
The ABA Problem in Multicore Data Structures
with Collaborating Operations

Damian Dechev
Department of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816

email: dechev@eecs.ucf.edu

Abstract—An increasing number of modern real-time systems
and the nowadays ubiquitous multicore architectures demand the
application of programming techniques for reliable and efficient
concurrent synchronization. Some recently developed Compare-
And-Swap (CAS) based nonblocking techniques hold the promise
of delivering practical and safer concurrency. The ABA2 problem
is a fundamental problem to many CAS-based designs. Its
significance has increased with the suggested use of CAS as a
core atomic primitive for the implementation of portable lock-
free algorithms. The ABA problem’s occurrence is due to the
intricate and complex interactions of the application’s concurrent
operations and, if not remedied, ABA can significantly corrupt
the semantics of a nonblocking algorithm. The current state of
the art leaves the elimination of the ABA hazards to the ingenuity
of the software designer. In this work we provide the first
systematic and detailed analysis of the ABA problem in lock-free
Descriptor-based designs. We study the semantics of Descriptor-
based lock-free data structures and propose a classification of
their operations that helps us better understand the ABA problem
and subsequently derive an effective ABA prevention scheme. We
supplement our analysis with a statistical model of the probability
for an ABA event in a concurrent system. Our ABA prevention
approach outperforms by a large factor the use of the alternative
CAS-based ABA prevention schemes. It offers speeds comparable
to the use of the architecture-specific CAS2 instruction used for
version counting. We demonstrate our ABA prevention scheme
by integrating it into an advanced nonblocking data structure, a
lock-free dynamically resizable array.

Index Terms—nonblocking synchronization, collaborating
threads, multicore computing

I. INTRODUCTION

The modern ubiquitous multi-core architectures demand the
design of programming libraries and tools that allow fast and
reliable concurrency. In addition, providing safe and efficient
concurrent synchronization is of critical importance to the
engineering of many modern real-time systems. Lock-free
programming techniques [15] have been demonstrated to be
effective in delivering performance gains and preventing some
hazards, typically associated with the application of mutual
exclusion, such as deadlock, livelock, and priority inversion
[8], [3]. As explained by Herlihy [15], a concurrent object is
nonblocking if it guarantees that some process in the system
will make progress in a finite number of steps. An object
that guarantees that each process will make progress in a

2ABA is not an acronym and is a shortcut for stating that a value at a
shared location can change from A to B and then back to A

finite number of steps is defined as wait-free [15]. Lock-
free algorithms exploit a set of portable atomic primitives
such as the word-size Compare-and-Swap (CAS) instruction
[9]. The design of nonblocking data structures poses signif-
icant challenges and their development and optimization is
a current topic of research [8], [15]. To ease the implemen-
tation complexity, some approaches suggest the application
of uncommon hardware primitives such as Load-Link/Store-
Conditional (LL/SC) or a Double-CAS (DCAS) [5]. Most
commonly, to provide a portable and practical nonblocking
design, developers rely solely on the use of widely available
hardware primitives such as the single-word CAS. The ABA
problem [4] is a fundamental problem to many CAS-based
nonblocking designs and its occurrence can seriously corrupt
the semantics of a nonblocking algorithm [9], [21], [3]. While
of a simple nature and derived from the application of a basic
hardware primitive, the ABA problem’s occurrence is due
to the intricate and complex interactions of the application’s
concurrent operations. The importance of the ABA problem
has been reiterated in the recent years with the application
of CAS for the development of nonblocking programming
techniques.

Avoiding the hazards of ABA imposes an extra challenge
for a lock-free algorithm’s design and implementation. To
the best of our knowledge, the literature does not offer an
explicit and detailed analysis of the ABA problem, its relation
to the most commonly applied nonblocking programming
techniques (such as the use of Descriptors [3]) and correctness
guarantees, and the possibilities for its avoidance. Thus, at
the present moment of time, eliminating the hazards of ABA
in a nonblocking algorithm is left to the ingenuity of the
software designer. In this work we study in details and define
the conditions that lead to ABA in a nonblocking Descriptor-
based design. Based on our analysis, we define a generic
and practical technique, called the λδ approach, for ABA
avoidance for a lock-free Descriptor-based linearizable design
(Section IV). We demonstrate the application of our approach
by incorporating it in a complex and advanced nonblocking
data structure, a lock-free dynamically resizable array (vector)
[3]. The ISO C++ Standard Template Library [25] vector
offers a combination of dynamic memory management and
constant-time random access. We survey the literature for
other known ABA prevention techniques (usually described

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247161



as a part of a nonblocking algorithm’s implementation) and
study in detail three known solutions to the ABA problem
(Sections II-A and II-C). Our work discusses the assumed and
desired semantics of a nonblocking container (Section III).
In addition, we present the first statistical model describing
the practical probability for an ABA event (Section II-D).
Our performance evaluation (Section V) establishes that the
single-word CAS-based λδ approach is fast, efficient, and
practical. The λδ approach outperforms by a large factor the
application of garbage collection for the safe management of
each shared location (discussed in Section II-C) and offers
speed of execution comparable to the direct application of
the architecture-specific CAS2 instruction used for reference
counting.

II. THE ABA PROBLEM

The Compare-And-Swap (CAS) atomic primitive (com-
monly known as Compare and Exchange, CMPXCHG, on the
Intel x86 and Itanium architectures [16]) is a CPU instruction
that allows a processor to atomically test and modify a single-
word memory location. CAS requires three arguments: a
memory location (Li), an old value (Ai), and a new value
(Bi). The instruction atomically exchanges the value stored at
Li with Bi, provided that Li’s current value equals Ai. The
result indicates whether the exchange was performed. For the
majority of implementations the return value is the value last
read from Li (that is Bi if the exchange succeeded). Some
CAS variants, often called Compare-And-Set, have a return
value of type boolean. The hardware architecture ensures the
atomicity of the operation by applying a fine-grained hardware
lock such as a cache or a bus lock (as is the case for IA-
32 [16]). The application of a CAS-controlled speculative
manipulation of a shared location (Li) is a fundamental
programming technique in the engineering of nonblocking
algorithms [15] (an example is shown in Algorithm 1).

Algorithm 1 CAS-based speculative manipulation of Li
1: repeat
2: value type Ai=ˆLi
3: value type Bi = fComputeB
4: until CAS(Li, Ai, Bi) == Bi

In our pseudocode we use the symbols ˆ, &, and . to
indicate pointer dereferencing, obtaining an object’s address,
and integrated pointer dereferencing and field access. When
the value stored at Li is the target value of a CAS-based
speculative manipulation, we call Li and ˆLi control location
and control value, respectively. We indicate the control value’s
type with the string value type. The size of value type must
be equal or less than the maximum number of bits that a
hardware CAS instruction can exchange atomically (typically
the size of a single memory word). In the most common cases,
value type is either an integer or a pointer value. In the latter
case, the implementor might reserve two extra bits per each
control value and use them for implementation-specific value
marking [8]. This is possible if we assume that the pointer
values stored at Li are aligned and the two low-order bits

have been cleared during the initialization. In Algorithm 1, the
function fComputeB yields the new value, Bi, to be stored at
Li.

Definition 1. The ABA problem is a false positive execution
of a CAS-based speculation on a shared location Li.

As illustrated in Table I, ABA can occur if a process P1

is interrupted at any time after it has read the old value (Ai)
and before it attempts to execute the CAS instruction from
Algorithm 1. An interrupting process (Pk) might change the
value at Li to Bi. Afterwards, either Pk or any other process
Pj 6= P1 can eventually store Ai back to Li. When P1 re-
sumes, its CAS loop succeeds (false positive execution) despite
the fact that Li’s value has been meanwhile manipulated.

Definition 2. A nonblocking algorithm is ABA-free when its
semantics cannot be corrupted by the occurrence of ABA.

ABA-freedom is achieved when: a) occurrence of ABA is
harmless to the algorithm’s semantics or b) ABA is avoided.
The former scenario is uncommon and strictly specific to the
algorithm’s semantics. The latter scenario is the general case
and in this work we focus on providing details of how to
eliminate ABA.

A. Known ABA Avoidance Techniques I

A general strategy for ABA avoidance is based on the
fundamental guarantee that no process Pj (Pj 6= P1) can
possibly store Ai again at location Li (Step 3, Table I).
One way to satisfy such a guarantee is to require all values
stored in a given control location to be unique. To enforce
this uniqueness invariant we can place a constraint on the
user and request each value stored at Li to be used only
once (Known Solution 1). Enforcing this constraint can be
facilitated if a programming language’s type system supports
uniqueness typing [27] that forbids the use of more than a
single reference to an object. We are not familiar with any
programming language or library that implements uniqueness
typing in a concurrent environment. For a large majority of
concurrent algorithms, enforcing uniqueness typing would not
be a suitable solution since their applications imply the usage
of a value or reference more than once.

An alternative approach to satisfying the uniqueness invari-
ant is to apply a version tag attached to each value (or the
use of an AtomicStampedReference in Java [15]). The usage
of version tags is the most commonly cited solution for ABA
avoidance [9]. The approach is effective, when it is possible to
apply, but suffers from a significant flaw: a single-word CAS
is insufficient for the atomic update of a word-sized control
value and a word-sized version tag. An effective application of
a version tag [6] requires the hardware architecture to support
a more complex atomic primitive that allows the atomic
update of two memory locations, such as CAS2 (compare-and-
swap two co-located words) or DCAS (compare-and-swap two
memory locations). The availability of such atomic primitives
might lead to much simpler, elegant, and efficient concurrent
designs (in contrast to a CAS-based design). It is not desirable



to suggest a CAS2/DCAS-based ABA solution for a CAS-
based algorithm, unless the implementor explores the opti-
mization possibilities of the algorithm upon the availability of
CAS2/DCAS. A proposed hardware implementation (entirely
built into a present cache coherence protocol) of an innovative
Alert-On-Update (AOU) instruction [24] has been suggested
by Spear et al. to eliminate the CAS deficiency of allowing
ABA. Some suggested approaches [22] split a version counter
into two half-words (Known Solution 2): a half-word used to
store the control value and a half-word used as a version tag.
Such techniques lead to severe limitations on the addressable
memory space and the number of possible writes into the
shared location. To guarantee the uniqueness invariant of a
control value of pointer type in a concurrent system with
dynamic memory usage, we face an extra challenge: even if
we write a pointer value no more than once in a given control
location, the memory allocator might reuse the address of an
already freed object (Ai) and pose an ABA hazard. To prevent
this scenario, all control values of pointer type must be guarded
by a concurrent nonblocking garbage collection scheme such
as Hazard Pointers [21] (that uses a list of hazard pointers per
thread) or Herlihy et al.’s Pass The Buck algorithm [14] (that
utilizes a dedicated thread to periodically reclaim unguarded
objects). While enhancing the safety of a concurrent algorithm
(when needed), the application of a complementary garbage
collection mechanism might come at a significant performance
cost (Section V).

B. The Descriptor Object

Linearizability is an important correctness condition for
concurrent objects [15]. A concurrent operation is linearizable
if it appears to execute instantaneously in a given point of
time τlin between the time τinv of its invocation and the time
τend of its completion. The literature often refers to τlin as
a linearization point. The consistency model implied by the
linearizability requirement is stronger than the widely applied
Lamport’s sequential consistency model [17]. According to
Lamport’s definition, sequential consistency requires that the
results of a concurrent execution are equivalent to the results
yielded by some sequential execution (given the fact that the
operations performed by each individual processor appear in
the sequential history in the order as defined by the program).
The implementations of many nonblocking data structures
require the update of two or more memory locations in a lin-
earizable fashion [3], [8]. The engineering of such operations
(e.g. push back and resize in a dynamically resizable array)
is particularly challenging in a CAS-based design. A common
programming technique applied to guarantee the linearizability
requirements for such operations is the use of a Descriptor
Object (δ object) [3], [8]. The pseudocode in Algorithm 2
shows the generalized two-step execution of a Descriptor
Object. Our definition of a Descriptor Object requires the
Descriptor to store three types of information:

(1) Global data describing the state of the shared container
(υδ), e.g. the size of a dynamically resizable array [3].

(2) A record of a pending operation on a given memory
location. We call such a record requesting an update at
a shared location Li from an old value, old val, to a new
value, new val, a Write Descriptor (ωδ). The shortcut
notation we use is ωδ @ Li : old val → new val.
The fields in the Write Descriptor Object store the target
location as well as the old and the new values.

(3) A boolean value indicating whether ωδ contains a pending
write operation that needs to be completed.

The use of a Descriptor allows an interrupting thread to help
the interrupted thread complete an operation rather than wait
for its completion. As shown in Algorithm 2, the technique
is used to implement, using only two CAS instructions, a
linearizable update of two memory locations: 1. a reference to
a Descriptor Object (data type pointer to δ stored in a location
Lδ) and 2. an element of type value type stored in Li. In
Step 1, Algorithm 2, we perform a CAS-based speculation of
a shared location Lδ that contains a reference to a Descriptor
Object. The CAS-based speculation routine’s purpose is to
replace an existing Descriptor Object with a new one. Step
1 executes in the following fashion:

1. we read the value of the current δ reference stored in Lδ
(line 3),

2. if the current δ object contains a pending operation, we
need to help its completion (lines 4-5),

3. we record the current value, Ai, in location Li (line 6) and
compute the new value, Bi, to be stored in Li (line 7),

4. a new ωδ object is allocated on the heap, initialized
(by calling fωδ), and its fields Target, OldValue, and
NewValue are set (lines 8-11),

5. any state carrying data stored in a Descriptor Object must
be computed (by calling fυδ). Such data might be a shared
element or a container’s size (line 12),

6. a new Descriptor Object is initialized containing the new
Write Descriptor and the new descriptor’s data. The new
descriptor’s pending operation flag (WDpending) is set to
true (lines 13-14),

7. we attempt a swap of the old Descriptor Object with the
new one (line 15). Should the CAS fail, we know that there
is another process that has interrupted us and meanwhile
succeeded to modify Lδ and progress. We need to go back
at the beginning of the loop and repeat all the steps. Should
the CAS succeed, we proceed with Step 2 and perform the
update at Li.

The size of a Descriptor Object is larger than a memory word.
Thus, we need to store and manipulate a Descriptor Object
through a reference. Since the control value of Step 1 stores
a pointer to a Descriptor Object, to prevent ABA at Lδ , all
references to descriptors must be memory managed by a safe
nonblocking garbage collection scheme. We use the prefix µ
for all variables that require safe memory management. In Step
2 we execute the Write Descriptor, WD, in order to update the
value at Li. Any interrupting thread (after the completion of
Step 1) detects the pending flag of ωδ and, should the flag’s
value be still positive, it proceeds to executing the requested



update ωδ @ Li : Ai → Bi. There is no need to execute a
CAS-based loop and the call to a single CAS is sufficient for
the completion of ωδ. Should the CAS from Step 2 succeed,
we have completed the two-step execution of the Descriptor
Object. Should it fail, we know that there is an interrupting
thread that has completed it already. A false positive execution
of the CAS operation from Step 2 can lead to a spurious write
of Bi into Li, violate the operation’s linearizability guarantee,
and corrupt the semantics of a nonblocking algorithm. In the
following sections (Sections II-C, IV) we discuss a number of
possible techniques that help us avoid ABA in this scenario.

Algorithm 2 Two-step execution of a δ object
1: Step 1: place a new descriptor in Lδ
2: repeat
3: δ µOldDesc = ˆLδ
4: if µOldDesc.WDpending == true then
5: execute µOldDesc.WD
6: value type Ai = ˆLi
7: value type Bi = fComputeB
8: ωδ WD = fωδ()
9: WD.Target = Li

10: WD.OldElement = Ai
11: WD.NewElement = Bi
12: υδ DescData = fυδ()
13: δ µNewDesc = fδ(DescData, WD)
14: µNewDesc.WDpending = true
15: until CAS(Lδ , µOldDesc, µNewDesc) == µNewDesc
16:
17: Step 2: execute the write descriptor
18: if µNewDesc.WDpending then
19: CAS(WD.Target, WD.OldElement, WD.NewElement) == WD.NewElement
20: µNewDesc.WDPending = false

C. Known ABA Avoidance Techniques II

A known approach for avoiding a false positive execution
of the Write Descriptor from Algorithm 2 is the application
of value semantics for all values of type value type (Known
Solution 3). As discussed in [13] and [3], an ABA avoidance
scheme based on value semantics relies on:

a. Extra level of indirection: all values are stored in shared
memory indirectly through pointers. Each write of a given
value vi to a shared location Li needs to allocate on the
heap a new reference to vi (ηvi ), store ηvi into Li, and
finally safely delete the pointer value removed from Li.

b. Nonblocking garbage collection (GC): all references stored
in shared memory (such as ηvi ) need to be safely managed
by a nonblocking garbage collection scheme (e.g. Hazard
Pointers, Pass The Buck).

As reflected in our performance test results (Section V), the
usage of both an extra level of indirection as well as the
heavy reliance on a nonblocking GC scheme for managing the
Descriptor Objects and the references to value type objects is
very expensive with respect to the space and time complexity
of a nonblocking algorithm. However, the use of value seman-
tics is the only known approach for ABA avoidance in the
execution of a Descriptor Object. In Section IV we present a
3-step execution approach that helps us eliminate ABA, avoid
the need for an extra level of indirection, and reduce the usage
of the computationally expensive GC scheme.

D. Statistical Analysis of ABA
In this section we develop a statistical model of the proba-

bility for an ABA event. We need the following sequence of
events for ABA to occur.

S1. Pa succeeds at performing a write at Lδ .
(Pa can only be a push operation for an ABA to be possible).

S2. Pa is interrupted.
S3. Pb reads Lδ

(Pb must be a tail operation to pose an ABA hazard).
S4 Pb is interrupted.
S5. Pa resumes and updates Li from its A to B.
S6. Pk (any thread different than Pb) stores A to Li.

Pk could be a write operation only and the value of the write is A.
However, we can have the same effect if Pk does not execute a write
but instead we have an immediate sequence of:

S6A. Pk executes a pop
S6B. Pk or any thread different than Pb executes a push with a value A.

S7. Pb resumes and runs into ABA.

This sequence of events involves several very low probabil-
ity events:
E1. Processor Pa needs to be interrupted right after updating

the descriptor Lδ , but before completing the push opera-
tion to change Li.

E2. Similarly, Pb should be interrupted right after reading Lδ ,
but before it executes the descriptor stored at Lδ or has
the chance to complete its own tail operation.

E3. E2 should happen before Pa resumes.
E4. The write operation of E1 and the read operation of E2

should be at the same descriptor location.
E5. When Pb resumes, Li should be first updated by Pa, and

then updated back to its original value.
An interrupt is a low probability event by itself, however

what makes these events highly unlikely is that two inter-
rupts should come between the small interval of updating
a descriptor, and accessing (first a write and a read) to the
global address. Note that E1 and E2 are similar events, and
E3 essentially ties these events together to the same miniscule
time interval. Thus if the probability of E1 is x, probability
of both happening essentially at the same time is x2.

Moreover, we need these events to write to and read
from the same descriptor variable (while there is only one
global Descriptor Object in the vector’s design [3], we might
have several Descriptor Objects that are read by different
processes and pending). Let D be the size of the descriptor
set, and pw(d) and pr(d) be the probability of Pa writing on
, and reading from descriptor L − d, respectively. Then this
probability will be

D∑
d=1

pw(d)pr(d)

Assuming all descriptor events are equally likely to be ac-
cessed, this probability will be

∑D
d=1

1
D2 = 1

D .
E5 requires Pa to resume before Pb, and then another

processor to restore the original value to Li. The probability of
this event is inversely proportional to the size of the alphabet
for Li, and the size of the active set that can be used for writes.
This means that Li should take values from a finite, small-
sized alphabet for an ABA to have a practical probability to
occur, and values should be repeated. Note that the repetition



requirement also excludes algorithms where the stack is used
to identifiers of tasks that are ready to execute, which is a
common usage in many graph algorithms and kernels, such as
breadth-first or depth-first search, finding strongly connected
components, etc. Even when the same value stored multiple
times on the stack in these algorithms, they happen with long
time gaps. For simplicity if we assume a processor can write
to any of N positions with equal likelihood, and any of the
K values with equally likelihood, the probability for a write
to restore the original value would be would be 1

NK .
At the time of this work, we did not have statistics for

quantifying this probability. But to give the reader an idea
about how small this probability is, we will provide the
following argument. If the probability of an interrupt is 10−4,
that is an interrupt occurs at every 104 instructions. Probability
of this interrupt coming between an descriptor update and
write will be orders of magnitude smaller, say 10−8. Two of
these interrupts happening back to back would be 10−16. If
there are D = 100 descriptor positions, K = 100 different
values for Li, N = 100 is the size of the active set then
the probability of this event will be 10−22. This means if we
have a computer that executes 1015 instructions per second,
we expect an ABA event to occur at every 107 seconds, which
corresponds to once in every 4 months.

III. DESCRIPTOR-BASED OPERATIONS CLASSIFICATION

The practical implementation of a hand-crafted lock-free
container is notoriously difficult. Recent research into the
design of lock-free data structures includes linked-lists ([11],
[20]), double-ended queues ([19], [26]), stacks [13], hash
tables ([20], [23]), binary search trees [7], and a dynamically
resizable array [3]. For example, a shared vector’s random
access, data locality, and dynamic memory management pose
serious challenges for its nonblocking implementation [3].
The use of a Descriptor Object provides the programming
technique for the implementation of some of the complex
nonblocking operations in a shared container, such as the
push back, pop back, and reserve operations in a shared
vector [3]. The use and execution of a Write Descriptor
guarantees the linearizable update of two or more memory
locations. Here, to better understand the interactions among
these operations and the cause of ABA, we classify the
operations in a nonblocking Descriptor-based design.

Definition 3. An operation whose success depends on the
creation and execution of a Write Descriptor is called an ωδ-
executing operation.

The operation push back of a shared vector [3] is an
example of an ωδ-executing operation. Such ωδ-executing
operations have lock-free semantics and the progress of an
individual operation is subject to the contention on the shared
location Li (under heavy contention, the body of the CAS-
based loop from Step 1, Algorithm 2 might need to be re-
executed). For a shared vector, operations such as pop back
do not need to execute a Write Descriptor Object [3]. Their

progress is dependent on the state of the global data stored in
the Descriptor Object, such as the size of a container.

Definition 4. An operation whose success depends on the state
of the υδ data stored in the Descriptor Object is a δ-modifying
operation.

A δ-modifying operation, such as pop back, needs only
update the shared global data (the size of type υδ) in the
Descriptor Object (thus pop back seeks an atomic update of
only one memory location: Lδ). Since an ωδ-executing oper-
ation by definition always performs an exchange of the entire
Descriptor Object, every ωδ-executing operation is also δ-
modifying. The semantics of a δ-modifying operation are lock-
free and the progress of an individual operation is determined
by the interrupts by other δ-modifying operations. An ωδ-
executing operation is also δ-modifying but as is the case with
pop back, not all δ-modifying operations are ωδ-executing.
Certain operations, such as the random access read and write
in a vector [3], do not need to access the Descriptor Object
and progress regardless of the state of the descriptor. Such
operations are non-δ-modifying and have wait-free semantics
(thus no delay if there is contention at Lδ).

Definition 5. An operation whose success does not depend
on the state of the Descriptor Object is a non-δ-modifying
operation.

A. Concurrent Operations

Similarly to a number of fundamental studies in nonblock-
ing design [15], [8], we assume the following premises: each
processor can execute a number of operations. This establishes
a history of invocations and responses and defines a real-time
order between them. An operation O1 is said to precede an
operation O2 if O2’s invocation occurs after O1’s response.
Operations that do not have real-time ordering are defined as
concurrent. A sequential history is one where all invocations
have immediate responses. A linearizable history is one where:
a. all invocations and responses can be reordered so that they
are equivalent to a sequential history, b. the yielded sequential
history must correspond to the semantic requirements of the
sequential definition of the object, and c. in case a given
response precedes an invocation in the concurrent execution,
then it must precede it in the derived sequential history. It is
the last requirement that differentiates the consistency model
implied by the definition of linearizability with Lamport’s
sequential consistency model and makes linearizability stricter.
When two δ-modifying operations (Oδ1 and Oδ2 ) are con-
current [15], according to Algorithm 2, Oδ1 precedes Oδ2 in
the linearization history if and only if Oδ1 completes Step 1,
Algorithm 2 prior to Oδ2 .

Definition 6. We refer to the instant of successful execution of
the global Descriptor exchange at Lδ (line 15, Algorithm 2)
as τδ .

Definition 7. A point in the execution of a δ object that
determines the order of an ωδ-executing operation acting on



location Li relative to other writer operations acting on the
same location Li, is referred to as the λδ-point (τλδ) of a
Write Descriptor.

The order of execution of the λδ-points of two concur-
rent ωδ-executing operations determines their order in the
linearization history. The λδ-point does not necessarily need
to coincide with the operation’s linearization point, τlin.
The core rule for a linearizable operation is that it must
appear to execute in a single instant of time with respect
to other concurrent operations. The linearization point need
not correspond to a single fixed instruction in the body of
the operation’s implementation and can vary depending on
the interrupts the operation experiences. In contrast, the λδ-
point of an ωδ object corresponds to a single instruction in the
object’s implementation. In the pseudo code in Algorithm 2
τλδ ≡ τδ .

Let us designate the point of time when a certain δ-
modifying operation reads the state of the Descriptor Object
by τreadδ , and the instants when a thread reads a value from
and writes a value into a location Li by τaccessi and τwritei ,
respectively. Table II demonstrates the occurrence of ABA in
the execution of a δ object with two concurrent δ-modifying
operations (Oδ1 and Oδ2 ) and a concurrent write, Oi, to
Li. We assume that the δ object’s implementation follows
Algorithm 2. The placement of the λδ-point plays a critical
role for achieving ABA safety in the implementation of an ωδ-
executing operation. As shown in Table II, at time τwd when
Oδ2 executes the write descriptor, Oδ2 has no way of knowing
whether Oδ1 has completed its update at Li or not. Since Oδ1 ’s
λδ-point ≡ τδ , the only way to know about the status of Oδ1
is to read Lδ . Using a single-word CAS operation prevents
Oδ2 from atomically checking the status of Lδ and executing
the update at Li.

Definition 8. A concurrent execution of one or more non-
ωδ-executing δ-modifying operations with one ωδ-executing
operation, Oδ1 , performing an update at location Li is ABA-
free if Oδ1 ’s λδ-point ≡ τaccessi . We refer to an ωδ-executing
operation where its λδ-point ≡ τaccessi as a λδ-modifying
operation.

Assume that in Table II the Oδ1 ’s λδ-point ≡ τaccessi .
As shown in Table II, the ABA problem in this scenario
occurs when there is a hazard of a spurious execution of Oδ1 ’s
Write Descriptor. Having a λδ-modifying implementation of
Oδ1 allows any non-ωδ-executing δ-modifying operation such
as Oδ2 to check Oδ1 ’s progress while attempting the atomic
update at Li requested by Oδ1 ’s Write Descriptor. Our 3-step
descriptor execution approach, discussed in Section IV, offers
a solution based on Definition 8. In an implementation with
two or more concurrent ωδ-executing operations, each ωδ-
executing operation must be λδ-modifying in order to elimi-
nate the hazard of a spurious execution of an ωδ that has been
picked up by a collaborating operation. To effectively avoid
the ABA hazard at Li during a Descriptor-based linearizable
update of Lδ and Li (see Algorithm 2), we generalize two

fundamental strategies:
(a) Guarantee that a Write Descriptor created by Oδ1 , or

any other ωδ-executing operation, succeeds at most once.
We refer to such a δ object as a once-execute-descriptor.
Definition 8 offers the condition leading to a solution
of this type. In our example in Table II, a once-execute-
descriptor strategy would cause the attempt to re-execute
the write descriptor by Oδ1 (Step 7, Table II) or by any
other operation to fail. Our 3-step δ execution approach
presented in Section IV is one possible way of implement-
ing a once-execute-descriptor.

(b) Guarantee that no concurrent interleaving of operations
can lead to a write of a value posing ABA hazard (such
as Bi in Table II) at Li. Relying on a methodology
that employs unique values, such as Known Solution
1, as well as the application of Semantically Enhanced
Containers [2] are approaches of this type. Requiring
uniqueness typing for ABA prevention is an overkill. The
guarantee we need is that no thread can restore an old
value Ai in a shared location Li while there is an alive
ωδ object in the system requesting ωδ @ Li : Ai →
any valuei. Modern mainstream programming languages
do not provide the tools to express and enforce such a
concurrent and dynamic correctness condition.

IV. ABA-FREE EXECUTION OF THE DESCRIPTOR OBJECT

In Algorithm 3 we suggest a design strategy for the im-
plementation of a λδ-modifying operation. Our approach is
based on a 3-step execution of the δ object. While similar to
Algorithm 2, the approach shown in Algorithm 3 differs by
executing a fundamental additional step: in Step 1 we store a
pointer to the new descriptor in Li prior to the attempt to store
it in Lδ in Step 2. Since all δ objects are memory managed,
we are guaranteed that no other thread would attempt a write
of the value µNewDesc in Li or any other shared memory
location. The operation is λδ-modifying because, after the
new descriptor is placed in Li, any interrupting writer thread
accessing Li is aware of the Write Descriptor stored at Li
and is required to complete the remaining two steps in the
execution of the Write Descriptor. However, should the CAS
execution in Step 2 (line 26) fail, we have to unroll the
changes at Li performed in Step 1 by restoring Li’s old
value preserved in WD.OldElement (line 20) and retry the
execution of the routine (line 21). To implement Algorithm 3,
we have to be able to distinguish between objects of type
value type and δ. A possible solution is to require that all
value type variables are pointers and all pointer values stored
in Li are aligned with the two low-order bits cleared during
their initialization. That way, we can use the two low-order bits
for designating the type of the pointer values. Subsequently,
every read must check the type of the pointer obtained from
a shared memory location prior to manipulating it. Once an
operation succeeds at completing Step 1, Algorithm 3, location
Li contains a pointer to a δ object that includes both: Li’s
previous value of type value type and a write descriptor
WD that provides a record for the steps necessary for the



operation’s completion. Any non-δ-modifying operation, such
as a random access read in a shared vector, can obtain the value
of Li (of type value type) by accessing WD.OldElement
(thus going through a temporary indirection) and ignore the
Descriptor Object. Upon the success of Step 3, Algorithm 3,
the temporary level of indirection is eliminated. Such an
approach would preserve the wait-free execution of a non-δ-
modifying operation. The ωδ data type needs to be amended
to include a field TempElement (line 9, Algorithm 3) that
records the value of the temporary δ pointer stored in Li. The
cost of the λδ operation is 3 CAS executions to achieve the
linearizable update of two shared memory locations (Li and
Lδ). We stress that in Algorithm 3, our assumption is that the
competing operations both attempt to store an element at a
location Li. It is possible to think of a scenario where only
the operation that succeeds first stores its update at Li and
then any interrupted operation would have to change its update
location to Li+1 or any subsequent location [3]. In this case,
we suggest that in Step 1, we perform an additional step: we
would have to check whether Li contains a pending Descriptor
object and if it does, help it complete. That way, we would
prevent concurrent interleaving that might possibly skip the
removal of the temporary level of indirection at Li and cause
an extra use of the costly lock-free garbage collection scheme.
Such an implementation is similar to the execution of Harris
et al.’s MCAS algorithm [12]. In any scenario, just like our
λδ-modifying approach, for an MCAS update of Lδ and Li,
the cost of Harris et al.’s MCAS is at least 3 executions of the
single-word CAS instruction. Harris et al.’s work on MCAS
[12] brings forward a significant contribution in the design
of lock-free algorithms, however, it lacks any analysis of the
hazards of ABA and the way the authors manage to avoid it.

V. PERFORMANCE EVALUATION

To evaluate the performance of the ABA-free programming
techniques discussed in this work, we incorporated the pre-
sented ABA elimination approaches in the implementation
of a nonblocking dynamically resizable array [3]. Our test
results indicate that the λδ approach offers ABA prevention
with performance comparable to the use of the platform-
specific CAS2 instruction to implement version counting. This
finding is of particular value to the engineering of some
embedded real-time systems where the hardware does not
support complex atomic primitives such as CAS2 [18]. We
ran performance tests on an Intel IA-32 SMP machine with
two 1.83GHz processor cores with 512 MB shared memory
and 2 MB L2 shared cache running the MAC 10.5.6 operating
system. In our performance analysis we compare:
(1) λδ approach: the implementation of a vector with a λδ-

modifying push back and a δ-modifying pop back. In
this scenario the cost of push back is 3 single-word CAS
operations and pop back’s cost is one single-word CAS
instruction. Table VII offers an overview of the shared
vector’s operations’ relative cost in terms of number and
type of atomic instructions invoked per operation.

Algorithm 3 Implementing a λδ-modifying operation through
a three-step execution of a δ object
1: Step 1: place a new descriptor in Li
2: value type Bi = fComputeB
3: value type Ai
4: ωδ WD = fωδ()
5: WD.Target = Li
6: WD.NewElement = Bi
7: υδ DescData = fυδ()
8: δ µNewDesc = fδ(DescData, WD)
9: WD.TempElement = &NewDesc

10: µNewDesc.WDpending = true
11: repeat
12: Ai = ˆLi
13: WD.OldElement = Ai
14: until CAS(Li, Ai, µNewDesc) == µNewDesc
15:
16: Step 2: place the new descriptor in Lδ
17: bool unroll = false
18: repeat
19: if unroll then
20: CAS(WD.Target, µNewDesc, WD.OldElement)
21: goto 3
22: δ µOldDesc = ˆLδ
23: if µOldDesc.WDpending == true then
24: execute µOldDesc.WD
25: unroll = true
26: until CAS(Lδ , µOldDesc, µNewDesc) == µNewDesc
27:
28: Step 3: execute the Write Descriptor
29: if µNewDesc.WDpending then
30: CAS(WD.Target, WD.TempElement, WD.NewElement) == WD.NewElement
31: µNewDesc.WDPending = false

(2) All-GC approach: the application of Known Solution
3 (Section II-C), namely the use of an extra level of
indirection and memory management for each element.
Because of its performance and availability, we have
chosen to implement and apply Herlihy et al.’s Pass The
Buck algorithm [14]. In addition, we use Pass The Buck
to protect the Descriptor Objects for all of the tested
approaches.

(3) CAS2-based approach: the application of CAS2 for main-
taining a reference counter for each element. A CAS2-
based version counting implementation is easy to apply
to almost any pre-existent CAS-based algorithm. While
a CAS2-based solution is not portable, we believe that
the approach is applicable for a large number of modern
architectures. For this reason, it is included in our per-
formance evaluation. In the performance tests, we apply
CAS2 (and version counting) for updates at the shared
memory locations at Li and a single-word CAS to update
the Descriptor Object at Lδ .

Similarly to the evaluation of other lock-free algorithms
[7], we designed our experiments by generating a workload
of the various operations. We varied the number of threads,
starting from 1 and exponentially increased their number to
64. Each thread executed 500,000 lock-free operations on
the shared container. We measured the execution time (in
seconds) that all threads needed to complete. Each iteration of
every thread executed an operation with a certain probability
(push_back (+), pop_back (-), random access write
(w), random access read (r)). We show the performance
graph for a distribution of +:40%, -:40%, w:10%, r:10% on



A: 40+/40-/10w/10r

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64

threads

ti
m

e
 (

s
)

1 2 3

Fig. 1. Performance Results A

B: 25+/25-/10w/40r

0

100

200

300

400

500

600

1 2 4 8 16 32 64

threads

ti
m

e
 (

s
)

1 2 3

Fig. 2. Performance Results B

C: 10+/10-/40w/40r

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64

threads

ti
m

e
 (

s
)

1 2 3

Fig. 3. Performance Results C

D: 20+/0-/20w/60r

0

100

200

300

400

500

600

1 2 4 8 16 32 64

threads

ti
m

e
 (

s
)

1 2 3

Fig. 4. Performance Results D

Figure 1. Figure 2 demonstrates the performance results with
less contention at the vector’s tail, +:25%, -:25%, w:10%,
r:40%. Figure 3 illustrates the test results with a distribution
containing predominantly random access read and write oper-
ations, +:10%, -:10%, w:40%, r:40%. Figure 4 reflects our
performance evaluation on a vector’s use with mostly random
access read operations: +:20%, -:0%, w:20%, r:60%, a sce-
nario often referred to as the most common real-world use of
a shared container [7]. The number of threads is plotted along
the x-axis, while the time needed to complete all operations is
shown along the y-axis. According to the performance results,
compared to the All-GC approach, the λδ approach delivers
consistent performance gains in all possible operation mixes
by a large factor, a factor of at least 3.5 in the cases with less
contention at the tail and a factor of 10 or more when there
is a high concentration of tail operations. These observations
come as a confirmation to our expectations that introducing an
extra level of indirection and the necessity to memory manage
each individual element with PTB (or an alternative memory
management scheme) to avoid ABA comes with a pricy
performance overhead. The λδ approach offers an alternative
by introducing the notion of a λδ-point and enforces it though
a 3-step execution of the δ object. The application of version
counting based on the architecture-specific CAS2 operation
is the most commonly cited approach for ABA prevention
in the literature. Our performance evaluation shows that the
λδ approach delivers performance comparable to the use of
CAS2-based version counting. CAS2 is a complex atomic
primitive and its application comes with a higher cost when
compared to the application of atomic write or a single-word
CAS. In the performance tests we executed, we notice that
in the scenarios where random access write is invoked more
frequently (Figures 3 and 4), the performance of the CAS2
version counting approach suffers a performance penalty and
runs slower than the λδ approach by about 12% to 20%.
According to our performance evaluation, the λδ approach is
a systematic, effective, portable, and generic solution for ABA
avoidance for Descriptor-based nonblocking designs. The λδ



scheme does not induce a performance penalty when compared
to the architecture-specific application of CAS2-based version
counting and offers a considerable performance gain when
compared to the use of All-GC.

VI. CONCLUSION AND FUTURE WORK

In this work we studied the ABA problem and the conditions
leading to its occurrence in a Descriptor-based lock-free lin-
earizable design. We offered a systematic and generic solution,
called the λδ approach, that outperforms by a significant factor
the use of garbage collection for the safe management of each
shared location and offers speed of execution comparable to
the application of the architecture-specific CAS2 instruction
used for version counting. Having a practical alternative to the
application of the architecture-specific CAS2 is of particular
importance to the design of some modern embedded systems
[18]. We defined a condition for ABA-free synchronization
that allows us to reason about the ABA safety of a lock-
free algorithm. We presented a practical, generic, and portable
implementation of the λδ approach and evaluated it by inte-
grating the λδ technique into a nonblocking shared vector.
The literature does not offer a detailed analysis of the ABA
problem and the general techniques for its avoidance in a lock-
free linearizable design. At the present moment of time, the
challenges of eliminating ABA are left to the ingenuity of the
software designer. The goal of our work is to deliver a guide
for ABA comprehension and prevention in Descriptor-based
lock-free linearizable algorithms. For the practical application
of Descriptor-based nonblocking techniques in real-time sys-
tems, it is important to study the service-time bounds of the
operations within the context of the Descriptor’s CAS-based
retry loop. Anderson et al. [1] present a fundamental approach
for such formal timing analysis. In our future work we plan
to utilize a model-checker [10] to express the λδ condition
as well as apply Anderson et al.’s [1] approach to derive the
timing guarantees for our ABA prevention approach.

REFERENCES

[1] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with
lock-free shared objects. ACM Trans. Comput. Syst., 15(2):134–165,
1997.

[2] D. Dechev, P. Pirkelbauer, N. Rouquette, and B. Stroustrup. Semantically
Enhanced Containers for Concurrent Real-Time Systems. In IEEE ECBS
2009, 2009.

[3] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-Free Dynamically
Resizable Arrays. In A. A. Shvartsman, editor, OPODIS, volume 4305
of Lecture Notes in Computer Science, pages 142–156. Springer, 2006.

[4] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Understanding and
Effectively Preventing the ABA Problem in Descriptor-based Lock-free
Designs. In In the Proceedings of the 13th IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC’10),
2010.

[5] D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and
G. L. S. Jr. Even better DCAS-based concurrent deques. In International
Symposium on Distributed Computing, pages 59–73, 2000.

[6] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. S. Jr. Lock-free reference
counting. Distrib. Comput., 15(4):255–271, 2002.

[7] K. Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-
579, University of Cambridge, Computer Laboratory, Feb. 2004.

[8] K. Fraser and T. Harris. Concurrent programming without locks. ACM
Trans. Comput. Syst., 25(2):5, 2007.

[9] D. Gifford and A. Spector. Case study: IBM’s system/360-370 archi-
tecture. Commun. ACM, 30(4):291–307, 1987.

[10] P. Gluck and G. Holzmann. Using SPIN Model Checker for Flight
Software Verification. In Proceedings of the 2002 IEEE Aerospace
Conference, 2002.

[11] T. L. Harris. A pragmatic implementation of non-blocking linked-
lists. In DISC ’01: Proceedings of the 15th International Conference on
Distributed Computing, pages 300–314, London, UK, 2001. Springer-
Verlag.

[12] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-
and-swap operation. In Proceedings of the 16th International Symposium
on Distributed Computing, 2002.

[13] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack
algorithm. In SPAA 2004, pages 206–215, New York, NY, USA, 2004.
ACM Press.

[14] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking
memory management support for dynamic-sized data structures. ACM
Trans. Comput. Syst., 23(2):146–196, 2005.

[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, March 2008.

[16] Intel. IA-32 Intel Architecture Software Developer’s Manual, Volume
3: System Programming Guide, 2004.

[17] L. Lamport. How to make a multiprocessor computer that correctly
executes programs, September 1979.

[18] M. R. Lowry. Software Construction and Analysis Tools for Future
Space Missions. In J.-P. Katoen and P. Stevens, editors, TACAS, volume
2280 of Lecture Notes in Computer Science, pages 1–19. Springer, 2002.

[19] M. Michael. CAS-Based Lock-Free Algorithm for Shared Deques. In
Euro-Par 2003: The Ninth Euro-Par Conference on Parallel Processing,
LNCS volume 2790, pages 651–660, 2003.

[20] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA ’02: Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures, pages 73–82, New
York, NY, USA, 2002. ACM Press.

[21] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

[22] K. Reinholtz. Atomic Reference Counting Pointers, C++ User Journal.
December 2008.

[23] O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible
hash tables. In PODC ’03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 102–111, New
York, NY, USA, 2003. ACM Press.

[24] M. F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M. L. Scott.
Alert-on-update: a communication aid for shared memory multiproces-
sors. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 132–133,
New York, NY, USA, 2007. ACM.

[25] B. Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[26] H. Sundell and P. Tsigas. Lock-Free and Practical Doubly Linked List-
Based Deques Using Single-Word Compare-and-Swap. In OPODIS,
pages 240–255, 2004.

[27] E. Vries, R. Plasmeijer, and D. M. Abrahamson. Uniqueness Typing
Simplified. In Implementation and Application of Functional Lan-
guages: 19th International Workshop, IFL 2007, Freiburg, Germany,
September 27-29, 2007., 2008.



VII. APPENDIX: TABLES

Step Action
Step 1 P1 reads Ai from Li
Step 2 Pk interrupts P1; Pk stores the value Bi into Li
Step 3 Pj stores the value Ai into Li
Step 4 P1 resumes; P1 executes a false positive CAS

TABLE I
ABA AT Li

Step Action
Step 1 Oδ1 : τreadδ
Step 2 Oδ1 : τaccessi
Step 3 Oδ1 : τδ
Step 4 Oδ2 : τreadδ
Step 5 Oδ1 : τwd
Step 6 Oi: τwritei
Step 7 Oδ2 : τwd

TABLE II
ABA OCCURRENCE IN THE EXECUTION OF A DESCRIPTOR OBJECT

ABA prevention approach / operation push back pop back read i write i

1. λδ approach 3 CAS 1 CAS atomic read atomic write
2. All-GC approach 2 CAS + GC 1 CAS + GC atomic read atomic write + GC

3. CAS2-based approach 1 CAS2 + 1 CAS 1 CAS atomic read 1 CAS2

TABLE III
A SHARED VECTOR’S OPERATIONS COST (BEST CASE SCENARIO)

operation push pop read write

push ABA free ABA ABA free ABA
pop ABA free ABA ABA free ABA free
read ABA free ABA free ABA free ABA free
write ABA ABA free ABA free ABA

TABLE IV
ABA-FREE AND ABA-PRONE INTERLEAVING OF TWO

CONCURRENT OPERATIONS


