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 Vol. 106, No. 952 The American Naturalist November-December 1972

 LETTER TO THE EDITORS

 THE a-GLYCEROPHOSPHATE CYCLE IN DROSOPHILA
 MELANOGASTER. III. RELATIVE VIABILITY OF

 "NULL" MUTANTS AT THE a-GLYCEROPHOSPHATE

 DEHIYDROGENASE-1 LOCUS*

 The description of genetic variation in natural populations has involved

 three different general approaches: (1) the detection, by means of special

 genetic techniques, of genes in Drosophila which affect viability, fertility,

 or developmental rates (e.g., Dobzhansky and Spassky 1953) ; (2) the

 measurement of chromosomal inversion polymorphism in Drosophila

 (Dobzhansky 1970, chap. 5); and (3) the electrophoretic monitoring of

 gene-enzyme (allozyme) variation in a number of species from many dif-

 ferent animal and plant phyla (e.g., Lewontin and Hubby 1966; O'Brien
 and MacIntyre 1969; Allard 1971; Prakash, Lewontin, and Hubby 1969;

 Selander and Yang 1969). The first approach uncovers cryptic variation
 with respect to various components of fitness; such variation is revealed

 by techniques that render chromosomes homozygous. The other two ap-

 proaches reveal genetic variation virtually by direct observation. The rela-
 tion of this variation to fitness is not at all immediately obvious; indeed,

 there are cogent arguments that much allozyme variation is selectively
 neutral (King and Jukes 1969; Kimura and Ohta 1971).

 The first method of measuring relative viability of wild chromosomes

 has provided a wealth of information to the field of population genetics

 mainly through the efforts of Dobzhansky and his colleagues (for references,
 see Dobzhansky 1970, p. 118; Wallace 1968, p. 36). Relative viability is

 determined through the use of invested balancer chromosomes which contain

 a dominant marker mutation and a recessive lethal. In these studies, male

 and female flies, heterozygous for the balancer chromosome and the same
 sampled chromosome, are mated to each other and their progeny are scored.
 The ratio of homozygous wild-type offspring to balancer heterozygous off-

 spring has been determined for large numbers of wild chromosomes from
 natural populations of several Drosophila species. This ratio can be related
 to the ratio obtained by comparing the relative viability of heterozygotes

 for different wild chromosomes with that of the balancer heterozygotes in

 control cultures. It is striking that in the majority of analyses reported,
 regardless of which chromosome, population, or species is sampled, the
 frequency distribution of chromosome viability followed a uniquely distinct

 * Supported by Genetics Training Program under grant Ti GM1035 from the National
 Institute of General Medical Sciences.
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 pattern. The frequency of lethals and near-lethals is high; they represent

 anywhere from 10%-15% to 40%-50%o of all chromosomes tested depending
 upon the species and geographic location of the sampled population. Rela-

 tively few chromosomes are in the semilethal range, that is, with relative

 viabilities between 10% and 50% of expected. This class rarely contains more
 than 10%,o-15%o of the chromosomes tested (Dobzhansky 1970, chap. 4;
 Wallace 1968, chap. 3). The remaining chromosomes are quasi-normal with

 a mean frequency about equal to that expected. Control cultures of hetero-
 zygous wild chromosomes yield only a few allelic lethals. The vast majority
 of heterozygote combinations are quasi-normal with mean viability slightly

 but consistently greater than the mode of the homozygous wild chromosomes.

 Semilethal combinations are virtually absent in the heterozygote control

 cultures. When isogenic chromosomes are subjected to X radiation or

 chemical mutagenesis with ethyl methanesulfonate (EMS) and tested in the

 same manner, virtually identical distributions of viabilities are obtained in
 both the homozygous test and heterozygote controls (Timofeef-Ressovsky

 1935; Kerkis 1938; Mukai 1970).

 In spite of considerable data which exist describing the extent and dis-

 tribution of relative viabilities, the biological basis of some aspects of the

 bimodal distribution remains obscure. We have made some observations,

 which are relevant to this problem, concerning the viability of certain

 combinations of mutants affecting the enzymes of the a-glycerophosphate

 cycle in D. melanogaster (O'Brien and MacIntyre 1972a). Four "null"

 or "zero" alleles of the a-glycerophosphate dehydrogenase-1 (aGpdh-1) gene

 were induced with EMS as described elsewhere (O'Brien and MacIntyre

 1972b). Flies with any one of these alleles designated as aGpdh-1BO on one

 chromosome and the deletion of the aGpdh-1 locus (Grell 1967) on the other

 have drastically reduced levels of the soluble NAD-linked a-glycerophosphate

 dehydrogenase (from 0%o to 10%o wild type). Because lethals are induced
 at loci other than aGpdh-1 by the mutagenic treatment, the mutant chromo-

 somes must be balanced over SM-1; al Cy sp (Lindsley and Grell 1968), a
 chromosome II balancer. All possible crosses (at least five replicates) were

 made between the four mutants. Each test culture produced over 200 flies.
 The ratio of Cy+ to Cy flies was determined; the expected frequency was

 33.3% Cy+. The Cy+ flies which were heterozygous for the various mutant
 alleles were then ground up and the specific activity of caGPDH of the Cy+

 flies for each cross was measured (O'Brien and Maclntyre 1972b). Levels of
 aGPDH ranged from 0%o to 25%o. Some aGpdh-1BO allele combinations
 showed interallelic complementation; that is, the heterozygotes had enzyme

 activities greater than the sum of the activities of the two mutants when

 carried over the deletion. The specific activity of each class of heterozygote

 was then plotted against the percentage of wild-type flies which emerge in

 the cultures. The results (fig. 1) show an obvious correlation between aGPDH
 levels and viability. Crosses producing heterozygotes with low aGPDH levels

 (less than 5%) yielded less than 50% of the expected number of Cy+ off-
 spring. This level of viability falls precisely into the rare semilethal range
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 FIG. 1.-Relative viability of flies lheterozygous for various ''null'' alleles of

 aiGpdh-1; 100%l LLGPDH level equals 0.37 ~tnioles NTAD per miinute per mnilligraml
 protein.

 alluded to above. Alternatively, the heterozygotes with greater than 15%
 normal UcGPDH activity are more viable, and if the ucGPDII activity is 25%
 of wild-type enzymiie levels, the flies have ''quasi-normal" viability.

 For two reasons we believe the pattern seen in figure 1 is attributable to
 the effect of selection on the altered products of the mutant CcGpdh-1 alleles
 as opposed to the numerous background mutations induced during the
 mutagenesis. First, there is no reason to expect that the recessive lethals or
 semilethals induced by tie EMS produce any effect onl heterozygotes.
 Dobzhansky and Spassky (1963), in. an exhaustive test of the viabilities
 of carriers of lethals, semilethals, quasi-niormals, and supervitals, failed to
 demonstrate any correlation between. the fitness of a homozygote and that
 of its heterozygous counterpart. The second reasoii lies in the data them-
 selves. If viability differences were due to selection on the products of
 genes other than xCcpdh-1 onl the second chromosome, there would be no
 correlation between enzyme activity anld viability.

 The observation that all flies with less than 5% of wild-type enzyme
 activity fall into the semilethal class may provide son-e insight into the
 reason (s) for the apparent scarcity of tbils class in nature. Tinsectall CL-GPDH
 has been implicated in three important fun-ctions in Drosophila (Sacktor
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 1965; O'Brien artd Ma!fye'-htyt I972(t): regeneratioin- ol' NAI)H in the
 cytoplasm for continued glycolysis, energy production, and phospholipid

 anabolism. Because the enzyme does occupy such a crucial and mnultifunc-

 tional role in insect metabolism, it is somewhat surprising that flies deficient

 for ocGPDH survive at all. The explanation may be found in the flies'

 suspected ability to compensate biochemically for the three functions by

 alternative pathways, that is, malate dehydrogenase for NADI{ metabolism,

 the citric acid cycle for energy production, and the phosphorylation of
 glycerol for the continuation of phospbolipid synthesis (Sacktor 1965;

 Kennedy 1957). The relative inefficiency of the genetic and/or physiological

 compensatory mechanisms could be the basis of the observed diminished

 viability. Perhaps it is only those mutant blocks that can be alternatively but

 inefficiently compensated for which can and do represent the semilethal class.

 One prediction of such a hypothesis would be the recovery of rare "'null"

 alleles in natural populations at a number of different loci. These "nulls"

 would be metabolically compensated by alternative pathways but inefficiently

 enough to lower relative viability. Although several examples of rare

 naturally occurring "null'" alleles are known in Drosophila (Johnson,

 Wallis, and Denniston 1966; Glassnian 1965; Dickinson 1970) few data

 are available concerning their viability.
 If the semilethal class is a population of compensated "null" alleles, then

 those genes which function in essential and unique processes may well be

 the lethals in the populations. The so-called subvital chromosomes (50%-
 90% normal viability) could represent missense mutations in genes of both
 classes which only partially obstruct normal function (e.g., allozyme varia-

 tion).
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