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1. INTRODUCTION

Birds have been widely used as biological indicators for eco-

logical research. They respond quickly to environmental

changes and can be used to infer about other organisms (e.g.,

insects they feed on). Traditional methods for collecting data

about birds involves costly human effort. A promising al-

ternative is acoustic monitoring. There are many advantages

to recording audio of birds compared to human surveys, in-

cluding increased temporal and spatial resolution and extent,

applicability in remote sites, reduced observer bias, and po-

tentially lower cost. However, it is an open problem for sig-

nal processing and machine learning to reliably identify bird

sounds in real-world audio data collected in an acoustic mon-

itoring scenario. Some of the major challenges include multi-

ple simultaneously vocalizing birds, other sources of non-bird

sound (e.g., buzzing insects), and background noise like wind,

rain, and motor vehicles.

The 9th annual MLSP competition presented a real-world

dataset of bird sounds collected in field conditions. The goal

of the challenge was to do develop a classifier which predicts

the set of bird species present in a given ten-second audio

recording. The competition was hosted on Kaggle.com, a

platform for data mining competitions. Participation in this

competition was quite extensive; 79 teams participated, and

8 out of the 10 top-ranking teams submitted a two-page sum-

mary of their proposed methods. This paper summarizes the

results of the competition, and highlights the ideas from those

summaries.

2. DATASET

The audio dataset for this challenge was collected in the H. J.

Andrews (HJA) Long-Term Experimental Research Forest, in

the Cascade mountain range of Oregon. Since 2009, members

of the Oregon State University Bioacoustics group have col-

lected over 10TB of audio data in HJA using Songmeter au-

dio recording devices. A Songmeter has two omnidirectional

microphones, and records audio in WAV format to flash mem-

ory. A Songmeter can be left in the field for several weeks at

a time before either its batteries run out, or its memory is full.

HJA has been the site of decades of experiments and data

collection in ecology, geology and meteorology. This means,

for example, that given an audio recording from a particular

day and location in HJA, it is possible to look up the weather,

vegetative composition, elevation, and much more. Such data

enables unique discoveries through cross-examination, and

long-term analysis.

Previous experiments on supervised classification using

multi-instance and/or multi-label formulations have used au-

dio data collected with song meters in HJA [5, 3, 4, 17, 19].

The dataset for this competition is similar to, but perhaps

more difficult than that dataset used in these prior works; in

earlier work care was taken to avoid recordings with rain and

loud wind, or no birds at all, and all of the recordings came

from a single day.

In this competition, we consider a new dataset which in-

cludes rain, wind, and no-bird recordings, and is a represen-

tative sample of HJA in 2009 and 2010 at 13 sites (Fig. 2).

The full dataset consists of 645 ten-second audio recordings

in uncompressed WAV format (16kHz sampling frequency,

16 bits per sample, mono). There are 19 species of bird in

the dataset (Table 1). The subset of 645 recordings chosen for
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Table 1. The 19 bird species in the dataset.
Code Name

BRCR Brown Creeper

PAWR Pacific Wren

PSFL Pacific-slope Flycatcher

RBNU Red-breasted Nuthatch

DEJU Dark-eyed Junco

OSFL Olive-sided Flycatcher

HETH Hermit Thrush

CBCH Chestnut-backed Chickadee

VATH Varied Thrush

HEWA Hermit Warbler

SWTH Swainson’s Thrush

HAFL Hammond’s Flycatcher

WETA Western Tanager

BHGB Black-headed Grosbeak

GCKI Golden Crowned Kinglet

WAVI Warbling Vireo

MGWA MacGillivray’s Warbler

STJA Stellar’s Jay

CONI Common Nighthawk

this competition are intended to provide a good coverage of

all recording sites (Fig. 1a), several days over multiple years

(Fig. 1b), and several hours of day around dawn, when birds

are most active (Fig. 1c).

Each ten-second audio recording is paired with a set of

species that are present. These label sets were obtained by

listening to the audio and looking at spectrograms. Several

experts inspected each recording, and each provided their own

label set, along with estimates of their confidence. The final

label set was formed by confidence-weighted majority voting.

The WAV filenames encode the location (one of the 13

sites), and the date/time that the recording was collected. Par-

ticipants were allowed to use the location information in their

classifiers (indeed, this proved very useful), but we prohibited

use of the date/time information.

3. PROBLEM STATEMENT & EVALUATION

This challenge was formulated as a multi-label classification

problem. Formally, each recording in the dataset Ri is paired

with a set of species Yi ⊂ {1, . . . , c} where c = 19. The task

is to predict the probability that each species is present, given

a recording, i.e. P (j ∈ Yi|Ri) for j = 1, . . . , c. Classifiers

are evaluated based on the “micro” area under the receiver

operating characteristic curve (AUC) [15, 5].

The dataset was split randomly into 50% training set and

50% test set. Furthermore, the test set was divided into 1/3

“public test” and 2/3 “private test.” During the competition,

only the training set labels were provided. Participants were

able to submit predictions on the public test set twice per day,
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Fig. 1. Recordings in the dataset, counted in different ways.

and immediately receive a micro-AUC score. However, the

final ranking for the competition was determined by micro-

AUC on the private test set, which was not available to par-

ticipants until after the competition ended. This methodol-

ogy prevented participants from using their daily submission

quota to reverse-engineer the private test set labels.

4. BASELINE METHOD

Participants were free to develop methods completely from

scratch, using only the raw WAV audio files as input. How-

ever, there are many steps to go from audio to a predicted

set of species, so to reduce barriers to participation, we pro-

vided a baseline method from prior work [5], which produces

intermediate representations of the data through a sequence

of steps. Many teams used some components of the baseline

method. The steps in the baseline method, and data we pro-
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Fig. 2. Song meter data collection locations in the H. J. Andrews Experimental Forest.

Fig. 3. Manually labeled spectrogram with example of correct segmentation. Red = bird, blue = rain. This spectrogram

corresponds to 10 seconds of audio.

Fig. 4. Automatic segmentation of a spectrogram corresponding to 10-seconds of audio. This recording contains both rain and

bird sound. In some cases the segmentation successfully ignored the rain and isolated bird sound, but in others in mistakenly

labeled some rain as bird sound.



vided are:

Spectrograms – The raw audio signal is covered into a

spectrogram (an image representing the sound), by dividing it

into frames, and applying the FFT to each frame. We provided

BMP images of the spectrograms.

Noise reduction – The frequency profile of stationary

noise (such as wind and streams) is estimated from low en-

ergy frames, then the spectrogram is attenuated to suppress

the background noise while preserving bird sound [5]. We

provide a second set of noise-reduced spectrograms in BMP

format. Note this stage of processing does not address rain.

Segmentation – Each spectrogram is divided into a col-

lection of regions using a supervised time-frequency segmen-

tation algorithm [5]. We manually annotated 20 spectrograms

as examples of correct segmentation, by drawing over the ar-

eas corresponding to bird sound in red, and rain-drop in blue

(Fig. 3). Because there are a large number of pixels in each

spectrogram, we subsampled 30% of red pixels as positive

examples, 30% of blue pixels as negative examples, and 4%

of uncolored pixels as negative examples. From the 20 an-

notated spectrograms, this sampling process yields 467,958

examples. Each pixel is described by a feature vector with

the following elements:

• The raw pixel intensity of all pixels in a 17 × 17 box

around the pixel (this gives a 172 = 289-d feature).

• The average intensity of all pixels in that box (1-d).

• The y-coordinate of the pixel, which corresponds to fre-

quency (1-d).

• The raw pixel intensity of all pixels in the same column

as the pixel (256-d) (this feature was not present in the

original work [5]; it was introduced for this competi-

tion to help the classifier differentiate between patterns

characteristic of rain, and bird sound).

A Random Forest [2] classifier is trained on the positive and

negative examples1. Then the trained Random Forest classi-

fier is applied to each pixel in every spectrogram, which gives

a probability for the pixel to be bird sound. The probabil-

ities may be noisy when viewing individual pixels in isola-

tion, so they are averaged over a neighborhood by applying a

Gaussian blur to an image of the probabilities, with a kernel

parameter σ = 3. The blurred probabilities are then com-

pared to a threshold of 0.4. Pixels with probabilities above

the threshold are considered to be bird sound and pixels with

probabilities below the threshold are considered background.

Figure 4 shows an example of the output of this segmentation

process.

Segment Features – Each segment is associated with a

38-d feature vector which characterizes its shape, texture, and

noise-robust profile statistics [5]. The segment features can

1The segmentation Random Forest parameters are: 100 trees, maximum

depth of 10, histograms are stored in leaves

be used directly as part of a multi-instance multi-label formu-

lation, as in [5, 3, 4, 17], however most participants did not

take this approach.

Histogram of Segments – To map the problem directly

into a multi-label classification formulation, it is necessary

to have a single feature vector summarizing each recording,

rather than a collection of feature vectors summarizing the

segments in the recording. For this purpose, we provided a

“histogram of segments” (HOS) feature. The segments were

clustered using k-means++ [1] to form a codebook, then each

recording was represented by counting the number of times

each segment it contains is closest to each cluster center [6].

Using the HOS features, we applied binary relevance

(BR) with Random Forest (RF) as the base classifier (this

method was used for classification of data from HJA, and bird

sounds collected with a mobile phone in [6]). This baseline

method (designated BR + RF + HOS) achieved an AUC of

.85576 and a rank of 46/81 (Table 2).

5. RESULTS & NEW METHODS

Table 2 shows the AUC results achieved by all teams, and Fig-

ure 5 shows a histogram of AUC values. This section high-

lights key ideas from new methods proposed by top-ranking

entrants in the competition.

5.1. Segmentation

Many of the top 10 teams used the baseline segmentation al-

gorithm. However, a few teams devised their own segmenta-

tion method, or modified the baseline method. In particular,

team beluga (rank 1) proposed a new segmentation algorithm

consisting of the following steps:

• Gaussian smoothing

• Thresholding applied to the intensity gradient of the

smoothed image (this step roughly produces outlines

of the segments)

• Fill holes

• Remove small segments

Team Herbal Candy (rank 2) proposed a “sub-band en-

ergy ratio method” for segmentation with the following steps:

• Pre-emphasis, bandpass filtering, and a median filter to

remove salt and peper noise

• Compute a sub-band spectrogram with a lower fre-

quency resolution (16 bands)

• Apply an energy threshold to the sub-band spectrogram

to obtain segments

• Scale the segmentation back up to the original spectro-

gram size



Team JM-JD (rank 10) applied a similar method to

the baseline segmentation algorithm, but tuned the intensity

threshold by cross-validation, and used a Canny edge detec-

tor [7], to extract chained edge pixel lists for the perimeter

of each segment, and discarded segments with a perimeter of

less than 20 pixels (this is different from how small segments

were discarded in the baseline method).

Many of the teams computed features based on either the

baseline segmentation or one of the above segmentation meth-

ods. Some of the teams also constructed features in ways that

did not involve segmentation of the spectrogram into regions.

5.2. Features

Most of the top 10 ranked teams formulated the task as a

multi-label classification problem, hence their methods in-

volved constructing a fixed-length feature vector to describe

each 10-second spectrogram. Some of the features used de-

scribe segments, frames, or patches, while others characterize

the recording as a whole. Features characterizing parts of the

spectrum are typically summarized in some way to produce a

spectrogram-level feature.

Herbal Candy computed a suite of features to describe

each segment including a subset of the baseline features

(minimum/maximum frequency, bandwidth, duration, area,

perimeter, non-compactness, and rectangularity), as well as

frame-averaged mel-frequency cepstral coefficients (MFCC),

delta-MFCC, linear prediction cepstral coefficients (LPCC),

and spectral properties (sub-band energy, sub-band entropy,

centroid, roll-off and flux).

Bag-of-words, histogram, and dictionary representations

were widely used. The baseline histogram of segments fea-

tures were used by teams beluga, Anil Thomas, default, Tap

& Huttunen, and windmills. Furthermore, Anil Thomas also

constructed a second histogram of segments with k = 10
clusters. Herbal Candy constructed two bag-of-words feature

sets, one using normalized counts as in the HOS features, and

another using the distance to the nearest codeword rather than

the count, following [20]. JM–JD also constructed a bag-of-

words representation, but rather than a histogram, they first

clustered segment features, then constructed a feature vector

consisting of the average Hausdorff distance [23] from the set

of segments in a spectrogram to the set of segments in each

cluster. Tap & Huttenun used a more sophisticated dictionary

learning approach [14], implemented in the SPAMS toolbox

[18]. Their approach was to represent rectangular patches of

the spectrogram as a sparse linear combination of dictionary

atoms. The dictionary atoms were obtained by minimizing

the L1-regularized Euclidean distance between each original

patch and its optimal linear reconstruction from atoms.

A simple summary feature used by team default was the

mean and standard deviation of the height, width, and area of

the bounding boxes for each segment found by the baseline

segmentation method.

Another method of summarizing the patterns present in

a spectrogram as a fixed-dimensional feature vector is to use

template matching. In particular, a set of template patterns

(segments) are chosen, then a feature vector is constructed

by computing the maximum normalized cross-correlation of

each template with the spectrogram. This approach was used

by beluga and windmills.

Some spectrum-summarizing features divided the spec-

trogram into frequency bands, then summarized each bands

with statistics. In particular, Anil Thomas divided the spec-

trogram into 16 bands, then to avoid contribution from back-

ground noise, computed the mean intensity of pixels above

a threshold. Team default used a 168-dimensional statisti-

cal spectrogram descriptor (SSD) feature extracted using the

rp extract software [16], which consists of the mean, vari-

ance, skewness, kurtosis, min, max, and median statistic

within each of 24 bark bands.

It was widely reported that use of location information

improved classification accuracy. Many teams encoded the

location where the data was collected a single categorical

feature (beluga, Anil Thomas, default, and JM–JD). Alter-

natively, some teams computed the empirical probability of

each species to occur at each site from the training data, and

formed a 19 dimensional vector (corresponding to 19 species)

from these probabilities, then used the probability vector cor-

responding to the site from which each recording came as

part of the feature vector for that recording (Anil Thomas,

and Herbal Candy). Team JM–JD also used approximate dis-

tance to stream as a feature, computed from the map of HJA

provided with the competition.

Several teams included features which were designed to

help differentiate between recordings consisting only of back-

ground noise and recordings containing bird sound. For ex-

ample, Anil Thomas and default used the number of segments

detected by the baseline segmentation method as a feature.

Herbal Candy used entropy, and the correlation coefficient

between the average noise frame and signal frame to charac-

terize the amount of interesting sound in a clip.

Tap & Huttunen’s final classifier consisted of an aver-

aged ensemble of several different classifiers, each using its

own feature set. However, some of these features included

MFCCs, Local Binary Pattern features [8], and the vector of

frequencies over time at which the maximum amplitude oc-

curred.

5.3. Classifiers

Many of the teams focussed primarily on feature design, and

adopted a relatively simple approach for classification. Binary

relevance with Random Forest was the most popular method

(used by beluga, Anil Thomas, default, Tap & Huttunen, and

windmills). Team default used the Mulan software package

for learning multi-label learning [21]. Extremely Random-

ized Trees [9] were used by Herbal Candy, and Tap & Hut-



tunen. Tap & Huttunen also used L1-regularized logistic re-

gression [11] and k-nearest neighbors as part of an ensemble

of classifiers. JM–JD used the multi-label radial basis func-

tion (ML-RBF) algorithm [22].

Many of the recordings had no species present, in which

case the optimal prediction is 0 probability for all species.

Team default created two different models, and switched

between them based on wether the baseline segmentation

method detected zero or more segments. If zero segments

were detected, then a model using only the SSD and loca-

tion features were used. Otherwise, a model using those fea-

tures as well as features summarizing the segments was used.

Team windmills devised a two-stage classifier, where the first

stage predicted the probability that any species was present

in a recording, then the second stage modeled the conditional

probability of each species given that some bird was present.

Maxim Milakov (author of the nnForge library2) proposed

a method based on convolutional neural nets [12]. In this

method, the raw unfiltered spectrograms are given to the net-

work as input, and the output layer has one neuron for each

species. Max-pooling was used, i.e. the probability of a bird

singing within the given 10-second interval is the max of

the probability of it singing in 32 smaller overlapping inter-

vals. The network was trained using the stochastic diagonal

Levenberg-Marquadt algorithm [13], with dropout regulariza-

tion [10] applied to the last convolutional layer. To encour-

age time-shift invariance, each example was randomly shifted

during training, and during testing the output was averaged

over five random shifts of the input. Remarkably, this method

achieved high accuracy (rank 4/81) without extensive feature

engineering, or using the location information (which helped

other methods significantly).

5.4. Conclusion

Results of this competition demonstrate that reliable auto-

matic species recognition using machine learning is feasible

with audio collected in real-world field conditions, with dif-

ficulties including multiple simultaneously vocalizing birds,

and background noises such as rain. Decision tree ensembles

were the most popular type of classifier used, and generally

achieved high accuracy. More interesting variations were dis-

played in the feature design part of the problem. Based on

results of the top-ranking teams, some of the most useful fea-

tures are the histogram of segments provided in the baseline,

template matching features, signal descriptors not based on

segmentation, and location. Alternatively, convolutional neu-

ral nets achieved excellent results without extensive feature

engineering, hence further investigation of such methods is

warranted.

2http://milakov.github.io/nnForge/
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Fig. 5. Histogram of AUC scores achieved by teams.
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