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1 INTRODUCTION

ABSTRACT

We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect
a baryon acoustic oscillation (BAO) signal at 105 2~! Mpc. The 6dFGS BAO detection allows
us to constrain the distance—-redshift relation at z.;s = 0.106. We achieve a distance measure of
Dy (zeir) = 457 = 27 Mpc and a measurement of the distance ratio, r4(zq)/Dy (zer) = 0.336 +
0.015 (4.5 per cent precision), where r(z4) is the sound horizon at the drag epoch z4. The low-
effective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids
and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of Hy =
67 £3.2kms~! Mpc~' (4.8 per cent precision) that depends only on the Wilkinson Microwave
Anisotropy Probe-7 (WMAP-T) calibration of the sound horizon and on the galaxy clustering
in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent
on other cosmological parameters. The sensitivity to Hy can be used to break the degeneracy
between the dark energy equation of state parameter w and Hj in the cosmic microwave
background data. We determine that w = —0.97 &+ 0.13, using only WMAP-7 and BAO data
from both 6dFGS and Percival et al. (2010).

We also discuss predictions for the large-scale correlation function of two future wide-angle
surveys: the Wide field ASKAP L-band Legacy All-sky Blind surveY (WALLABY) blind H1
survey (with the Australian Square Kilometre Array Pathfinder, ASKAP) and the proposed
Transforming Astronomical Imaging surveys through Polychromatic Analysis of Nebulae
(TAIPAN) all-southern-sky optical galaxy survey with the UK Schmidt Telescope. We find
that both surveys are very likely to yield detections of the BAO peak, making WALLABY the
first radio galaxy survey to do so. We also predict that TAIPAN has the potential to constrain
the Hubble constant with 3 per cent precision.

Key words: surveys — cosmology: observations — dark energy — distance scale — large-scale
structure of Universe.

to radiation through Thomson scattering. The radiation pressure
drives sound waves originating from overdensities in the matter

The current standard cosmological model, A cold dark matter
(ACDM), assumes that the initial fluctuations in the distribution
of matter were seeded by quantum fluctuations pushed to cosmo-
logical scales by inflation. Directly after inflation, the Universe is
radiation-dominated and the baryonic matter is ionized and coupled
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distribution (Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Bond
& Efstathiou 1987). At the time of recombination (z, ~ 1090),
the photons decouple from the baryons and shortly after that (at
the baryon drag epoch z4 =~ 1020) the sound wave stalls. Through
this process, each overdensity of the original density perturbation
field has evolved to become a centrally peaked perturbation sur-
rounded by a spherical shell (Bashinsky & Bertschinger 2001, 2002;
Eisenstein, Seo & White 2007a). The radius of these shells is called
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the sound horizon r,. Both overdense regions attract baryons and
dark matter and will be preferred regions of galaxy formation. This
process can equivalently be described in Fourier space, where dur-
ing the photon—baryon coupling phase, the amplitude of the baryon
perturbations cannot grow and instead undergo harmonic motion
leading to an oscillation pattern in the power spectrum.

After the time of recombination, the mean free path of photons
increases and becomes larger than the Hubble distance. Hence from
now on the radiation remains almost undisturbed, eventually be-
coming the cosmic microwave background (CMB).

The CMB is a powerful probe of cosmology due to the good
theoretical understanding of the physical processes described above.
The size of the sound horizon depends (to first order) only on the
sound speed in the early Universe and the age of the Universe at
recombination, both set by the physical matter and baryon densities,
Qm h* and Qp h* (Bisenstein & Hu 1998). Hence, measuring the
sound horizon in the CMB gives extremely accurate constraints
on these quantities (Komatsu et al. 2011). Measurements of other
cosmological parameters often show degeneracies in the CMB data
alone (Efstathiou & Bond 1999), especially in models with extra
parameters beyond flat ACDM. Combining low-redshift data with
the CMB can break these degeneracies.

Within galaxy redshift surveys, we can use the correlation func-
tion, &, to quantify the clustering on different scales. The sound
horizon marks a preferred separation of galaxies and hence predicts
a peak in the correlation function at the corresponding scale. The
expected enhancement at s = r is only A& =~ 1072h*(1 + 28/3
+ p2/5) in the galaxy correlation function, where b is the galaxy
bias compared to the matter correlation function, and 8 accounts
for linear redshift-space distortions. Since the signal appears at very
large scales, it is necessary to probe a large volume of the Universe
to decrease sample variance, which dominates the error on these
scales (Tegmark 1997; Eisenstein, Hu & Tegmark 1998; Goldberg
& Strauss 1998).

Very interesting for cosmology is the idea of using the sound
horizon scale as a standard ruler (Eisenstein et al. 1998; Cooray
et al. 2001; Blake & Glazebrook 2003; Seo & Eisenstein 2003).
A standard ruler is a feature whose absolute size is known. By
measuring its apparent size, one can determine its distance from
the observer. The baryon acoustic oscillation (BAO) signal can
be measured in the matter distribution at low redshift, with the
CMB calibrating the absolute size, and hence the distance-redshift
relation can be mapped (see e.g. Bassett & Hlozek 2009, for a
summary).

The Sloan Digital Sky Survey (SDSS; York et al. 2000) and the
2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001) were the
first redshift surveys which have directly detected the BAO signal.
Recently, the WiggleZ Dark Energy Survey has reported a BAO
measurement at redshift z = 0.6 (Blake et al. 2011).

Eisenstein et al. (2005) were able to constrain the distance—
redshift relation to 5 per cent accuracy at an effective redshift
of zer = 0.35 using an early data release of the SDSS luminous
red galaxy (LRG) sample containing ~47 000 galaxies. Subsequent
studies using the final SDSS-LRG sample and combining it with
the SDSS-main and the 2dFGRS sample were able to improve on
this measurement and constrain the distance—redshift relation at z.
= 0.2 and 0.35 with 3 per cent accuracy (Percival et al. 2010). Other
studies of the same data found similar results using the correlation
function £(s) (Gaztanaga, Cabre & Hui 2009; Labini et al. 2009;
Martinez et al. 2009; Sanchez et al. 2009; Kazin et al. 2010a), the
power spectrum P(k) (Cole et al. 2005; Huetsi 2006; Tegmark et al.
2006; Reid et al. 2010), the projected correlation function w(r,)

of photometric redshift samples (Blake et al. 2007; Padmanabhan
et al. 2007) and a cluster sample based on the SDSS photometric
data (Huetsi 2009). Several years earlier, a study by Miller, Nichol &
Batuski (2001) found first hints of the BAO feature in a combination
of smaller data sets.

Low-redshift distance measurements can directly measure the
Hubble constant H( with a relatively weak dependence on other
cosmological parameters such as the dark energy equation of state
parameter w. The 6dF Galaxy Survey (6dFGS) is the biggest galaxy
survey in the local Universe, covering almost half the sky. If 6dFGS
could be used to constrain the redshift—distance relation through
BAOs, such a measurement could directly determine the Hubble
constant, depending only on the calibration of the sound horizon
through the matter and baryon density. The objective of the present
paper is to measure the two-point correlation function on large
scales for the 6dFGS and extract the BAO signal.

Many cosmological parameter studies add a prior on Hy to help
break degeneracies. The 6dFGS derivation of H, can provide an al-
ternative source of that prior. The 6dFGS H-measurement can also
be used as a consistency check of other low-redshift distance cali-
brators such as Cepheid variables and Type Ia supernovae (through
the so-called distance ladder technique; see e.g. Freedman et al.
2001; Riess et al. 2011). Compared to these more classical probes
of the Hubble constant, the BAO analysis has an advantage of sim-
plicity, depending only on , #> and €2, 4> from the CMB and the
sound horizon measurement in the correlation function, with small
systematic uncertainties.

Another motivation for our study is that the SDSS data after
data release 3 (DR3) show more correlation on large scales than
expected by ACDM, and have no sign of a crossover to negative &
up to 200 4~ Mpc (the ACDM prediction is 140 h~! Mpc) (Kazin
et al. 2010a). It could be that the LRG sample is a rather unusual
realization, and the additional power just reflects sample variance.
It is interesting to test the location of the crossover scale in another
red galaxy sample at a different redshift.

This paper is organized as follows. In Section 2 we introduce
the 6dFGS survey and the K band selected subsample used in this
analysis. In Section 3 we explain the technique we apply to derive
the correlation function and summarize our error estimate, which
is based on lognormal realizations. In Section 4 we discuss the
need for wide-angle corrections and several linear and non-linear
effects which influence our measurement. Based on this discussion,
we introduce our correlation function model. In Section 5 we fit the
data and derive the distance estimate Dy (zq). In Section 6 we derive
the Hubble constant and constraints on dark energy. In Section 7 we
discuss the significance of the BAO detection of 6dFGS. In Section 8
we give a short overview of future all-sky surveys and their power
to measure the Hubble constant. We conclude and summarize our
results in Section 9.

Throughout the paper, we use r to denote real space separations
and s to denote separations in redshift space. Our fiducial model
assumes a flat universe with Q¢ = 0.27, wid = —1 and QM = 0.
The Hubble constant is set to Hy = 100h2km s~' Mpc™!, with our
fiducial model using /¢ = 0.7.

2 THE 6DF GALAXY SURVEY

2.1 Targets and selection function

The galaxies used in this analysis were selected to K < 12.9 from the
Two Micron All Sky Survey Extended Source Catalogue (2MASS
XSC; Jarrett et al. 2000) and combined with redshift data from

© 2011 The Authors, MNRAS 416, 3017-3032
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the 6dFGS (Jones et al. 2009). The 6dFGS is a combined redshift
and peculiar velocity survey covering nearly the entire southern sky
with |b] < 10°. It was undertaken with the Six-Degree Field (6dF)
multifibre instrument on the UK Schmidt Telescope from 2001 to
2006. The median redshift of the survey is z = 0.052 and the 25:
50: 75 per cent percentile completeness values are 0.61: 0.79: 0.92.
Papers by Jones et al. (2004, 2006, 2009) describe 6dFGS in full
detail, including comparisons between 6dFGS, 2dFGRS and SDSS.

Galaxies were excluded from our sample if they resided in sky
regions with completeness lower than 60 per cent. After applying
these cuts, our sample contains 75 117 galaxies. The selection func-
tion was derived by scaling the survey completeness as a function
of magnitude to match the integrated on-sky completeness, using
mean galaxy counts. This method is the same adopted by Colless
et al. (2001) for 2dFGRS and is explained in Jones et al. (2006) in
detail. The redshift of each object was checked visually and care
was taken to exclude foreground Galactic sources. The derived com-
pleteness function was used in the real galaxy catalogue to weight
each galaxy by its inverse completeness. The completeness func-
tion was also applied to the mock galaxy catalogues to mimic the
selection characteristics of the survey. Jones et al. (in preparation)
describe the derivation of the 6dFGS selection function, and inter-
ested readers are referred to this paper for a more comprehensive
treatment.

2.2 Survey volume

We calculated the effective volume of the survey using the estimate
of Tegmark (1997):

. 3 n(x)Py :
V°“_/d * {1 +n(x)P0] ’ M

where n(x) is the mean galaxy density at position x, determined
from the data, and P, is the characteristic power spectrum am-
plitude of the BAO signal. The parameter P, is crucial for the
weighting scheme introduced later. We find that the value of Py =
40000 h~3 Mpc? (corresponding to the value of the galaxy power
spectrum at k & 0.06 A Mpc~' in 6dFGS) minimizes the error of the
correlation function near the BAO peak.

Using Py = 4000043 Mpc® yields an effective volume of
0.08 »=3 Gpc?, while using instead Py = 10000/~ Mpc? (cor-
responding to k ~ 0.15hMpc~!) gives an effective volume of
0.045 h~3 Gpc?.

The volume of the 6dFGS is approximately as large as the volume
covered by the 2dFGRS, with a sample density similar to SDSS-
DR?7 (Abazajian et al. 2009). Percival et al. (2010) reported success-
ful BAO detections in several samples obtained from a combination
of SDSS DR7, SDSS-LRG and 2dFGRS with effective volumes in
the range 0.15-0.45 h~3 Gpc? (using Py = 10000 2~3 Mpc?), while
the original detection by Eisenstein et al. (2005) used a sample with
Veir = 0.38 173 Gpc?® (using Py = 40000 h~3 Mpc?).

3 CLUSTERING MEASUREMENT

We focus our analysis on the two-point correlation function. In the
following subsections we introduce the technique used to estimate
the correlation function and outline the method of lognormal real-
izations, which we employed to derive a covariance matrix for our
measurement.

© 2011 The Authors, MNRAS 416, 3017-3032
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Figure 1. Redshift distribution of the data (black solid line) and the random
catalogue (black dashed line). The weighted distribution (using weights
from equation 6) is shifted to higher redshift and has increased shot noise,
but a smaller error due to sample variance (blue solid and dashed lines).

3.1 Random catalogues

To calculate the correlation function, we need a random sample of
galaxies which follows the same angular and redshift selection func-
tion as the 6dFGS sample. We base our random catalogue generation
on the 6dFGS luminosity function of Jones et al. (in preparation),
where we use random numbers to pick volume-weighted redshifts
and luminosity-function-weighted absolute magnitudes. We then
test whether the redshift-magnitude combination falls within the
6dFGS K-band faint and bright apparent magnitude limits (8.75 <
K <12.9).

Fig. 1 shows the redshift distribution of the 6dFGS K-selected
sample (black solid line) compared to a random catalogue with the
same number of galaxies (black dashed line). The random catalogue
is a good description of the 6dFGS redshift distribution in both the
weighted and unweighted case.

3.2 The correlation function

We turn the measured redshift into comoving distance via

c [* d7
Dc(z) = Fo/o EQ) )

with

E(z) = [QM(1 +2)* + Q01 + 2)?
3
+ QA1 4 ] 2 ®

where the curvature Q[ is set to zero, the dark energy density is
given by Q¢ = 1 — Qfi¢ and the equation of state for dark energy
is wfid = —1. Because of the very low redshift of 6dFGS, our data
are not very sensitive to €2;, w or any other higher dimensional
parameter which influences the expansion history of the Universe.
‘We will discuss this further in Section 5.3.

Now we measure the separation between all galaxy pairs in our
survey and count the number of such pairs in each separation bin. We
do this for the 6dFGS data catalogue, a random catalogue with the
same selection function and a combination of data—random pairs.
We call the pair-separation distributions obtained from this analysis
DD(s), RR(s) and DR(s), respectively. The binning is chosen to be
from 10/~ Mpc up to 190 4! Mpc, in 104! Mpc steps. In the
analysis, we used 30 random catalogues with the same size as the
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data catalogue. The redshift correlation function itself is given by
Landy & Szalay (1993):

» DD(s) /n,\> .DR(s) ( n,
data — 1 _t _ 2 — 4
O =1+ R (nd) RR(s) \ng )’ )
where the ratio n,/nq is given by
N,
ny i ! wi(x)
2 (5)

ng 27“ wl,‘(x)7
and the sums go over all random (N,) and data (N4) galaxies. We
use the inverse density weighting of Feldman, Kaiser & Peacock
(1994):

G
1+n(x)Py’
with Py = 40000 2> Mpc~3 and C; being the inverse completeness
weighting for 6dFGS (see Section 2.1 and Jones et al., in prepa-
ration). This weighting is designed to minimize the error on the
BAO measurement, and since our sample is strongly limited by
sample variance on large scales, this weighting results in a signif-
icant improvement to the analysis. The effect of the weighting on
the redshift distribution is illustrated in Fig. 1.

Other authors have used the so-called J;-weighting which opti-
mizes the error over all scales by weighting each scale differently
(e.g. Efstathiou 1988; Loveday et al. 1995). In a magnitude lim-
ited sample, there is a correlation between luminosity and redshift,
which establishes a correlation between bias and redshift (Zehavi
et al. 2005). A scale-dependent weighting would imply a different
effective redshift for each scale, causing a scale-dependent bias.

Finally, we considered a luminosity-dependent weighting as sug-
gested by Percival, Verde & Peacock (2004). However, the same
authors found that explicitly accounting for the luminosity—redshift
relation has a negligible effect for 2dFGRS. We found that the effect
to the 6dFGS correlation function is < 1o for all bins. Hence the
static weighting of equation (6) is sufficient for our data set.

We also include an integral constraint correction in the form of

EM(s) = EM(s) +ic, 7
where ic is defined as
oo >, RR(s)8(s)

> RR(s) )
The function RR(s) is calculated from our mock catalogue, and & (s)
is a correlation function model. Since ic depends on the model of
the correlation function, we have to recalculate it at each step during
the fitting procedure. However, we note that ic has no significant
impact to the final result.
Fig. 2 shows the correlation function of 6dFGS at large scales.
The BAO peak at 105 4~! Mpc is clearly visible. The plot includes

model predictions of different cosmological parameter sets. We will
discuss these models in Section 5.2.

(©)

w;(x) =

®)

3.3 Lognormal error estimate

To obtain reliable error bars for the correlation function, we use
lognormal realizations (Coles & Jones 1991; Cole et al. 2005;
Kitaura, Jasche & Metcalf 2009). In what follows, we summa-
rize the main steps, but refer the interested reader to Appendix A in
which we give a detailed explanation of how we generate the lognor-
mal mock catalogues. In Appendix B, we compare the lognormal
errors with jackknife estimates.

Lognormal realizations of a galaxy survey are usually obtained
by deriving a density field from a model power spectrum, P(k),

0.05
E ¢ 6dFGS data
0.04 — best fit
F — Q,h?=0.12
0.03C — Q,h?=0.15
F — no-baryon fit
0.02[—~
O
0.01—
o:— 1] } % -
r T T ]
0.01—
P S T D D D R I

40 60 80 100 120 140 160 180 200
s [h" Mpc]

Figure 2. The large-scale correlation function of 6dFGS. The best-fitting
model is shown by the black line with the best-fitting value of Qp, h*> =
0.135 4 0.020. Models with different €, 4> are shown by the green line
(S2m A2 = 0.12) and the blue line (2m 42 = 0.15). The red line is a linear
CDM model with @, 4#? = 0 (and Qg h* = 0.1), while all other models
use the WMAP-7 best-fitting value of 2y h* = 0.02227 (Komatsu et al.
2011). The significance of the BAO detection in the black line relative to
the red one is 2.40 (see Section 7). The error bars at the data points are the
diagonal elements of the covariance matrix derived using lognormal mock
catalogues.

assuming Gaussian fluctuations. This density field is then Poisson
sampled, taking into account the window function and the total
number of galaxies. The assumption that the input power spectrum
has Gaussian fluctuations can only be used in a model for a density
field with overdensities << 1. As soon as we start to deal with finite
rms fluctuations, the Gaussian model assigns a non-zero probability
to regions of negative density. A lognormal random field LN(x), can
avoid this unphysical behaviour. It is obtained from a Gaussian field
G(x) by

LN(x) = exp[G(x)] ©

which is positive-definite but approaches 1 + G(x) whenever the
perturbations are small (e.g. at large scales). Calculating the power
spectrum of a Poisson sampled density field with such a distribution
will reproduce the input power spectrum convolved with the window
function. As an input power spectrum for the lognormal field, we
use

Pu(k) = APy (k) exp[—(k/k.)*] (10

where A = b*(1 + 28/3 + B2/5) accounts for the linear bias and
the linear redshift-space distortions. Py, (k) is a linear model power
spectrum in real space obtained from camB (Lewis, Challinor &
Lasenby 2000) and P (k) is the non-linear power spectrum in red-
shift space. Comparing the model above with the 6dFGS data gives
A = 4. The damping parameter k, is set to k, = 0.332Mpc~', as
found in 6dFGS (see fitting results later). How well this input model
matches the 6dFGS data can be seen in Fig. 9.

We produce 200 such realizations and calculate the correlation
function for each of them, deriving a covariance matrix

C, = 2”: [£:(50) — EG0l&:(5) — )]

N1 (11)

n=1

Here, &,(s;) is the correlation function estimate at separation s; and
the sum goes over all N lognormal realizations. The mean value is

© 2011 The Authors, MNRAS 416, 3017-3032
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Figure 3. Correlation matrix derived from a covariance matrix calculated
from 200 lognormal realizations.

defined as
_ 1Y
o= ;sn(si). (12)

The case i = j gives the error (ignoring correlations between bins,
0? = C;). In the following, we will use this uncertainty in all
diagrams, while the fitting procedures use the full covariance matrix.

The distribution of recovered correlation functions includes the
effects of sample variance and shot noise. Non-linearities are also
approximately included since the distribution of overdensities is
skewed.

InFig. 3 we show the lognormal correlation matrix r;; calculated
from the covariance matrix. The correlation matrix is defined as

VCiCjj
where C is the covariance matrix (for a comparison to jackknife
errors, see appendix B).

13)

r,-j =

4 MODELLING THE BAO SIGNAL

In this section we will discuss wide-angle effects and non-linearities.
We also introduce a model for the large-scale correlation function,
which we later use to fit our data.

4.1 Wide-angle formalism

The model of linear redshift-space distortions introduced by Kaiser
(1987) is based on the plane-parallel approximation. Earlier sur-
veys such as SDSS and 2dFGRS are at sufficiently high redshift
that the maximum opening angle between a galaxy pair remains
small enough to ensure the plane-parallel approximation is valid.
However, the 6dFGS has a maximum opening angle of 180° and a
lower mean redshift of z & 0.1 (for our weighted sample) and so
it is necessary to test the validity of the plane-parallel approxima-
tion. The wide-angle description of redshift-space distortions has
been laid out in several papers (Szalay, Matsubara & Landy 1997;
Matsubara 2004; Szapudi 2004; Papai & Szapudi 2008; Raccanelli,
Samushia & Percival 2010), which we summarize in Appendix C.

© 2011 The Authors, MNRAS 416, 3017-3032
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‘We find that the wide-angle corrections have only a very minor
effect on our sample. For our fiducial model, we found a correc-
tion of A = 4 x 10™* in amplitude at 100~ Mpc and A& =
4.5 x 10~* at 200 1~' Mpc, (Fig. C2 in the appendix). This is much
smaller than the error bars on these scales. Despite the small size of
the effect, we nevertheless include all first-order correction terms
in our correlation function model. It is important to note that wide-
angle corrections affect the correlation function amplitude only and
do not cause any shift in the BAO scale. The effect of the wide-angle
correction on the unweighted sample is much greater and is already
noticeable on scales of 20 2~! Mpc. Weighting to higher redshifts
mitigates the effect because it reduces the average opening angle
between galaxy pairs, by giving less weight to wide-angle pairs (on
average).

4.2 Non-linear effects

There are a number of non-linear effects which can potentially
influence a measurement of the BAO signal. These include scale-
dependent bias, the non-linear growth of structure on smaller scales,
and redshift-space distortions. We discuss each of these in the con-
text of our 6dFGS sample.

As the Universe evolves, the acoustic signature in the corre-
lation function is broadened by non-linear gravitational structure
formation. Equivalently, we can say that the higher harmonics in
the power spectrum, which represent smaller scales, are erased
(Eisenstein et al. 2007a).

The early Universe physics, which we discussed briefly in the
introduction, is well understood and several authors have produced
software packages (e.g. cMBFAST and camB) and published fitting
functions (e.g. Eisenstein & Hu 1998) to make predictions for the
correlation function and power spectrum using thermodynamical
models of the early Universe. These models already include the
basic linear physics most relevant for the BAO peak. In our anal-
ysis, we use the camB software package (Lewis et al. 2000). The
non-linear evolution of the power spectrum in camB is calculated
using the HALOFIT code (Smith et al. 2003). This code is calibrated
by N-body simulations and can describe non-linear effects in the
shape of the matter power spectrum for pure CDM models to an
accuracy of around 5-10 per cent (Heitmann et al. 2010). How-
ever, it has previously been shown that this non-linear model is
a poor description of the non-linear effects around the BAO peak
(Crocce & Scoccimarro 2008). We therefore decided to use the lin-
ear model output from camB and incorporate the non-linear effects
separately.

All non-linear effects influencing the correlation function can
be approximated by a convolution with a Gaussian damping factor
exp[—(rk./2)*] (Eisenstein et al. 2007b,a), where k, is the damping
scale. We will use this factor in our correlation function model intro-
duced in the next section. The convolution with a Gaussian causes
a shift of the peak position to larger scales, since the correlation
function is not symmetric around the peak. However this shift is
usually very small.

All of the non-linear processes discussed so far are not at the
fundamental scale of 105 4~! Mpc, but are instead at the cluster-
formation scale of up to 10 2~ Mpc. The scale of 105 h~! Mpc is
far larger than any known non-linear effect in cosmology. This has
led some authors to the conclusion that the peak will not be shifted
significantly, but rather only blurred out. For example, Eisenstein
et al. (2007a) have argued that any systematic shift of the acoustic
scale in real space must be small (<0.5 per cent), even at z = 0.
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However, several authors report possible shifts of up to 1 per cent
(Guzik & Bernstein 2007; Smith, Scoccimarro & Sheth 2007, 2008;
Angulo et al. 2008). Crocce & Scoccimarro (2008) used renormal-
ized perturbation theory and found per cent level shifts in the BAO
peak. In addition to non-linear evolution, they found that mode
coupling generates additional oscillations in the power spectrum,
which are out of phase with the BAO oscillations predicted by lin-
ear theory. This leads to shifts in the scale of oscillation nodes with
respect to a smooth spectrum. In real space, this corresponds to a
peak shift towards smaller scales. Based on their results, Crocce &
Scoccimarro (2008) propose a model to be used for the correlation
function analysis at large scales. We will introduce this model in
the next section.

4.3 Large-scale correlation function

To model the correlation function on large scales, we follow Crocce
& Scoccimarro (2008) and Sanchez, Baugh & Angulo (2008), and
adopt the following parametrization:'

£™0N(s) = B($)D? [6(5) % G(r) + & (NE'(9)] - (14)
Here, we decouple the scale dependency of the bias B(s) and the
linear bias b. G(r) is a Gaussian damping term, accounting for
non-linear suppression of the BAO signal. £(s) is the linear corre-
lation function (including wide-angle description of redshift-space
distortions; equation (C4) in the appendix). The second term in
equation (14) accounts for the mode coupling of different Fourier
modes. It contains &'(s), which is the first derivative of the redshift-
space correlation function, and &!(r), which is defined as

1 o0
) = / dk k Pan(K) 1 (1), (15)
0

212

with j; (x) being the spherical Bessel function of order 1. Sanchez
et al. (2008) used an additional parameter Ayc which multiplies
the mode-coupling term in equation (14). We found that our data
are not good enough to constrain this parameter, and hence adopted
Amc = 1 as in the original model by Crocce & Scoccimarro (2008).

In practice, we generate linear model power spectra Py, (k) from
camB and convert them into a correlation function using a Hankel
transform:

1 o0
50 = 5 / ak K Py () oK), (16)
0

where jo(x) = sin (x)/x is the spherical Bessel function of order 0.

The ‘*’ symbol in equation (14) is only equivalent to a convo-
lution in the case of a 3D correlation function, where we have the
Fourier theorem relating the 3D power spectrum to the correlation
function. In case of the spherically averaged quantities, this is not
true. Hence, the ‘x’ symbol in our equation stands for the multipli-
cation of the power spectrum with G(k) before transforming it into
a correlation function. G(k) is defined as

G (k) = exp[—(k/k.)*], (17)
with the property
G(k) > Oask — oo. (18)

The damping scale k, can be calculated from linear theory (Crocce
& Scoccimarro 2006; Matsubara 2008) by

1 0 -1/2
ky = {*/ dk P]in(k)] ; (19)
0

6712

! Note that r = s, the different letters just specify whether the function is
evaluated in redshift space or real space.

where P, (k) is again the linear power spectrum. ACDM predicts a
value of k, >~ 0.17 hMpc*I. However, we will include k, as a free
fitting parameter.

The scale dependence of the 6dFGS bias, B(s), is derived from
the GiggleZ simulation (Poole et al., in preparation); a dark mat-
ter simulation containing 2160° particles in a 1/4~! Gpc box. We
rank-order the haloes of this simulation by V,,, and choose a con-
tiguous set of 250 000 of them, selected to have the same clustering
amplitude of 6dFGS as quantified by the separation scale r(, where
&(rg) = 1. In the case of 6dFGS, we found r, = 9.3 h~! Mpc.
Using the redshift-space correlation function of these haloes and
of a randomly subsampled set of ~10° dark matter particles, we
obtain

B(s) = 1 4 (s/0.474 h~"Mpc) ™33, (20)

which describes a 1.7 per cent correction of the correlation function
amplitude at separation scales of 10/~ Mpc. To derive this func-
tion, the GiggleZ correlation function (snapshot z = 0) has been
fitted down to 6 4~! Mpc, well below the smallest scales we are
interested in.

5 EXTRACTING THE BAO SIGNAL

In this section, we fit the model correlation function developed in
the previous section to our data. Such a fit can be used to derive the
distance scale Dy (z.) at the effective redshift of the survey.

5.1 Fitting preparation
The effective redshift of our sample is determined by

Ny Np

w; W
=33 ZNgf @i +2)), @1
i J

where N, is the number of galaxies in a particular separation bin
and w; and wj are the weights for those galaxies from equation (6).
We choose z.g from bin 10 which has the limits 100 47! Mpc and
110 A~! Mpc and which gave z. = 0.106. Other bins show values
very similar to this, with a standard deviation of £0.001. The final
result does not depend on a very precise determination of z., since
we are not constraining a distance to the mean redshift, but a distance
ratio [see equation (24), later]. In fact, if the fiducial model is
correct, the result is completely independent of z.g. Only if there is
a z-dependent deviation from the fiducial model do we need ze to
quantify this deviation at a specific redshift.

Along the line of sight, the BAO signal directly constrains the
Hubble constant H(z) at redshift z. When measured in a redshift
shell, it constrains the angular diameter distance D4(z) (Matsub-
ara 2004). In order to separately measure D4(z) and H(z), we re-
quire a BAO detection in the 2D correlation function, where it
will appear as a ring at around 105 4~! Mpc. Extremely large vol-
umes are necessary for such a measurement. While there are studies
that report a successful (but very low signal-to-noise ratio) detec-
tion in the 2D correlation function using the SDSS-LRG data (e.g.
Gaztanaga et al. 2009; Chuang & Wang 2011, but see also Kazin
etal. 2010b), our sample does not allow this kind of analysis. Hence
we restrict ourselves to the 1D correlation function, where we mea-
sure a combination of D 4(z) and H(z). What we actually measure is a
superposition of two angular measurements (RA and Dec.) and one
line-of-sight measurement (redshift). To account for this mixture of
measurements, it is common to report the BAO distance constraints
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as (Eisenstein et al. 2005; Padmanabhan & White 2008)
1/3

cZ ) (22)

_ 212
Dy(z) = [(1+2) DA(Z)HOE(Z)

where D, is the angular distance, which in the case of 2, = 0 is
given by Ds(z) = Dc(2)/(1 + z).

To derive model power spectra from camB, we have to specify
a complete cosmological model, which in the case of the simplest
ACDM model (2, = 0, w = —1) is specified by six parameters:
e, Wy, N5, T, Ag and h. These parameters are the physical cold dark
matter and baryon density (w. = Q. h?, @, = Qp h%), the scalar
spectral index (ny), the optical depth at recombination (), the scalar
amplitude of the CMB temperature fluctuation (A) and the Hubble
constant in units of 100 kms~! Mpc™' (h).

Our fit uses the parameter values from WMAP-7 (Komatsu et al.
2011): Qph? = 0.02227, T = 0.085 and 1, = 0.966 (maximum
likelihood values). The scalar amplitude A is set so that it results
in oy = 0.8, which depends on 2, h>. However, o is degenerated
with the bias parameter b which is a free parameter in our fit.
Furthermore, / is set to 0.7 in the fiducial model, but can vary freely
in our fit through a scale-distortion parameter v, which enters the
model as

%_ﬁnal(s) — smndel(as). (23)

This parameter accounts for deviations from the fiducial cosmolog-
ical model, which we use to derive distances from the measured
redshift. It is defined as (Eisenstein et al. 2005; Padmanabhan &
White 2008)

_ Dy(zan)
DY (zerr)”

The parameter o enables us to fit the correlation function derived

with the fiducial model, without the need to recalculate the correla-

tion function for every new cosmological parameter set.

At low redshift we can approximate H(z) ~ H,, which results in

HE

o —. (25)
Hy

Compared to the correct equation (24) this approximation has an

error of about 3 per cent at redshift z = 0.1 for our fiducial model.

Since this is a significant systematic bias, we do not use this ap-

proximation at any point in our analysis.

(24)

5.2 Extracting Dy (z.r) and r5(zq)/Dy (Zetr)

Using the model introduced above we performed fits to 18 data
points between 10 and 190 2~! Mpc. We excluded the data below
10 2~ Mpc, since our model for non-linearities is not good enough
to capture the effects on such scales. The upper limit is chosen to be
well above the BAO scale, although the constraining contribution
of the bins above 130 h~! Mpc is very small. Our final model has
four free parameters: 2, h2, b, a and k,.

The best fit corresponds to a minimum y 2 of 15.7 with 14 degrees
of freedom (d.o.f.) (18 data points and four free parameters). The
best-fitting model is included in Fig. 2 (black line). The parameter
values are Q, h* = 0.135 & 0.020, b = 1.65 & 0.10 and o =
1.039 £ 0.062, where the errors are derived for each parameter by
marginalizing over all other parameters. For k,, we can give a lower
limit of k, = 0.192Mpc~! (with 95 per cent confidence level).

We can use equation (24) to turn the measurement of « into a
measurement of the distance to the effective redshift Dy (zq) =
aD(zer) = 457 & 27 Mpc, with a precision of 5.9 per cent. Our
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Figure 4. Likelihood contours of the distance Dy (zefr) against Qp, h*. The
corresponding values of « are given on the right-hand axis. The contours
show 1o and 20 errors for both a full fit (blue solid contours) and a fit over
20-190 /~! Mpc (black dashed contours) excluding the first data point. The
black cross marks the best-fitting values corresponding to the dashed black
contours with (Dy, Qm h2) = (462, 0.127), while the blue cross marks the
best-fitting values for the blue contours. The black solid curve corresponds
to a constant QuAh2Dy (zefr) (Dy ~ h™"), while the dashed line corresponds
to a constant angular size of the sound horizon, as described in the text.

fiducial model gives D¢(z.) = 440.5 Mpc, where we have followed
the distance definitions of Wright (2006) throughout. For each fit we
derive the parameter 8 = Q,(2)>>*/b, which we need to calculate
the wide-angle corrections for the correlation function.

The maximum likelihood distribution of k, seems to prefer
smaller values than predicted by ACDM, although we are not able
to constrain this parameter very well. This is connected to the high
significance of the BAO peak in the 6dFGS data (see Section 7). A
smaller value of k, damps the BAO peak and weakens the distance
constraint. For comparison, we also performed a fit fixing &, to the
ACDM prediction of k, >~ 0.17 Mpc~'. We found that the error
on the distance Dy (z.s) increases from 5.9 to 8 per cent. However,
since the data do not seem to support such a small value of k., we
prefer to marginalize over this parameter.

The contours of Dy (ze)-S2m #* are shown in Fig. 4, together
with two degeneracy predictions (Eisenstein et al. 2005). The solid
line is that of constant @, #2Dy(z.;), which gives the direction of
degeneracy for a pure CDM model, where only the shape of the
correlation function contributes to the fit, without a BAO peak. The
dashed line corresponds to a constant r(zq)/Dy (zegr), Which is the
degeneracy if only the position of the acoustic scale contributes to
the fit. The dashed contours exclude the first data point, fitting from
20 to 190 h~! Mpc only, with the best-fitting values o = 1.050 %
0.075 [corresponding to Dy (zes) = 462 £ 33 Mpc], @ h2 = 0.127
£ 0.025 and b = 1.59 +£ 0.15. The contours of this fit are tilted
towards the dashed line, which means that the fit is now driven
by the BAO peak, while the general fit (solid contours) seems to
have some contribution from the shape of the correlation function.
Excluding the first data point increases the error on the distance
constraint only slightly from 5.9 to 7.1 per cent. The value of Q, 4>
tends to be smaller, but agrees within 1o with the former value.

Going back to the complete fit from 10 to 190 2~! Mpc, we can
include an external prior on 2, h? from WMAP-7, which carries
an error of only 4 per cent (compared to the ~15 per cent we
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Figure 5. The distance measurement Dy (z) relative to a low-redshift ap-
proximation. The points show 6dFGS data and those of Percival et al. (2010).

obtain by fitting our data). Marginalizing over Q, > now gives
Dy (zer) = 459 + 18 Mpc, which reduces the error from 5.9 to 3.9 per
cent. The uncertainty in 2, h? from WMAP-7 contributes only about
5 per cent of the error in Dy [assuming no error in the WMAP-7
value of Q, 4? results in Dy (zt) = 459 & 17 Mpc].

InFig. 5 we plot the ratio Dy (z)/D\?" ~(z) as a function of redshift,
where D" *(z) = cz/H,. At sufficiently low redshift, the approx-
imation H(z) &~ Hj is valid and the measurement is independent
of any cosmological parameter except the Hubble constant. This
figure also contains the results from Percival et al. (2010).

Rather than including the WMAP-7 prior on €, i” to break the
degeneracy between 2, h? and the distance constraint, we can fit the
ratio r(zq)/Dy (zegr), Where r4(z4) is the sound horizon at the baryon
drag epoch z4. In principle, this is rotating Fig. 4 so that the dashed
black line is parallel to the x-axis and hence breaks the degeneracy
if the fit is driven by the BAO peak; it will be less efficient if the fit
is driven by the shape of the correlation function. During the fit, we
calculate (z4) using the fitting formula of Eisenstein & Hu (1998).

The best fit results in r¢(zq)/Dy (zerr) = 0.336 £ 0.015, which has
an error of 4.5 per cent, smaller than the 5.9 per cent found for Dy
but larger than the error in Dy when adding the WMAP-7 prior on
Qp 72, This is caused by the small disagreement in the Dy—Q,, h?
degeneracy and the line of constant sound horizon in Fig. 4. The x?
is 15.7, similar to the previous fit with the same number of degrees
of freedom.

5.3 Extracting A(zesr) and R(Zeg)

We can also fit for the ratio of the distance between the effective
redshift, zer, and the redshift of decoupling (z, = 1091; Eisenstein
et al. 2005):

Dy (Zefr)
(14 z)Dalzs)’

with (1 4 z,)D4(z,) = D¢(z,)* being the CMB angular distance.
Besides the fact that the Hubble constant H, cancels out in the
determination of R, this ratio is also more robust against effects
caused by possible extra relativistic species (Eisenstein & White
2004). We calculate D4(z,) for each Qp, 4° during the fit and then
marginalize over Q,, #2. The best fit results in R = 0.0324 £ 0.0015,
with x? = 15.7 and the same 14 d.o.f.

R(zerr) = (26)

21n case of 2 = 0.

Focusing on the path from z = 0 to zgs = 0.106, our data set
can give interesting constraints on 2,. We derive the parameter
(Eisenstein et al. 2005)

V Q h?
A(zer) = 100Dy (zefr) po— 27N

eff

which has no dependence on the Hubble constant since Dy hl.
We obtain A(z.g) = 0.526 & 0.028 with x2/d.o.f. = 15.7/14. The
value of A would be identical to /Q,, if measured at redshift
z = 0. At redshift z.4z = 0.106, we obtain a deviation from this
approximation of 6 per cent for our fiducial model, which is small
but systematic. We can express A, including the curvature term €2
and the dark energy equation of state parameter w, as

[sinh (V@) ]
I Vuz ‘
v $2m x(2)]??
[sin (Velx@) ] o 0
R '
with
X = D) = / i (29)
c Jo E@)
and
E2) = [Qun(l +2)° + (1 + 2)?
+ Qa(1+ 2] 2 (30)

Using this equation, we now linearize our result for Q,, in £2; and
w, and get

Qm = 0.287 4+ 0.039(1 4+ w) 4+ 0.039%2; £ 0.027. 31
For comparison, Eisenstein et al. (2005) found
Qn =0.273 4+ 0.123(1 + w) + 0.137€2; £+ 0.025 (32)

based on the SDSS-LRG DR3 sample. This result shows the reduced
sensitivity of the 6dFGS measurement to w and €.

6 COSMOLOGICAL IMPLICATIONS

In this section we compare our results to other studies and discuss
the implications for constraints on cosmological parameters. We
first note that we do not see any excess correlation on large scales
as found in the SDSS-LRG sample. Our correlation function is in
agreement with a crossover to negative scales at 140 2~! Mpc, as
predicted from ACDM.

6.1 Constraining the Hubble constant, H,

We now use the 6dFGS data to derive an estimate of the Hubble
constant. We use the 6dFGS measurement of r,(z4)/Dy(0.106) =
0.336 £ 0.015 and fit directly for the Hubble constant and €2,,. We
combine our measurement with a prior on Q,, 4> coming from the
WMAP-T Markov Chain results (Komatsu et al. 2011). Combining
the clustering measurement with Q,, #* from the CMB corresponds
to the calibration of the standard ruler.

We obtain values of Hy = 67 & 3.2km s~! Mpc™' (which has an
uncertainty of only 4.8 per cent) and €2,,, = 0.296 % 0.028. Table 1
and Fig. 6 summarize the results. The value of €2,, agrees with the
value we derived earlier (Section 5.3).
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Table 1. All parameter constraints from 6dFGS obtained in this paper.
The priors used to derive these parameters are listed in square brackets.
All parameters assume Qbh2 = 0.02227, and in cases where a prior on
Qu h? is used, we adopt the WMAP-7 Markov Chain probability distribution
(Komatsu et al. 2011). A(zefr) is the acoustic parameter defined by Eisenstein
et al. (2005) [see equation (27) in the text] and R(zf) is the distance ratio
of the 6dFGS BAO measurement to the last-scattering surface. The most
sensible value for cosmological parameter constraints is r(zq)/Dy (zeff),
since this measurement is uncorrelated with Qp, #2. The effective redshift
of 6dFGS is zess = 0.106, and the fitting range is from 10 to 190 Kl Mpec.

Summary of parameter constraints from 6dFGS

Qu W2 0.135 £ 0.020 (14.8 per cent)
Dy (zefr) 457 £+ 27 Mpc (5.9 per cent)
Dy (zefr) 459 £ 18 Mpc (3.9 per cent) [ H2 prior]
rs(za)/ Dv (zZesr) 0.336 £ 0.015 (4.5 per cent)

R(zefr) 0.0324 £ 0.0015 (4.6 per cent)
A(zefr) 0.526 £ 0.028 (5.3 per cent)

Qm 0.296 + 0.028 (9.5 per cent)
Hy 67 +3.2 (4.8%)

[ 12 prior]
[Q2m h2 prior]

70
=
Q.
=
‘0
E e
IO

—— 6dFGS
50 —— Q,,h? prior

—— 6dFGS + Q,,h? prior
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Figure 6. The blue contours show the WMAP-7 Quy h? prior (Komatsu
et al. 2011). The black contour shows constraints from 6dFGS derived by
fitting to the measurement of r4(z4)/Dy (zefr). The solid red contours show
the combined constraints resulting in Hy = 67 + 3.2kms~' Mpc~! and
Qm = 0.296 =+ 0.028. Combining the clustering measurement with Q, 12
from the CMB corresponds to the calibration of the standard ruler.

To combine our measurement with the latest CMB data, we use
the WMAP-7 distance priors, namely the acoustic scale

TtD 4 (24
Oy = (14 228G 33)
rs(Z*)
the shift parameter
VQum h?
R = IOOf(l + 2.)Da(zs) (34)

and the redshift of decoupling z, (tables 9 and 10 in Komatsu et al.
2011). This combined analysis reduces the error further and yields
Hoy = 68.7 & 1.5km s~ Mpc~! (2.2 per cent) and ,, = 0.29 £
0.022 (7.6 per cent).

Percival et al. (2010) determine a value Hy, = 68.6 & 2.2km
s~! Mpc~! using SDSS-DR7, SDSS-LRG and 2dFGRS, while Reid
et al. (2010) found 69.4 4+ 1.6kms~' Mpc~! using the SDSS-LRG
sample and WMAP-5. In contrast to these results, 6dFGS is less

© 2011 The Authors, MNRAS 416, 3017-3032
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affected by parameters like €2, and w because of its lower redshift.
In any case, our result of the Hubble constant agrees very well with
earlier BAO analyses. Furthermore, our result agrees with the latest
CMB measurement of Hy = 70.3 & 2.5kms~! Mpc~! (Komatsu
et al. 2011).

The SHOES programme (Riess et al. 2011) determined the Hub-
ble constant using the distance ladder method. They used about
600 near-IR observations of Cepheids in eight galaxies to im-
prove the calibration of 240 low-redshift (z < 0.1) Type Ia su-
pernova, and calibrated the Cepheid distances using the geometric
distance to the maser galaxy NGC 4258. They found Hy = 73.8 £
2.4kms~! Mpc~!, a value consistent with the initial results of the
Hubble Key project (Hy = 72 & 8kms~! Mpc™'; Freedman et al.
2001), but 1.70 higher than our value (and 1.80 higher when we
combine our data set with WMAP-7). While this could point towards
unaccounted or underestimated systematic errors in either one of
the methods, the likelihood of such a deviation by chance is about
10 per cent and hence is not enough to represent a significant dis-
crepancy. Possible systematic errors affecting the BAO measure-
ments are the modelling of non-linearities, bias and redshift-space
distortions, although these systematics are not expected to be sig-
nificant at the large scales relevant to our analysis.

To summarize the finding of this section, we can state that our
measurement of the Hubble constant is competitive with the lat-
est result of the distance ladder method. The different techniques
employed to derive these results have very different potential sys-
tematic errors. Furthermore, we found that BAO studies provide the
most accurate measurement of H that exists, when combined with
the CMB distance priors.

6.2 Constraining dark energy

One key problem driving current cosmology is the determination
of the dark energy equation of state parameter, w. When adding
additional parameters like w to ACDM, we find large degeneracies
inthe WMAP-7-only data. One example is shown in Fig. 7. WMAP-7

60 — WMAP-7

— BAO+WMAP-7

-------- without 6dFGS

Il Il ‘ Il Il Il Il ‘ Il Il
R - 0.5

w

Figure 7. The blue contours shows the WMAP-7 degeneracy in Hp and
w (Komatsu et al. 2011), highlighting the need for a second data set to
break the degeneracy. The black contours show constraints from BAO data
incorporating the rs(z4)/Dy (zefr) measurements of Percival et al. (2010) and
6dFGS. The solid red contours show the combined constraints resulting in
w = —0.97 £ 0.13. Excluding the 6dFGS data point widens the constraints
to the dashed red line with w = —1.01 £ 0.17.
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Table 2. wCDM constraints from different data sets. Com-
paring the two columns shows the influence of the 6dFGS
data point. The 6dFGS data point reduces the error on w
by 24 per cent compared to WMAP-7+LRG which contains
only the BAO data points of Percival et al. (2010). We as-
sume flat priors of 0.11 < @, #?> < 0.16 and marginalize
over Qp, h%. The asterisks denote the free parameters in each

fit.
Parameter ~WMAP-7T+LRG ~ WMAP-7-+LRG-+6dFGS
Ho 69.9 + 3.8(*) 68.7 + 2.8(*)

Qm 0.283 £ 0.033 0.293 + 0.027

Qa 0.717 + 0.033 0.707 + 0.027

w —1.01 £0.17(*)  —0.97 £ 0.13(¥)

alone cannot constrain H or w within sensible physical boundaries
(e.g. w < —1/3). As we are sensitive to H(, we can break the
degeneracy between w and H, inherent in the CMB-only data.
Our assumption of a fiducial cosmology with w = —1 does not
introduce a bias, since our data are not sensitive to this parameter
and any deviation from this assumption is modelled within the shift
parameter o.

We again use the WMAP-7 distance priors introduced in the
last section. In addition to our value of ry(z4)/Dy(0.106) = 0.336
+ 0.015, we use the results of Percival et al. (2010), who found
rs(za)/Dy(0.2) = 0.1905 £ 0.0061 and r4(z4)/Dy(0.35) = 0.1097 +
0.0036. To account for the correlation between the two latter data
points, we employ the covariance matrix reported in their paper.
Our fit has three free parameters: 2, h?, Hyand w.

The best fit gives w = —097 + 0.13, Hy = 68.7 £
2.8kms~! Mpc~! and @, h* = 0.1380 & 0.0055, with a x*/d.o.f. =
1.3/3. Table 2 and Fig. 7 summarize the results. To illustrate the im-
portance of the 6dFGS result to the overall fit, we also show how
the results change if 6dFGS is omitted. The 6dFGS data improve
the constraint on w by 24 per cent.

Finally we show the best-fitting cosmological parameters for
different cosmological models using WMAP-7 and BAO results in
Table 3.

7 SIGNIFICANCE OF THE BAO DETECTION

To test the significance of our detection of the BAO signature,
we follow Eisenstein et al. (2005) and perform a fit with a fixed
@y = 0, which corresponds to a pure CDM model without a BAO
signature. The best fit has x2 = 21.4 with 14 d.o.f. and is shown
as the red line in Fig. 2. The parameter values of this fit depend on
the parameter priors, which we sett0 0.7 < « < 1.3 and 0.1 < Q,,
h* < 0.2. Values of @ much further away from 1 are problematic
since equation (24) is only valid for « close to 1. Comparing the

0.5 1 1.5 2 25 3 3.5 4

VA

Figure 8. The number of lognormal realizations found with a certain
\/ Ax2, where the Ay? is obtained by comparing a fit using a ACDM
correlation function model with a no-baryon model. The blue line indicates
the 6dFGS result.

OO

best pure CDM model with our previous fit, we estimate that the
BAO signal is detected with a significance of 2.40 (corresponding
to Ax? = 5.6). As a more qualitative argument for the detection
of the BAO signal we would like to refer again to Fig. 4 where the
direction of the degeneracy clearly indicates the sensitivity to the
BAO peak.

We can also use the lognormal realizations to determine how
likely it is to find a BAO detection in a survey like 6dFGS. To do
this, we produced 200 lognormal mock catalogues and calculated
the correlation function for each of them. We can now fit our cor-
relation function model to these realizations. Furthermore, we fit
a no-baryon model to the correlation function and calculate A2,
the distribution of which is shown in Fig. 8. We find that 26 per
cent of all realizations have at least a 20 BAO detection, and that
12 per cent have a detection >2.40. The lognormal realizations
show a mean significance of the BAO detection of 1.7 &+ 0.70,
where the error describes the variance around the mean.

Fig. 9 shows the 6dFGS data points together with all 200 lognor-
mal realizations (grey). The red data points indicate the mean for
each bin, and the black line is the input model derived as explained
in Section 3.3. This comparison shows that the 6dFGS data contain
a BAO peak slightly larger than expected in ACDM.

The amplitude of the acoustic feature relative to the overall nor-
malization of the galaxy correlation function is quite sensitive to
the baryon fraction, f, = Q,/2,, (Matsubara 2004). A higher BAO
peak could hence point towards a larger baryon fraction in the local
universe. However, since the correlation function model seems to
agree very well with the data (with a reduced x2 of 1.12) and
is within the range spanned by our lognormal realizations, we

Table 3. Parameter constraints from WMAP7+BAO for (i) a flat ACDM model, (ii) an open
ACDM (0ACDM), (iii) a flat model with w = constant (wCDM) and (iv) an open model with w
= constant (owCDM). We assume flat priors of 0.11 < Qp, h? <0.16 and marginalize over Qp, K.

The asterisks denote the free parameters in each fit.

Parameter ACDM oACDM wCDM owCDM

Hy 69.2 + 1.1(%) 68.3 + 1.7(%) 68.7 + 2.8(*%) 70.4 £+ 4.3(%)

Qm 0.288 £0.011  0.290 +0.019 0.293 £ 0.027 0.274 £ 0.035

Qe 0) —0.0036 &+ 0.0060(*)  (0) —0.013 £ 0.010(*)
Qa 0.712 £ 0.011  0.714 £ 0.020 0.707 £ 0.027 0.726 £ 0.036

w (=1 (=D

—0.97 £0.13(*)  —1.24 +0.39(*)
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Figure 9. The different lognormal realizations used to calculate the covari-
ance matrix (shown in grey). The red points indicate the mean values, while
the blue points show actual 6dFGS data (the data point at 54~ Mpc is not
included in the fit). The red data points are shifted by 2 A~! Mpc to the right
for clarity.
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Figure 10. This plot shows the distribution of the parameter « derived from
the 200 lognormal realizations (black). The distribution is well fitted by a
Gaussian with a mean of © = 0.998 £ 0.004 and a width of o = 0.057 £
0.005. In blue we show the same distribution selecting only the lognormal
realizations with a strong BAO peak (>20). The Gaussian distribution in
this case gives a mean of 1.007 & 0.007 and o = 0.041 £ 0.008.

cannot claim any discrepancy with ACDM. Therefore, the most
likely explanation for the excess correlation in the BAO peak is
sample variance.

In Fig. 10 we show the distribution of the parameter o obtained
from the 200 lognormal realizations. The distribution is well de-
scribed by a Gaussian with x 2/d.o.f. = 14.2/20, where we employed
Poisson errors for each bin. This confirms that o has Gaussian dis-
tributed errors in the approximation that the 6dFGS sample is well
described by lognormal realizations of an underlying ACDM power
spectrum. This result increases our confidence that the application
of Gaussian errors for the cosmological parameter fits is correct.
The mean of the Gaussian distribution is at 0.998 =+ 0.004, in agree-
ment with unity, which shows that we are able to recover the input
model. The width of the distribution shows the mean expected error
in o in a ACDM universe for a 6dFGS-like survey. We found o =
0.057 £ 0.005, which is in agreement with our error in « of 5.9 per
cent. Fig. 10 also contains the distribution of «, selecting only the
lognormal realizations with a strong (>20) BAO peak (blue data).

© 2011 The Authors, MNRAS 416, 3017-3032
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Figure 11. Redshift distribution of 6dFGS, WALLABY and two different
versions of the proposed TAIPAN survey. See text for details.

We included this selection to show that a stronger BAO peak does
not bias the estimate of « in any direction. The Gaussian fit gives
x2/d.o.f. = 5/11, with a mean of 1.007 & 0.007. The distribution of
o shows a smaller spread with o = 0.041 &+ 0.008, about 2o below
our error on «. This result shows that a survey like 6dFGS is able
to constrain « (and hence Dy and Hj) to the precision we report in
this paper.

8 FUTURE ALL SKY SURVEYS

A major new wide-sky survey of the local Universe will be the Wide
field ASKAP L-band Legacy All-sky Blind surveY (WALLABY).?
This is a blind H1survey planned for the Australian Square Kilome-
tre Array Pathfinder telescope (ASKAP), currently under construc-
tion at the Murchison Radio-astronomy Observatory in Western
Australia.

The survey will cover at least 75 per cent of the sky with the
potential to cover 47t of sky if the Westerbork Radio Telescope
delivers complementary northern coverage. Compared to 6dFGS,
WALLABY will more than double the sky coverage including the
Galactic plane. WALLABY will contain ~500 000-600 000 galax-
ies with a mean redshift of around 0.04, giving it around four times
greater galaxy density compared to 6dFGS. In the calculations that
follow, we assume for WALLABY a 47t survey without any exclu-
sion around the Galactic plane. The effective volume in this case
turns out to be 0.12 43 Gpc?.

The TAIPAN* survey, proposed for the UK Schmidt Telescope
at Siding Spring Observatory, will cover a comparable area of sky,
and will extend 6dFGS in both depth and redshift (z >~ 0.08).

The redshift distribution of both surveys is shown in Fig. 11,

alongside 6dFGS. Since the TAIPAN survey is still in the early

planning stage, we consider two realizations: TAIPAN1 (406 000
galaxies to a faint magnitude limit of » = 17) and the shallower
TAIPAN2 (221000 galaxies to » = 16.5). We have adopted the
same survey window as was used for 6dFGS, meaning that it covers
the whole southern sky excluding a 10° strip around the Galactic
plane. The effective volumes of TAIPAN1 and TAIPAN2 are 0.23
and 0.13 13 Gpc?, respectively.

3 http://www.atnf.csiro.au/research/ WALLABY
4 TAIPAN: Transforming Astronomical Imaging surveys through Polychro-
matic Analysis of Nebulae.
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Figure 12. Predictions for two versions of the proposed TAIPAN survey.
Both predictions assume a 27t-steradian southern sky-coverage, excluding
the Galactic plane (i.e. |b| > 10°). TAIPANI contains 406000 galaxies
while TATIPAN2 contains 221 000 (see Fig. 11). The blue points are shifted
by 2 2~! Mpc to the right for clarity. The black line is the input model, which
is a ACDM model with a bias of 1.6, 8 = 0.3 and k, = 0.172Mpc~!. For a
large number of realizations, the difference between the input model and the
mean (the data points) is only the convolution with the window function.
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Figure 13. Prediction for the WALLABY survey. We have assumed a
47e-steradian survey with 602000 galaxies, b = 0.7, B = 0.7 and k, =
0.17hMpc~.

To predict the ability of these surveys to measure the large-
scale correlation function, we produced 100 lognormal realizations
for TAIPAN1 and WALLABY, and 200 lognormal realizations for
TAIPAN?2. Figs 12 and 13 show the results in each case. The data
points are the mean of the different realizations, and the error bars
are the diagonal of the covariance matrix. The black line represents
the input model which is a ACDM prediction convolved with a
Gaussian damping term using &, = 0.17h Mpc~! (see equation 17).
We used a bias parameter of 1.6 for TAIPAN (similar to that found in
6dFGS) and following our fiducial model we get 8 = 0.3, resulting
inA = b*(1 4 28/3 + B%/5) = 3.1. For WALLABY, we used a bias
of 0.7 (based on the results found in the HIPASS survey; Basilakos
et al. 2007). This results in = 0.7 and A = 0.76. To calculate the
correlation function, we used Py = 40 000 /* Mpc? for TAIPAN and
Py = 50004 Mpc? for WALLABY.

The error bar for TAIPAN]1 is smaller by roughly a factor of 1.7
relative to 6dFGS, which is consistent with scaling by +/ Vg and is
comparable to the SDSS-LRG sample. We calculate the significance

of the BAO detection for each lognormal realization by performing
fits to the correlation function using ACDM parameters and €2,
= 0, in exactly the same manner as the 6dFGS analysis described
earlier. We find a 3.5 & 0.8¢ significance for the BAO detection for
TAIPAN1,2.1 £0.70 for TAIPAN2 and 2.1 £ 0.70 for WALLABY,
where the error again describes the variance around the mean.

We then fit a correlation function model to the mean values of
the lognormal realizations for each survey, using the covariance
matrix derived from these lognormal realizations. We evaluated the
correlation function of WALLABY, TAIPAN2 and TAIPANI1 at the
effective redshifts of 0.1, 0.12 and 0.14, respectively. With these in
hand, we are able to derive distance constraints to respective pre-
cisions of 7, 6 and 3 per cent. The predicted value for WALLABY
is not significantly better than that from 6dFGS. This is due to the
significance of the 6dFGS BAO peak in the data, allowing us to
place tight constraints on the distance. As an alternative figure of
merit, we derive the constraints on the Hubble constant. All surveys
recover the input parameter of Hy = 70kms~!' Mpc~!, with abso-
lute uncertainties of 3.7, 3 and 2.2kms~! Mpc~! for WALLABY,
TAIPAN2 and TAIPANI, respectively. Hence, TAIPANI is able to
constrain the Hubble constant to 3 per cent precision. These con-
straints might improve when combined with Planck constraints on
Qph? and Q,, h* which will be available when these surveys come
along.

Since there is significant overlap between the survey volume of
6dFGS, TAIPAN and WALLABY, it might be interesting to test
whether the BAO analysis of the local Universe can make use of
a multiple tracer analysis, as suggested recently by Arnalte-Mur
et al. (2011). These authors claim that by employing two different
tracers of the matter density field — one with high bias to trace the
central overdensities and one with low bias to trace the small density
fluctuations — one can improve the detection and measurement of
the BAO signal. Arnalte-Mur et al. (2011) test this approach using
the SDSS-LRG sample (with a very large bias) and the SDSS-
main sample (with a low bias). Although the volume is limited by
the amount of sample overlap, they detect the BAO peak at 4.10.
Likewise, we expect that the contrasting high bias of 6dFGS and
TAIPAN, when used in conjunction with the low bias of WALLABY,
would furnish a combined sample that would be ideal for such an
analysis.

Neither TAIPAN nor WALLABY is designed as BAO surveys,
with their primary goals relating to galaxy formation and the local
Universe. However, we have found that TAIPAN1 would be able to
improve the measurement of the local Hubble constant by about 30
per cent compared to 6dFGS going to only slightly higher redshift.
WALLABY could make some interesting contributions in the form
of a multiple tracer analysis.

9 CONCLUSION

‘We have calculated the large-scale correlation function of the 6dFGS
and detected a BAO peak with a significance of 2.4¢. Although
6dFGS was never designed as a BAO survey, the peak is detectable
because the survey contains a large number of very bright, highly
biased galaxies, within a sufficiently large effective volume of
0.08 73 Gpc3. We draw the following conclusions from our work.

(i) The 6dFGS BAO detection confirms the finding by SDSS and
2dFGRS of a peak in the correlation function at around 105 2~ Mpc,
consistent with ACDM. This is important because 6dFGS is an
independent sample, with a different target selection, redshift
distribution and bias compared to previous studies. The 6dFGS

© 2011 The Authors, MNRAS 416, 3017-3032
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BAO measurement is the lowest redshift BAO measurement ever
made.

(ii)) We do not see any excess correlation at large scales as seen in
the SDSS-LRG sample. Our correlation function is consistent with
a crossover to negative values at 140 4~ Mpc, as expected from
ACDM models.

(iii) We derive the distance to the effective redshift as
Dy (zer) = 457 & 27 Mpc (5.9 per cent precision). Alternatively,
we can derive r4(zq)/Dy (zer) = 0.336 = 0.015 (4.5 per cent preci-
sion). All parameter constraints are summarized in Table 1.

(iv) Using a prior on 2y, h? from WMAP-7, we find Q, =
0.296 £ 0.028. Independent of WMAP-7, and taking into account
curvature and the dark energy equation of state, we derive €2,
= 0.287 4 0.039(1 4+ w) + 0.039Q2; £ 0.027. This agrees very
well with the first value, and shows the very small dependence on
cosmology for parameter derivations from 6dFGS given its low
redshift.

(v) We are able to measure the Hubble constant, Hy, = 67 +
3.2km s~ Mpc~!, to 4.8 per cent precision, using only the standard
ruler calibration by the CMB (in form of Q,, 4> and ,A?). Com-
pared to previous BAO measurements, 6dFGS is almost completely
independent of cosmological parameters (e.g. €2; and w), similar
to Cepheid and low-z supernovae methods. However, in contrast to
these methods, the BAO derivation of the Hubble constant depends
on very basic early Universe physics and avoids possible systematic
errors coming from the build-up of a distance ladder.

(vi) By combining the 6dFGS BAO measurement with those of
WMAP-T and previous redshift samples (from SDSS-DR7, SDDS-
LRG and 2dFGRS; Percival et al. 2010), we can further improve
the constraints on the dark energy equation of state, w, by breaking
the Hy—w degeneracy in the CMB data. Doing this, we find w =
—0.97 £ 0.13, which is an improvement of 24 per cent compared
to previous combinations of BAO and WMAP-7 data.

(vii) We have made detailed predictions for two next-generation
low-redshift surveys, WALLABY and TAIPAN. Using our 6dFGS
result, we predict that both surveys will detect the BAO signal,
and that WALLABY may be the first radio galaxy survey to do so.
Furthermore, we predict that TAIPAN has the potential to constrain
the Hubble constant to a precision of 3 per cent improving the
6dFGS measurement by 30 per cent.
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APPENDIX A: GENERATING LOGNORMAL
MOCK CATALOGUES

Here we explain in detail the different steps used to derive a lognor-
mal mock catalogue, as a useful guide for researchers in the field.
We start with an input power spectrum (which is determined as
explained in Section 3.3) in units of /=3 Mpc?. We set up a 3D grid
with the dimensions L, x Ly, x L. = 1000 x 1000 x 1000 h~" Mpc
with 200 subcells. We then distribute the quantity P(k)/V over this
K2+ k2 + k2
with k, = n,27/L, and n, being an integer value specifying the
x-coordinates of the grid cells.

Performing a complex-to-real Fourier transform (FT) of this grid
will produce a 3D correlation function. Since the power spectrum
has the property P(—k) = P(k)*, the result will be real.

The next step is to replace the correlation function £(r) at each
point in the 3D grid by In[1 + &(r)], where In is the natural loga-
rithm. This step prepares the input model for the inverse step, which
we later use to produce the lognormal density field.

Using a real-to-complex FT we can revert to k-space where we
now have a modified power spectrum, P,(k). At this point, we
divide by the number of subcells N.. The precise normalization
depends on the definition of the discrete FT. We use the FFTW
library (Frigo & Johnson 2005), where the discrete FT is defined as

grid, where V is the volume of the grid and k =

Ne—1
Y, =) X;exp[+27ijv/=1/N]. (A1)

j=0

The modified power spectrum Py, (k) is not guaranteed to be neither
positive defined nor a real function, which contradicts the defini-
tion of a power spectrum. Weinberg & Cole (1992) suggested to
construct a well-defined power spectrum from Py, (k) by

P, (k) = max [0, Re[ P,,(K)]]. (A2)

We now generate a real and an imaginary Fourier amplitude §(k)
for each point on the grid by randomly sampling from a Gaussian
distribution with rms +/ P}, (k)/2. However, to ensure that the final
overdensity field is real, we have to manipulate the grid, so that all
subcells follow the condition §(—k) = §(k)*.

Performing another FT results in an overdensity field 6(x) from
which we calculate the variance O'é. The mean of §(x) should be

zero. The lognormal density field is then given by
pr(x) = exp [8(x) — 05/2] . (A3)

which is now a quantity defined on [0, oo[ only, while §(x) is defined
on |—o0, oo[.

Since we want to calculate a mock catalogue for a particular sur-
vey, we have to incorporate the survey selection function. If W(x)
is the selection function with the normalization > W(x) = 1,
we calculate the mean number of galaxies in each grid cell
as

ng(x) = N W(x) pr(x), (A4)

where N is the total number of galaxies in our sample. The galaxy
catalogue itself is than generated by Poisson sampling n,(x).

The galaxy position is not defined within the subcell, and we
place the galaxy in a random position within the box. This means
that the correlation function calculated from such a distribution
is smooth at scales smaller than the subcell. It is therefore im-
portant to make sure that the grid cells are smaller than the size
of the bins in the correlation function calculation. In the 6dFGS
calculations presented in this paper, the grid cells have a size of
5h~! Mpc, while the correlation function bins are 10 4~! Mpc in
size.

APPENDIX B: COMPARISON OF LOGNORMAL
AND JACKKNIFE ERROR ESTIMATES

We have also estimated jackknife errors for the correlation function,
by way of comparison. We divided the survey into 18 regions and
calculated the correlation function by excluding one region at a time.
We found that the size of the error bars around the BAO peak varies
by around 20 per cent in some bins, when we increase the number
of jackknife regions from 18 to 32. Furthermore, the covariance
matrix derived from jackknife resampling is very noisy and hard to
invert.

We show the jackknife errors in Fig. B1. The jackknife error
shows more noise and is larger in most bins compared to the log-
normal error. The error shown in Fig. B1 is only the diagonal term of
the covariance matrix and does not include any correlation between
bins.

The full error matrix is shown in Fig. B2, where we plot the
correlation matrix of the jackknife error estimate compared to

CoN LN error, P, = 0h° Mpc™®
RN LN error, P, = 40 000h® Mpc™®

3 o e jk error, P =40 000h® Mpc™®

20 40 60 80 100 120 140 160 180 200
s [h"Mpc]

Figure B1. Correlation function error for different values of Py. The weight-
ing with Py = 40000 /43 Mpc 3 reduces the error at the BAO scale by almost
a factor of 4 compared to the case without weighting. The red dashed line
indicates the jackknife error.
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Figure B2. Correlation matrix of the jackknife errors (upper-left triangle)
and lognormal errors (lower-right triangle).

the lognormal error. The jackknife correlation matrix looks much
more noisy and seems to have less correlation in neighbouring
bins.

The number of jackknife regions cannot be chosen arbitrarily.
Each jackknife region must be at least as big as the maximum
scale under investigation. Since we want to test scales up to al-
most 200 h~! Mpc, our jackknife regions must be very large. On
the other hand, we need at least as many jackknife regions as
we have bins in our correlation function, otherwise the covari-
ance matrix is singular. These requirements can contradict each
other, especially if large scales are analysed. Furthermore, the small
number of jackknife regions is the main source of noise (for a
more detailed study of jackknife errors, see e.g. Norberg et al.
2008).

Given these limitations in the jackknife error approach, correla-
tion function studies on large scales usually employ simulations or
lognormal realizations to derive the covariance matrix. We decided
to use the lognormal error in our analysis. We showed that the jack-
knife errors tend to be larger than the lognormal error at larger scales
and carry less correlation. These differences might be connected to
the much higher noise level in the jackknife errors, which is clearly
visible in all our data. It could be, however, that our jackknife regions
are too small to deliver reliable errors on large scales. We use the
minimum number of jackknife regions to make the covariance ma-
trix non-singular (the correlation function is measured in 18 bins).
The mean distance of the jackknife regions to each other is about
200 2~! Mpc at the mean redshift of the survey, but smaller at low
redshift.

APPENDIX C: WIDE-ANGLE FORMALISM

The general redshift-space correlation function (ignoring the plane-
parallel approximation) depends on ¢, 6 and s. Here, s is the sep-
aration between the galaxy pair, 0 is the half opening angle, and ¢
is the angle of s to the line of sight (see fig. 1 in Raccanelli et al.
2010). For the following calculations, it must be considered that in
this parametrization, ¢ and 6 are not independent.

© 2011 The Authors, MNRAS 416, 3017-3032
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The total correlation function model, including O(6?) correction
terms, is then given by Papai & Szapudi (2008):
£(, 0, 5) = ao + 2ap cos(2¢) + az cos(2¢) + by sin*(2p)
+ [—4ay, cos(2¢) — day, — 4byy, — 4ayy cot?(¢)
+ 4ay; cot?(¢p) — 4ai; cot*(¢) cos(2¢) + 4by,
— 8by; cos?(¢)]0% + 064 (Cl)

This equation reduces to the plane-parallel approximation if 6 = 0.
The factors ay, and by, in this equation are given by

2
o = {1 + 24 i} £2r)
2 2
- [§ 2P }sz<r)+ e
2 2
aOZ__|:§ ﬂ:|$2(r)+ﬂ$4(r)
2 2 9 2
an =" s n-Lge 14ﬁ0 £20)
2 2 2
by = ﬂ Ego-Lae - ’3 RaHG
2 2
@ = [2;3 4 i] Ly - ﬁ—%(r)
4 2
an = o [800) ~2630)]
_ ﬁz 1 1
a = 5, [3%-3(”)_251 (r)]
4 2
b = s (500 + 8]
2 2
b= L o)+ a0, ©)

where B = Q,(2)*%/b, with b being the linear bias. The correlation
function moments are given by

1 o0
§"(r) = ﬁ/ dk k™ Pin(k) ji(rk), (C3)
T Jo

with j;(x) being the spherical Bessel function of order /.
The final spherically averaged correlation function is given by

s /2
E(s) = / / E(. 6. 5)N($. 0, 5)dodg, (C4)
0 0

where the function N(¢, 6, s) is obtained from the data. N(¢, 6,
s) counts the number of galaxy pairs at different ¢, 6 and s, and
includes the areal weighting sin (¢) which usually has to be included
in an integral over ¢. It is normalized such that

T /2
/ N(¢,0,s5)dodg = 1. (C5)
0 0

If the angle 6 is of order 1 rad, higher order terms become dominant
and equation (C1) is no longer sufficient. Our weighted sample
has only small values of 6, but growing with s (see Fig. C1). In
our case, the correction terms contribute only mildly at the BAO
scale (red line in Fig. C2). However, these corrections behave like
a scale-dependent bias and hence can introduce systematic errors if
not modelled correctly.
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Figure C1. The half-opening angle 6 as a function of separation s of the Figure C2. The black line represents the plain correlation function without
6dFGS weighted catalogue. The plane-parallel approximation assumes 6 = redshift-space distortions (RSDs), £(r), obtained by a Hankel transform of
0. The mean half-opening angle at the BAO scale is <10°. The colour bar our fiducial ACDM power spectrum. The blue line includes the linear model

for RSDs (linear Kaiser factor) using 8 = 0.27. The red line uses the same
value of S but includes all correction terms outlined in equation (C1) using
the N(¢, 0, s) distribution of the weighted 6dFGS sample employed in this
analysis.

gives the number of pairs in each bin.
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