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Abstract. We present a detailed and complete proof of our earlier conjecture on 

the classification of minimal conformal invariant theories: This is based on an 

exhaustive construction of all modular invariant sesquilinear forms, with 

positive integral coefficients, in the characters of the Virasoro or of the A~ 1) Kac- 

Moody algebras, which describe the corresponding partition functions on a 

torus. A remarkable correspondence emerges with simply laced Lie algebras: 

I. Introduction 

1: The minimal conformal invariant models describe a class of massless two 

dimensional field theories, with known critical properties [1]: Their anomalous 

dimensions and operator content are encoded in the expression of the partition 

function on a torus: The sum over states decomposes into pairs of irreducible 

representations of the Virasoro algebra, with central charge c rational and smaller 

than 1, yielding a sesquitinear form in the characters Zh, 

= • 

In this formula z is the ratio of  the two periods on the torus, and the summation 

extends over a finite table of known (h, h-) values. The non-negative integral 

coefficients ~#h.~yield the multiplicities of primary scaling operators q~h, h-, which are 

in one to one correspondence with the products ZhZ* of characters: Cardy [2] 

noticed that modular invariance is a consistency condition on these partition 

functions. 

Our aim here is to present a detailed proof of the classification of these positive 

modular invariants, announced in [3]: As these theories describe statistical models 

at criticality, this classifies the universality classes of two dimensional critical 

phenomena, pertaining to c < I, with finitely many primary observables. They 

include for instance the Ising and three-state Potts models. 
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Gepner [4] has observed that there exists a simpler and related problem of 

modular invariant sesquilinear forms in the characters of the AI a) affine Kac- 

Moody algebra - again with integral non-negative coefficients [5]. We address both 

problems: 

Unexpectedly, a beautiful structure emerged [3], with a classification of these 

minimal invariants in terms of simply laced simple Lie algebras, or equivalently 

finite subgroups of Sb~ [6], the celebrated A-D-E classification. Our results were 

based on two conjectures. The first was a description of the commutant of the 

representation of the modular group afforded by the characters. In the meantime it 

was shown correct by Gepner and Qiu [7]. After recalling the expression and 

properties of the characters (Sect: II), we shall reproduce this proof for complete- 

ness, albeit in a slightly different formalism [8] (Sect. III). We were led to the second 

conjecture after tabulating those invariants involving non-negative integral 

coefficients that were constructed using the previous algorithms: When casting 

earlier findings by Cardy [2], ourselves [9, 10] and Gepner [4], in the appropriate 

notation, it was recognized that the diagonal entries of all these partition functions 

could be interpreted as the Coxeter exponents of simply laced simple Lie algebras, 

generalizing an observation of Kac [11]. 

We then checked that, within a natural ordering we could not find any further 

partition function at least up to a high order: Since the list exhausted the A-D-E 

classification, it was suggested that it was complete: This was comforted by V: 

Pasquier's construction of microscopic generalized solid-on-solid models, involving 

the Coxeter-Dynkin diagrams and exhibiting the predicted behavior [12]: We prove 

in Sect: IV that our lists are exhaustive. The method might be qualified as intrinsic, 

in the sense that it combines simple arithmetic remarks, but does not illuminate the 

nature of the correspondence with other A-D-E classifications: We suspect 

nevertheless that such a correspondence exists, and finding it remains a challenge: In 

the final Sect: V we study the representations of the modular group related to some 

of the positive invariants, and point out their connection with classical problems in 

algebra and number theory, according to the discussion given in F: Klein's treatise 

on the icosahedron [13]. 

The above method of classification can be extended to other families of 

conformal field theories, such as the minimal N =  1 superconformal ones [14], or the 

ZN-symmetric parafermionic models [15, 7]: Several authors have also related the 

exceptional affine invariants to simpler ones pertaining to higher rank Kac-Moody 

algebras [16]. 

It is a pleasure to acknowledge here the hospitality that one of the authors (C. I.) has enjoyed 
at the University of California in Irvine, and in particular the very useful conversations with M. 
Bander and H. Meyers who made him aware of reference [6]. Similarly J. B, Z. thanks D. 
Altschiiler, K: Kastrup, and J. Lacki for bringing this same reference to his attention. A. C. 
acknowledges the Angelo Della Riccia Foundation for partial support. 

II. Preliminaries 

2. As a matter of convenience we write e(x) for exp {2inx}, t~ is the set of complex 

numbers, Z the set of rational integers, Z/kZ the set of integers modulo k, and 

(Z/k2g)* its multiplicative subgroup of integers modulo k, prime to k. The notation 
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plk (p~/k) means that p divides k (does not divide k): For  a set of integers a, b , . . .  

the symbol (a, b,. . .)  stands for the largest (positive) common divisor of a, b , . . . .  In 

particular (a, b ) =  1 means that a and b are coprime, in which case any rational 

integer may be represented as a linear combination ra -sb: We denote by a(n) the 

number of distinct positive divisors of n, including 1: We exclude 1 from the set of  

(positive) primes: 

The modular 

transformations 

group F=PSL(2,Z) is the group of fractional linear 

z ~ z , =  a'~+b 

cz + d (1) 

with the integral coefficients, such that ad-bc= i: A given element is therefore 

associated to a pair +_A of  two by two matrices in SL(2, Z): I f  in (I) the complex 

variable z has a positive imaginary part, so has ~', and we shall henceforth assume 

that this is the case. 

The modular group describes the effect of  a change of basis on the ratio z of  two 

generators of a lattice A, with C/A identified with a torus: F is generated by two 

elements 

T ~--*z+l , S ~_+_~-I  , (2) 

satisfying 
S 2 = (ST) 3 ---identity . (3) 

For any integer k > 1, Fk, the invariant subgroup of level k is such that 

A = +_Imod k: It is a non-trivial result that F k =PSL(2, 7Z,)/Fk is isomorphic to the 

modular group on integers rood k, PSL(2, 7Z/kT/) [17]: Furthermore for k > 2 

I k3 p2~. I - ~ -  (4) order Fk=index  Fk=~ p ~ 

When k = 2, A - - A  rood 2, one has to omit the prefactor 1/2 and the index of Fz is 

six: If  (kl, k2) = 1, the group SL(2, 7Z/k~k27Z) is isomorphic to the direct product 

SL(2, Z/klZ) x SL(2, 7Z/k2Z): Any element of the former group gives obviously rise 

to a pair of the latter, and the correspondence is clearly an injective homomorphism: 

Formula (4) with the prefactor 1/2 omitted, shows that it is surjective. This entails 

that the representation theory for SL(2, T./kZ) is in fact reduced to the case where k 

is the power of a prime. We shall not elaborate this point further, except to note that 

it obviously relates to the discussion of the following sections: In particular the 

center of  SL(2, ~/k7Z.) is made of matrices of the form ~I, with 72 _= 1 mod k: Let r 

denote the number of  distinct odd prime divisors of  k, and a = 0 if k ~ 0, 4, a = 1 if 

k -  4 and a = 2 if k - 0 mod 8, the number of elements in the center is 2 a + r. In any 

representation these elements will belong to the commutant: 

The simplest automorphic " fo rm"  under the modular group is Dedekind's 

function, defined for Im • > 0 (the real axis is a natural boundary) by 

oo 

r/(~) =e  (z/24) I-I (1 - e  (fz)) . (5) 
~ = I  

It is convenient to use q =e(z) ,  IqJ < I, giving a meaning to fractional powers of q: 

Omitting its prefactor, r/(z) -1 is the generating function of  partitions: Euler's 
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pentagonal identity gives the series expansion 

+~ ( (6~+1)2~ 

r/('c)=e:_oo ~ (-1)% v 24 ,1" (6) 

From Poisson's formula, it follows that under a modular transformation 

T ~/(z+l)=e(l/24)r/(z) , 
(7) 

27 q(-z-*)=(v/ i) l f217(~),  

where the square root is 1 if z = i. For a general modular transformation 

r/('r') = eA (cz + d) 1/2 r/('c) (8) 

with e~ a 24-th root of unity; The product representation shows that t/(z) never 

vanishes in the upper half plane Im "c > 0. 

3. The characters corresponding to the degenerate representations of the Virasoro 

algebra (abbreviated as conformal characters), follow from the work of Feigin and 

Fuchs [18], Rocha-Caridi [19], and Dobrev [20]: They are labelled by a pair c, h, 

with c the central charge, and h the highest weight: Letp andp '  be a pair of coprime 

positive integers, both larger than 1. For c < 1, the minimal degenerate series 

corresponds to central charges 

6(p _p,)2 
c = l  (9) 

pp' 

and highest weights given by 

h(r, s) = (rp - sp ' )  2 -(1) _p,)2 =-h(p ' - r ,p  - s )  , (10) 
4pp' 

where the integers r and s are in the range 0 < r <p' ,  0 < s <p  and may be further 

restricted by sp' <rp, if we assume for instance p' <p: When p, p '  are successive 

integers p = m  + 1, p'  =m,  m __>2, one has the discrete unitary series discovered by 

Friedan et aL [21]: In a given representation, let dr, ~ >= 0, be the dimension of the 

subspace with eigenvalue h + f of the operator Lo in the Virasoro algebra, and 

q=e( , ) ,  the character is defined as 

Zc, h(Z) = ~ dgq -e/24+h+e 
d = 0  

+co / (2tpp' +rp-sp ' )  2 (2tpp' +rp+sp t )2 \  

= r l ( z ) - i  ~ tq '~vv' (11) 

We have included in Zc, h a factor q-ClZ4 to simplify formulas in the sequel, where c 

will be kept fixed, while h varies. 
To make this more transparent, let us use the following notations. Define the 

even integer N through 

N = 2 n = 2 p p '  (p,p') = 1 N > 1 2  , (12) 



A-D-E Classification of Conformal Invariant Theories 5 

and trade the weight h for an integer 2 mod N 

2 ==-rp - s p '  mod N . (13) 

If r and s are chosen as indicated before, 2 lies in the range 0 < )~ < n, with multiples 

of p and p '  excluded. The total number of possible values is therefore ½ ( p - l )  

(p' - 1): The reason for these pecularities follows from the symmetries of  characters 

as functions of  2 rood N: To see this in detail, consider all possible pairs (r, s) leading 

to the same value of h, i. e: of(rp - sp ' )  2. We can think of these pairs as elements of a 

lattice ~ ,  equipped with a Lorentzian metric and generated by two orthogonal 

vectors no and a~ such that a o ' a o - l = a l " a l + l = a o ' a l = O .  We have the 

correspondence 

{r, s~ --,)~ = rao + sat  ~ £~o , (14)  

Let W be the sublattice generated by 

v+ = p ' a o  + p a l  , v_ = p ' a o  - p a l  . (15)  

The index of W is I det (v +, v_)l = 2pp' = N. By interchanging the roles o fp  and p',  

define also the dual sublattice 17¢ generated by 

u + = p a o + p ' a l  , u _ = p a o - p ' a l  , 
(16) 

u + - v + = u _ . v _ = 0  , u + - v _ = u _ - v + = N .  

Any vector / ,  can be represented by its scalar products on u+, u_ as 

)~=~-u+ =rp - s p '  2'=2~ "u_ =rp+sp'  (17) 

and 2 = 0  (2 '=0 )  if and only if 2=~v+ (2=~v_)  for some integer 4. Adding an 

element of W to 2 leaves 2 and 2'  invariant rood N. In fact (i) as additive groups 

L,e/W and 7£/N71 are isomorphic, and (ii) there exists an integer 09o rood N such that 

co2=1 m o d 2 N  2 ' -o9o ,~modN . (18) 

The rood 2N condition in the first equation is compatible with the fact that N being 

even a shift ofogo by a multiple of Nchanges O92o by a multiple o f2N.  Sincep andp '  

are coprime, it is possible to find a pair (to, So) (an infinity of  them) such that 

top - sop  '= 1. 

Define 2o = r0ao + soa~, then 

~o .u+ =1 , ogo=,~o.u_=rop+sop ' , (19) 

and O92o-l=4rosopp'=Omod2N. The map , ~ m o d W - - * 2 = g . u + m o d N  is an 

homomorphism from ~ / W i n t o  Z/NZ. Since (g - 2 ~ ) -  u + = 0, 2 differs from 2 ~  by 

a multiple of v +, i: e. an element of  W, thus proving (i) in the form 

-= Ago rood W . 

Multiplying both sides by u_,  we get 2 '  -= O90~ rood N. The vector Ao is defined up to 

a multiple of  v + ~ H/; hence O9o is defined rood N, which completes the proof  of  (18). 
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The factors p and p'  are the smallest positive integers such that 

coo2=-2modN ~--~2-0modp , 
(20) 

09o2 =- - 2  mod N~--~2-0 modp '  

The requirement on the Virasoro representations is that COo ~ + 1 mod N. 

We can now rewrite the characters (11) in the form 

Z,~(z) = Z_ ~('r) = Z~.+ ,N ('c) = - Z ~,ooZ ('r) = K,~ ('r) - K,,,o.~('c) (21) 

with 
+ ~  

K~(z)=K-~(z)=K~+N(z)=q(z) -1 Z q ~ "  (22) 

Under modular transformations the behavior of Ka(z) follows readily from 

Poissons's formula and from (7) 

T K~(z+ 1) =e  Kx(z) , 

S K x ( - z - 1 ) =  I ~ e (~-~)K~,(z) , 

2 ' ~ Z / N Z  

(23a) 

both relations being compatible with the symmetries indicated in (21): The equality 

K~ = K_ ~ is crucial in insuring that (23a) defines a representation of the modular 

group: Similarly, c%2=1 mod 2N shows that X~ has identical transformation 

properties 

T Z~(~+l )=e  Z~(~) , 

(23b) 

S Z ~ ( - ~ - I ) = ] / ~  ~'~Z/NZ 

4. In parallel with the treatment of the Virasoro characters, one can carry out a 

similar discussion involving integrable highest weight representations of the affine 

Lie algebra A~ 1) (the SU2 current algebra) and their characters, henceforth referred 

to as affine ones: Those are labelled by a non-negative integer called the level k, and 

a lowest angular momentum (integer or half integer) ~, such that 0 __<2d~k: To 

stress the analogy with the previous case, we define 

N=2(k+2)>=4 , 2 = 2 f + I  , (24) 

and write the affine character [22] as 

+ oo (Nt + .~)2 

a f f  a f f  (25) Zx (z)=Z~+n(z)=--z~f(z)=~l(z) -3 ~, (Nt+2)q 2N 
t in--09 

Here the role of 2~coo2 is played by the involution 2 ~ - 2 ,  under which the 

character is odd. The k +  1 independent characters can be chosen with index 

2=1 ,2  . . . .  , k + l :  
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Under modular transformations 

/,~2 l~ aff 

, (26) 

s z f ' ( - <  1) 1/U 

Similar remarks apply here as it did for Eqs: (23): When N = 4 ,  2 =  1, Z aef reduces 

to 1, leading to a well known expression for t/a due to Jacobi, the first in the series 

obtained by Macdonald and Dyson [22]: Similarly in the Virasoro case, when 

N =  12, p = 3, p '  = 2 and r = 2, s = 1, the representation is trivial, )~ = 1, and Eq. (11) 

reduces to Euler's identity (6). 

In [3] we have looked for the possible choices of phases er and ~ such that the 

transformations on integers mod N 

Txx, = er e 6xx, 

S ,a&, = gs - ~  e 

generate in the subspaces of even (e = + 1) or odd (e = - 1 )  vectors under 2 ~ - 2 ,  a 

unitary finite dimensional representation of the modular group (keeping N even): 

Using Gauss'sum, it was found that there exist 12 possibilities with 

e~=e , (e,e~)3=e(-1/8) , (28) 

out of  which two are realized in the previous cases: This enables one to get a better 

understanding of  the phases which distinguish (23) from (26): It would be of interest 

to find representative problems for the ten remaining possibilities: 

In both the conformal as well as the affine case, the group of level 2N, FzN, is 

represented by a multiple of the identity, a 24th root of  unity in the Virasoro case, or 

an 8 th root in the affine one~: As a consequence of this non-trivial property proved 

in [3], Eqs: (23) and (26) generate projective representations of  F 2N, which are in 

general reducible: The phase is immaterial in the following discussion of invariant 

sesquilinear forms: 

We now have all the elements to state the classification problem in both the 

conformal and affine case, referring to the literature for motivations and 

applications. To shorten notation we shall henceforth omit the suffix which 

distinguishes the affine from the conformal case, unless mandatory. 

5: The partition functions (on tori) of  critical models are sesquilinear forms in the 

characters 

Z('r)= ~ Xl'('r)~;.,)~,~,(z), (29) 

1 The rote of the group F2N in this problem had been foreseen by A. Schwimmer (private 
communication) 
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where the indices 2 range over a fundamental domain ~ (within integers mod N) 

of the symmetry properties, i.e: ) ~  - 2  in the affine case (where t.o =X, =0) and 

2 ~  - 2 ,  2 ~  ___ e9o2 in the conformal one: The coefficients ~za,  should satisfy the 

following two conditions 

(A) Z(z) is modular invariant, 

(B) Yzz, are non-negative integers: 

An auxiliary normalization condition (unicity of the vacuum state) requires in the 

conformal case JVp_p, ~_p, = 1 (i.e: sVl,1 in the unitary series): We take it to be 

J / 'm = 1 in the affine case: 

One could also generalize the problem to include frustrated partition functions, 

where (A) could be relaxed to a weaker condition ofinvariance under a subgroup of 

the modular group [23, 10]: This will not be considered here: 

Corresponding to the two conditions (A) and (B), the problem subdivides itself 

into two parts to be treated successively: (A) To find the general form of a modular 

invariant, or equivalently to study the commutant of  the representation; (B) To 

study the positivity and integrality restrictions, in the affine and conformal cases, 

respectively: 

HI. The Commutant 

6. Let us first look at combinations such as (2:29), where the coefficients are 

arbitrary complex numbers, submitted only to condition (A), L e. modular 

invariance: It is convenient to extend the range of summation for the indices 2 and 2' 

to Z/NZ, provided the matrix Ya, 4' satisfies the obvious symmetry relations. If e, ~' 

take the values 0 or 1, those are 

J~(_ 1)o~,<_ a).,~. = ( - 1)~ +" Yx, x. affine case (la) 

.A/i_ a)o~.,(_ 1)~, ~, = ~V~, ~ , 1 )  JV'~., ~, } 

.A#o~,o,~'). ,= ( - ~ + ~' conformal case (ib) 

We now identify Y with the matrix of an operator on N-dimensional vectors with 

components labelled by 2: Similarly we define two N x N unitary matrices (and 

operators) 

T~,=6~,~,e 

1 {22"~ (2) 

Here the 6 symbol is understood mod N; S is the matrix of finite Fourier transform 

82.,,,%,,_~_6~,,_2,,2 S~,~, = 6z, z .  Supplemented by the appropriate phases, and acting 

respectively in the even or odd subspace under 2 ~  - 2 ,  we have seen that T and S 

generate the corresponding unitary representations of the modular group acting on 
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conformal or affine characters: The phases drop out when we investigate the 

conditions, 

T~ ~" T= S~4r S = JV" , (3) 

which mean that ~U belongs to the commutant of S and Tin view of unitarity, This is 

problem (A), where we may as well disregard the symmetry conditions (1) since they 

can easily be reinstated at the end, and are compatible with (3): 

The clue to solve this question is provided by the requirement of commutation 

with T, and by the observation that elements of the commutant describe 

generalizations of the symmetries which were just said to be compatible with (3): 

Indeed [Jt/", T] = 0 implies that off-diagonal elements of ~4~, z' can be non-vanishing 

only if2 2 = 2 'z rood 2N, which is consistent again with 2 defined mod N because Nis 

even. Thus, taking representative integers, ( 2 ' - 2 ) ( 2 ' +  2)=  2 iN. Apart from the 

obvious solutions 2'---- + 2 mod N, this equation implies that 2 ' +  2 being of the 

same parity are both even, hence 2' + 2 = 2 ~6, 2' - 2 = 2 ~6, with fiB= n ( =  N/2), 4, ~, 
6, and 6 are integers, 6 and 8 positive: Set ~ = (6, 8), then ~2 divides n (hence N), 

p = 8/e and p ' =  8/~ are coprime, and integers Q,a exist" such that ~ p - a p ' =  1. 

(The reader will not confuse these integers with those entering the definition of c;) 

Defining co=-Qp+ap'modN/e z, we have ¢o2-1=4Qapp' -Omod2N/e  z and 

c o + 1 - 2 Q p m o d N / ~ ,  co - 1  =-2ap' mod N/~ z. Since 2/a=~p -~p' ,  2'/~=~p + ~p', 

we find co2/~ = 2'/a mod N/c~ z or 4' --- cox mod N/e: This necessary condition is also 

sufficient for commutation with T. We conclude that for each divisor c~ of n, 1 =< 6 

<n,  we can define a pair, ~=(6,n/6) and ~o'such that o92-1 mod2N/e  z, and a 

symmetric matrix 

{ 0 if ~X2 or a,(2' 

6In ~ (O0)~,~,= (4) 
6a, o~+~N/, otherwise 

~rnod~ 

which commutes with T, and, as an immediate calculation shows, also with S. 

Among multiples of~, 6is the smallest one left invariant mod N/~ and 6 the smallest 

one which changes sign mod N/a, and we can shift 09 by a multiple of  N/~ z to make 

these properties hold mod N. Interchanging the roles of 6 and 6 amounts simply to 

replacing co by -co: For instance O n corresponds to e =  1, co= 1, i.e. f2, = / ,  while f21 

corresponds to ~ = 1, co = - 1, i: e: (g21)z.~, = 6a. _a,: More generally 12~ and f2,/~ will 

be linearly related when operating in the even or odd subspace with corresponding 

projector ( / + 0 0 / 2 .  

7: Proposition 1 [7]: The commutant of  S and T is 9enerated by the a(n) linearly 
independent operators g2o. 

The thread of the argument is the following. We represent any operator as a 

polynomial in two basic ones obeying the simple commutation relations of finite 

quantum mechanics [8]: Elements of the commutant are obtained by averaging over 

the group/~ generated by S and T. This provides us with a basis {Mn} which is 

equivalent to the set {0~}. 

Introduce in the N-dimensional (Hilbert) space 3¢g of functions on Z / N Z  two 

unitary operators P and Q, which generate a representation of the finite Heisenberg 
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(Q~,) (2) =e  (-~) ~9(2) (P~9) (2)= ~ ( 2 - I )  . 

The analog of the canonical commutation relations reads 

OP=e(t/N)PO 

and is supplemented by 

(5) 

(6a) 

Q N = pN = e (1/N)NI= I . (6b) 

Using Dirac's bra-ket notation (210)-~(2) ,  we have 

Ol2>=e(2/N)12> P12>=12+1> • (7) 

Polynomials in P and Q generate the full operator algebra in the form 

k e l M =  • P Q ~ T r ( M Q - e P - t ' )  (g) 
k, gmodN 

for any operator M, as can be shown in the case of a projector 12> (2'1: This implies 

the irreducibility of the representation, and is in fact an adaptation of the Wigner 

representation in the continuum case: In view of (6a) we can assume a "normal 

ordering" with P's to the left of Q's: 
The analogy with continuous quantum mechanics is pursued if we notice that S 

and T generate in their adjoint action the canonical group [i.e. transformations 

preserving (6)] 

(;,), 

More generally if we define the symbol 

{k, ~ } - e (k~/2N) pkoe  , (SO) 

S ~ { k , { } S = { g ,  - k }  , T * { k , ( } T = { k , g - k }  . (9b) 

Clearly {k, g} only depends on k, { rood 2N, but they are only independent mod N, 
since {k+aN,  ~+bN}  =(  -1)kb-e"{k, (}. 

Any automorphism d is a product of S's and T's acting as 

where the two-by-two matrix is an element of ff z s=  SL(2, Z /2NZ):  In particular 
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Setting respectively (k, : ) =  (1, 0) or (0, 1), we get values of P ' ,  Q'  which obviously 

verify (6), thus on the one hand the map {k, :  } ~ {k', : '}  is-the resultant on operators 

of  canonical transformations. On the other hand we know that the above two 

matrices in (12) generate SL(2, 71). Thus we have a bijective map, 

which allows us to identify both groups. The next step is to write f2~ in the Wigner 

form (8). Now recall that 6=ep', 8=n/6=ep and (p ,p ' )=  1. The claim is that 

f2~ == ~ pE,~r Q2,~z e (62yz/n) . (14) 
F/ y, z rood n/6 

Indeed recall that (f2a)z,z, is different from zero for 

)~=xS+ y6 , 2 ' = x S - y 6  m o d N  

with x~Z /26Z ,  y s Z / 2 8 Z ,  and 

1 

x m o d 2 6  y m o d 2 6  

where the factor 1/2 accounts for double counting: Inserting this in Eq: (8) yields 

1 

f2a = 2 ~  Z pkQ: Z 
k, g m o d N  x m o d 2 6  

y m o d 2 ~  

1 
= 2 N  Z ?kQe Z 

k, g m o d N  x m o d 2 6  
y m o d 2 g  

(6x +,SylQ -eP-klSx - 6y) 

e (~ (~x + ~y)/N) ~k, 2 6y mod N 

6 
= ~  ~ PZ'SrQee(Eyf/N)6e.Omod2o • 

g m o d N  
y m o d 2 ~  

Setting ( = 2 z 6 ,  with z m o d  8, we get (14): It is nice to verify, using (11) and (14), 

that S and T commute with f2~. 

To find a general element of  the commutant Gepner and Qiu's idea is to average 

the adjoint action of the group F 2N = SL(2, Z/2 N7/) on an arbitrary element: From 

the representation (8) it suffices to average this adjoint action on each pkQe. 
Let l/~rt denote the order of  P .  Set 

1 
M '  - -  Z :d 

/~z,v 

1 ['abk 2 + cd: 2 + 2 bck: )'~ p,k + ce Ok + ae (1 5) 

-tF2N 1 e ~ ~ -1 Q , 

where ~¢<--~ d e The second expression follows from the definitions (10) 

and (i 1). Clearly any element of  the commutant is a linear combination of  the M[,,e 
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with k and E ranging mod N (i. e. M~ + eN, e + ~,N = M[,e). Furthermore M~e vanishes if 

k and E are not both even. Indeed the kernel of  the map F2N--+ff N is given by the 

eight matrices 

(I +~N flNN) 
~N 1+~  ~ ' f l ' 7=0 '  1 ' 

Averaging (I 5) over this invariant subgroup leaves M~e invariant and multiplies the 

coefficient of p,k+ceQbk+ne by 

1 

1 •,p, TEZ/2Z 

This is non-vanishing only if both k' = ak + cf and E' = bk + dE are even: The linear 

transformation is invertible mod 2, hence k and f are also even. Thus in (15) we may 

as well assume the indices even which allows us to write Mk, e=M~k,2~ as 

1 ~ (abkZ+cdEZ+gbckve)p2(~k+Ce)Q2(bk+ae) (16) 
I _ e - , 

where the structure of the formula has in fact reduced the average to F", and k and 

are defined mod n. It also follows from the preceding that for any element in F", 

Pick representatives k and C in the range 1 to n, let d = (k, f ) ;  then ml and m2 exist 

such that mlk +m2~=d:  The matrix 

is unimodular, 

e/d 
( k ,  - k / d  

g/d ml) 
-kid m2 

The process can be repeated by introducing 6 = (n, d ) =  (k, ( ,  n), 

Mk, e = e  ~ M0,a.  

We conclude that o-(n) linearly independent operators Ma-Mo,o  can be defined, 

labelled by divisors of  n, 1 __< 6 < n, 

Ma=[~l ~_ p2~cQ2,~ae(62cd ~,__n/, (18) 

F" 

generating the commutant: 

Linear independence follows from the fact that two distinct divisors 6 and 6' 

have disjoint orbits under F" mod n: Indeed if 6 and 6' divisors of n in the range 

1 to n were on the same orbit, we would have 

c6 = in , oi6 = 6' + ~'n . 
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Thus, since 6 In, 6 '  would be a multiple of  6 and interchanging their roles, ~ a 

multiple of 6 ', an impossibility if 6 is distinct from 6 ': 

It is now easy to complete the proof. We can split Ca as a sum, 

nta 

Z M+<, . . . .  /+>, 09) 
/'/ y , z = l  

using the fact that d * Ca s4 = G0 for any element of/~2N. [Recall that (x, y, z) is the 

greatest common divisor of x,y,z:] This relation is of a triangular form, 

Ca = ~ Aaa, Ma, with Aa~, = ~ 2 '  IF"I~'!: It can therefore be inverted to yield Ma in 
01a' 

terms of Ca,, so that the O's as well as the M's  can be used to generate the 

commutant,  thus completing the proof  of Proposition 1: 

When n is prime, a (n) = 2, and the representation splits into two irreducible ones 

acting on the even or odd subspaces: 

IV. A-D-E Classification 

8: In this section we derive the classification ofparfit ion functions in both the affine 

and conformal cases: The difficulty stems in each case from the oddness property 

under multiplication by O1, or O~o respectively, if we keep the convention to write 

the invafiants in terms of X~, 2 mad N. 

We first look at the affine case, writing Z as 

Recall that ;g~n = 0: Divide the integers mad N different from zero mad n into two 

disjoint sets: U and L with representatives lying respectively in the intervals 

1 _<2_<n - 1  and n + l  <_2<-2n-t: Therefore L=- - U m o d  N, and a fundamental 

domain ~ is U: We have (Oa)0~ = (~,/a)0-~ = -(O,/aZ)~ and (~a)a~, = (Oa)-~,-a'. 

This allows us for each factorization n=66 to replace in (la) caO+cs06 by 

(ca-cs)f2a or (cs-ca)O~: We use whichever of  the two combinations has a non- 

negative coefficient, and rewrite Z as 

Z ( z ) =  ~ Z*(z) ( ~  caf2a~ Z~,(z) 
;~eU \ a l n  -- / ~,,A' 

,v mad  N 

= ~ x*(~)~c~[(Oa)z ,x , - (O+)z-x , l~zz , (~)  (lb) 
lain J 

with ca_-> 0, and ca > 0 implying C,la = 0: The coefficient of X*)fi should be one. But 

only O, and O1 contribute to it, and with the above conventions c~ = 0, c, = 1: The 

matrices (2 have non-negative integral coefficients: We want to ensure that this is 

also true for the matrix within curly brackets in the second expression (lb). Using 

the previous conventions, we have for the required solutions the following result, 

announced in [3] as a conjecture: 
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Proposition 2. For the affine partition functions the following set of possibilities is 
exhaustive: 

n > 2  f2. ( A . - 0  

n e v e n > 6  ~'~n + ~Q 2 (Dn/2+l) 

n = 1 2  ~Q12 "~- ~'~3 + Q 2 ( E 6 )  

n = 1 8  f21s+f2a+f2z (ET) 

n = 30 /230 + f2s + 03 + 02 (E8) 

(2) 

In  (2) we give the combina t ion  ~ cof2~ occurr ing in (1): We have two infinite series, 

labelled A and D, and three exceptional  cases, labelled E: The index on A, D or E is 

the r ank  of  the corresponding simple Lie algebra: The correspondence  is clarified in 

Table 1, which gives the expanded fo rm of  the par t i t ion function: The coefficient o f  

the terms g*Zz, 1 < 2  < n -  1, is the multiplicity of  2 in the list o f  the Coxeter  

exponents  for  the cor responding  algebra,  and n is its Coxeter  number .  

The A series starts at n = 2, for which the only character  is the trivial one Xl = 1: 

Similarly the D series starts with n = 6: When  n = 4, the cor responding  fo rmula  yields 

the same result as the A 3 invariant:  

It  is explicit in Table  1 tha t  the above  set o f  par t i t ion functions fulfills all 

requirements:  Wha t  we shall now show is that  the list is exhaustive. 

The f2~'s occurr ing in (2), apar t  f rom f2,-= L have indices with very low pr ime 

values 2, 3 or  5. This is reminiscent  o f  the orders of  the pr ime cyclic subgroups  of  the 

ro ta t ion  symmet ry  groups  of  regular  solids; There exists a close connect ion between 

simply laced simple Lie algebras and  finite subgroups  of  SU2 up to conjugat ion.  We 

re turn to this point  in the next section. 

9: The p r o o f  o f  Propos i t ion  2 is construct ive and involves three steps, L e m m a s  1-3: 

We set aside the case o f  the principal  invariant  with co = 0 except c,  = 1. Fo r  each 

divisor 3 tn, 1 < 6 < n, such tha t  co > 0, we define ~(6)= (6, n/6) and co(6) as before, 

TaMe 1. List of affine partition functions in terms of A~ i) characters 

n - 1  

n>=2 ~ Ix~l ~ 
).=1 

40+1 20 -1  

n=4e  +2 E l)~Aa+2lz2o+ll 2+ E (Xa~e+2-~.+c.c.) 
~.odd =1 2odd = l  

~=_~i 4"20+1 

20-1  

= ~ [Xl + Z40+a- zl2 +2iZ2o+II 2 
godd = t  

4 0 - 1  2 e - 2  

n=4o 0>=2 ~ [Xz12+lZ2012+ ~ (Z~7~e-z+c.c.) 
Xodd=l -~ even =2 

n = 12 I)~1 + Z712 + 1)~4 + Z812 + IZs + Xil 12 

n = 18 IX1 + Za 712 + IZ5 + Z1312 + [Z7 + X1il 2 + 1X912 

+ [(Xa + z~ ~) Z* + c. c.] 

n = 3 0  1)~1 +)~11 + Z19 "-~-)~2912 + [)~7 +)~13 + Z17 @ X231 z 

An - 1 ~n  

Dz~+2 f2~ + f22 

D2~+1 f2. + t22 

E6 /212 + ~2s + ~22 

E7 f218 +f23 + f22 
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such that  092(6)- 1 mod 2N/~2: Consider in ( lb)  the factor of  X~' 

Z I +  ~ c~zo~(0) , 
O, a~(h) = 1 

arising f rom those 6's such that 0c(6) = 1 and 09 (6) e (Z/NZ)*,  which for I < 6 < n are 

all distinct f rom _+ 1: It  follows from our previous requirements that co(6)e U. 

Indeed if 09(6)e L, coz,o(~ ) = -coz-,o(o) would be a negative contribution to Z, and 

there would be needed a 6' ,  with 0~(6')=1 and o9(6 ' )=-o9(6)=o9 ,  such that 

(c~, -ce)z,o is a positive contribution to Z, i: e: c0, - c0  > 0: But e = 1, co' = -co  means 

(5' = n/6, and this was excluded by convention: We conclude that all the to (6)'s such 

that c~(6)= 1 have to belong to U, the corresponding coefficients being positive 

integers: Similar reasoning will recur frequently: 
, n 

The identity relating affine characters for levels k = n - 2 and k = ~-  - 2, 0~ 2 In,  [3  ] 

~, X~+¢N/~(z;N)=~Zz(z;N/~Z), 2 mod N/~ 2 (3) 
~moda  

shows that both sides vanish if n = ~  2, since Xx(z ;N=2)=0 :  Hence in this case 

(f2~X)z=0, and the corresponding term may be disregarded in (I): 

Define C~mi. as Inf  {~(6); 6:#n, c0>0}: We have 

Lemma 1 (i) 0~min = 1 or 2, (ii) t f  0~mi.=2, the unique possible partition function 

corresponds to f2. + f22 (n = 0 mod 4): 

It is useful to represent geometrically the integers mod N on a circle of  radius 

N/2rc as regularly spaced at distance 1: The upper semi-circle represents U, the lower 

one L: For  ~ ( 6 ) = ~ > 1 ,  the points 2 ' = o 9 2 + ¢ N / ~  are the vertices of  a regular 

polygon with ~ edges and vertices, in short an ~-gon: It is clear that if ~ > 4 at least 

two vertices belong to L w {0, n}, one of  them being certainly in L: These negative 

contributions to Z have to be compensated by positive ones: Consider the factor of  

Z*mi.(*) in Z. By definition of ~in,  only f20'S such that ~ (6) = ~m~. contribute and the 

factor is 

Z m,o(O+ Y, co Z • 

6, ~(O ) = ~min ~ mod ~zmi~ 

Suppose first ~rnin ~ 4: Then each e-gon involves at least two terms in L which 

have to be compensated: The case where only one term is in L would require 

Y~mln=4, and a set of  indices CO0~mi.+ ~N/~q~i. ranging over 0, n/2, n, 3n/2 mod N 

(n = 0 mod  42): Since o9 is invertible mod n/4 ( =  2 N/~q~i.), ~ in  = 42 is a multiple of n, 

the only possibility being n = 0q~i., the case discarded by Eq: (3). 

Since each ~-gon in the above sum has at least two terms in L, and the coefficient 

of  Z . . . .  (z) is 1, two possibilities of  cancellations are open: (i) the negative terms are 

compensated by positive ones of  the same e-gon; (ii) a negative term pertaining to 6 

is compensated by a positive one from a 6 '  contribution: In case (ii) the 

corresponding multipliers o9 and o9' have to satisfy 

og'~nnin ~ --o90(mi n mod N/~.min , 

or equivalently c o ' -  -o9 mod N/~a~.: But this is excluded since it would imply 

66' = n. In case (i) We have 2 o9 _= 0 mod N/ot2min, hence 2 _= 0 rood N/~2min~ and this is 
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possible only for n = 0~2in, ~ ( 6 )  = ~min, also excluded. Thus if 0~mi n were to be larger or 

equal to 4, one would find negative coefficients in the factor of  Z*m~o" 

I f  ~ .  = 3, beyond the two previous cases, which as above are excluded, there 

exists a third one with a 3-gon (an equilateral triangle) with a unique point 

in L compensated by Z ~ . -  ~3 with the co coefficient being 1: But then co -= - 1 rood 

N/9, so that the corresponding contr ibut ion is Z-a+Z-a+N/3+Z-3-N/a and 

+_ N/3 - 3  ~ U u  {0, n}. Thus 3 + 2n/3 ~n, meaning 9__> n and since 9In, n = 9. Again 

we find an excluded case: n = ~ i . ,  ct(6)= V~in: This proves part  (i) of  the lemma; 

Assume now 0'.~i. = 2, and consider the coefficient of  Z*: This is 

z2+ 22 ca(zz,o+z~,+,). 
a,~(a)=2 

The two points 2co and 2co + n can be in three sets of  positions: In the first one, these 

are the points +n/2 rood N, i:e. 4co=n rood N: This is the excluded possibility 

n = 4 :  The second possibility is that 2co=0 rood n, excluded by coz=1 rood n. The 

configuration where terms f rom 6 and 6 '  compensate each other is excluded as 

before. The only remaining case is that there exists a unique 6, such that ~ (6 )=  2, 

co= 1, and by choosing the representative co mod N/4, we have 2co= - 2  rood N, 

2co + n ~ U, meaning that the negative term X2 ~, is compensated by Z2. Hence 6 = 2, 

n=4k,  co--- - 1  rood 2k. 

The partition function contains (2, + f22 plus a sum over 6 's  such that e ( 6 ) >  3. 

For 2 e U, (g2, + ~22)Z~ is equal to )~ if2 is odd and to Z,-~ for 2 even: To discuss the 

occurrence of other g2's we can retrace the steps of  the proof  of  part  (i), replacing the 

contribution of ~2, by the one of g2, + (22, which amounts to replacing Zx by )~._ x if 2 

is even in the factor of  Z* • The same arguments exclude any 0~(6) > 3, and proves part  

(ii) of the lemma. 

Lemma 2. I f  n is odd the unique possibility is f2,: 

Assume on the contrary that there exist additional possibilities. Since n is odd, 

we know from Lemma 1 that %~. = 1; Let us show that this leads to a contradiction. 

Consider the coefficient of  Z*, with 2 y < n: Since n is odd the only contributions are 

from cS's such that 0~(6)= 1, which by hypothesis must be present. The coefficient 

reads 

Z2, + 2., ca)co~2, • 
~(a)=l 

We know already that all these co's e U, and choose representatives 0 < co < n. Let us 

show that 2~co has also to belong to U. Suppose on the contrary that some fi is such 

that 2~co ~ L: Then the corresponding negative contribution has to be compensated 

by some co' (possibly 1), requiring 2r(co + co') = 0 mod N. Let first 7 = 1, thus co + co' 

is smaller than N and 2 (co + co') smaller than 2N. This leads to 2 (co + co) = N, i.e. 

co + co' = n: But co and co' are odd, by co2 _= t rood 2N, thus co + co' is even while n is 

odd: We conclude that co < n/2. The argument can be iterated: For  instance if 4 < n, 

we cannot have 4coeL. Again an co' would be needed for compensation, and 

4(co+co ' ) - -0  mod N. By the previous bound, 0 < 4 ( c o + c o ' ) < 2 N ,  so that the only 

possibility is 2(co+co ' )=n,  where the right-hand side is odd, leading to a 

contradiction: Hence co is smaller than n/4: Thus for any 7 such that 2 r e U, 2~co E U, 
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and a positive representative is smaller than n/2L Let now 7 be such that 2 r < n  

< 2 ~ + 1, pick 0 < co < n/2 ~, and recall that if S =  n/6, cos =- 8 rood N. But 6 is a divisor 

of  n larger than 2, since n is odd: Hence 5 < 2 < 2 and co6 <~S 2~ =n.  Thus 
\ t , /~ /  

coS=-Smod N means co6 =6 ,  co = 1 contrary to the assumption that it corresponds 

to a divisor 6 > 2. The lemma is proved: 

The two previous lemmas restrict the search of further non-trivial solutions to 

the cases n even and %i,  = 1: We assume in the sequel n even, and will study the effect 

of  multiplication by co's, such that coz=-I mod 2 N  (~=1),  toe U, on integers 2 

belonging to U* = (TZ/NZ)* c~ U. Let also L* = (~/NZ)* c~ L. The following is in fact 

the crucial arithmetical observation. 

Lemma 3. Let n be even, n + 1 2  and 30, N =  2n, ooe U*, coz=- I rood 2N, co~= 1, and 

co4:n - I  / f n = 2  rood 4, then there exists 2~ U* such that co2eL*: 

For  each such co there is an associated factorization of n = 6S, (6, o~ = I: The 

following pairs are excluded by hypothesis: {n, 1 } and {1, n} (o~ = 1 or ~o = - 1 ¢ U*) 

for any n even; {2, n/Z} for n = 2  rood 4 ( e =  1, co=n - 1 ) ;  {3, 4} for n =  12; {2, 15}, 

{3, 10}, {5,6} for n=30 .  The cases to consider are 2 < 6 < 3 < n  or 2 < 3 < 6 < n :  

We search a representative of  2 e U *  in the range 0 < 2 < n ,  such that a 

representative )~' of  092 is in the range - n  < co2 < 0. Since 6 and S are coprimes, we 

look for 2 and 2'  in the form 

2'  = # 6 -  e6 (4) 

with 0 < # < 6, 0 < Q < 5, # and Q prime respectively to 6 and 5. Since n is even, one in 

the pair 6, Sis even, the other odd. The above conditions imply 2 prime to 6 and S, 

hence to n = 6S, hence to N =  2n since n is even. Requiring 0 < 2 < n and - n  < 2 '  < 0 

yields 

0< +X<t 
(5a) 

# Q 

As ~ and 6-~ should be positive irreducible fractions, smaller than one, the two 

lower bounds are irrelevant. I f  a solution #, p exists, then a for t io r i  so does the 

solution 1, p. Thus it is sufficient to look for Q in the range 0 < Q < S, prime to 8, such 

that 

It is easy to convince oneself that no such Q exists in the excluded cases of  the lemma. 

In all other cases we exhibit a solution ~. We distinguish several possibilities: 

(i) 2 < 5 < 6 < n = 6 S ,  set Q = I  Eq. (5b) holds since ~ < ~ < t -  . 
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(i/) 2 < 3 < 5<  n, 6 is even: Then 6is odd, of the form 5=  1 + 2k, k > 1. Set Q = k  

3--1 
- . Clearly (0, 5)---1. Since 3-> 6 > 2, Eq. (Sb) is satisfied. 

2 

5 
(iii) 2 < 6 < 8 < n ,  6 odd, 5 = 0 r o o d 4 .  Choose 0 = ~ - 1  for 5>4.  

The case 5 =  4, hence 3 -- 3 is one of the excluded possibilities, then 5=  4k, k > 1, 

0 = 2 k - 1  > 1: Any common factor of 0 and 3 would have to divide 5 - 2 0 - - 2 ,  

hence, 0 being odd, we conclude (0, 5) -- 1 and 0 / J<  1. Since 6 is odd larger than 2, 

O i 1 . 

6>3,  so and 1 -1/6_>2/3, while ~ = ~ - ~ - ~  1s for k >  1 bounded by 1 1 < 0 _  
- - 2 8 = 5  

1 1 1 3 0 i 2 1 
<~, i.e: ~<~-<~__<~<~<~_<t 6" 

(iv) 2 < 3 < 5< n, 6 odd, 5=  2 mod 4. The case where 5=  6 and 6 odd, prime to 

6in the interval 2 < 6 < S, requires 6 = 5 which is excluded by hypothesis: Thus 5>  6. 

If 5=  t 0 the possible 3's are 3, 7, 9. The pair 3 = 3, 5=  10 is excluded by hypothesis. 

For 6 = 7  or 9, Q=3 is a solution: We can now assume 6=2k ,  k odd>7 .  Take 

0 = k  - 2  odd: Again any common divisor of 0 and 6divides 4 and since 0 is odd this 

common divisor has to be 1, thus (0 ,6)=1 and 0 < 0 / 5 < 1 .  Now 1/6~1/3, 
0 1 1 _ 1 > 1  

1-1/6>2/3. On the other hand ~ < ~ < 1 - ~ ,  while the condition Q/6>-~= 6 

means 3 k - 6 > 2 k ,  i.e. k > 6  which is the case. The lemma is proved. 

I0: We complete the proof of Proposition 2: For any n larger than 2 (recall that 

n = 2  is the trivial case with a unique )fi =1), the choice f2, leads to the principal 

invariant (type A) and is the unique possibility for n odd according to Lemma 2. We 

then look for additional terms (2~ with co 4= +_ 1, when n is even >4. By Lemma 1, 

these additional terms are such that ~m~n=Inf~(6)= 1 or 2: If ~ , = 2  the only 

possibility is f2, + I22 (and n -= 0 mod 4): Thus we are left with the case where n is even 

a n d  C(mi n = 1 : 

Consider the coefficient ofz*(z) in (1 b) for any 2 ~ U*. Only those f2~'s such that 

~(6)=1 contribute, and by hypothesis some of them occur with a positive 

coefficient (in which case 5=  n/6 does not occur): To those 6's correspond o ' s  which 

all must have the property that for every 2a U*--,co)~c U* (we include co=l ,  

corresponding to f2,). Indeed if co2 c L*, then for positivity, another co' must occur, 

such that co'2~ U* and co).+co%-0 mod N. Since 2 is invertible mod N by 

hypothesis, this requires co + co'= 0 mod N, or 66'=n, a case excluded by con- 

struction. Lemma 3 controls this property. We study in turn n----0 or 2 rood 4. 

(i) n-=0 rood 4: I f n + 1 2 ,  all terms fQ, 64=n with ~,,ni.= 1 are exclude& Then 

~qnin = 2, ~ n  -~ ~'~2 is the only non-trivial possibility (D type): For n = 12 an additional 

solution f212 +f23 +~2 can be found by inspection (E6 type). 

(ii) n-=2 rood 4, e-mi, cannot be 2 (22~(n), hence for a non-trivial solution 

~ ,  = 1. According to Lemma 3, if n + 30 the only possible additional term with 

e ( 6 ) = l  is Q2 ( c o = n - l ) .  Its coefficient has to be unity [if we look say at the 

coefficient of )~(~), i, e. (~2, + 6' 2 ~2)  22(Z) = (1 - -  C2))~2('C)]. Thus beside g2, (A type) 

and f2, + ~r~ 2 ( D  type), we have in this case, if n + 30, as only further possibilities ~ ,  

+~22+ ~ ej26, where all £s  are odd: 
~(0)>3 
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We are going to show that for n ~= 18, all co's must vanish: The proof  parallels the 

one of Lemma 1: Let again g-man ~ 3 be the lowest possible value among those 

occurring in the additional terms. Look at the coefficient of X~mi.(Z), where the first 

term contributes Z~-mi.(~) + )~. _ ~,o(Z), and only those ~2o's with ~ (8) = 07~in will yield 

further contributions. Recall that the corresponding index of )~ will range over the 

vertices of a regular polygon with Ymi. vertices: As in Lemma 1, indices ,~ belonging 

to L from these polygons cannot be compensated by the positive ones from the same 

polygon or from those of  another polygon (with the same number 07mi. of  vertices): 

This leaves as the only non-trivial possibility a unique polygon (a unique ~ ) ,  the 

negative terms being compensated by ~.i .  and n-07.~i, with 07.mi. = 3 or 5 (with at 

most two vertices in L): The coefficient off2~ has to be one: Let co correspond to & If 

the polygon has two vertices in L, we must have 

OOgmin + ~N/~i .  ------ -- ~ i .  mod N , 

(,O0~rnin + (~ - -  l )  N/~.mi n ~ - - ( n  - -  c~lin ) rood N 

for some ~ mod Y-rain: Set n=2~mi.q>18, and subtract both terms, obtaining 

N/Stain = n - 2 5m~. + 0Nfor  some integer 0, i: e: q [(2 0 + 1) Y-mi. -- 2] = 1 : Thus q = 1 and 

5rain = 3, excluding 5min = 5: If 5-~i. = 3, it is not possible for the equilateral triangle to 

have a single term in L compensated either by ~-m~n = 3 or n - 3 as in the proof  of  

Lemma 1: The only possibility left is therefore n = 18: 

The only exceptional cases are n = 1 8  and n=30 ,  which are readily studied 

separately, with the result quoted in Proposition 2: This concludes the main proof  of 

this paper: 

11. Similar results hold in the conformal case. For  the proof  we refer to [3, 4]. It is 

simpler to return to the original notation, where the conformal characters are 

labelled by two integers r, s rood 2p' and 2p respectively [and (p,p')  = 1 ], with the 

appropriate symmetries. Then the role o f N  = 2n in the affine case is now played by a 

pair {2p', 2p}: 

Proposition 3. (i) Acting on the conformal characters, the general elements of the 

commutant are equivalent to tensor products f2~, ® I2~ in an obvious notation where 

~'lp', ~lp: 
(ii) As a result the conformal partition functions can be specified by a pair of  

elements in Table 1, where the role of n is ptayed by p' and p: Since p and p' are coprime, 

one of them is odd, the corresponding invariant being of  the A-type. This yields two 

infinite series and three exceptional pairs of models: 

These partition functions are reproduced in Table 2. As special case we have the 

unitary series, with p and p '  replaced by two consecutive integers [21]. 

The method extends to minimal supersymmetric conformal theories, presented 

in detail in reference [14]. For  completeness Table 3 gives the corresponding 

exhaustive list of  positive integral invariants for the unitary theories. 

Similarly Gepner and Qiu have applied the affine invariants to parafermionic 

theories [l 5, 7]. 
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Table 2. List of partition functions in terms of conformal characters. The unitary series 

corresponds to p '  = m - 1, p = m or p = m - 1, p' = m, m = 3, 4 , . . .  

1 p ' - I  p-1 

r=l  8=1 

tx,=lz+2tx~e+,,lz+ ~] (z,,x,*.-,,+c.c.) p '=4e+2 ~ L,o,ld=l ,o,~d=l 
e >1 ,*2e+l  

i--~i ~ I 2Q-2 t 1 ~ Ix.Z+tz20Z+ Y~ (x,sx~*,-,~+c:c.) 
p' = 4 e  2 t r  odd = I . . . . .  2 Q>2 r 

1 p--1 
p'=12 ~ ~ {IXl,+Xvs[2+[X4s+Xs~12+lXs.~+)&ls[ 2} 

s=1 

p ' = 1 8  

p ' = 3 0  

1 p--1 
~ {IXi,+XlT~12+tXs~+Zla~lz+lx7~+Zal,t2+lZg,I 2 

s=l  

+ [(z~, + z~, )z*,  + c. c:]} 

1 p-1  

X {lz.+z..+z.8+ z2~Z + Iz~.+ Z,~s+Z,~.+x2~,?} 
s=l 

(Ap,-I,  Av- l )  

(D2e +2, A~_ 1) 

(D2a+I,Av-1) 

(E6, % - 1 )  

(ET, A~-i) 

(E8, Ap_ i) 

Table 3. List of unitary superconformal partition functions: X, )( are characters of highest weight 

representations of the superconformal algebra, in the Neveu-Schwarz sector; )~ includes minus 

signs for fermionic descendants. )~ are characters in the Ramond sector. The indices (p ' ,p)  are 

(m, m + 2), or (in + 2, m) by exchanging r *-~ s. A detailed description is given in [14] 

1 m-1 m+l 2 2 1 m--1 m+l 
_ ~, I~,,I 2 (Am-i ,Am+i)  m_>3 ~. Z Z {IZ,sl +[Z,,l }+~. ,.=~ 8:1 

r=l  s=l r-s even r - s  odd 

p = 4 Q + 2  

~_-__1 

1 i { 2 ~ 1  tZr,s_l_Zr, p_sl2l_2[~r,2rd+l[2}_(Z_..>~)t 
"4 k s=l 

odd odd 

1 ' -  ) ' ' t 

even odd 

p = 4 e  ~ ~ ~ (IX, , ,12+l~,s l )+~ IXr,2ol 2 
s=l r=l  

e > 2 odd odd even 

p = 1 2  

20-2 t 
+ E (x..x*,-.+c.c.)+(z-.z3 

1"=2 
even 

+~ Y~ K 12,.I +~ (irsZ*' .... +c.e.)  
r=2 s=l = 
even odd odd even 

p ' - i  

• {IX,1 + x,712 + Ix,, + X,1112 + (x~X')} 
r=l  
odd 

(Ap, -1 ,  D2e+2) 

(Av,-1, D2Q+I) 
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Table 3 (continued) 
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t 
p=I2 

1 
p=18 

1 
p=30 

1 
+~ 

1 
+~ 

p ' - i  

E 
r = l  
odd 

p ' - 2  

E {tz,, +x,~lz + (z--,x3} 
r=2  
even 

p ' - 2  ~ p ' - I  

2 { l i .+~.l~+li .~+i .~lz}  + 2 12,,+2~1 ~ 
r=2  r=I  
even odd 

{IX,1 + Zr5 +Z,'7 + Z,'ill 2 + IZri + Z,-s +Zr7 +~rl l [  2 

+212~, +~812 } 

p ' - I  

{tZrl q- Zr1712 q- IZr5 +Zr131 z + IZ,'7 +Zral] 2 + IZ,9I 2 
r = l  
odd 

+ [(x,s + x.~lx*9 + c.c.]) 

1 v'-I ~ v'-2 
+~ E {~-q}+ E {x--,i} 

r = l  r=2 
odd even 

p ' - i  

E {IZrl + Zr l l  + Z r l 9  +Zr2912 + IZr7 + Zraa + Z r i 7  + Zr2312 } 
r = l  
odd 

1 p'--i I p'--2 

+~ E {z-q}+ E {z-q} 
r = l  r=2 
odd even 

(A~,, - 1, Ee) 

(Dt,,/2 + 1, E~) 

(A¢- 1, EO 

(,4p,_l, Es) 

V. Miscellanea 

12: Some of the invariants listed in Tables i and 2 are related, as a consequence of  

the triviality of  lowest characters (Jacobi's and Euler's identities) 

+o9 ( (4 t+1)2 . )=1  (la) 
~ f f ( z ; N = 4 ) = I / - a ( z )  ~ ( 4 t + l ) e  "c 

t = - - o 9  8 

( 6 t + 1 )  z . 

t = --cO 

in conjunction with the formulae 

E aff  . 2 aff  . Z~(a + ~N)(z, Na  ) = ~)~ (z, N)  , (2a) 
~ m o d a  

conf Z~(a+¢u)(Z, N ~ )  =Z]°n~('C; N)  . (2b) 
rood 

Taking 2 =  1, N = 4 ,  12 in (2a) and (2b) respectively, yields 

~--1 

E "~ff " 4 ~ ) = a ,  (3a) 
d = 0  

E COl'if [ . Z(a2e+l)~t'c, 12e 2) = 1 . (3b) 
d = O  
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The only cases relevant here are obtained for low values of ~, 

k = 6  
Z~ f~ - ) ~ f f  = 2 7 . r e  ~,~ff  _ A ( 4 a )  

(N= 16) 

k = t 6  
)~ff ~ aff aff (4b) TZls-X9 =3 Z~ff ° ~. . f f_a --L,E 7 - - J  

(N=36) 

p = 8 ,  p ' = 3  )~onf conf 7eonf  7eonf __ 1 (4c) 
- -~10 : 1 ~ I _ ~ A T , A  2 - - I . . . , D s , A  2 - -  . 

(N=48) 

For any higher value of c~, it may be seen that the identities (3) relate invariants with 

indefinite signs: 

In view of such linear relations one may at first think that our classification is 

redundant: Let us stress on the contrary, that we have classified all modular 

invariant sesquilinear forms in the characters, and that it is non-trivial that a 

constant can be expressed in such a form: The physical interpretation of Eq: (4) is 

more obscure. They imply that the spectra of eigenvalues ofLo,/~o in the models of 

type D10 and ET, for instance, differ by nine copies of the state with h =/~=c/24 

= k/8 (k + 2) = 1/9: These remain to be understood in terms of concrete realizations: 

13: Should we have expected to find an A-D-E classification? What is the precise 

relation with Lie algebras ? Unfortunately we have no clear answer to this question: 

Amazingly there exist other A-D-E classifications, such as the one of discrete 

subgroups of SU2 [6], isomorphic to factor groups of the modular group: Hence it is 

tempting to study in some detail the representations of the latter afforded by the 

combinations occurring in the partition functions: 

Consider in particular the three exceptional affine partition functions cor- 

responding to n = 12, 18, 30: The corresponding SU2 subgroups are (the covering 

groups of) the tetrahedral group ( ~  the alternate group of permutations on four 

objects), the octahedral group (5e4), the icosahedral group (s¢5): 

We start with the E6 case: 

Z~o = 1)~1 + Xv[2 + ]Z5 + Zl 1 [2 + 1)~4 + g812 • (5) 

Call the successive combinations Yl, Y2, y,3: They can be parametrized, using the 

Dedekind function as 

y a + y 2 = z a + Z 7 + Z s + Z l l  = q-1/48 ~ ( l + q "  ,/2) [ t/(z) J ' 

Ya-Y2=Za+Zv-)~s-)fi,={q-1/48 ~ (l-q"-l/z'} = e(~-8 ) - ~  J ' 

co . , ] 2  A [ ~ / ( 2 z ) ]  5 
y 3 = X 4 + X 8 =  4 q1/24 ~ (1 +q ) ;  ='+ ~ q - ~ ;  , (6) 
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so that we can also write 

exhibiting in a straighforward fashion modular invariance, since the three terms are 

permuted under a modular transformation. To prove (6) use the fact that both 

sides transform identically, and that their ratio is bounded in the upper imaginary z 

plane. It is easier to express the action of  the modular group on the combinations 

u=e (5 /48 )  Ya+Yz I e(5/48)(Zl+ZT+Xs+Zlt)  , 

Y~ - - Y 2  1 
v - (zl +z7 - z 5  - z l~ )  , (8) 

w = y a = Z 4 + Z 8  , 

in which case under S and R = T S  we have 

U .-+ R H - +  W 

S v - + w ,  R = T S  v - + e ( - 5 / 2 4 ) u  (%) 

w--*v w ~ e ( 5 / 2 4 ) v  : 

It is clear that these generate permutations up to 24th roots of unity on u, v, w and 

that z~6=lul  2+lvl 2+lwl 2, as well as u v w = 2 e ( 5 / 4 8 )  are invariant: Moreover 

S 2 - - - R  3 = 1 is obvious: Remarkably, if we look at the action of  the modular group, 

not on u, v, w but on their 12th powers, we find that 

U 12 __+H 12 U 12 .__~.W 12 

S /)12 ___~w12 , R v l z  ~ - u  12 . (9b) 

W12-__~V 12 w l  2 __..~ _ U  12 

These transformations can be interpreted on the vector with coordinates u 12, v 12, 

and w lz, as a reflection (determinant = - 1 )  in a plane through the first axis and at 

45 degeees to the 2 and 3 axis for S, and as a rotation of 2r~/3 (determinant= + 1) 

around an axis with coordinates (1, - 1 ,  1): Take a cube with center at the origin, 

with vertices (e~, e2, e3); e~ = _+ 1: Inscribe a regular tetrahedron with a subset of 

these vertices such that e~e2~3 = +1:  Then (9b) generates the group 5" 4 of  

permutations of these four points, the full symmetry group of the tetrahedron 

including reflections: The invariant subgroup of proper rotations, the tetrahedral 

group d4 ,  is generated by transformations containing an even number of S's: 

Symmetric functions of 24th powers of u, v, w are rational function ofj(z) ,  the 

invariant modular function: For instance, 

u 24 + v 24 + w 24 = -- 2 - 8 { 15j 2 + 50- 162j + 3" 164) , (10) 

which follows from the fact that the equation 

X 3 - ja /3X+ 16 = 0  (I la) 
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has for its three solutions 
oo 

X1 = _q - l~6  l-I (l  +qn-1/2)8 , 

1 

X 2 = q  -1/6 FI (1 _qn-1/2)8 , 

1 
(11b) oo 

X3=16q  ~/3 1-I (1 +q,)8 , 
1 

2-12 (X~ + X~5 + X~S) = u24 + re4 + w24 

In any case we see some loose connection between ZE6 and the tetrahedral group d 4  

isomorphic to P S L  (2, Z/3Z): 

In the E7 case, n = 18, the partition function is in fact related to the D~0 one as in 

(4b) 

ZE7 : [)~I "1- ~17I 2 "~ [~5 "~ ~1312 "~ [)~7 "q- Z11[ 2 ~ [Z912 "}- {Z~ 0~3 --I- Z15) --I- co} : ZD1 o - 9  

(12) 
If  we set 

Z E T = 3 Z - 3 ,  

then 

~t3 (~) ~/3(z + 1) 

ZDlo=3Z+6  , (13a) 

1 q_3 r/3 (~ ~ 2 )  2 q_ _t_ 9 r/3 (9"c) 2 

-[- 0 3 ('r "t" 2) 1 ~ . 

(13b) 

Define 

q 3 ( ~ + g _ i  ) , {=1 ,2 ,3  , (14) 

rt 3 (9 ~) 
Y4= 1 +Z9 = 1 + 9  r/3 ( - - - ~  

The action of the modular group becomes 

Yl ~Y4 yl ~Y2 

S Y2--~e(1/3)y3 , T Yz--+Y3 (15) 

y 3 ~ e ( - 1 / 3 ) y z  y a ~ e ( - l / 3 ) y l  

Y4 ~ Y t  )'4 ~Y4 

We see that on the cubes ye 3, S and Tgenerate the tetrahedral group ~¢4 again, if we 
3 let Ye correspond to the four vertices of a regular tetrahedron: In this case we fail to 

find a correspondence with the octahedral group. Symmetric functions in the ye 3 are 

modular invariant, and expressible in terms of j .  
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Finally we look at the Ea case, n = 30: 

ZE8 : [Z1 -~- Z l l  -[- Z19 "~- Z29[ 2 Ar [Z7 ~-Z13 -[- ~17 -[- Z23[ 2 • (16) 

Set 

yl----)~l-+-)~ll+)~19--k)¢29 , y2=)~V-t-)~13+~lV-}-Z23 , (17) 

where the indices run over (Z/30Z)* in two groups. 

Since under T 

Y1 -~e - g  Yl , Yz-~e 1 - ~ - 8  Y2 (18) 

T s acts as multiplication by e (5/12). It  is a theorem [17] for such a tow power that 

the conjugates of  T s generate all of  Fs, and therefore F s = P S L  (2, Z/5 2~) acts on the 

ratio of  the two y's. This group is in fact isomorphic to the icosahedral group, itself 

isomorphic to d s .  

Indeed with 

z(z) - y 2 ( z )  co=e( t /5 )  , u = c o + o ~ - t =  ~ / ~ - 1  , (19) 
Yi (z) 2 

T z(z+l)=co2z(z) , 

(20) 
- uz (~) + 1 

S z ( - ~ - l ) =  z(T)+u 

I f  as in Klein [13] we introduce the "isobaric" polynomials in z (i. e: polynomials 

which under a modular  t ransformation are multiplied by a power of  the 

denominator) 

V = z ( z  1° - l l z  5 - 1 )  , 

E = z 3° + 1 - 522 (Z 25 - - Z  5) - -  1 0 0 0 5  (Z 20 ~- Z 10) , (21) 

F = z 2° + 1 + 228 (z 15 _ z 5) + 494zio 

of respective degrees 12 (adding oo as a root of  V), 30 and 20, their zeroes on the 

Riemann sphere are the vertices, the mid-edge points, and the mid-face points of  a 

regular icosahedron. The following identity holds 

F a = E 2 + 1728 V 5 (22) 

Thus in this case, there is a definite indication of a relation to the icosahedral group: 

The ratios EZ/F 3 and VS/F a are modular  invariants related to j: 

We would describe further examples, without giving a neat solution to the 

problem raised at the beginning of this section. It  is therefore left as an open 

question to unravel the connection between integrable and/or critical two 

dimensional field theories, simple Lie algebras and finite rotation groups. 
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Note added in proof: After sending to the editor the manuscript of this paper, we received a paper 
by A. Kato, Mod. Phys. Lett. A2, 585 (1987) which contains a proof of our Proposition 2 along 

similar lines. 


