The ab initio model potential method. Main group elements

Sigeru Huzinaga, Luis Seijo, a) Zoila Barandiarán, a) and Mariusz Klobukowski Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada

(Received 30 September 1986; accepted 30 October 1986)

In this paper we present the ab initio core model potential method, in which the Coulomb and exchange core operators J_c and K_c are represented as accurately as possible using adequate local and nonlocal potentials, and the valence basis set is optimized in atomic MP SCF calculations following the variational principle. Nonrelativistic model potential parameters and valence basis sets are presented for the main group elements from Li to Xe. The pilot SCF molecular calculations on the ground states of N2, P2, As2, Sb2, and CaO show a good agreement between all-electron and model potential results, in particular the changes observed in molecular results due to improvements of the valence part of the all-electron basis set are reproduced by the model potential calculations.

I. INTRODUCTION

The chemical ideas about the formation of molecules are the basis of the valence-electron methods; their main goal is to make feasible calculations that would be prohibitively expensive at the all-electron (AE) level, without appreciable loss of accuracy if the same kind of wave function and valence basis set is used.

A number of different valence-electron methods have been proposed in recent years (see, e.g., Refs. 1, 2, and references therein) and extensive tabulations of parameters have been published.^{3,4} The one-electron effective potentials are generally obtained in atomic calculations oriented to the reproduction of the AE valence atomic orbital energies and shapes, and they frequently lead to acceptable molecular results if the core and valence orbitals are clearly separated.

Among the valence-electron methods, the model potential (MP) method⁵ is the only one that makes use of valence orbitals showing the correct nodal structure. The formalism is based on the theory of separability of many electron systems in which strong orthogonality among subsystem wave functions is assumed while evaluating the system total energy, 6.7 and from which the form of the one-electron effective Hamiltonian emerges naturally. Different approximations to this operator lead to the various versions of the model potential method. After the first proposal⁵ and later improvements⁸ the method produced good molecular results,² the only exception being cases for which core and valence orbitals of the same atom are close in energy and shape (e.g., ScO, I₂). A very careful analysis, reported by Petterson and Strømberg,9 showed that the difficulties encountered in these cases stemmed from the wrong long-range behavior of the local potentials, resulting from the accommodation of the strong nonlocal exchange interactions between valence and outer-core orbitals in the atomic optimization; at the same time, the good results produced by a frozen-core approach ruled out the occurrence of core polarization. 10 These problems were solved after the use of a nonlocal operator to represent the outer-core valence exchange interac-

A new version of the model potential method is presented here which keeps the virtues of the latest one¹¹ and is based on an ab initio philosophy. In this method, the attention is not focused on the reproduction of the valence atomic orbital energies and shapes but on the correct representation, by adequate potentials, of the Coulomb and exchange core operators J_c and K_c which depend only on the core orbitals. A local potential is used to represent J_c , whereas K_c is represented by a nonlocal potential that guarantees the exact calculation of all the one-center integrals involving K_c and the valence basis set functions. The parameters of the representations of J_c and K_c are thus obtained for a particular atom according to the criterion of quality expressed above. Then, since J_c and K_c describe physical interactions, their representation is not changed anymore; instead, the optimization of the atomic valence basis set is performed by minimization of the valence energy. In this way, the atomic model potential problem becomes entirely equivalent to the one of optimization of all-electron basis sets.

In atomic calculations, this method is equivalent to the frozen-core limit, provided the local representation of J_c is good enough; therefore, even if nothing is explicitly done in order to reproduce AE atomic orbital energies and shapes, the MP ones are close to them, the better the basis set the closer. In molecular calculations, the ab initio model potential method is as close to the frozen-core limit as the manycenter core-valence exchange integrals are unimportant. In cases for which such integrals are relevant to the molecular results, the frozen-core limit itself might be doubtful and the corresponding core orbitals might have to be promoted to the valence space.

In this paper we present the details of the method (Sec. II) as well as the model potentials and valence basis sets for the main group elements (Sec. III). The results of SCF pilot molecular calculations on N2, P2, As2, and Sb2, as well as on CaO, are reported in Sec. IV. These calculations show that the AE and MP results obtained with equivalent valence basis sets are close, and that the changes observed in molecular results due to improvements of the valence part of the AE basis set are reproduced by the MP calculations.

tions, together with the atomic optimization of only the inner-core local potentials.11

a) Present address: Departamento de Química-Física, Facultad de Química, Universidad de Oviedo, 33007 Oviedo, Asturias, Spain.

II. METHOD

A. Atomic formalism

The nonrelativistic MP Hamiltonian for the N valence electrons of an atom may be written in atomic units as⁶

$$H(1,2,...,N) = \sum_{i=1}^{N} h(i) + \sum_{i>i}^{N} r_{ij}^{-1},$$
 (1)

where the one electron Hamiltonian h(i) may be expressed as

$$h(i) = -\frac{1}{2} \Delta_i - (Z - Z_{\text{core}})/r_i + V_{\text{Coul}}(i) + V_{\text{exch}}(i) + P(i).$$
 (2)

In Eq. (2), the first two terms represent the kinetic energy and the attraction of the nucleus whose charge Z is completely shielded by the Z_{core} electrons. The projector P(i),

$$P(i) = -\sum_{c}^{\text{core}} 2\epsilon_{c} |\phi_{c}\rangle\langle\phi_{c}|, \qquad (3)$$

constructed using the core orbital energies (ϵ_c) and functions (ϕ_c), prevents the valence orbitals from collapsing onto the core space. $V_{\rm Coul}(i)$ includes the core Coulomb operators, J_c , and is a local radial operator,

$$V_{\text{Coul}}(i) = V_{\text{Coul}}(r_i) = -Z_{\text{core}}/r_i + 2\sum_{c}^{\text{core}} J_c(i)$$
. (4)

Finally, $V_{\text{exch}}(i)$ represents the nonlocal core exchange operator.

$$V_{\text{exch}}(i) = -\sum_{c}^{\text{core}} K_c(i) . {5}$$

In order to reduce the computing time in molecular calculations, further simplifications of Eqs. (4) and (5) are needed. The local Coulomb potential is approximated as in Ref. 8:

$$V_{\text{Coul}}(r_i) \simeq V_{\text{Coul}}^{\text{MP}}(r_i) = \sum_k A_k r_i^{n_k} \exp(-\alpha_k r_i^2)/r_i$$

(6)

(7)

where the parameters $\{A_k, \alpha_k\}$ are determined through least-square fitting to the potential $V_{\text{Coul}}(r_i)$ calculated with Eq. (4) using AE core orbitals. A nonlocal representation is used for the exchange potential in Eq. (5) (this representation¹² was already used in Ref. 11 for the exchange potential associated with the outermost core orbitals only),

$$V_{\rm exch}(i) \simeq V_{\rm exch}^{\rm MP}(i) = \sum_{l} \sum_{m=-l}^{l} \sum_{a,b} |alm\rangle A_{l;ab}\langle blm|,$$

where the $\{|alm\rangle\}$ are products of radial primitive Gaussian-type functions and spherical harmonics, and the coefficients A_{lab} are the elements of the matrix

$$A = S^{-1}KS^{-1}, (8)$$

where

$$S_{ij} = \langle i|j\rangle, \quad K_{ij} = \langle i|V_{\text{exch}}|j\rangle,$$
 (9)

 $|i\rangle$, $|j\rangle$ being functions of the set $\{|alm\rangle\}$. This implies that if all the valence primitive functions are contained in the set $\{|alm\rangle\}$, then

$$\langle i|V_{\text{exch}}^{\text{MP}}|j\rangle = \langle i|V_{\text{exch}}|j\rangle \,, \tag{10}$$

and, in atoms, the same result is obtained by the use of V_{exch} [Eq. (5)] or $V_{\text{exch}}^{\text{MP}}$ [Eq. (7)].

Once an atomic AE SCF calculation is done and a corevalence partition is chosen, the atomic core orbitals are used to obtain the operators P, $V_{\rm Coul}^{\rm MP}$, and $V_{\rm exch}$ as indicated. These operators are not changed anymore. The valence basis set is then optimized by minimization of the valence SCF energy using standard AE methods.¹³

B. Molecular formalism

The nonrelativistic MP Hamiltonian for the N valence electrons of the molecule may be written in atomic units as⁵

$$H(1,2,...,N) = \sum_{i=1}^{N} h(i) + \sum_{i>j}^{N} r_{ij}^{-1} + \sum_{I>J} V_{IJ}(R_{IJ}),$$
(11)

where (i, j) run over electrons, (I, J) run over nuclei, the one-electron Hamiltonian can be expressed as

$$h(i) = -\frac{1}{2} \Delta_i - \sum_{I} (Z^{I} - Z^{I}_{core}) / r_{Ii}$$

$$+ \sum_{I} [V^{I}_{Coul}(i) + V^{I}_{exch}(i) + P^{I}(i)], \quad (12)$$

and the internuclear repulsion is approximated by

$$V_{IJ}(R_{IJ}) = (Z^{I} - Z_{core}^{I})(Z^{J} - Z_{core}^{J})/R_{IJ}$$
. (13)

The last term of Eq. (12) collects the sum of all effective core potential contributions. For each center I, Eqs. (3), (6), and (7) are used.

The basis set used for the MP molecular calculation is formed by the atomic valence basis sets augmented with the same extra functions that would be necessary for an AE molecular calculation, such as polarization functions, diffuse functions, etc. It is important to notice that the whole set of primitives used in the MP molecular basis set on a particular center must be used to obtain $V_{\rm exch}^{\rm MP}$ through Eqs. (7)–(9); only then the one-center integrals fulfill Eq. (10). There is no guarantee of a good reproduction of the many-center integrals $\langle i|V_{\rm exch}|j\rangle$ within this method, but these integrals are expected to have a minor influence in the molecular results if the core approximation is acceptable.

III. MODEL POTENTIALS AND BASIS SETS

In this section we present the model potential parameters for the main group elements up to Xe(Z = 54), as well as the valence Gaussian basis sets. All of them were obtained for the atomic ground states.

To generate the core potentials we have used well-tempered (WT) core orbital functions and energies, ¹⁴ whose quality is very close to the HF limit. The local Coulomb model potential parameters [Eq. (6)], obtained through least-square fitting to the reference V_{Coul} [Eq. (4)], appear in Table I. The parameters $A_{l,ab}$ of the exchange model potential, $V_{\text{exch}}^{\text{MP}}$, can be easily and cheaply calculated using Eqs. (8) and (9), once the core orbitals and the basis set on a given center are known; besides, addition of extra functions to the molecular basis set results in a change of the matrix A, making a tabulation of these coefficients useless. Neverthe-

TABLE I. Local Coulomb model potential parameters [Eq. (6)] for the main group elements.

Li to Ne Lith	ium	Beryl	lium	Bor	on	Cart	oon — —
α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$
197775.87	0.012 836 59	220020.68	0.016 393 47	215139.23	0.021 150 97	233033.66	0.024 256
17359.376	0.023 658 82	20793.906	0.028 679 84	19835.800	0.037 816 90	22911.775	0.041 566
2589.8142	0.052 932 29	3317.9723	0.061 783 98	3054.8389	0.084 178 88	3674.7801	0.091 465
479.85840	0.113 405 28	665.20534	0.124 719 55	575.05226	0.183 080 32	709.91865	0.198 155
100.99238	0.243 128 08	156.80300	0.248 982 78	120.79038	0.415 346 87	152.64877	0.444 270
23.344189	0.524 191 86	40.276502	0.514 595 79	27.817362	0.800 857 12	36.739553	0.793 055
6.0313748	0.766 184 49	11.365749	0.728 011 05	7.4285524	0.457 568 95	10.405237	0.407 232
1.8247933	0.263 662 59	3.6518552	0.276 833 53				
Nitro	ogen	Oxygen		Fluorine		Neon	
α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$
249574.95	0.027 168 37	265207.54	0.029 916 19	279347.40	0.032 583 07	292201.25	0.035 187
25950.235	0.044 828 97	28994.950	0.047 680 30	31889.749	0.050 377 72	34636.084	0.052 966
4316.5926	0.097 594 36	4987.8146	0.102 752 95	5649.9776	0.107 598 81	6298,7650	0.112 237
854.52037	0.210 399 64	1010.7038	0.220 273 81	1169.2730	0.229 403 30	1328.7256	0.238 043
188.10814	0.465 126 13	227.61180	0.480 038 24	269.05132	0.492 686 20	311.99355	0.503 870
46.985771	0.782 647 08	58.649698	0.771 869 95	71.298846	0.760 786 65		
						84.793581	0.749 843
13.841363	0.372 235 45	17.774210	0.347 468 56	22.121507	0.326 564 25	26.839989	0.307 850
Na to Ar Sodi	um	Magne	siim	Alumi	inum	Silio	
	$-A_k$		$-A_k$				
α _k		α_k		α_k	$-A_k$	α_k	$-A_k$
306276.69	0.061 697 72	322460.63	0.066 357 06	322316.36	0.073 232 55	321661.05	0.079 730
40442.846	0.083 732 52	43150.295	0.091 508 33	42989.923	0.100 214 99	43207.704	0.110 086
7853.4833	0.181 456 49	8125.2571	0.199 476 90	8384.6495	0.213 505 90	8274.9011	0.236 222
1617.2936	0.396 248 97	1723.2683	0.424 970 75	1758.5767	0.467 256 57	1749.9335	0.508 534
358.08855	0.867 352 43	364.94933	0.997 987 18	391.23867	1.015 371 50	400.57869	1.067 963
83.017333	1.510 495 50	86.582869	1.458 908 00	94.113283			
					1.524 382 80	99.579081	1.521 547
16.062158	1.815 883 40	17.842786	1.960 104 50	19.503874	2.019 059 80	21.081645	2.141 245
4.1341426	3.620 645 90	4.9130123	3.550 096 40	5.8771986	3.479 318 70	6.7885626	3.383 845
1.3070163	1.462 487 10	1.7232380	1.250 590 90	2.1757348	1.107 657 10	2.6333940	0.950 824
Phosp	horus	Sulf	ur	Chlo	rine	Arg	on
α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$
325164.01	0.086 677 05	324985.01	0.093 359 33	310528.24	0.103 886 11	337361.63	0.104 026
42054,732	0.122 563 42	42169.635	0.131 821 93	38001.960	0.150 502 57	45322.027	0.141 999
8085.0454	0.256 618 36	8071.8331	0.278 778 90	7723.3953	0.283 947 85	9124.5281	0.291 313
1749.5593	0.545 621 13	1736.8547	0.593 543 54	1824.0639	0.602 477 50		
409.85995	1.123 832 50	412.56100				2028.8217	0.621 714
			1.177 697 20	437.69730	1.237 322 40	492.09122	1.206 704
104.50231	1.505 127 90	108.42851	1.478 066 50	110.70253	1.535 358 60	131.95021	1.484 577
22.907208	2.257 264 40	24.540590	2.419 414 30	25.121295	2.617 702 10	30.190174	2.631 432
7.7043508	3.307 861 30	8.5385050	3.163 021 90	9.3089863	2.918 010 70	10.475381	3.154 134
3.0905313	0.794 434 02	3.6014875	0.664 296 38	4.0576817	0.550 792 10	4.1630541	0.364 096
K to Kr							
Potas	sium —————	Calc	um	Galli	ium	Germa	nium
α_k	$-A_k$	α_k	$-A_k$	$lpha_k$	$-A_k$	α_k	$-A_k$
461901.07	0.098 059 69	466371.83	0.103 621 10	604373.01	0.164 530 66	668170.88	0.164 007
	0.099 772 37	88304.012	0.103 214 17	116902.66	0.175 187 24	124788.59	0.181 126
86512.061							
86512.061 22412.605	0.187 597 17	24324.885	0.181 117 18	28184.217	0.353 946 86	28572.403	0.383 706
86512.061 22412.605 6189.4394	0.187 597 17 0.344 223 73	7057.1830	0.336 668 58	28184.217 6958.4486	0.353 946 86 0.728 186 03	28572.403 6629.5546	
86512.061 22412.605	0.187 597 17						0.383 706 9 0.799 476 1 1.456 149 1

TABLE I. (continued).

Potas	ssium	Calc	ium	Gall	ium	Germa	ınium
α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$
148.35180	1.732 648 40	149.62063	1.895 202 90	138.21712	2.983 322 90	144.57550	3.129 322 1
34.483334	3.169 014 40	33.796219	3.628 127 30	47.039636	5.318 371 30	48.966203	5.298 731 8
12.519648	3.537 096 70	12.131936	3.333 534 50	10.176595	5.383 841 60	10.877774	5.385 942 1
4.7156102	0.834 954 72	2.4212416	1.183 723 00	3.6465148	7.962 867 70	4.0462753	7.978 742 4
1.5557737	4.001 572 40	1.8637404	3.200 855 90	1.1349591	1.530 097 60	1.3237059	1.331 806 2
0.62020299	2.092 306 40	0.78607810	2.049 250 90				
Arse	enic	Selen	ium	Bromine		Kryŗ	oton
α_k	$-A_k$	$\overline{\alpha_k}$	$-A_k$	α_k	$-A_k$	α_k	$-A_k$
484958.78	0.203 318 87	457507.75	0.220 005 91	409488.26	0.246 194 73	400264.05	0.258 873 20
88634.843	0.217 638 19	80031.950	0.241 104 58	66039.300	0.284 497 40	62772.198	0.310 170 7
22298.484	0.411 040 53	20352.326	0.435 342 17	17121.854	0.461 517 01	15453.661	0.525 635 1
6024.8223	0.785 650 53	5740.5503	0.813 618 54	5324.0861	0.826 720 60	4780.7699	0.873 121 9
1736.5054	1.416 191 40	1698.7633	1.456 876 10	1638.3064	1.506 864 70	1557.9845	1.518 984 0
532.24528	1.947 389 30	528.71695	1.950 468 10	515.63444	1.953 924 20	501.26828	1.972 587 00
146.80340	3.281 022 10	149.05323	3.375 936 60	150.32257	3.445 047 20	150.23603	3.525 551 50
50.827620	5.205 155 80	52.905476	5.109 993 80	55.211961	4.983 907 70	57.491638	4.809 253 30
4.4870079	7.714 615 90	12.137970	5.545 431 10	12.843973	5.698 372 60	13.652700	5.825 130 40
1.6008273	1.308 118 60	4.9826357	7.558 574 60	5.4121554	7.415 471 10	5.8599548	7.316 253 20
11.429694	5.509 858 60	1.8803067	1.292 648 40	2.1081169	1.177 482 80	2.3357475	1.064 439 60
Rubi		Stron		Indi		Ti	
α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$	α_k	$-A_k$
α _k 523013.83	- A _k	α _k 508525.56	- A _k	σ _k 513078.50	- A _k	α _k 505885.29	
			,				0.351 436 1
523013.83	0.229 449 79	508525.56	0.241 907 84	513078.50	0.339 404 12	505885.29	0.351 436 1 0.373 407 4
523013.83 101467.04 26873.082	0.229 449 79 0.232 130 18 0.432 354 24	508525.56 96664.694 25412.882	0.241 907 84 0.249 306 17 0.457 875 03	513078.50 96872.828 24538.182	0.339 404 12 0.359 102 71 0.694 653 03	505885.29 94758.301 24056.555	0.351 436 19 0.373 407 44 0.717 464 99
523013.83 101467.04 26873.082 7365.8358	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79	508525.56 96664.694 25412.882 7194.2830	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53	513078.50 96872.828 24538.182 6507.0196	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60	505885.29 94758.301 24056.555 6440.9793	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0
523013.83 101467.04 26873.082 7365.8358 2012.2435	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20	508525.56 96664.694 25412.882 7194.2830 2087.5397	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90	513078.50 96872.828 24538.182 6507.0196 1802.7142	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70	505885.29 94758.301 24056.555 6440.9793 1817.2952	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5 3.418 686 0
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5 3.418 686 0 6.555 923 6
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099	0.351 436 14 0.373 407 44 0.717 464 93 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815	0.351 436 14 0.373 407 44 0.717 464 93 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10 9.155 809 90
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5 3.418 686 0 6.555 923 6 6.883 442 1 9.155 809 9 7.294 935 7
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675	0.351 436 14 0.373 407 44 0.717 464 91 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10 9.155 809 90 7.294 935 70 5.912 106 10
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948	0.351 436 14 0.373 407 44 0.717 464 91 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10 9.155 809 90 7.294 935 70 5.912 106 10
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675	0.351 436 11 0.373 407 4 0.717 464 91 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10 9.155 809 90 7.294 935 70 5.912 106 10 1.656 640 40
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098	0.351 436 11 0.373 407 4 0.717 464 91 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10 9.155 809 90 7.294 935 70 5.912 106 10 1.656 640 40
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098	0.351 436 14 0.373 407 44 0.717 464 91 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 66 6.883 442 14 9.155 809 96 7.294 935 76 5.912 106 10 1.656 640 44 on - A _k
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70	$\begin{array}{c} 513078.50 \\ 96872.828 \\ 24538.182 \\ 6507.0196 \\ 1802.7142 \\ 477.95667 \\ 147.82476 \\ 35.948271 \\ 16.504596 \\ 3.2479844 \\ 1.7040402 \\ 0.69440997 \\ \\ \\ \\ Iodi \\ \hline \\ \alpha_k \\ \end{array}$	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098	0.351 436 14 0.373 407 44 0.717 464 91 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 66 6.883 442 14 9.155 809 96 7.294 935 76 5.912 106 10 1.656 640 44 on - A _k
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu:	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098	0.351 436 11 0.373 407 44 0.717 464 91 1.397 898 01 2.282 249 55 3.418 686 00 6.555 923 66 6.883 442 11 9.155 809 91 7.294 935 76 5.912 106 10 1.656 640 44 on 0.385 439 91 0.409 312 1
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir 497609.59 92504.954 23373.187	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi α _k 503638.22 94486.865	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 tine - A _k 0.378 205 73 0.401 929 61 0.771 735 23	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen	0.351 436 1: 0.373 407 4 0.717 464 9: 1.397 898 0: 2.282 249 5: 3.418 686 0: 6.585 923 6: 6.883 442 1: 9.155 809 9: 7.294 935 7: 5.912 106 1: 1.656 640 4: 0.385 439 9: 0.409 312 1: 0.780 638 5
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir 497609.59 92504.954 23373.187 6261.5981	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi α_k 503638.22 94486.865 24039.834 6514.7999	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 tine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen \$\alpha_k\$ 506699.42 95214.925 24338.287 6666.5180	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5 3.418 686 0 6.555 923 6 6.883 442 1 9.155 809 9 7.294 935 7 5.912 106 10 1.656 640 4 0.385 439 9 0.409 312 1 0.780 638 5 1.471 499 9
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir α _k 497609.59 92504.954 23373.187 6261.5981 1785.5062	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi α_k 503638.22 94486.865 24039.834 6514.7999 1889.9015	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 time - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen α _k 506699.42 95214.925 24338.287 6666.5180 1955.7125	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5 3.418 686 0 6.555 923 6 6.883 442 1 9.155 809 9 7.294 935 7 5.912 106 1 1.656 640 4 0.385 439 9 0.409 312 1 0.780 638 5 1.471 499 9 2.307 310 8
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir α _k 497609.59 92504.954 23373.187 6261.5981 1785.5062 480.11923	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70 3.555 324 00	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904 501.38363	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60 3.548 815 40	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 ine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70 3.576 853 50	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen \$\alpha_k\$ 506699.42 95214.925 24338.287 6666.5180 1955.7125 536.29236	0.351 436 1 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5 3.418 686 0 6.555 923 6 6.883 442 1 9.155 809 9 7.294 935 7 5.912 106 1 1.656 640 4 0.385 439 9 0.409 312 1 0.780 638 5 1.471 499 9 2.307 310 8 3.599 428 4
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir 497609.59 92504.954 23373.187 6261.5981 1785.5062 480.11923 154.35927	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70 3.555 324 00 6.461 884 40	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904 501.38363 161.65705	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60 3.548 815 40 6.486 983 70	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 ine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70 3.576 853 50 6.483 560 50	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen α _k 506699.42 95214.925 24338.287 6666.5180 1955.7125 536.29236 174.21287	0.351 436 1: 0.373 407 4 0.717 464 9: 1.397 898 0: 2.282 249 5: 3.418 686 0: 6.555 923 6: 6.883 442 1: 9.155 809 7.294 935 7: 5.912 106 1: 1.656 640 4: 0.385 439 9 0.409 312 1 0.780 638 5 1.471 499 9 2.307 310 8 3.599 428 4 6.499 984 1:
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir α _k 497609.59 92504.954 23373.187 6261.5981 1785.5062 480.11923 154.35927 38.309384	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70 3.555 324 00 6.461 884 40 6.894 720 80	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904 501.38363 161.65705 40.223229	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 cium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60 3.548 815 40 6.486 983 70 6.884 424 90	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 ine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70 3.576 853 50 6.483 560 50 6.868 682 00	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen α _k 506699.42 95214.925 24338.287 6666.5180 1955.7125 536.29236 174.21287 43.794882	0.351 436 11 0.373 407 44 0.717 464 91 1.397 898 04 2.282 249 54 3.418 686 06 6.555 923 66 6.883 442 16 9.155 809 7.294 935 77 5.912 106 14 1.656 640 46 on - A _k 0.385 439 94 0.409 312 1 0.780 638 5 1.471 499 94 2.307 310 84 3.599 428 44 6.499 984 14 6.889 691 16
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir α _k 497609.59 92504.954 23373.187 6261.5981 1785.5062 480.11923 154.35927 38.309384 18.399413	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70 3.555 324 00 6.461 884 40 6.894 720 80 9.040 555 70	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904 501.38363 161.65705 40.223229 19.642565	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60 3.548 815 40 6.486 983 70 6.884 424 90 8.986 783 00	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi α_k 503638.22 94486.865 24039.834 6514.7999 1889.9015 516.31914 167.57843 42.030271 20.840443	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 ine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70 3.576 853 50 6.483 560 50 6.868 682 00 8.947 328 20	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen α _k 506699.42 95214.925 24338.287 6666.5180 1955.7125 536.29236 174.21287 43.794882 22.096924	0.351 436 1: 0.373 407 4 0.717 464 9: 1.397 898 0: 2.282 249 5: 3.418 686 0: 6.555 923 6: 6.883 442 1: 9.155 809 7.294 935 7: 5.912 106 1: 1.656 640 4: 0.385 439 9 0.409 312 1 0.780 638 5 1.471 499 9: 2.307 310 8 3.599 428 4: 6.899 691 1: 8.861 437 2
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir 497609.59 92504.954 23373.187 6261.5981 1785.5062 480.11923 154.35927 38.309384 18.399413 3.5915358	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 025 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70 3.555 324 00 6.461 884 40 6.894 720 80 9.040 555 70 6.950 304 00	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904 501.38363 161.65705 40.223229 19.642565 3.8624144	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60 3.548 815 40 6.486 983 70 6.884 424 90 8.986 783 00 7.216 979 40	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 ine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70 3.576 853 50 6.483 560 50 6.868 682 00 8.947 328 20 7.324 756 70	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen α _k 506699.42 95214.925 24338.287 6666.5180 1955.7125 536.29236 174.21287 43.794882 22.096924 4.3327711	0.351 436 1: 0.373 407 4 0.717 464 9 1.397 898 0 2.282 249 5: 3.418 686 0 6.555 923 6 6.883 442 1: 9.155 809 9 7.294 935 7 5.912 106 1: 1.656 640 4 on - A _k 0.385 439 9 0.409 312 1 0.780 638 5 1.471 499 9 2.307 310 8 3.599 428 4 6.899 691 1: 8.861 437 2 7.460 388 7
523013.83 101467.04 26873.082 7365.8358 2012.2435 561.27580 150.16189 53.368312 11.711820 4.7534243 1.0302226 0.42157436 Antir 497609.59 92504.954 23373.187 6261.5981 1785.5062 480.11923 154.35927 38.309384 18.399413	0.229 449 79 0.232 130 18 0.432 354 24 0.854 161 79 1.664 170 20 2.275 002 80 4.276 323 10 4.985 052 10 9.246 370 60 5.317 445 00 4.814 682 90 1.672 857 30 mony - A _k 0.363 956 54 0.389 081 78 0.749 761 36 1.446 535 60 2.310 240 70 3.555 324 00 6.461 884 40 6.894 720 80 9.040 555 70	508525.56 96664.694 25412.882 7194.2830 2087.5397 600.99832 156.77367 54.438184 12.292335 5.3635348 1.3343487 0.58740385 Tellu: α _k 505679.94 94240.376 23790.911 6415.7044 1847.2904 501.38363 161.65705 40.223229 19.642565	0.241 907 84 0.249 306 17 0.457 875 03 0.859 251 53 1.615 535 90 2.289 280 30 4.488 770 00 4.957 663 90 9.378 866 50 4.758 577 80 4.384 641 50 2.318 323 70 rium - A _k 0.369 105 73 0.395 493 89 0.760 376 50 1.452 834 50 2.307 155 60 3.548 815 40 6.486 983 70 6.884 424 90 8.986 783 00	513078.50 96872.828 24538.182 6507.0196 1802.7142 477.95667 147.82476 35.948271 16.504596 3.2479844 1.7040402 0.69440997 Iodi α_k 503638.22 94486.865 24039.834 6514.7999 1889.9015 516.31914 167.57843 42.030271 20.840443	0.339 404 12 0.359 102 71 0.694 653 03 1.369 458 60 2.286 103 70 3.390 657 30 6.559 554 50 6.713 001 20 9.358 218 40 7.414 761 00 6.046 540 50 1.468 545 00 ine - A _k 0.378 205 73 0.401 929 61 0.771 735 23 1.469 384 60 2.310 904 70 3.576 853 50 6.483 560 50 6.868 682 00 8.947 328 20	505885.29 94758.301 24056.555 6440.9793 1817.2952 488.95799 153.17053 37.228099 17.401815 3.4506948 1.9822675 0.85527098 Xen α _k 506699.42 95214.925 24338.287 6666.5180 1955.7125 536.29236 174.21287 43.794882 22.096924	0.351 436 18 0.373 407 44 0.717 464 93 1.397 898 00 2.282 249 50 3.418 686 00 6.555 923 60 6.883 442 10 9.155 809 90 7.294 935 70 5.912 106 10 1.656 640 40

All the exponents n_k [Eq. (6)] are set to 0.

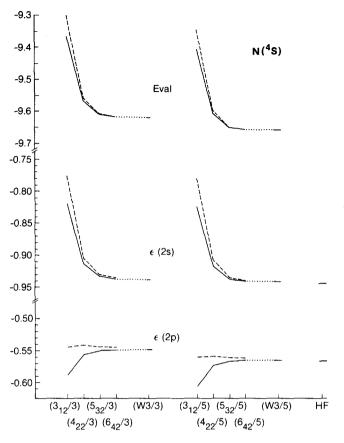


FIG. 1. Valence and orbital energies for $N(^4S)$, in a.u. Solid line: completely optimized valence basis set; dashed line: only the innermost primitives were optimized.

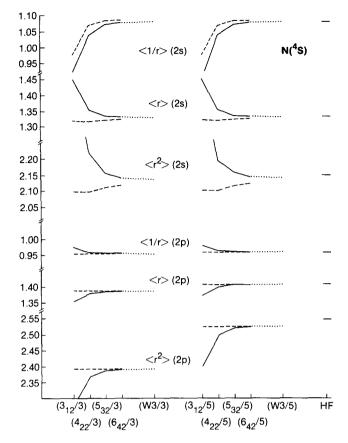


FIG. 2. Radial expectation values for the valence orbitals of N(⁴S) in a.u. Solid line: completely optimized valence basis set; dashed line: only the innermost primitives were optimized.

less, they can be obtained from the authors upon request. The calculation of these parameters can be a part of the input processing during the molecular calculation.

In order to decide upon the adequate size and pattern for the valence basis sets, a series of exploratory calculations were done. In Figs. 1 and 2 we present the valence orbital energies and radial expectation values, as well as the valence energy, for $N(^4S)$ using basis sets $(n_{n-2,2}/3)$ and $(n_{n-2,2}/5)$, with n=3,4,5, and 6; the HF results 15 are also presented. Here we use the notation of Ref. 13 for contracted basis sets and add some subindexes in order to show the structure of signs in the contraction coefficients. For instance, $(5_{32}/3)$ means that the coefficients of the three innermost s-type primitives have opposite sign to those of the two outermost ones. This implies tht only the last two functions represent the main regions of the 2s orbital, whereas the first three mainly provide the ability to reach 1s-2s orthogonality.

It can be observed in Figs. 1 and 2 that the results of the completely optimized basis sets (solid line) converge to the corresponding $MP(W3_{12}/3)$ and $MP(W3_{12}/5)$ values. These last basis sets were constructed using the 14-primitive 1s WT orbital¹⁴ (symbolized by W) as an inner contracted function to ensure that the 2s orbital has full ability to be orthogonal to the 1s core orbital, and the rest of the basis set was optimized along AE(W3/3) and AE(W3/5) calcula-

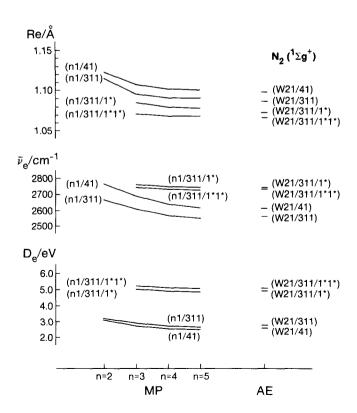


FIG. 3. MP and AE molecular results on $N_2(^1\Sigma_g^+)$.

TABLE II. MP basis sets.

IA-IIA group Litl	nium	Bery	llium	Sod	ium	Magne	esium
Exp.	Coeff.	Ехр.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
	2s			3	s	3.	~
30.381413	_ 0.013 572 91	65.231845	- 0.013 123 52	633.96071	0.002 070 89	733.25915	0.002 845 6
4.4901492	- 0.076 451 13	9.7450770	- 0.078 926 58	95.365382	0.013 740 84	111.11570	0.018 665 7
0.86683800	- 0.191 717 14	2.0046429	- 0.209 520 43	21.003506	0.039 894 34	24.797332	0.053 193 1
0.06301466	0.684 843 84	0.15084819	0.623 612 63	1.6945210	- 0.129 153 42	2.2024956	- 0.157 966 3
0.02432363	0.389 591 68	0.05132907	0.462 626 02	0.49846427	- 0.125 155 42 - 0.195 061 04	0.78358637	- 0.232 100 6
0.02432303	0.367 371 00	0.03132907	0.402 020 02		0.625 362 88		
				0.05949755 0.02368639	0.623 362 88	0.10873618 0.03953124	0.613 244 2 0.510 020 8
				0.0200000	0, 70, 10	0.00700121	0.010 020
Potassium		Cal	cium	Rubi	dium	Stron	tium
Exp.	Coeff.	Exp.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
	ls		ls	5	S	5:	s
1932.4749	- 0.001 018 22	2129.6339	- 0.001 342 22	7633.6364	0.000 489 53	7955.4511	0.000 645 3
292.02471	- 0.006 879 10	322.87196	- 0.009 038 83	1155.1872	0.003 378 44	1209.9954	0.004 417 7
65.655917	- 0.020 544 85	72.898054	- 0.026 980 91	262.57737	0.010 561 54	276.68668	0.013 727
6.5136035	0.065 761 86	7.1428307	0.099 502 37	29.610824	- 0.035 252 12	30.450627	- 0.053 137
3.3934779	0.062 847 63	3.3648690	0.080 928 61	16.657120	- 0.028 431 97	15.111309	- 0.035 663
0.67828972	- 0.204 772 20	0.96499143	- 0.202 239 12	5.2011014	0.042 669 67	5.8239675	0.067 413
0.07828972	- 0.265 258 00	0.39894457	- 0.202 239 12 - 0.354 214 33	2.7577627	0.136 119 16	2.8667645	0.182 361
0.03972228	0.651 902 91	0.06199958	0.705 640 29	0.48171973	- 0.265 206 89	0.64697193	- 0.250 274
0.01716464	0.488 986 20	0.02489404	0.451 176 32	0.17569586	- 0.279 182 94	0.30143269	- 0.377 318
				0.03742569	0.613 815 28	0.05188388	0.731 931
				0.01626636	0.557 776 58	0.02145642	0.445 804 2
B to Ne Bo	ron	Car	bon	Nitro	ogen		
Ехр.	Coeff.	Exp.	Coeff.	Exp.	Coeff.		
	S		s	2:	3		
111.57100	- 0.013 349 83	168.58141	- 0.013 482 20	234.34567	0.013 706 37		
16.708828	- 0.083 049 25	25.318617	- 0.085 275 91	35.371075	0.087 089 59		
3.5225174	- 0.225 942 93	5.4255585	- 0.234 339 04	7.6916772	- 0.239 166 44		
0.27434282	0.627 975 67	0.42924874	0.627 947 87	0.61671684	0.626 808 78		
0.09031822	0.462 945 69	0.13817391	0.465 616 33	0.19525028	0.468 703 64		
2	_	2					
12.668756	<i>p</i> 0.012 212 36	19.101229	p 0.013 619 64	2 ₁ 26.846803	0.014 502 17		
2.7526026	0.075 256 70	4.2220551	0.084 810 67	6.0006883	0.090 889 50		
0.78237754	0.268 305 71	1.2235411	0.286 237 85	1.7568722	0.296 986 58		
0.24780086	0.504 885 49	0.38949621	0.501 444 17	0.55944696	0.498 769 84		
0.07910665	0.366 736 01	0.12251124	0.348 979 68	0.17366286	0.339 212 32		
Оху	gen	Fluo	rine	Nec	on		
Exp.	Coeff.	Ехр.	Coeff.	Exp.	Coeff.		
2 314.68667	s 0.013 753 22	405.47716	s 0.013 805 19	2s 508.43671	- 0.013 807 48		
47.486161	- 0.013 733 22 - 0.088 347 23	61.236864	- 0.013 803 19 - 0.089 245 06	76.800113	- 0.013 807 48 - 0.089 784 24		
10.389088	- 0.088 347 23 - 0.244 489 83	13.471177	0.089 245 06 0.247 937 86	16.956371	- 0.089 784 24 - 0.250 408 80		
10.307000							
0.04013577	0.630 868 93 0.466 049 77	1.0951737 0.34008475	0.632 895 34 0.465 026 34	1.3812111 0.42583795	0.634 211 22 0.464 401 42		
0.84012567 0.26315314							
0.26315314		2/		2p			
0.26315314	0.015 717 66	44.136009	0.016 534 82	55.256489	0.016 902 62		
0.26315314 34.783409 7.8228431	0.015 717 66 0.098 705 32	44.136009 9.9825971	0.016 534 82 0.103 846 53	55.256489 12.553468	0.016 902 62 0.106 449 34		
0.26315314 2.34.783409 7.8228431 2.3009849	0.015 717 66 0.098 705 32 0.308 675 59	44.136009 9.9825971 2.9470827	0.016 534 82 0.103 846 53 0.316 092 82	55.256489 12.553468 3.7146561	0.016 902 62 0.106 449 34 0.319 878 15		
0.26315314 34.783409 7.8228431	0.015 717 66 0.098 705 32	44.136009 9.9825971	0.016 534 82 0.103 846 53	55.256489 12.553468	0.016 902 62 0.106 449 34		

TABLE II. (continued).

C) Al to Ar Alum	inum	Silio	con	Phosp	horus
Exp.	Coeff.	Ехр.	Coeff.	Exp.	Coeff.
3	is .	3	s		s
869.14539	0.003 489 72	1019.3882	0.003 926 16	1182.6558	0.004 252 47
131.41377	0.023 077 51	154.03267	0.026 113 52	178.71813	0.028 403 70
29.331438	0.066 236 01	34.403481	0.075 664 80	39.959861	0.083 068 99
2.7348916	- 0.186 881 40	3.2562014	- 0.214 878 53	3.7626176	- 0.249 285 70
1.0890329	- 0.270 690 88	1.3953933	- 0.287 407 06	1.6832762	- 0.288 240 73
0.16806251	0.666 608 38	0.23467257	0.686 551 75	0.31154276	0.691 854 96
0.06112679	0.475 934 21	0.08541769	0.469 942 08	0.11338554	0.477 622 75
3	p	3,	n	3	p.
41.127803	$-0.013\ 367\ 45$	52.171886	- 0.014 783 59	63.656661	-0.01572246
9.1225875	- 0.066 023 23	11.684958	- 0.075 567 57	14.381855	-0.01372240 -0.08197990
2.4017227	- 0.122 471 28	3.1630276	- 0.145 757 56	3.9821550	- 0.161 699 38
0.22215689	0.360 851 75	0.31961955	0.398 061 00	0.43364640	0.411 825 46
0.08312327	0.532 001 73	0.12188821	0.521 482 33	0.16910055	0.511 817 22
0.03278319	0.231 727 33	0.04832592	0.201 606 41	0.06736732	0.195 870 20
Sul	fur	Chlo	orine	Arg	gon
Exp.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
	S	3.	s	3	s
1358.5662	0.004 527 64	1542.3787	0.004 765 90	1732.7206	0.004 988 66
205.28669	0.030 359 31	233.13204	0.032 037 56	261.83186	0.033 616 23
45.947830	0.089 508 18	52.247074	0.094 965 42	58.751949	0.099 822 12
4.2713728	- 0.291 467 37	4.8942113	- 0.316 640 11	5.7019860	- 0.313 480 69
1.9346495	- 0.280 241 16	2.2817665	- 0.275 631 67	2.8272408	- 0.286 784 74
0.40302707	0.694 747 49	0.49147978	0.708 946 76	0.57143478	0.731 710 12
0.14580296	0.490 363 16	0.17766657	0.482 421 92	0.20740807	0.455 911 09
3	p	3,	p	3	D
77.325536	_ 0.016 004 61	92.088394	- 0.016 221 37	107.45459	_ 0.016 239 44
17.559142	- 0.085 601 39	20.986022	- 0.088 632 08	24.590709	- 0.090 018 90
4.9407281	- 0.174 097 13	5.9753203	- 0.184 713 28	7.0801889	- 0.190 833 02
0.56098162	0.419 760 95	0.69826911	0.429 956 50	0.85360221	0.434 311 54
0.21373625	0.505 873 52	0.26378791	0.501 543 59	0.32321813	0.498 882 04
0.08211480	0.201 743 21	0.09973113	0.198 681 08	0.12131460	0.198 540 20
) Ga to Kr					
Gall	lium	Germa	anium	Ars	enic
Exp.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
	s	4.		4	
5367.4306	- 0.001 476 56	5719.4050	$-0.001\ 651\ 34$	6111.3583	- 0.001 789 00
811.36777	- 0.010 164 97	865.76338	-0.01135625	925.47074	- 0.012 312 05
183.72308	- 0.031 635 83	196.33225	- 0.035 401 66	209.94118	- 0.038 562 59
18.642715	0.135 953 64	20.024532	0.151 082 84	21.126459	0.172 248 84
6.8523494	0.110 786 42	8.2760821	0.088 086 11	7.6613551	0.121 628 57
3.7921403	- 0.214 869 40	3.6906203	- 0.217 222 67	4.2391524	- 0.261 215 25
1.3684228	- 0.369 813 54				
		1.5100934	- 0.399 557 29	1.6977212	- 0.440 475 85
0.18290436	0.682 578 13	0.23155743	0.708 013 54	0.28128340	0.724 897 76
	0.463 086 80	0.08521711	0.458 506 83	0.10507290	0.458 208 78
0.06613904		4,		494.19603	p 0.003 894 19
4		157 76210			0.003 894 15
427.90531	0.002 821 57	457.76219	0.003 460 60		
427.90531 99.751825	0.002 821 57 0.017 621 52	106.97527	0.021 597 69	115.30478	0.024 538 65
427.90531 99.751825 30.462408	0.002 821 57 0.017 621 52 0.042 636 92	106.97527 32.809328	0.021 597 69 0.052 206 36		0.024 538 65
427.90531 99.751825 30.462408 4.1704945	0.002 821 57 0.017 621 52	106.97527	0.021 597 69	115.30478	0.024 538 65 0.059 759 32
427.90531 99.751825 30.462408	0.002 821 57 0.017 621 52 0.042 636 92	106.97527 32.809328	0.021 597 69 0.052 206 36	115.30478 35.358226	0.024 538 65 0.059 759 32 - 0.139 798 77
427.90531 99.751825 30.462408 4.1704945 1.6675248	0.002 821 57 0.017 621 52 0.042 636 92 - 0.101 177 62 - 0.107 937 25	106.97527 32.809328 4.5650328 1.8685617	0.021 597 69 0.052 206 36 0.123 255 37 0.132 453 69	115.30478 35.358226 4.9811154 2.0933920	0.024 538 65 0.059 759 32 - 0.139 798 77 - 0.150 653 77
427.90531 99.751825 30.462408 4.1704945	0.002 821 57 0.017 621 52 0.042 636 92 - 0.101 177 62	106.97527 32.809328 4.5650328	0.021 597 69 0.052 206 36 - 0.123 255 37	115.30478 35.358226 4.9811154	0.024 538 65 0.059 759 32 - 0.139 798 77 - 0.150 653 77 0.327 993 96 0.546 605 76

TABLE II. (continued).

Sele	nium	Bron	nine	Kryj	oton
Exp.	Coeff.	Ехр.	Coeff.	Exp.	Coeff.
	4s	4.	5	4.	5
6463.6063	- 0.001 935 55	6861.1369	-0.00205245	7274.6460	0.002 156 41
978.65832	- 0.013 327 16	1039.1071	- 0.014 138 98	1101.3186	- 0.014 874 50
222.15825	- 0.041 639 12	235.99404	- 0.044 271 21	250.14039	0.046 668 41
22.995560	0.177 640 13	24.515665	0.189 025 67	26.115038	0.198 817 70
8.8758569	0.143 427 10	9.6230243	0.148 426 81	10.547979	0.145 764 37
		5.4592327	- 0.245 314 40		
5.0477639	- 0.242 432 88			5.7826331	- 0.242 918 57
1.9942748	- 0.504 864 01	2.2239019	- 0.538 741 84	2.4592535	- 0.565 353 68
0.32451172	0.763 669 01	0.37657260	0.780 126 75	0.43065898	0.793 370 94
0.12213454	0.427 445 46	0.14269568	0.422 877 10	0.16421502	0.419 943 05
4	4 <i>p</i>	,	4,	,	
527.38399	0.004 300 34	558.27094	0.004 716 77	594.54256	0.004 976 84
123.19240	0.027 138 57	130.71326	0.029 676 19	139.37944	0.031 371 22
37.884859	0.066 101 98	40.382765	0.071 889 86	43.167513	0.076 213 95
5.4549154	- 0.150 265 65	5.9729582	- 0.158 180 68	6.4507830	
					- 0.167 167 34
2.3912365	- 0.164 549 72	2.7088715	- 0.178 893 92	2.9957592	- 0.187 491 83
0.49253341	0.366 835 56	0.56468401	0.392 997 44	0.64875622	0.406 292 35
0.20000361	0.536 913 51	0.22905019	0.529 907 53	0.26490030	0.527 537 44
0.07705436	0.240 895 86	0.08826465	0.224 389 79	0.10238135	0.215 992 47
E) In to Xe Ind	lium	Tir	1	Antin	onv
Eva	Coeff.		Coeff.		-
Ехр.	Coen.	Exp.	Соеп.	Ехр.	Coeff.
	0.000.965.60	5s		5.1	
13627.123	0.000 865 69	14318.859	0.000 949 30	14986.049	0.001 020 19
2066.3491	0.006 005 20	2164.7627	0.006 622 79	2268.0036	0.007 116 40
471.46731	0.019 198 77	492.42833	0.021 297 64	515.91639	0.023 025 35
51.977294	0.079 009 47	53.682666	- 0.092 869 52	54.556398	0.109 638 94
28.177340	— 0.043 311 11	26.194980	- 0.050 110 56	23.737928	- 0.049 368 00
11.316458	0.054 271 97	10.635987	0.142 280 61	9.7889291	0.283 611 64
6.7990435	0.274 715 13	6.3514585	0.247 923 78	4.9383988	0.194 240 26
1.6387888	- 0.314 439 55	2.0207246	- 0.267 762 34	2.3916960	- 0.313 735 99
0.83564379	- 0.363 800 97	1.0112193	- 0.492 430 35	1.1202396	- 0.559 248 32
0.14681625	0.703 805 48	0.17433614	0.752 144 12	0.20747927	0.769 962 26
0.05518918	0.480 944 94	0.06723016	0.449 730 89	0.08145485	0.454 275 41
4	5 <i>p</i>	5,		5,	
1180.4919	- 0.001 596 41	1247.5155	- 0.001 874 25	1304.1881	- 0.002 105 75
278.99391	- 0.010 324 74	294.54323	- 0.012 215 33	308.62796	- 0.013 715 41
88.221611	- 0.025 920 87	93.013946	- 0.031 076 21	97.641074	- 0.035 090 65
14.606078	0.055 322 88	14.870982	0.075 397 19	15.143351	0.097 589 12
8.3707565	0.058 465 85	8.3471621	0.062 639 21	7.7883798	0.066 463 35
2.2319513	— 0.143 657 43	2.4478151	$-0.168\ 060\ 29$	2.8819722	- 0.166 185 11
1.0127837	- 0.149 169 47	1.1301888	- 0.183 688 68	1.3422826	$-0.231\ 365\ 26$
0.20969314	0.274 017 79	0.25407901	0.314 969 77	0.28309803	0.377 635 73
0.08624411	0.548 857 33	0.11000992	0.553 907 75	0.12688673	0.536 828 03
0.03360312	0.315 733 62	0.04452413	0.270 622 62	0.05365244	0.222 138 61
Telh	urium	Iodi	ne	Xen	ion
Ехр.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
	5s	5.5		5.	
15458.761	0.001 103 30	15994.065	0.001 174 27	16687.518	0.001 228 13
2343.3283	0.007 672 16	2426.8433	0.008 154 29	2528.8588	0.008 550 58
534.53546	0.024 699 91	554.27300	0.026 199 58	576.90821	0.027 572 71
57.142954	- 0.117 303 26	59.962846	- 0.122 632 60	62.142131	- 0.131 038 26
23.440839	- 0.067 421 63	24.081946	- 0.087 954 46	24.161520	- 0.100 889 03
11.191278	0.271 090 96	12.616574	0.270 665 16	13.440541	0.291 880 29
		6.0282860			
	0.279 759 31		0.347 974 78	6.2971297	0.401 007 75
5.5785498	11 170 707 00	3.2896136	- 0.299 427 89	3.7813986	- 0.310 613 87
2.9520152	- 0.279 297 80			4	0.40.5 *** * * *
2.9520152 1.3006989	- 0.667 691 98	1.4196077	- 0.721 497 60	1.5715446	0.785 654 54
2.9520152				1.5715446 0.29920022 0.12027958	0.785 654 54 0.854 840 28 0.410 595 94

TABLE II. (continued).

Tellu	ırium	Iodine		Xenon	
Ехр.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
5	ip	:	5 <i>p</i>		5 <i>p</i>
1368.1531	- 0.002 297 92	1429.3411	- 0.002 480 08	1495.0478	- 0.002 599 50
322.98386	- 0.015 064 64	337.68320	- 0.016 303 44	353.14067	- 0.017 152 18
102.14783	- 0.038 705 61	106.76853	$-0.042\ 118\ 16$	111.65084	- 0.044 589 26
15.763006	0.112 271 20	16.529856	0.122 926 33	17.179532	0.134 549 65
7.6127910	0.079 693 11	7.9342416	0.088 930 23	7.9202922	0.100 431 96
3.4346177	- 0.158 908 90	3.7719165	- 0.164 929 09	4.1867763	- 0.175 154 39
1.5816834	- 0.278 055 09	1.7516178	- 0.307 211 52	1.9257668	- 0.331 921 57
0.31078766	0.446 416 97	0.35460546	0.465 222 39	0.39798013	0.487 262 17
0.13334331	0.516 781 42	0.15225035	0.510 841 43	0.17064828	0.506 711 97
0.05589872	0.178 311 81	0.06367669	0.170 669 53	0.07146247	0.156 709 22

tions. The results of the MP basis sets for which only the innermost primitives were optimized (dashed line) show slower convergence. The values of all properties (valence energy, valence orbital energies, and orbital shapes) seem to reach a stable point at n = 5 and the basis set $(5_{32}/5)$ shows an excellent agreement with the HF values.

In order to assess the importance of the number of inner primitives on the molecular results, a series of AE and MP calculations were carried out on $N_2({}^1\Sigma_g^+)$, for which the valence part of both AE and MP basis sets are equivalent. A $(W3_{12}/5)$ basis set was used in the AE calculation and the $(n_{n-2,2}/5)$ basis sets in the MP calculations; single s, p splitting, double p splitting, double p splitting plus single polarization, and double p splitting plus double polarization were tested in all the cases; the results are shown in Fig. 3. It is evident that the MP values of the equilibrium distance R_e , vibrational frequency \bar{v}_e , and atomization energy D_e converge to the AE ones obtained with an equivalent valence part and that the agreement is already very good for the (5/ 5)-type basis sets. This, together with the atomic results, suggests the use of the $(5_{32}/5)$ basis sets for N and the first row elements. In Tables II(A) and II(B) we present the optimized (5/5) basis sets for the first row elements; the corresponding atomic properties are shown in Table III(A). [In the Table, E(proj) stands for the expectation value of the core projector operator, Eq. (3), with the MP atomic wave function, and measures the degree of core-valence orthogonality achieved.]

In Figs. 4 and 5 we show atomic MP results on $P(^4S)$. They converge to the MP($WW3_{12}/W3_3$) results, for which the 1s, 2s, and 2p WT atomic orbitals ¹⁴ were used as inner contracted functions and the three outermost primitives s and p were optimized in AE calculations. The results $(5_{212}/n)$, $(6_{222}/n)$, and $(7_{322}/n)$, show that the presence of a third primitive s whose main role is to augment the 3s-1s orthogonality is more important than the presence of a second primitive s whose purpose is to increase the 3s-2s orthogonality.

Although the $(5_{212}/n)$ basis sets give results which are close enough to the HF values to be acceptable, the $(7_{322}/n)$ -type basis sets provide a higher core-valence orthogonality and, at the same time, do not increase the number of basis set

functions in molecular calculations. So, we optimized the $(7_{322}/6_{33})$ basis sets fo the elements Na to Ar and we present them in Tables II(A) and II(C). The corresponding energies and radial expectation values appear in Table III(B).

Similar basis sets, also capable of leading to a high degree of core-valence orthogonality, were optimized for the main group elements from K to Kr and from Rb to Xe. All of them, as well as their atomic MP results are collected in Tables II(A), II(D), II(E), III(C), and III(D).

IV. MOLECULAR CALCULATIONS

In this section we present the results of the MP SCF molecular calculations carried out using the MP parameters and basis sets in Tables I and II in order to test the performance of the method. The equilibrium distance R_e , vibrational frequency $\bar{\nu}_e$, and atomization energy D_e have been calculated for the ground states of N2, P2, As2, and Sb2, as well as for CaO. The different basis sets used in the calculations on N₂, P₂, As₂, and Sb₂ appear in Table IV. Since we regard the final goal of a valence method to be the reproduction of the AE results if the same kind of wave function and valence basis set is used, rather than the reproduction of the AE results using a poorer valence basis set, we grouped the molecular basis sets (Table IV) in such a way that for each AE basis set there is an MP one having the same structure in the valence space. So, we have basis sets A, corresponding to a single s, p splitting of the outermost contracted functions, basis sets B, obtained from A by a double p splitting, basis sets C, which result from the addition of a single d-polarization function to B, and basis sets D, resulting from the addition of two d-polarization functions to B. In the AE basis sets for N, P, and As, we used the well-tempered core orbitals¹⁴ as inner contracted functions and we optimized the outermost contracted functions in atomic calculations; the AE basis set for Sb was taken from Ref. 13. All the polarization functions were taken from Ref. 13.

The AE and MP molecular results are presented in Table V. They are also plotted in Fig. 6, where it is clear that the valence basis set dependence shown by the AE results (solid lines) is reproduced in the MP calculations (discontinuous lines). For As_2 and Sb_2 the MP results reproduce the effects

TABLE III. Valence energy, projection energy, valence orbital energies, and valence orbital radial expectation values for the main group elements. All numbers in atomic units.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·P
HF Li MP(5)	$\langle r^2 \rangle$
Li MP(5)	
HF Be MP(5)	
Be MP(5) - 0.958 673 0.000 022 - 0.308 260 0.518 2.657 8.464 HF - 0.494 706 - 0.309 856 0.713 1.977 4.709 0.605 2.2 B MP(5/5) - 2.536 860 0.000 032 - 0.492 172 - 0.310 634 0.707 1.983 4.731 0.606 2.1 HF - 0.705 627 - 0.433 341 0.897 1.589 3.052 0.784 1.7 C MP(5/5) - 5.318 287 0.000 046 - 0.701 437 - 0.433 776 0.889 1.594 3.065 0.784 1.7 HF - 0.945 324 - 0.567 589 1.078 1.332 2.149 0.958 1.4 N MP(5/5) - 9.651 911 0.000 063 - 0.939 137 - 0.567 584 1.069 1.336 2.157 0.958 1.4 HF - 1.244 315 - 0.631 906 1.265 1.142 1.581 1.111 1.2 O MP(5/5) - 15.680 396 0.000 081 - 1.235 359 - 0.630 843 1.255 1.145 1.587 1.112 1.2	
B MP(5/5) - 2.536 860 0.000 032 - 0.492 172 - 0.310 634 0.707 1.983 4.731 0.606 2.1 HF - 0.705 627 - 0.433 341 0.897 1.589 3.052 0.784 1.7 C MP(5/5) - 5.318 287 0.000 046 - 0.701 437 - 0.433 776 0.889 1.594 3.065 0.784 1.7 HF - 0.945 324 - 0.567 589 1.078 1.332 2.149 0.958 1.4 N MP(5/5) - 9.651 911 0.000 063 - 0.939 137 - 0.567 584 1.069 1.336 2.157 0.958 1.4 HF - 1.244 315 - 0.631 906 1.265 1.142 1.581 1.111 1.2 O MP(5/5) - 15.680 396 0.000 081 - 1.235 359 - 0.630 843 1.255 1.145 1.587 1.112 1.2	
HF	205 6.146
C MP(5/5) - 5.318 287 0.000 046 - 0.701 437 - 0.433 776 0.889 1.594 3.065 0.784 1.78 HF - 0.945 324 - 0.567 589 1.078 1.332 2.149 0.958 1.4 N MP(5/5) - 9.651 911 0.000 063 - 0.939 137 - 0.567 584 1.069 1.336 2.157 0.958 1.4 HF - 1.244 315 - 0.631 906 1.265 1.142 1.581 1.111 1.2 O MP(5/5) - 15.680 396 0.000 081 - 1.235 359 - 0.630 843 1.255 1.145 1.587 1.112 1.2	
HF	
N MP(5/5) -9.651 911 0.000 063 -0.939 137 -0.567 584 1.069 1.336 2.157 0.958 1.4 HF -1.244 315 -0.631 906 1.265 1.142 1.581 1.111 1.2 O MP(5/5) -15.680 396 0.000 081 -1.235 359 -0.630 843 1.255 1.145 1.587 1.112 1.2	
HF - 1.244 315 - 0.631 906 1.265 1.142 1.581 1.111 1.2 O MP(5/5) - 15.680 396 0.000 081 - 1.235 359 - 0.630 843 1.255 1.145 1.587 1.112 1.2	
HF $-1.572\ 535 \ -0.730\ 017 \ 1.450 \ 1.001 \ 1.217 \ 1.272 \ 1.00$	
F MP(5/5) -23.899 450 0.000 102 -1.560 434 -0.727 745 1.438 1.004 1.221 1.272 1.0 HF -1.930 391 -0.850 410 1.633 0.892 0.967 1.435 0.9	
HF - 1.930 391 - 0.850 410 1.633 0.892 0.967 1.435 0.90 Ne MP(5/5) - 34.655 314 0.000 125 - 1.914 655 - 0.846 682 1.619 0.894 0.970 1.436 0.99	
	1.20
(B) Na to Ar 3s 3,	p
$E(\text{val})$ $E(\text{proj})$ $\epsilon(3s)$ $\epsilon(3p)$ $\langle 1/r \rangle$ $\langle r \rangle$ $\langle r^2 \rangle$ $\langle 1/r \rangle$ $\langle r \rangle$	$\langle r^2 \rangle$
HF - 0.182 103 0.310 4.209 20.705	
Na MP(7) - 0.181 387 0.000 004 - 0.181 387 0.299 4.224 20.837	
HF - 0.253 053 0.399 3.253 12.419	
Mg MP(7) - 0.782 588 0.000 015 - 0.252 285 0.397 3.260 12.459 HF - 0.393 420 - 0.209 951 0.507 2.599 7.891 0.379 3.4	24 14 006
HF - 0.393 420 - 0.209 951 0.507 2.599 7.891 0.379 3.4 Al MP(7/6) - 1.874 278 0.000 025 - 0.392 567 - 0.209 408 0.504 2.604 7.911 0.378 3.4	
HF $-0.539841 - 0.297115 0.603 2.207 5.676 0.478 2.7$	
Si MP(7/6) - 3.670 451 0.000 039 - 0.538 777 - 0.296 571 0.600 2.211 5.689 0.476 2.7	
HF - 0.696 415 - 0.391 708 0.695 1.933 4.347 0.570 2.3	
P MP(7/6) -6.345 365 0.000 088 -0.695 044 -0.391 175 0.690 1.936 4.356 0.568 2.3	
HF -0.879 527 -0.437 369 0.786 1.721 3.443 0.651 2.0	
S MP(7/6) - 9.936 552 0.000 060 - 0.877 540 - 0.436 806 0.781 1.724 3.450 0.649 2.0 HF - 1.072 910 - 0.506 400 0.875 1.556 2.813 0.733 1.8	
C1 MP(7/6) -14.715819 0.000 098 -1.070322 -0.505833 0.869 1.558 2.819 0.732 1.8	
HF -1.277 353 -0.591 017 0.962 1.422 2.350 0.814 1.6	
Ar MP(7/6) - 20.848 220 0.000 134 - 1.274 434 - 0.590 578 0.956 1.424 2.355 0.812 1.6	
(C) K to Kr	
4s 4p	,
$E(\mathrm{val})$ $E(\mathrm{proj})$ $\epsilon(4s)$ $\epsilon(4p)$ $\langle 1/r \rangle$ $\langle r \rangle$ $\langle r^2 \rangle$ $\langle 1/r \rangle$ $\langle r \rangle$	$\langle r^2 \rangle$
HF -0.147 475 0.237 5.244 31.545	
K MP(9) -0.146 790 0.000 004 -0.146 790 0.235 5.264 31.777	
HF -0.195 530 0.300 4.218 20.453	
Ca MP(9) -0.603 857 0.000 011 -0.194 996 0.298 4.228 20.534 HF -0.424 592 -0.208 500 0.516 2.489 7.207 0.372 3.4	24 13.901
HF - 0.424 592 - 0.208 500 0.516 2.489 7.207 0.372 3.49 Ga MP(9/8) - 1.960 596 0.000 037 - 0.423 006 - 0.208 101 0.513 2.493 7.227 0.372 3.49	
HF $-0.553364 - 0.287354 0.579 2.226 5.731 0.446 2.89$	
Ge MP(9/8) -3.628237 0.000 044 -0.551973 -0.287198 0.576 2.229 5.740 0.445 2.86	66 9.645
HF - 0.685 897 - 0.369 483 0.638 2.030 4.748 0.510 2.5	
As MP(9/8) -6.006 316 0.000 069 -0.684 092 -0.369 303 0.634 2.033 4.757 0.509 2.5	
HF -0.837 382 -0.402 855 0.695 1.869 4.015 0.563 2.30 Se MP(9/8) -9.081 871 0.000 070 -0.835 260 -0.402 703 0.692 1.872 4.024 0.562 2.30	
Se MP(9/8) - 9.081 871 0.000 070 - 0.835 260 - 0.402 703 0.692 1.872 4.024 0.562 2.30 HF - 0.992 681 - 0.457 086 0.751 1.739 3.468 0.617 2.1	
Br MP(9/8) -13.060 113 0.000 113 -0.990 258 -0.456 991 0.747 1.741 3.475 0.617 2.1	
HF - 1.152 935 - 0.524 187 0.804 1.629 3.040 0.669 1.9	52 4.455
Kr MP(9/8) - 18.040 353 0.000 102 - 1.150 346 - 0.524 159 0.800 1.632 3.046 0.668 1.9	52 4.453

TABLE III. (continued).

(D) Rb to Xe	D) Rb to Xe 5s 5p											
	E(val)	E(proj)	$\epsilon(5s)$	€(5p)	${\langle 1/r \rangle}$	\(\frac{1}{\sqrt{r}}\)	$\langle r^2 \rangle$	${\langle 1/r \rangle}$	$\frac{\beta p}{\langle r \rangle}$	$\langle r^2 \rangle$		
			0.127.067		0.210	5.622						
HF			- 0.137 867		0.218	5.632	36.179					
Rb MP(11)	 0.137 436	0.000 005	- 0.137 436		0.217	5.643	36.309					
HF			- 0.178 456		0.269	4.633	24.497					
Sr MP(11)	-0.550414	0.000 009	- 0.177 901		0.267	4.643	24.598					
HF			-0.372663	-0.197283	0.445	2.844	9.305	0.332	3.778	16.647		
In MP(11/10)	- 1.743 427	0.000 041	-0.372066	-0.197198	0.443	2.845	9.303	0.332	3.774	16.605		
HF		*********	- 0.476 435	- 0.265 040	0.490	2.586	7.646	0.387	3.248	12.194		
Sn MP(11/10)	- 3.177 429	0.000 041	- 0.475 738	- 0.265 013	0.489	2.587	7.648	0.387	3.246	12.172		
HF			- 0.581 773	-0.334711	0.532	2.390	6.507	0.434	2.901	9.668		
Sb MP(11/10)	- 5.190 580	0.000 053	- 0.580 841	- 0.334 556	0.530	2.391	6.509	0.434	2.900	9.660		
HF	3.170 200	0.000 002	- 0.700 561	- 0.359 832	0.573	2.228	5.638	0.472	2.691	8.339		
Te MP(11/10)	— 7.753 557	0.000 063	- 0.699 592	- 0.359 878	0.571	2.229	5.641	0.472	2.690	8.329		
HF	1.155 551	0.000 005	-0.821116	- 0.403 180	0.611	2.094	4.972	0.510	2.502	7.201		
	11 027 700	0.000.122										
I MP(11/10)	— 11.027 799	0.000 122	- 0.820 007	- 0.403 354	0.609	2.095	4.974	0.511	2.500	7.190		
HF			- 0.944 414	– 0.457 290	0.648	1.981	4.440	0.547	2.338	6.277		
Xe MP(11/10)	— 15.081 571	0.000 070	- 0.943 455	- 0.457 627	0.646	1.982	4.441	0.547	2.336	6.267		

of the polarization functions (basis sets C and D; dotted lines in Fig. 6) not as closely as they reproduce the effects of splitting, though the differences are still acceptable. This small deficiency has been found to be due to insufficient orthogonality between the valence molecular orbitals and the d core orbitals, as a consequence of the presence of d polarization

functions. If the ability of the valence molecular orbitals to be orthogonal to the 3d core orbitals (on As) or to the 4d core orbitals (on Sb) is increased by adding inner contracted functions representing the 3d or 4d orbitals 13 (see Table IV,

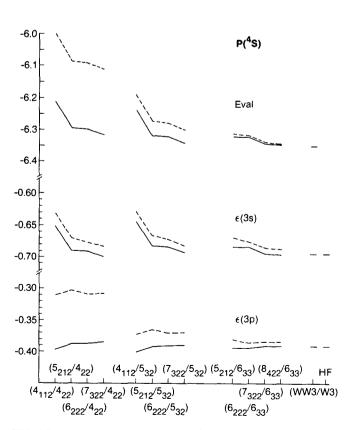


FIG. 4. Valence and orbital energies for P(4S), in a.u. Solid line: completely optimized valence basis set; dashed line: only the innermost primitives were optimized.

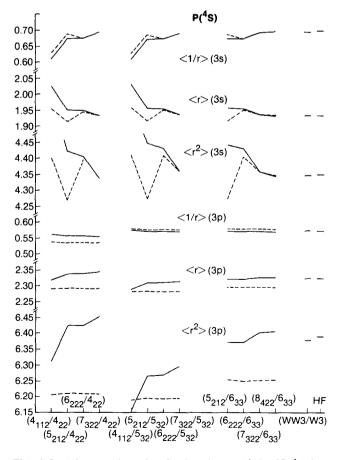


FIG. 5. Radial expectation values for the valence orbitals of $P(^4S)$ in a.u Solid line: completely optimized valence basis set; dashed line: only the innermost primitives were optimized.

TABLE IV. AE and MP basis sets used in the molecular calculations on N2, P2, As2, and Sb2.

			Basis sets ^a								
At	om	Α	В	С	D						
N	AE MP	(W21/41) (41/41)	(W21/311) (41/311)	(W21/311/1*) (41/311/1*)	(W21/311/1*1*) (41/311/1*1*)						
P	AE MP	(WW21/W21) (61/51)	(WW21/W111) (61/411)	(WW21/W111/1*) (61/411/1*)	(WW21/W111/1*1*) (61/411/1*1*)						
As	AE MP	(<i>WWW</i> 21/ <i>WW</i> 21/ <i>W</i>) (711/521)	(WWW21/WW111/W) (711/5111)	(WWW21/WW111/W1*) (711/5111/1*) C ₂ : (711/5111/31*)	(WWW21/WW111/W1*1*) (711/5111/1*1*) D ₂ :(711/5111/31*1*)						
Sb	AE MP	(433321/43321/43) (911/721)	(433321/433111/43) (911/7111)	(433321/433111/431*) (911/7111/1*) C ₂ :(911/7111/31*)	(433321/433111/431*1*) (911/7111/1*1*) D ₂ :(911/7111/31*1*)						

^a W stands for the corresponding well-tempered atomic core atomic orbitals (Ref. 13) taken as contracted functions.

bases C₂ and D₂), the AE trends are again reproduced very closely by the MP results (see Table V MP C₂ and MP D₂, and dashed lines in Fig. 6). (Note that the molecular MP calculations are always ten-electron calculations.) It should be noticed, though, that the discrepancies between the results of AE and MP calculations that do not include such inner functions are of the order of 0.01 Å for R_e , 20 cm⁻¹ for $\bar{\nu}_e$, and 0.2 eV for D_e in N_2 , P_2 , and As_2 , and of the order of $0.03 \text{ Å for } R_e$, $20 \text{ cm}^{-1} \text{ for } \overline{\nu}_e$, and $0.5 \text{ eV for } D_e \text{ in Sb}_2$. This insufficient core-valence orthogonality, originating from the addition of polarization functions to blocks having core orbitals but no inner components in the basis set, should be encountered not only when using the present MP formulation but in any valence method which assumes strong corevalence orthogonality properties in its formulation. What is characteristic to the present formulation is that the high quality of the core operators used and, hence, the close reproduction of AE basis set dependencies, were able to point out such a subtle effect.

In Table VI we present the results for $CaO(^{1}\Sigma^{+})$. Valence calculations on this molecule often result in very large errors for R_{e}^{10} or even collapse⁴; these results have been interpreted as due to participation of the Ca 3p orbitals in the bonding.

We have performed AE SCF calculations on $CaO(^{1}\Sigma^{+})$ with two kind of basis sets (Table IV) which differ in the valence space. In the first one, only s and p functions are used in Ca^{13} and only s splitting is considered, (43321/43), which means that the participation of the $Ca_{3}p$ orbitals in the bonding is very restricted. As a result, a very large value for R_e is obtained, 2.326 Å. The corresponding MP calculation with only s functions in Ca, (81), gives a value of 2.663 Å, which is corrected to 2.337 Å if a 2-primitive contracted p function which maximizes the overlap with

TABLE V. AE and MP calculated values of R_e , $\bar{\nu}_e$, and D_e for N_2 , P_2 , As_2 , and Sb_2 .

			N_2		$\mathbf{P_2}$			As_2			Sb ₂		
		$R_e/\text{Å}$	$\bar{v}_e/\mathrm{cm}^{-1}$	D_e/eV	$R_e/Å$	$\bar{v}_e/\mathrm{cm}^{-1}$	D_e/eV	$R_e/Å$	$\bar{\nu}_e/\mathrm{cm}^{-1}$	D_e/eV	$R_e/\text{Å}$	$\bar{\nu}_e/\mathrm{cm}^{-1}$	D_e/eV
AE	A	1.098	2609	2.52	1.949	807	- 0.69	2.134	464	- 0.99	2.530	301	- 1.23
MP	Α	1.102	2636	2.53	1.991	794	- 1.30	2.146	454	- 1.08	2.558	287	- 1.67
AE	В	1.086	2558	2.73	1.941	792	- 0.66	2.121	456	- 0.95	2.517	298	– 1.19
MP	В	1.091	2566	2.70	1.945	786	- 0.94	2.135	449	— 1.05	2.547	285	- 1.64
AE	С	1.072	2728	4.89	1.876	901	1.25	2.070	509	0.40	2.464	331	- 0.13
MP	С	1.079	2746	4.86	1.877	906	1.16	2.075	516	0.71	2.474	332	0.08
MP	C_2							2.067	511	0.58	2.492	314	- 0.65
ΑE	D	1.066	2725	5.04	1.862	905	1.47	2.066	508	0.47	2.462	329	- 0.12
MP	D	1.068	2729	5.09	1.858	914	1.36	2.081	497	0.19	2.494	320	-0.65
MP	\mathbf{D}_2							2.065	509	0.55	2:496	313	-0.71

FIG. 6. AE and MP equilibrium distances (R_e) , vibrational frequencies $(\bar{\nu}_e)$, and atomization energies (D_e) for N_2 , P_2 , As_2 , and Sb_2 . The solid line stands for the AE results, the dotted and dashed lines stand for the MP results without and with internal d functions, respectively. See the text and Table IV for the description of basis sets A, B, C, and D.

the outermost p contracted in the Ca AE basis set is used, (81/2). This result reveals, first, that the MP method is capable of reproducing the results of AE calculations in which the participation of the 3p orbitals in the bonding is considerably restricted, and, second, that the presence in the molecular valence basis set of inner functions able to provide a high degree of orthogonality between the molecular valence orbitals and the core orbitals (in this case Ca 3p) is important in that respect.

If p splitting is allowed in Ca and polarization functions are added, as well as 3d functions which have been proven important in Ca compounds, 16 the AE results change very

much, particularly R_e is reduced by 0.50 Å to the value 1.827 Å. The same kind of manipulation in the MP basis set produces a very close effect, lowering by 0.45 Å the value of R_e , $R_e = 1.788$ Å, being the discrepancy with the AE result of 0.04 Å. This error, larger than those in other molecules, could probably be associated to a *certain* degree of Ca 3p participation in the bonding, which could also be responsible for the rather poor value of D_e .

V. CONCLUSIONS

In this paper we presented the nonrelativistic ab initio model potential method. The ab initio attribute stem from the following features: (i) the Coulomb and exchange core operators J_c and K_c are modeled through accurate local and nonlocal forms, respectively, (ii) since the model potential operators closely represent physical core-valence interactions, their parameters are never used to accomodate effects of reduction on the valence basis set nor deficiencies in the molecular results, (iii) the design and optimization of the model potential basis set is a replica of the design and optimization of all-electron atomic basis sets.

The results of the test molecular calculations show the good performance of the method. Particularly important is the conclusion that the effects of changes in the valence basis set observed in the model potential results closely resemble those shown by corresponding all-electron calculations. This aspect reveals not only that the representation of the dormant core electrons accomplished near AE quality, but also that all the experience already gathered on the design of molecular basis sets can be used for model potential molecular calculations. In this respect, our results also show that the lack of orthogonality between the core orbitals and the molecular valence orbitals may be detrimental in some cases, and, then, some inner basis set functions able to increase orthogonality must be provided to the molecular basis set.

In this paper we present model potential parameters and optimized valence basis sets suitable for model potential molecular calculations including the main group elements from Li to Xe. The model potential parameters and basis sets for transition metal atoms will be presented in a forthcoming paper.

TABLE VI. AE and MP results for CaO($^{1}\Sigma^{+}$).

В	asis set ^a				
Ca	0	R _e /Å	$\bar{v}_e/\mathrm{cm}^{-1}$	$D_e/{ m eV}$	
AE (43321/43)	(521/311)	2.326	330	- 2.46	
MP (81)	(41/311)	2.663	281	- 2.74	
MP (81/2)	(41/311)	2.337	365	- 2.47	
AE (43321/4211*/311)	(521/3111/1*)	1.827	815	0.48	
MP (81/211*/311)	(41/3111/1*)	1.788	750	- 0.43	

^aThe AE basis sets were taken from Ref. 12. The Ca 3d functions correspond to Ref. 14.

ACKNOWLEDGMENTS

This work was partly supported by a grant from NSERC, Canada. Two of us (LS and ZB) gratefully acknowledge a fellowship from the Ministerio de Educación y Ciencia (Spain). All the calculations were done at the installation hosted by the Department of Computing Services at the University of Alberta. We are very grateful to Dr. D. Bent and Mr. Y.-N. Zia from the Department for their friendly cooperation and great help in providing funds which made the present work feasible.

- M. Klobukowski, and S. Huzinaga, J. Comput. Chem. (in press).
- ⁴P. J. Hay and W. R. Wadt, J. Chem. Phys. **82**, 299 (1985).
- ⁵V. Bonifacic and S. Huzinaga, J. Chem. Phys. 60, 2779 (1974).
- ⁶S. Huzinaga, D. McWilliams, and A. A. Cantu, Adv. Quantum Chem. 7, 187 (1973).
- ⁷G. Höjer and J. Chung, Int. J. Quantum Chem. 14, 623 (1978).
- ⁸Y. Sakai, J. Chem. Phys. **75**, 1303 (1981); Y. Sakai and S. Huzinaga, *ibid*. **76**, 2537, 2552 (1982).
- ⁹L. G. M. Petterson and A. Strømberg, Chem. Phys. Lett. 99, 122 (1983).
- ¹⁰O. Gropen, U. Wahlgren, and L. G. M. Petterson, Chem. Phys. **66**, 459 (1982); L. G. M. Petterson and U. Wahlgren, *ibid*. **69**, 185 (1982).
- ¹¹J. Andzelm, E. Radzio, Z. Barandiarán, and L. Seijo, J. Chem. Phys. 83, 4565 (1985); Z. Barandiarán and L. Seijo, *ibid*. 84, 1941 (1986).
- ¹²R. N. Dixon and I. L. Robertson, Mol. Phys. 37, 1223 (1979).
- ¹³J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, *Gaussian Basis Sets for Molecular Calculations*, edited by S.Huzinaga (Elsevier, Amsterdam, 1984).
- ¹⁴S. Huzinaga, M. Klobukowski, and H. Tatewaki, Can. J. Chem. **63**, 1812 (1985); S. Huzinaga and M. Klobukowski, Chem. Phys. Lett. **120**, 509 (1985).
- ¹⁵C. F. Fisher, The Hartree-Fock Method for Atoms. A Numerical Approach (Wiley, New York, 1977).
- ¹⁶L. G. M. Petterson, P. E. M. Siegbahn, and S. Ismail, Chem. Phys. 82, 355 (1983).

¹R. N. Dixon and I. L. Robertson, *Theoretical Chemistry*, Specialist Periodical Reports (The Chemical Society, London, 1978), Vol. 3, p. 100.
²S. Huzinaga, M. Klobukowski, and Y. Sakai, J. Phys. Chem. 88, 4880 (1984).

³G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B **26**, 4199 (1982); P. J. Hay and W. R. Wadt, J. Chem. Phys. **82**, 270 (1985); W. R. Wadt and P. J. Hay, *ibid*. **82**, 284 (1985); L. F. Pacios and P. A. Christiansen, *ibid*. **82**, 2665 (1985); M. M. Hurley, L. F. Pacios, P. A. Christiansen, R. B. Rass, and W. C. Ermler, *ibid*. **84**, 6840 (1986); Y. Sakai, E. Miyoshi,