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Abstract: In this paper, we study a strategic facility location problem under uncertainty. The uncertainty associated with future
events is modeled by defining alternative future scenarios with probabilities. We present a new model called the «-reliable mean-
excess model that minimizes the expected regret with respect to an endogenously selected subset of worst-case scenarios whose
collective probability of occurrence is no more than 1 — «. Our mean-excess risk measure is coherent and computationally efficient.
Computational experiments also show that the «-reliable mean-excess criterion matches the «-reliable minimax criterion closely.
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1. INTRODUCTION

Supply chain network design decisions are usually strate-
gic and once implemented they are difficult to reverse.
During the time when the design decisions are in effect,
many decision parameters—demands, costs—may change
dramatically. This calls for models that address the inher-
ent uncertainties of facility location problems. Unfortunately,
most facility location models in the literature are static and
deterministic. In the past few decades, researchers have dealt
with the uncertainties by defining a number of possible future
scenarios. Facility sites that either optimize the expected per-
formance or optimize the worst-case performance over all the
scenarios are recommended. However, such approaches may
not be practical since, in real life, facilities are not typically
designed for the average case or the worst-case scenario. For
example, airports are never sized for an average day, since
doing so would result in significant under-capacity much of
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the time. On the other hand, airports are never sized for the
peak travel day, e.g., the Sunday of Thanksgiving weekend
in the United States, since doing so would be prohibitively
expensive.

Daskin, Hesse, and ReVelle [5] proposed a model called
the a-reliable Minimax regret and applied it to the p-median
problem. In this model, the maximum regret is computed
over an endogenously selected subset of scenarios, called
the reliability set, whose collective probability of occur-
rence is at least some user-defined value «. By minimizing
the a-reliable maximum regret, the planner can be 100« %
sure that the regret realized will be no more than that found
by the model. Since the a-reliable maximum regret is essen-
tially the a-quantile of the regrets and does not assess the
magnitude of the regrets associated with the scenarios that
are not included in the reliability set (the worst cases, or
the tail), users of this model do not concern themselves
with the possibility that the regrets in the tail are exces-
sively higher than the a-reliable maximum regret. Although
there are situations where it is appropriate to minimize
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the o-reliable maximum regret rather than the average or
worst-case regret, computationally the «-reliable Minimax
regret s very difficult to obtain, which limits its use in real life.

In this paper, we present a new model called the «-reliable
Mean-excess regret model, or Mean-excess model for short.
In contrast to the a-reliable Minimax model where the regret
that defines the a-quantile of all regrets is minimized, in the
new model we minimize the expectation of the regrets asso-
ciated with the scenarios in the tail, which has a collective
probability of 1-«. The a-reliable Mean-excess regret metric
explicitly accounts for the magnitude of the regrets in the tail.
Compared with the «-reliable Minimax model, the a-reliable
Mean-excess regret model is computationally much easier to
solve, making it easier to apply to practical situations.

The rest of this paper is organized as follows. In Section 2,
we briefly review some of the literature on scenario modeling
in the context of stochastic facility location. In Section 3, we
formulate our new model and compare it with the «-reliable
Minimax model. Computational results are presented in
Section 4. Finally, we conclude and propose future directions
of research in Section 5.

2. LITERATURE REVIEW

In the past few decades, researchers have used scenario
planning to deal with the uncertainties in strategic facility
location. In scenario planning, the decision maker identifies
a number of future possible scenarios and estimates the like-
lihood of each scenario occurring. Scenario planning was
chosen primarily because, as pointed out by Snyder, Daskin,
and Teo [22], it allows the decision makers to model depen-
dence among random parameters. For example, at a future
time the demands at different locations may be correlated.
Similarly, costs may be correlated. If a continuous approach
is used to model such correlations, then the problem tends to
become intractable.

Sheppard [19] was among the first to use scenario plan-
ning to model uncertainties in facility location. His model
gives a siting plan that minimizes the expected cost over all
scenarios. Schilling [16] proposes an approach in which the
initial location decisions are those that are common across
all (or most) scenarios’ optimal plans. He suggests delaying
other decisions until uncertainty is resolved. Daskin, Hopp,
and Medina [6] demonstrate that this approach can lead to
the adoption of the worst possible initial decision under
conditions of future uncertainty. They propose a forecast
horizon-based approach to facility planning over time.

Regret is a commonly used metric in decision-making
with uncertainties. As defined by Zeelenberg [23], regret is a
negative, cognitively based emotion experienced by individ-
uals when they realize or imagine that their present situation
could have been more positive if they had behaved differently.
Psychological studies suggest that the anticipation of regret

Naval Research Logistics DOI 10.1002/nav

induces people to make more rational choices (e.g., [9]). If
there is no knowledge about the probabilities of the possible
outcomes, the Minimax regret principle can be useful to help
people in making decisions. However, if there is knowledge
about these probabilities, then the Minimax regret principle
can be suboptimal. Recently, regret theory in the economics
literature has taken the probability of regret into considera-
tion (e.g., [2, 10]), and quantile-related objectives are widely
used in areas such as the financial and insurance industries.
For example, Value-at-Risk (VaR), defined as a quantile of
potential losses, is by far the most popular and most accepted
risk measure among financial institutions [7]. VaR provides
information about the magnitude of losses that will not be
exceeded with a certainty probability. In the same spirit, the
quality of service in an inventory system can be measured as
the probability of not stocking out in the service period [12].
However, VaR is not a coherent risk measure [1]. For exam-
ple, the VaR of a portfolio of two stocks may end up being
greater than the sum of the VaRs of the individual stocks. Fur-
thermore, it is not easy to optimize VaR. In the next section
we will introduce a coherent quantile-based risk measure, the
conditional value-at-risk, and discuss how to use it to model
facility location decisions.

In the context of stochastic facility location, the regret asso-
ciated with each scenario under a given siting plan is usually
defined as the difference between the objective function value
when the siting plan is chosen to optimal solution for that sce-
nario and the objective function value when the siting plan is
chosen to be the given siting plan.

Ghosh and McLafferty [8] propose a model in which either
the sum of the regrets or the sum of the squared regrets over all
scenarios is minimized. Note that the objective of minimizing
the sum of the regrets is equivalent to minimizing the expected
regret with all scenarios having the same probability.

Serra and Marianov [17] look at a problem in which the
parameters of the network, including travel times, demands,
and distances, change over the course of a day. They model
each period of the day as a scenario and identify either
solutions that minimize the maximum travel time over the
scenarios or solutions that minimize the total regret. The
regret of each scenario is defined to be the difference between
the objective function values given by the overall compromise
solution and the optimal solution for that single scenario.
Serra, Ratick, and ReVelle [18] study a maximum capture
problem where the objective is to select the locations of
servers for an entering firm that wishes to maximize its
market share in a market where competitors are already in
position. Their models either maximize the minimum cap-
ture associated with any scenario or minimize the expected
regret over all the scenarios. Current, Ratick, and ReVelle [3]
study problems where the total number of facilities to be
located is uncertain and the objective is either to minimize
the expected opportunity loss or to minimize the maximum
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opportunity loss. The opportunity loss is defined as the dif-
ference between the objective function value when the initial
facility locations must be included in the final siting plan and
the objective function value when there is no such constraint.
The minimum expected opportunity loss criterion finds the
initial set of facility locations that minimize the expected
opportunity losses across all scenarios. The Minimax oppor-
tunity loss criterion finds the initial facility locations such
that the maximum loss is minimized over all scenarios.

More recently, Snyder, Daskin, and Teo [22] study the sto-
chastic location problem with risk pooling, which seeks to
locate distribution centers to minimize the total fixed location
costs, transportation costs, and inventory costs. They pro-
pose a model that minimizes the expected cost of the system
across all scenarios and develop a Lagrangian-relaxation-
based exact algorithm to solve the model. Snyder [20] extends
this model to constrain the maximum relative regret in
any scenario. For a more comprehensive review of recent
dynamic and stochastic facility location problems, the reader
is referred to Owen and Daskin [13] and Snyder [21].

3. THE «-RELIABLE MINIMAX AND
MEAN-EXCESS MODELS

In this section we present and compare the a-reliable Mini-
max model and the «-reliable Mean-excess model in the
context of the p-median problem. The classical deterministic
p-median problem seeks to locate p facilities relative to a set
of demand nodes such that the sum of the shortest demand
weighted distance between demand nodes and facilities is
minimized (see [4]). In the stochastic p-median problem the
distances between demand nodes and facilities are stochastic,
as are the demands at the demand nodes. The motivation for
choosing the p-median problem is twofold. First, it is one of
the key building block models of virtually all location mod-
els including the uncapacitated and capacitated fixed charge
location models as well as many others. Second, it is the prob-
lem used by Daskin, Hesse, and ReVelle [5] in studying the
the a-reliable Minimax regret and thus facilitates an “Apple-
to-Apple” comparison between the two models. Before
presenting the models, we define the following notation:

i =1,...,m: index of demand nodes
j=1,...,n: index of candidate locations
k=1,...,K : index of possible scenarios
h;r . the demand at node i under scenario k
d;ji : distance from node i to candidate site j
under scenario k
p : number of facilities to locate
Vi : best p-median value that can be ob-
tained under scenario k, namely, the
minimum demand-weighted total dis-
tance under scenario k

qr . theprobability that scenario k will occur
my : a large constant specific to scenario k
such that m; > Ry
« : desired reliability level

We define the following decision variables:

= 1: if we locate at candidate node j
7710 otherwise
1: if demand node i is assigned to a
Vijk = facility at j under scenario k
0: otherwise
1: if scenario k is included in the set over
k= which the maximum regret is minimized
0: otherwise

Ry : regret associated with scenario k and the current
solution (x,y) (may not be optimal for scenario k).

Re =) hudijiyiji — Vi
i

The «-reliable Minimax model can be formulated as
follows:

Minimize w @))]

D oxi=p @
j=1

subject to :

Y yi=1 Vik 3)
j=1

yijk — X <0,

Re— | Y2 hudijiyise — Vi

i=1 j=1

Vi, j.k “

=0, Vk (5)

K
Y gz« (6)

k=1
W—Ri+m(1—z)=>0, Yk (7)
x €01}, V) @®)
yijk S {Ov 1}’ Vl’]’k (9)
zx €{0,1}, Vk. (10)

The objective function (1) minimizes the «-reliable maxi-
mum regret. Constraint (2) stipulates that exactly p facilities
are to be located. Constraint (3) states that each demand node
must be assigned to exactly one facility in each scenario.
Constraint (4) states that demands at i cannot be assigned
to a facility j under scenario k unless a facility is located
at node j. Constraint (5) defines the regret associated with
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Figure 1. Illustration of the Minimax model. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]

scenario k, as discussed previously. Constraint (6) stipulates
that the probability associated with the set of scenarios over
which the maximum regret is computed must be at least «.
Constraint (7) defines the maximum regret in terms of the
individual scenario regrets and the variables, z;, which indi-
cate which scenarios are to be included in the maximum
regret computation. Thus, the Minimax model minimizes the
maximum regret over a subset of the possible scenarios, with
the added stipulation that the probability of realizing a sce-
nario that is notincluded in the subset must be at most 1 —«. In
addition, by varying « over an appropriate range, the decision
maker can identify a portfolio of siting plans.

Figure 1 illustrates the Minimax model. The black bars in
the chart represent the K scenarios and are aligned from left to
right in increasing order of their regrets (based on the current
solution). The height of each black bar represents the prob-
ability of the corresponding scenario. The thick dotted line
represents the cumulative probability of the scenarios. The
a-reliable maximum regret (based on the current solution) is
the regret of the scenario (highlighted by the vertical arrow)
that corresponds to a cumulative probability of . All the sce-
narios to the left of the vertical arrow form the «-reliability
set, which has a collective probability of at least «w. All the
scenarios to the right of the vertical arrow form the tail, which
has a collective probability of no more than 1 — «. As the sit-
ing plan changes, the relative order of the scenarios changes
and so does the «-reliable maximum regret. The Minimax
model seeks a siting plan such that the ¢-reliable maximum
regret is minimized.

Clearly, the a-reliable Minimax regret model does not
assess the magnitude of the regrets associated with the sce-
narios that are not included in the «-reliable set and does not
distinguish between situations where the regrets in the tail
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are only a little bit worse than the ¢-reliable maximum regret
and those in which the regrets in the tail are overwhelmingly
higher. In addition, mathematically the «-reliable Minimax
model is difficult to solve. The «-reliable Minimax model has
earlier been studied in the stochastic programming literature,
albeit notin afacility location context. Mauser and Rosen [11]
showed that the «-reliable maximum regret is a nonsmooth,
nonconvex, and multiextreme function of the decision vari-
ables (x, y) over the feasible region. This is intuitive, since a
small perturbation in the siting plan may cause abrupt jumps
in the regrets associated with the K scenarios. Therefore,
the «-reliable Minimax regret does not change smoothly as
the siting plan changes and is a multiextreme and nonconvex
function of (x, y).

In this paper we present a different model, the «-reliable
Mean-excess regret, which minimizes the expected regret
(the probability-weighted regret) with respect to an endoge-
nously selected subset of worst-case scenarios whose collec-
tive probability of occurrence is no more than 1 — «. To
present the new model, we need the following additional
definitions:

W : the p-median feasibility
constraint set, namely, the
set defined by constraints
(2), (3), (4),(5), (8), and (9)

X : decision variable (x, y)

R(X,k) : regretasafunction of X and
scenario index k
f(X,¢) = P{k|R(X,k) < ¢} : with X fixed, the collective
probability of those scenar-
ios in which the regret does
not exceed ¢
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o (X)

=min{¢ € R: f(X,¢) > «} : with X fixed, the minimum
value ¢ such that f(X,¢)
> o, namely, the «-quan-
tile of the regrets of the K

scenarios

> qeRXK)
k:R(X.k)> o (X) .
Go(X) = MUY

Gk
k:R(Xk)>Co (X)

with X fixed, the condi-
tional probability-weighted
average of the regrets strictly
exceeding ¢, (X)

index of the scenario such
that R(X, ko) = u(X)

kg :

Using this notation, it is easy to see that the «-reliable
Minimax regret model can be rewritten as follows:

Minimize

Lo (X)
X ew.

an

subject to :

In contrast, the «-reliable Mean-excess regret model can
be formulated as follows:

Minimize A%, (X) + (1 — L)@ (X)
X ev,

12)

subject to :

where A = € [0, 1]. Figure 2 illustrates the
a-reliable Mean-excess regret model.

Since both the regret function R(X, k) and the feasibility
set W are convex with respect to X, it can be shown that (see
[14, 15]) formulation (12) can be reduced to the following

Lf (X8 (X)) —a]
1—a

SalX)

[}

Pa(X)

=il

i

|I|1||

o-reliability set

621

problem:

1
Minimize F,(X,¢)=¢+ T-a
-

K
x Y g - Max{[R(X,k) — £1,0}  (13)
k=1

subjectto: X € U,

where ¢ is a free variable. Hence, the «-reliable Mean-excess
regret model for the p-median problem can be formulated as
the following mixed integer problem:

K
1
Minimize Fo((x,y),0) =¢+—— Y qlUc  (14)
1l—«a =

subject to : ij =p
j=1
Z}’ijk =1, Vik
j=1
yijk —x; <0, Vi, jk
Ry — Zzhikdijkyijk ~ V] =0, Vk
i=1 j=I
Uk > Rk - ;-9 Vk (15)
Xj € {0, 1}, Vj
vijk €{0,1}, Vi, j.k
Uy >0, Yk (16)
ko kT 120%
100%
P errrnrmm————— -
+ 80%
]
]
.
1 80%
-rim
|
T 20%

ol = = 4{;9;5'](

| Worst-case scenarios: Tail

=~

- reliable Mean-excess regret=A¢{ a(X )+(1-A)@ a(X)

Figure 2.
wiley.com.]

Illustration of the Mean-Excess model. [Color figure can be viewed in the online issue, which is available at www.interscience.
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Fy((x,y),¢) is a convex function of both ¢ and (x,y),
which makes the «-reliable Mean-excess model easier to
solve than the «-reliable regret model (see [14, 15]).

It is important to note that the «-reliable Mean-excess
regret is closely related to the o-reliable maximum regret.
Minimizing F,((x,y),¢) gives both the optimal «-reliable
Mean-excess regret and the corresponding (non-optimal) «-
reliable Minimax regret. Specifically, when the «-reliable
Mean-excess regret is minimized, the value of ¢* gives the
corresponding (non-optimal) «-reliable Minimax regret. In
addition, by definition, the «-reliable Mean-excess regret is
an upper bound of the corresponding «-reliable maximum
regret. Therefore, minimizing the «-reliable Mean-excess
regret will also lead to a low a-reliable maximum regret.

4. COMPUTATIONAL RESULTS

In this section, we summarize our computational results
with both the «-reliable Minimax regret model and the
a-reliable Mean-excess regret model outlined above. For the
sake of abbreviation, we will call these two models Mini-
max and Mean-excess, respectively. All of our computational
experiments are based on the data found in [4] and [5] for 88
major U.S. cities. Specifically, we use the nine scenarios of
the 88-city problem found in [5] to generate more scenarios
to be used in our computational experiments. For example,
to have K (K > 9) alternative scenarios, we generate | K /9]
scenarios from each of the original 9 scenarios in [5], using
a normal distribution in which each city has a mean demand
equal to the demand of that city in the original scenario and a
standard deviation equal to 1/10 of the demand of that city in
the original scenario. The remaining K —9 L%J scenarios are
then generated from the original scenario No. 5. The prob-
ability of occurrence associated with each scenario is first
generated with a uniform distribution Uniform(0,1] and then
normalized such that the total probability of all the scenarios
is equal to 1.

All of our tests involve siting five facilities. In all runs,
all 88 demand nodes are also eligible candidate facility
sites. In addition, only the demands differ between any two
scenarios. The distance between any two cities is scenario-
independent. This allows us to test problems with a larger
number of scenarios. Therefore, in both the Minimax model
and the Mean-excess model we replace y;j; by y;;, thereby
significantly reducing the number of decision variables.

Note that, in both the Minimax model and the Mean-
excess model, the Vk values, i.e., the minimum sum of the
demand-weighted distances attainable for scenario k (k =
1,2,...,K), are required as inputs parameters. We obtain
these values by optimally solving the p-median problem for
each of the K scenarios.

In addition, in the Minimax model, the m; values—the
upper bound of the largest possible regret for each scenario k
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(k=1,2,..., K)—arealsorequired as input parameters. We
use three different procedures to obtain these values. In the
first procedure (see [5]), for each scenario k, we compute the
regret associated with the optimal locations found for each of
the other K — 1 scenarios; my is then taken as the maximum
of these quantities. This procedure requires solving K (K —
1) 4 1 sub-problems. In the second procedure, each m; (k =
1,2,...,K) is set to a constant value that is large enough
to be used as the upper bound of the R;’s ( in our test we
used the constant value of 3.0 x 10'!). In the third procedure,
we compute the maximum possible regret associated with
each scenario k by solving the p-median problem associated
with it, with the objective function changed to maximize Ry.
This procedure requires evaluating K solutions. To facili-
tate our discussion, we denote the Minimax models with the
first, second, and third procedures of solving for the m;’s by
MinimaxI, MinimaxII, and MinimaxIII, respectively.

Both models as well as their sub-problems are coded with
C++ and run on a workstation with an Intel 3.06GHz Xeon
CPU and 3.25GB of RAM. The problems are solved exactly
by CPLEX version 8.1 and the operating system is Microsoft
Windows XP Professional Edition. All the computational
times presented are in seconds.

Table 1 presents the computational times for optimally
solving the Mean-excess, MinimaxI, MinimaxII, and Min-
imaxIIl models, with the reliability level « fixed at 95%.
All computational times in Table 1 exclude the input/output
times, as well as the time needed to solve for the Vk’s and
my’s. Note that MinimaxII could not solve problems with
more than 126 scenarios while MinimaxIII could not solve
problems with more than 72 scenarios.

Figure 3 illustrates the computational times needed to opti-
mally solve the Mean-excess, MinimaxI, MinimaxII, and
MinimaxIII models as the number of scenarios increases.
Note that, as the number of scenarios increases, the computa-
tional times of MinimaxI, MinimaxII, and MinimaxIII appear
to increase exponentially while the computational time of
Mean-excess appears to increase only linearly.

Regressing the Mean-excess time against the number of
scenarios, we obtain the following linear equation to predict
the Mean-excess solution time:

Mean-excess Time = 74.595 + 0.8295 (No. of Scenarios)
(17.691) (0.1011)

R? = 0.882,

where the numbers in parentheses under the estimated co-
efficients are the standard errors of the estimates. For the
MinimaxI time, we obtain the following equation

In(MinimaxI Time) = 4.380 + 0.01955 (No. of Scenarios)
(0.2267) (0.00149)

R?* =0.956
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Solution times for MinimaxI, MinimaxII, MinimaxIII, and Mean-excess.

Solution time

No. of scenarios MinimaxI MinimaxII MinimaxIII Mean-excess

9 72 90 95 85
27 82 92 114 48
45 349 619 722 137
72 288 1409 793432 130
99 709 8738 1881112 194
126 1356 1982982 129305° 203
162 1317 b 1190232 212
198 4706 b b 239
234 10225 b b 218
279 12135 b b 276
324 b b b 385

4 Amount of time spent before CPLEX stopped without finding any solution.

"Not tested.

or
MinimaxI Time = 79.8214¢0-01955 (No. of Scenarios)

Table 2 presents the total computational times needed for
optimally solving the Mean-excess, MinimaxI, MinimaxII,
and MinimaxIII models, with the reliability level « fixed at
95%. Specifically, the total computational times of the Mean-
excess model include the time needed to solve for the Vk’s
and the time needed to solve the Mean-excess model. The
total computational times of the MinimaxI, MinimaxII, and
MinimaxIII models include the time needed to solve for the
Vk ’s and my,’s as well as the time needed to solve the Minimax
model. All the input/output times are excluded.

CPU Time (Sec.)

The total computational times in Table 2 are illustrated in
Figure 4. The total solution time for the Mean-excess model
again increases linearly in the number of scenarios as shown
in the following regression (which has the highest R? value
when comparing a linear time model with a polynomial time
model and an exponential time model):

Total MeanExcess Time = —134.695 + 6.379
(69.787)  (0.340)

x (No. of Scenarios) R? = 0.966.
The total time for the MinimaxI algorithm, however,

increases very dramatically with the size of the problem. Of
the three models tested, the polynomial time model gave the

_l_‘—l_.j T T T ]

14000 1 ~—i— Mean-excess
e Minimax|
12000 - - A= Minimaxll
== Minimaxili
10000 -
8000 -
6000 -
4000 -+
2000 -
0 = ! T ' T
(o] 25 50 75 100 125

150 175 200 225 250 275 300 325

No. of Scenarios

Figure 3. Solution times for MinimaxI, MinimaxII, MinimaxIII, and Mean-excess with & = 0.95.
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Table 2.
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Total solution times for MinimaxI, MinimaxII, MinimaxIII, and Mean-excess.

Total solution time

No. of scenarios MinimaxI MinimaxII MinimaxIII Mean-excess

9 97 101 110 96
27 435 131 170 87
45 1841 695 841 213
72 5912 1559 795862 280
99 15657 8990 188528 445
126 30716 1986712 1299282 577
162 64317 b 1199882 773
198 118394 b b 1019
234 193056 b b 1235
279 318242 b b 1650
324 b b b 2191

4 Amount of time spent before CPLEX stopped without finding any solution.

"Not tested.

highest R? resulting in an equation of

In(Total MinimaxI Time) = —1.55871 + 2.4742
(0.5410)  (0.1185)

x In(No. of Scenarios) R? = 0.982
or
Total MinimaxI Time = 0.2104 (No. of Scenarios)>74?

While this is not an exponential increase in time with prob-
lem size, the time does clearly increase very rapidly as the
number of scenarios increases. A problem with 100 scenarios
would take almost 300 times as much time to solve as would a
problem with only 10 scenarios. With 279 scenarios, it takes

CPU Time (Sec.)

more than 88 hours to solve MinimaxI optimally. In light
of the rapidly increasing computational time of Minimaxl, it
seems impractical to solve MinimaxI optimally for more than
279 scenarios. For MinimaxII and MinimaxIII, CPLEX was
unable to find any solution for more than 126 and 72 scenar-
ios, respectively. It is obvious that the input parameters m;’s
have a significant impact on the solution time of the Minimax
model. In particular, tighter upper bounds on the R;’s dra-
matically reduce the solution time of the Minimax model but
obtaining these tighter bounds requires a significant amount
of time.

Table 3 presents the objective function values for the Mean-
excess model and the Minimax model. Note that the solution
to the Minimax model is independent of which procedure
is used to solve for the m;’s. Therefore, in Table 3 we only

—— —i ]

r=il—

350000 4
—— Mean-excess
300000 - w——@— MinimaxI
= -A= Minimaxl!
250000 —=&— Minimaxiil
200000 -
150000 -
100000 -
50000
0 - i
0 25 50 75 100 125 150

175 200 225 250 275 300 325
No. of Scenarios

Figure 4. Total solution times for MinimaxI, MinimaxII, MinimaxIII, and Mean-excess with &« = 0.95.
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Table 3. Solutions of Minimax and Mean-excess.

Mean-excess model

Minimax model

a-Reliable Mean- a-Reliable Worst-case a-Reliable Worst-case
No. of scenarios excess regret Minimax regret regret Minimax regret regret

9 2247428811 2247428811 2247428811 2247428811 2247428811
27 2258738311 2051996284 2321909291 2051996284 2321909291
45 2302417752 2200321339 2468654038 2200321339 2468654038
72 2405582073 2246449186 2532201475 2246449186 2532201475
99 2432596111 2270260483 2644634954 2270260483 2644634954
126 2346786023 2228805388 2648265518 2228805388 2648265518
162 2353539209 2214090364 2496477548 2199348673 2552036761
198 2495007119 2278354467 2827041127 2278354467 2827041127
234 2409139093 2243677946 2980885404 2243677946 2980885404
279 2455512957 2251328482 2869632915 2251328482 2869632915

present the solutions of MinimaxI, since it was able to solve
problems with up to 279 scenarios. In addition, in Table 3 we
also present the worst-case scenario regrets associated with
the two models and the «-reliable Minimax regret associated
with minimizing the «-reliable Mean-excess regret.

Table 3 shows that, in 9 of the 10 instances, minimizing the
a-reliable Mean-excess regret also led to the optimal value of
the o-reliable Minimax regret. In the instance with 162 sce-
narios, minimizing the a-reliable Mean-excess regret gives
an «-reliable Minimax regret that is 0.67% higher than the
optimal @-reliable Minimax regret. On the other hand, in each
of the 10 instances tested, the Mean-excess model gives a
worst-case scenario regret no bigger than the worst-case sce-
nario regret given by the Minimax model. In the 162-scenario
instance, the worst-case scenario regret given by the Mean-
excess model is 2.23% lower than the worst-case scenario
regret given by the Minimax model.

In most of the test problems, the solutions to the -
reliable Mean-excess model are identical to the solutions to
the a-reliable Minimax model. This is not surprising, as in
Section 3 we have observed that minimizing the «-reliable
Mean-excess regret will also lead to a low «-reliable max-
imum regret. In addition, when the number of scenarios is
small (less than 500), the o-reliable maximum regret and the
a-reliable Mean-excess regret should be close. To see this,
consider a problem with 10 equally likely scenarios, the 0.95-
reliable maximum regret coincides with the 0.95-reliable
Mean-excess regret.

S. DISCUSSIONS AND CONCLUSION

In this paper we present the «-reliable Mean-excess model
for strategic facility location planning. In this framework,
decision makers identify future scenarios and estimate the
likelihood of each scenario occurring. The model then finds
a solution that minimizes the expected regret with respect

to an endogenously selected subset of worst-case scenar-
ios whose collective probability of occurrence is no more
than 1 — «. The «-reliable Mean-excess model is different
from the previously proposed «-reliable Minimax model in
that it explicitly account for the magnitude of the regrets
in the the worst-case scenarios, making it appropriate for
problems where the objective function value is not subject
to any threshold. Moreover, the computational efficiency of
the «-reliable Mean-excess model and its close relationship
to the «-reliable Minimax model make it a useful tool for
obtaining an approximate solution to the «-reliable Minimax
model.

Coherence has become an important risk measure in recent
years. Our mean-excess measure is coherent, and it can be
applied to a wide range of applications in supply chain
management, capacity planning, and financial engineering,
etc. For instance, it can be used to design robust supply
chains to hedge against uncertainties in demand, costs, or
other parameters. In the area of hydro-electric power gener-
ation, the model can be used to minimize the cost associated
with the costly startups and shutdowns of back-up thermal
generating units. In the near future, we plan to extend this
model to multi-stage and multi-dimensional environments
and to include capacity constraints, fixed charges, scenario-
dependent distances, and travel costs in our computational
experiments.
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