56, 277 in the earlier version.

In summary, CityFlowV2 consisted of 3.58 hours

(215.03 minutes) of video captured by 46 cameras span-

ning 16 intersections. The dataset was divided into 6 si-

multaneous scenarios, where 3 were used for training, 2

for validation, and the other one for testing. Only vehicles

that passed through more than one camera were labeled. In

each scenario, the time offset and geographic location of



Figure 1. Pipeline for generating VehicleX images. With target

real data as reference, we used: (A) content-level domain adapta-

tion which manipulated image contents such as illumination and

viewpoint, and (B) appearance (style)-level domain adaptation

which translated image styles. Such simulated images, together

with the real ones, were provided to teams for model training.

each video were provided so that spatio-temporal knowl-

edge can be utilized. The subset for vehicle ReID, namely

CityFlowV2-ReID, was split into a training set with 52, 717

images from 440 identities, and a test set including 31, 238

images from another 440 identities. An additional 1, 103

images were sampled as queries. We also provided in the

package evaluation and visualization tools to facilitate the

quantitative and qualitative analysis of the results.

3.2. The VehicleX dataset

The VehicleX dataset [53, 46] was first introduced in the

fourth AI City Challenge in 2020. It has a large number of

different types of backbone models and textures that were

hand-crafted by professional 3D modelers. To the best of

our knowledge, it is currently the largest publicly available

3D vehicle dataset with 11 vehicle types and 272 back-

bones. Rendered by Unity [17], a team can potentially

generate an unlimited number of identities and images by

editing various attributes. In this year’s AI City Challenge,

1,362 identities and more than 190,000 images were gen-

erated for joint training with the real-world datasets (i.e.,

CityFlowV2-ReID) to improve the ReID accuracy. We also

provided the Unity-Python interface for participant teams,

so they could create more synthetic data if needed. They

were enabled to generate new identities using a different

color on backbones or generate more images with various

orientations, camera parameters, and lighting settings. With

these attributes, participants can perform multi-task learn-

ing, which would improve the ReID accuracy [46, 23].

In order to minimize the domain gap between the syn-

thetic data and real-world data, a two-level domain adapta-

tion method was performed as shown in Fig. 1. First, on the

content level via the Unity-Python interface, an attribute de-

scent [53] approach was incorporated to guide the VehicleX

data in approximating key attributes in real-world datasets.

For example, attributes including vehicle orientation, light-

ing settings, camera configurations, etc. in the VehicleX en-

gine were successively adjusted according to the Fréchet In-

ception Distance (FID) between synthetic data and real data.

Secondly, on the appearance (style) level, SPGAN [6] was

used to further adapt the style of the synthetic images to bet-

ter match that of real-world data. The above two-level adap-

tation method significantly reduced the domain discrepancy

between simulated and real data, thereby making VehicleX

images visually plausible and similar to the real-world ones.

3.3. Vehicle counting dataset

This year, we adopted the same vehicle counting dataset

that was introduced in the fourth AI City Challenge [32].

The vehicle counting data set contains 31 video clips (about

9 hours in total) captured from 20 unique camera views.

Some cameras provide multiple video clips to cover differ-

ent lighting and weather conditions. Videos are 960p or

better, and most have been captured at 10 frames per sec-

ond. The ground truth counts for all videos were manually

created and cross-validated by multiple annotators.

3.4. Iowa DOT anomaly dataset

This year, we are using an extended anomaly dataset

compared to the one used in the fourth AI City Chal-

lenge [32]. The Iowa DOT anomaly dataset consists of 100

video clips in the training set and 150 videos in the test set,

compared to the 100 videos each in the training and test sets

used in 2020. Video clips were recorded at 30 frames per

second at a resolution of 800 × 410. Each video clip is ap-

proximately 15 minutes in duration and may include a sin-

gle or multiple anomalies. If a second anomaly is reported

while the first anomaly is still in progress, it is counted as

a single anomaly. The traffic anomalies consist of single or

multiple vehicle crashes and stalled vehicles. A total of 18

such anomalies present in the training set across 100 clips.

3.5. The CityFlow-NL Dataset

The CityFlow-NL benchmark [8] consists of 666 tar-

get vehicles in 3, 028 single-view tracks from 40 calibrated

cameras and 5, 289 unique NL descriptions. For each tar-

get, NL descriptions were provided by at least three crowd-

sourcing workers, to better capture realistic variations and

ambiguities that are expected in the real-world application

domains. The NL descriptions describe the vehicle color,

vehicle maneuver, traffic scene and relations with other ve-

hicles. Example NL descriptions and targets are shown in

Fig. 2.

For the NL-based retrieval task, we utilize the CityFlow-

NL benchmark in a single-view setup, although the

CityFlow-NL can be potentially used for retrieval tasks with

multi-view tracks. For each single-view vehicle track, we

bundled it with a query consisting of three different NL de-

scriptions for training. During testing, the goal is to retrieve

and rank vehicle tracks based on the given NL queries.



Figure 2. The CityFlow-NL dataset contains NL descriptions that tend to describe vehicle color/type (e.g., blue Jeep), vehicle motion

(e.g., turning right and straight), traffic scene (e.g., winding road) and relations with other vehicles (e.g., red truck, black SUV, etc.).

This variation of the proposed CityFlow-NL contains 2, 498

tracks of vehicles with three unique NL descriptions each.

Additionally, 530 unique vehicle tracks together with 530

query sets (each annotated with three NL descriptions) are

curated for testing.

4. Evaluation Methodology

Similar to previous AI City Challenges [30, 31, 32],

teams could submit multiple runs (20 for Tracks 2, 3 and

5, and 10 for Tracks 1 and 4) for each track to an online

evaluation system that automatically measured the effec-

tiveness of results upon submission. Submissions were lim-

ited to five per day, and any submissions that lead to a for-

mat or evaluation error did not count against a team’s daily

or maximum submission totals. During the competition,

the evaluation system showed the team’s own performance,

along with the top-3 best scores on the leader boards (with-

out revealing identifying information of those teams). To

discourage excessive fine-tuning to improve performance,

the results shown to the teams prior to the end of the chal-

lenge were computed on a 50% subset of the test set for each

track. After the challenge submission deadline, the evalua-

tion system revealed the full leader boards with scores com-

puted on the entire test set for each track.

Teams competing for the challenge prizes were not al-

lowed to use external data or manual labeling to fine-tune

the performance of their model, and those results were pub-

lished on the Public leader board. Teams using additional

external data or manual labeling were allowed to submit to

a separate General leader board.

4.1. Track 1 evaluation

For the first time this year, the multi-class multi-

movement vehicle counting task required the creation of on-

line algorithms that could generate results in real time. The

Track 1 evaluation score (S1) was computed in the same

way as in the fourth edition [32], however ignoring results

that would have been produced more than 15 seconds be-

hind real-time playback of the input video. The filtering was

done based on self-reported output timestamps which were

added to the submission format for the Track 1 challenge.

Since efficiency scores reported by teams are not easily nor-

malized, competition prizes will only be awarded based on

the scoring obtained when executing the submitted codes

from participant teams on the held-out Track 1 Dataset B.

To ensure comparison fairness, Dataset B experiments will

be executed on the same device. Also new this year, the

target device is an IoT device that could easily be deployed

in the field, close-by to the traffic cameras, thereby reduc-

ing the need for expensive data transfers to centralized data

centers. The target device this year is an NVIDIA Jetson

NX development kit.

4.2. Track 2 evaluation

The Track 2 accuracy evaluation metric was the mean

Average Precision (mAP) [57] of the top-K matches, which

measured the mean of average precision, i.e., the area under

the Precision-Recall curve (AUC) over all the queries. In

this track, K = 100. Our evaluation server also provided

other measures, such as the rank-1, rank-5 and rank-10 hit

rates, which measured the percentage of the queries that had

at least one true positive result ranked within the top 1, 5 or

10 positions, respectively. While these scores were shared

with the teams for their own submissions, they were not

used in the overall team ranking and were not displayed in

the leader boards.

4.3. Track 3 evaluation

The task of Track 3 was detecting and tracking targets

across multiple cameras. Baseline detection and single-

camera tracking results were provided, and teams were also



Table 1. Summary of the Track 1 leader board.
Rank Team ID Team and paper Score

1 37 Baidu-SYSU [25] 0.9467

2 5 HCMIU [12] 0.9459

3 8 SKKU [48] 0.9263

4 19 HCMUTE [49] 0.9249

7 95 Vanderbilt [10] 0.8576

8 134 ComeniusU [19] 0.8449

allowed to use their own methods. Similar to previous

years, the IDF1 score [38] was used to rank the performance

of each team, which measured the ratio of correctly identi-

fied detections over the average number of ground-truth and

computed detections. The evaluation tool provided with our

dataset also computed other evaluation measures adopted

by the MOTChallenge [4, 21], such as multiple object track-

ing accuracy (MOTA), multiple object tracking precision

(MOTP), mostly tracked targets (MT) and false alarm rate

(FAR). However, they were not used for ranking purposes.

The measures that were displayed in the evaluation system

were IDF1, IDP, IDR, Precision (detection), and Recall (de-

tection).

4.4. Track 4 evaluation

Track 4 performance was measured in the same way as

in earlier editions, by combining the detection performance,

measured by the F1 score, and detection time error, mea-

sured via the normalized root mean square error of the pre-

dicted accident times. For full details on the evaluation met-

ric, please see [32].

4.5. Track 5 evaluation

The NL based vehicle retrieval task was evaluated using

standard metrics for retrieval tasks [27]. We used the Mean

Reciprocal Rank (MRR) as the main evaluation metric. Re-

call@5, Recall@10 and Recall@25 were also evaluated for

all models but were not used in the ranking. For a given set

Q of queries, the MRR score is computed as

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
, (1)

where ranki refers to the rank position of the first relevant

document for the i-th query; |Q| is the set size.

5. Challenge Results

Tables 1, 2, 3, 4 and 5 summarize the leader boards for

Track 1 (turn-counts for signal timing planning), Track 2

(vehicle ReID), Track 3 (city-scale MTMC vehicle track-

ing), Track 4 (traffic anomaly detection), and Track 5 (NL

based vehicle retrieval) challenges, respectively.

5.1. Summary for the Track 1 challenge

Considering the new on-line performance requirement

added this year, teams have put in efforts to balance out

effectiveness versus efficiency by designing more compu-

tationally efficient algorithms. Similar to last year, a step-

by-step detection-tracking-counting (DTC) framework re-

mained the most popular approach among top-performing

teams. There were also new designs not following the DTC

framework, which emphasized more on improving execu-

tion efficiency.

The top 4 teams [25, 12, 48, 49] on the public leader

board all followed the DTC framework. All four teams

employed YOLO-family models (where [25] chose PP-

YOLO, [12] chose YOLOv4-tiny, [48] chose YOLOv5,

and [49] chose scaled YOLOv4) for vehicle detection. This

indicates the popularity of the YOLO models in offering

good accuracy as well as computational efficiency. In the

tracking step, all four teams adopted the popular SORT

tracking strategy with key steps including linear motion pre-

diction, feature extraction, data association, and Kalman fil-

ter updates. To accommodate on-line execution require-

ments, teams either directly used bounding box IOU for

data association [48] or a combination of simpler features

including color histogram, motion and shape features, in-

stead of using deep CNN appearance features [25, 12, 49].

The Baidu-SYSU team [25] adopted hand-engineered

spacial filters to remove all bounding boxes outside the

ROIs before the tracking step, which was simple and effec-

tive in suppressing noise. The HCMIU team [12] designed

a three-fold data association scheme with multiple crite-

ria checkers in a conditional cascade fashion to minimize

the computational cost. In the counting step, teams man-

ually drew movement represented tracks and used hand-

engineered ROI filters and customized similarity metric to

assist vehicle movement assignment. The similarity met-

ric in [25] combined Hausdorff distance and the angle be-

tween directions. Some teams [48, 49] computed Haus-

dorff distance on each divided sub-segment to count direc-

tionality. The HCMIU team [12] first applied customized

ROIs as filters to make sure all the rest tracks belong to

one of the MOIs and then assigned movements by cosine

similarity. Additionally, they also implemented thread-level

parallelism to boost both robustness and efficiency of their

method.

The non-DTC frameworks in [10, 19] also showed com-

petitive results. The CenterTrack object detection and

tracking network in [19] generated vehicle bounding boxes

as well as location displacement vectors in two consecu-

tive framesin an end-to-end manner (instead of perform-

ing detection and tracking in two separated steps). The

localization-based tracking (LBT) in [10] only detected ve-

hicles on candidate crops from either designated source re-

gions or predicted locations (of already tracked vehicles).

This can effectively avoid repeated object detection on the

entire frame. Both source regions and sink regions were

manually defined. Their strategy led to reduced compu-



Table 2. Summary of the Track 2 leader board.
Rank Team ID Team and paper Score

1 47 Alibaba [26] 0.7445

2 9 Baidu-UTS [16] 0.7151

3 7 SJTU [51] 0.6650

4 35 Fiberhome [43] 0.6555

9 61 Cybercore [15] 0.6134

16 54 UAM [9] 0.4900

21 79 NTU [52] 0.4240

Table 3. Summary of the Track 3 leader board.
Rank Team ID Team and paper Score

1 75 Alibaba-UCAS [24] 0.8095

2 29 Baidu [54] 0.7787

3 7 SJTU [51] 0.7651

4 85 Fraunhofer [42] 0.6910

6 27 Fiberhome [37] 0.5763

9 79 NTU [52] 0.5458

10 112 KAIST [41] 0.5452

18 123 NCCU-NYMCTU-UA [22] 0.1343

tation workloads, as only the vehicles from the source re-

gions were detected and tracked. Vehicle movement was

determined based on the combination of the source/sink re-

gion of a tracked vehicle. The LBT counting scheme was

claimed 52% faster than the regular DTC framework.

5.2. Summary for the Track 2 challenge

Most methods took advantage of the provided synthetic

data generator to enhance the real training data. Some

teams [26, 15, 52] adopted schemes, e.g., MixStyle [59]

and Balanced Cross-Domain Learning, for domain adapta-

tion. For example, the top performing team [26] used unsu-

pervised domain-adaptive (UDA) training to strengthen the

robustness. The team from SJTU [51] leveraged synthetic

data to learn vehicle attributes that better captured appear-

ance features. The other leading team from Baidu-UTS [16]

proposed a novel part-aware structure-based ReID frame-

work to handle appearance change due to pose and illumi-

nation variants. Many teams [43, 9] also extracted video-

based features based on query expansion and temporal pool-

ing that suppressed noise in the individual images. Finally,

teams reported that post-processing strategies, including re-

ranking, image-to-track retrieval, and inter-camera fusion,

were useful in improving their methods’ effectiveness.

5.3. Summary for the Track 3 challenge

All participant teams followed the typical processing

steps for the MTMC vehicle tracking task, including ob-

ject detection, multi-target single-camera (MTSC) tracking,

appearance feature extraction for ReID, and cross-camera

tracklet matching. The two best performing teams from

Alibaba-UCAS [24] and Baidu [54] utilized state-of-the-

art MTSC tracking schemes, e.g., JDETracker [55] and

TPM [36], instead of the provided baseline [45, 13] to gen-

erate more reliable tracklets. Likewise, the SJTU team [51]

Table 4. Summary of the Track 4 leader board.
Rank Team ID Team and paper Score

1 76 Baidu-SIAT [56] 0.9355

2 158 ByteDance [50] 0.9220

3 92 WHU [5] 0.9197

4 90 USF [7] 0.8597

5 153 Mizzou-ISU [1] 0.5686

Table 5. Summary of the Track 5 leader board.
Rank Team ID Team and paper Score

1 132 Alibaba-UTS-ZJU [3] 0.1869

2 17 SDU-XidianU-SDJZU [44] 0.1613

3 36 SUNYKorea [35] 0.1594

4 20 Sun Asterisk [33] 0.1571

6 13 HCMUS [34] 0.1560

7 53 TUE [40] 0.1548

8 71 JHU-UMD [18] 0.1364

10 6 Modulabs-Naver-KookminU [20] 0.1195

11 51 Unimore [39] 0.1078

employed a tracker update strategy to improve the tradi-

tional Kalman-filter-based tracking. These teams also lever-

aged spatial-temporal knowledge and traffic rules to cre-

ate crossroad zones or entry/exit ports to construct a bet-

ter distance matrix for tracklet clustering. The Fraunhofer

team [42] proposed an occlusion-aware approach that dis-

carded obstacle-occluded bounding boxes and overlapping

tracks for more precise matching. Other teams [52, 41, 22]

also utilized a similar pipeline to extract local trajectories

and perform matching using ReID features.

5.4. Summary for the Track 4 challenge

The methodologies of the top performing teams in Track

4 of the challenge were based on the basic idea of pre-

processing, which involved background modelling, vehi-

cle detection, road mask construction to remove station-

ary parked vehicles, and abnormal vehicle tracking. The

dynamic tracking module of the winning team, Baidu-

SIAT [56], utilized spatio-temporal status and motion pat-

terns to determine the accurate starting time of the anoma-

lies. Post-processing was performed to further refine the

starting time of the traffic anomalies. Their best score

was 0.9355, indicating that the problem of traffic anomaly

can be solved using current technology. The runner-up,

ByteDance [50] made use of box-level tracking of the po-

tential spatio-temporal anomalous tubes. Their method can

accurately detect the anomalous time periods using such

tubes obtained from background modeling and refinements.

Similarly, the third-place team, WHU [5], also leveraged

box-level and pixel-level tracking to identify anomalies

along with a dual modality bi-directional tracing module,

which can further refine the time periods.

5.5. Summary for the Track 5 challenge

For the NL-based vehicle retrieval task, most teams [3,

44, 33, 40, 18, 20, 39] chose to obtain sentence embed-

dings of the queries, while two teams [34, 35] used con-



ventional NLP techniques to process the NL queries. For

the cross-modality learning, some teams [40, 3] utilized the

ReID models (approaches from the Track 2 challenge). The

adoption of vision models pre-trained on visual ReID data

showed improvements from their corresponding baselines.

Vehicle motion is an essential part of the NL descriptions

in CityFlow-NL. Therefore, some teams [3, 20, 35] devel-

oped specific approaches to measure and represent the ve-

hicle motion patterns.

The best performing model [3] considered both local

(visual) and global representations of the vehicle trajecto-

ries to encode vehicle motion. In addition, NL augmen-

tation via language translation was used to improve the

performance of the retrieval. The second best performing

model [44] used GloVe and a custom built gated recurrent

unit (GRU) to measure the similarity between visual crops

and the query. The method in [20] retrieved the target ve-

hicle by performing per-frame segmentation, which can be

derived as a visual tracker. However, the performance of

this tracker was sub-optimal. [34] used semantic role la-

beling techniques on the NL descriptions to rank and re-

trieve the vehicle tracks. [35] not only considered the vehi-

cle motion but also relations w.r.t. other vehicles described

in the NL queries. This approach yielded the best perform-

ing model not relying on sentence embeddings for similarity

measurements.

6. Conclusion

The fifth edition of the AI City Challenge continues to at-

tract worldwide research community participation in terms

of both quantity and quality. A few observations are noted

below.

The main thrust of Track 1 this year was the evaluation of

counting methods on edge IoT devices. To this end, teams

have put significant efforts in optimizing algorithms as

well as implementation pipelines for performance improve-

ment. The detection-tracking-counting (DTC) framework

remained the most popular scheme among top-performing

teams [25, 12, 48, 49]. Within the DTC framework, object

tracking was the focus of greater attention. Methods not

using deep-appearance-based features proved to be both ef-

fective and cost-efficient in the feature extraction and data

association. We have also seen innovative designs [10, 19]

not following the DTC framework and instead emphasizing

on execution efficiency and showing competitive results.

In Tracks 2, 3 and 4, we have significantly expanded the

datasets, which motivated teams to train more robust mod-

els that could be applied to diverse scenarios. In Track 2,

we made major improvements to the Unity-Python interface

of the synthetic data generator that enabled teams to ren-

der vehicle identities of various colors, orientations, cam-

era parameters, light settings, etc. The top-ranked teams

on the leader board leveraged UDA schemes to stabilize

training across different domains that resulted in their re-

markable performance. In Track 3, a new test set has been

added since the fourth edition of the Challenge and the la-

bels of bounding boxes have been largely refined to include

more small-sized objects. To tackle this challenging prob-

lem, teams utilized state-of-the-art tracking methods to cre-

ate reliable tracklets and introduced cross-camera matching

algorithms based on spatio-temporal information as well as

traffic rules and topological structures. As for Track 4, the

test set has grown by 150% compared to the fourth edition

in the last year. We have seen teams adopting different types

of approaches to detect anomalies, including tracking-based

algorithms, background modeling, motion pattern under-

standing, etc.

In Track 5, we proposed a novel challenge for NL based

vehicle retrieval. Teams were challenged to apply knowl-

edge across computer vision and NLP to the identification

of proper vehicle tracks. Various approaches were intro-

duced by teams to create representative motion features and

appearance embeddings. Compared to the other challenge

tracks, the performance of the leading teams was far from

saturation due to multiple factors. It was difficult to re-

late the semantic labels to vehicle attributes especially for

some that exhibited long tails in the distribution. Moreover,

the motion patterns of vehicles required to be described us-

ing tracking techniques in 3D space and thus were hard to

train directly through NL descriptors. Finally, many vehi-

cles shared similar colors and types, which forced the algo-

rithms to distinguish targets through fine-grained details, a

well-known issue for deep learning frameworks.

Future work for the AI City Challenge will continue

pushing the twin objectives of advancing the state of the

art and bridging the real-world utility. To this end, while we

will continue to increase the dataset sizes, we hope to find

forward-thinking DOTs that will provide a platform to de-

ploy some of the most promising approaches emerging out

of the AI City Challenge in their operational environments.

This new approach will also likely require developing novel

evaluation metrics to compare previous status quo baselines

with the state-of-the-art AI-based systems developed in the

challenge. We believe such a collaboration would make the

challenge a truly unique opportunity for ITS applications in

the real world and would be of great benefit to the DOTs.
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