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Abstract

Climate envelope models (CEMs) have been used to predict the distribution of species

under current, past, and future climatic conditions by inferring a species’ environmental

requirements from localities where it is currently known to occur. CEMs can be evaluated

for their ability to predict current species distributions but it is unclear whether models

that are successful in predicting current distributions are equally successful in predicting

distributions under different climates (i.e. different regions or time periods). We eval-

uated the ability of CEMs to predict species distributions under different climates by

comparing their predictions with those obtained with a mechanistic model (MM). In an

MM the distribution of a species is modeled based on knowledge of a species’ physiology.

The potential distributions of 100 plant species were modeled with an MM for current

conditions, a past climate reconstruction (21 000 years before present) and a future climate

projection (double preindustrial CO2 conditions). Point localities extracted from the

currently suitable area according to the MM were used to predict current, future, and

past distributions with four CEMs covering a broad range of statistical approaches:

Bioclim (percentile distributions), Domain (distance metric), GAM (general additive

modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly

underestimating range sizes for past or future conditions. Maxent and GAM performed as

well under current climates as under past and future climates. Bioclim slightly under-

estimated range sizes but the predicted ranges overlapped more with the ranges predicted

with the MM than those predicted with GAM did. Ranges predicted with Maxent

overlapped most with those produced with the MMs, but compared with the ranges

predicted with GAM they were more variable and sometimes much too large. Our results

suggest that some CEMs can indeed be used to predict species distributions under climate

change, but individual modeling approaches should be validated for this purpose, and

model choice could be made dependent on the purpose of a particular study.
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Introduction

A number of species have been affected by recent

climatic change, with changes in phenology and ranges

expanding towards higher latitudes and altitudes (e.g.

Parmesan & Yohe, 2003; Root et al., 2003). Understand-

ing how species will respond to projected future climate

change is of fundamental importance for effective man-

agement and conservation of biodiversity (Hannah

et al., 2002). Likewise, insight into the distributions of

species during past climates can help to understand

current patterns of species distributions and genetic

variation (Hugall et al., 2002; Peterson et al., 2004;

Graham et al., 2006; Ruegg et al., 2006). Predicting

species ranges for different climates is commonly done

with ‘climate envelope models’ (CEMs) that use the

current geographic distribution of a species to infer its

environmental requirements. Based on these require-

ments, a species’ geographic distribution for the cur-

rent, or for past or future climates is predicted. A recent
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compilation of such studies on the effect of projected

climate change indicates that an alarming number of

species may lose a large part of their range and become

‘committed to extinction’ (Thomas et al., 2004).

There are some obvious cases of species that with

climate change should lose parts of their range, such as

mountain-top endemics, for which warming would

seem highly threatening (Theurillat & Guisan, 2001;

Williams et al., 2003). However, a general tendency of

species ranges to get smaller with climate warming is

counter-intuitive because there are more species in

warm areas than in cold areas. The predicted trend

towards reduction in range sizes that Thomas et al.

(2004) found may have been caused by a biased selection

of the species or regions studied. Another possibility is

that some CEMs are biased and tend to underestimate

range sizes under future climates. Thuiller et al. (2004)

pointed out the problem of strong variation between

CEM predictions of future distributions.

A persistent problem with CEMs is the difficulty in

evaluating predicted distributions under different cli-

mates (i.e. reconstructions of past climates or projections

of future climates). Whereas predictions under current

circumstances can be tested using independent model

training and testing datasets (Fielding & Bell, 1997), such

a direct assessment cannot be done for future climates, for

which there are no observed data. Using the fossil record,

such tests are in principle possible for past climates

(Martı́nez-Meyer et al., 2004), but the number of sites from

which fossils of a species are known for a given time

period is often very small, and the available climate

reconstructions are coarse and uncertain. Araújo et al.

(2005a, b) used recent changes in the distribution of

breeding birds in Britain and found reasonable agreement

between observed and predicted changes over a period

of 20 years. Such studies are useful but may be hampered

by the confounding effect of changes in species’ ranges for

reasons unrelated to climate change (e.g. anthropogenic

land cover change). Finally, some support for the use of

CEMs for climate change studies can be drawn from

successes in predicting a species range from data from

one continent to another, as has been done for introduced

invasive species (Peterson, 2003; Thuiller et al., 2005).

There are a number of reasons why a prediction of a

species’ distribution after climate change could be less

accurate than such a prediction for current climatic

circumstances (Davis et al., 1998; Guisan & Thuiller,

2005). CEMs are ‘statistical’ models that do not attempt

to describe ‘cause and effect’ between model parameters

and response (Guisan & Zimmermann, 2000; Pearson &

Dawson, 2003; Kearney & Porter, 2004). For example, the

inferred environmental requirements are dependent on

the climatic conditions that are currently available on the

landscape. A species may be well adapted to a combina-

tion of rainfall and temperature that currently does

not exist in the region where it occurs. If new combina-

tions of climatic variables appear in the future, or if

entirely new conditions occur (e.g. higher rainfall than

currently observed anywhere), a statistical model may

incorrectly classify such environments as unsuitable.

The degree to which different statistical models may

be affected by these problems has proved difficult to

determine, but large variability among different CEM

approaches used to predict species distributions under a

projected future climate have been reported (Thuiller,

2003, 2004; Pearson et al., 2006).

Here, we present a new framework for evaluating the

ability of CEMs to predict species distributions under a

different climate. In this framework, the results ob-

tained with CEMs are compared with those obtained

with a mechanistic model for individual species (MM).

In an MM, the distribution of a species is defined by a

set of functions based on knowledge of the physiology

of that species. Results obtained with an MM are

independent of current climate because the model

parameters are not derived from the current distribu-

tion of a species. MMs are considered superior for

understanding the relationship between climate and

the distribution of species (Woodward & Rochefort,

1991; Malanson et al., 1992; Prentice et al., 1992; also

see the discussion in Guisan & Zimmermann, 2000) and

have been used to study the distribution of a lizard in

Australia (Kearney & Porter, 2004) and effects of climate

change on crop production (Rosenzweig & Parry, 1994;

Hijmans, 2003). A drawback of MMs is that physiolo-

gical data required to parameterize the model are not

available for most species. Another problem with the

use of MMs of individual species is that they tend to be

based on a species eco-physiology but do not account

for nonclimatic influences on species distribution such

as biotic interactions or dispersal limitations (Pearson &

Dawson, 2003). CEMs do not directly model such non-

climatic influences either, but they may do so indirectly

if limits to species distributions caused by factors such

as competition occur on an environmental gradient and

are therefore correlated with environmental variables.

MMs may, thus, be of limited value in comparison with

CEMs for accurately predicting current distributions of

species. However, MMs are uniquely suitable for under-

standing the effect of different climates on species

distributions, when assuming universal dispersal and

the absence of competition, that is, MMs can be used to

evaluate the intrinsic ability of CEMs to accurately

predict spatial distributions of species under different

climates. In this paper, we used an MM to predict the

potential distributions of 100 plant species for current

conditions, and for a future (warmer) and past (colder)

climate. By comparing the MM results with those
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obtained using four different CEMs, we evaluate the

ability of each CEM to predict a species range under

different climates.

Materials and methods

Climate data

We used monthly precipitation and minimum and

maximum temperature data for three periods: ‘current’,

‘future’, and ‘past’. For current conditions, we used the

WorldClim database (Hijmans et al., 2005a). This dataset

has a spatial resolution of approximately 1 km and was

created by interpolation using a thin-plate smoothing

spline of observed climate at weather stations, with

latitude, longitude, and elevation as independent vari-

ables (Hutchinson, 1995, 2004). Projected future climate

data were from Duffy et al. (2003) and Govindasamy

et al. (2003). They ran the CCM3 global climate model

(GCM) at approximately 50 km spatial resolution to

simulate conditions at doubled atmospheric levels of

CO2 (2�CO2) as compared with preindustrial condi-

tions. To our knowledge, these data are at the highest

spatial resolution currently available for projected fu-

ture global climate data. Past climate data used were

GCM reconstructions for the last glacial maximum

(LGM; 21 000 BP). These data were generated with the

ECHAM3 model (DKRZ, 1992; Lorenz et al., 1996), are

at an approximately 312 km spatial resolution and are

available at http://www.lsce.cea.fr/pmip/

For both GCMs there were also ‘control runs’ for the

current conditions available. We calculated the differ-

ence (absolute for temperature and relative for precipi-

tation) between the modeled current and past or future

conditions and statistically downscaled these to a 1 km

spatial resolution, using bilinear interpolation in Arc/

Info (ESRI, Redlands, CA, USA). The projected future or

past climate was then calculated from the current

climate (WorldClim database) and the downscaled

model differences. This approach was taken to assure

consistency of the climate layers across time slices and

that the downscaled climate realistically reflected the

higher resolution topography.

We limited our area of study to the Americas, and

projected all data to the Lambert Equal Area projection

(latitude 5 01 and longitude 5�801) to obtain grid cells

of equal area and allow for easy calculations of range

sizes. We aggregated the data to cells of 10 km spatial

resolution using bilinear interpolation. Mean annual

temperature for this dataset was 4.8 1C for current,

0.7 1C for past, and 6.8 1C for future conditions. Mean

annual precipitation was 1045 mm for current, 1128 mm

for future, and 1015 mm for past conditions. Predicted

past and future temperature changes were much larger

at high latitudes than in the tropics. Precipitation chan-

ged in different directions in different places, and this

was particularly pronounced comparing current with

LGM conditions, that is, the model suggests that it was

much dryer than today in some places, but much wetter

in other places, resulting in similar mean precipitation

across the whole study area.

In the CEMs, we used the following six bioclimatic

variables (Nix, 1986): annual mean temperature, mean

diurnal temperature range, mean annual temperature

range, annual precipitation, precipitation seasonality

(coefficient of variation), and precipitation of the driest

quarter. We chose these variables because they repre-

sent general trends (means), variation (seasonality), and

limiting variables (i.e. minimum and maximum tem-

peratures). To evaluate the effect of the number of

variables included on model performance, we also run

the models using 19 variables: the above six and max-

imum temperature of the warmest month, minimum

temperature of the coldest month, isothermality

(monthly/annual temperature range), temperature sea-

sonality (standard deviation across months), mean tem-

perature of wettest quarter, mean temperature of driest

quarter, mean temperature of warmest quarter, mean

temperature of coldest quarter, precipitation of wettest

month, precipitation of driest month, precipitation of

wettest quarter, precipitation of warmest quarter, and

precipitation of coldest quarter.

MM

We used the MM that is implemented in DIVA-GIS 5.1

(Hijmans et al., 2005b). This is a ‘Plantgro’ type model

(Hackett & Vanclay, 1998) in which requirements for

plant growth are described as plateau-shaped curves

that indicate plant response (expressed as 0–1) to

monthly precipitation and minimum and mean tempera-

ture. Response is zero below a minimum and above a

maximum threshold, and one between a minimum and a

maximum optimal value (Hijmans et al., 2005b; cf. Hack-

ett, 1991; Austin, 1992). Overall response across environ-

mental variables follows the Sprengel–Liebig Law of the

Minimum (Hackett, 1991; Van der Ploeg et al., 1999), that

is, the most limiting factor determines the overall re-

sponse. Interaction between temperature and rainfall is

not considered. Model scores are calculated for 24 pos-

sible growing periods, starting at the first or the 15th day

of each month, the highest score is retained. The length

of the growing period is specified as a number of days.

For each location (grid cell) the model calculates the

suitability for a species using a score from 0 (not suitable)

to 100 (highly suitable). Based on comparison with

known distributions of some species, we considered only

areas with scores above 90 as suitable for a species.
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MM parameters for 100 randomly selected plant

species (out of 1710 species for which parameters were

available) were taken from the ECOCROP database

(FAO, 1999), which includes killing (minimum) tem-

perature, and minimum, maximum, and range of opti-

mal temperatures; the minimum and maximum length

of the growing season; and minimum, maximum and

range of optimal amount of rainfall for each species.

The species included are all of economic importance,

including annuals and perennials that are used for (e.g.

food, fuel or fodder). We ran the MM to predict the

potential distribution of the plant species, using the

monthly temperature and rainfall data for current,

future, and past conditions.

A similar modeling approach has been used to study

the effect of climate change on species distributions by

Booth et al. (1999) and Miles et al. (2004). Here, we are

not concerned about the quality of the predictions made

per se. What is important for our purpose is to have a

model that provides a plausible prediction of the area

that is suitable for a species, based on parameters that

were not directly derived from its current known geo-

graphic distribution.

CEMs

We employed four CEMs: Bioclim, Domain, GAM, and

Maxent. We chose these because they are well-known

models that represent a variety of different statistical

approaches. We used Bioclim (Nix, 1986; Busby, 1991)

as implemented in DIVA-GIS. This model treats the

environmental data values at the locations of species

occurrence as multiple one-tailed percentile distribu-

tions, that is, it creates a percentile distribution for each

variable so that, for example, the fifth percentile is

treated the same as the 95th percentile. For each grid

cell, the values of each environmental variable are

assessed to determine their position in this percentile

distribution. The lowest score across environmental

values for a grid cell is mapped and can be ‘null’

(outside the observed range of values) or range from

zero (low) to the theoretical maximum of 50 (very high).

In the Domain model (Carpenter et al., 1993), the

Gower distance statistic is calculated between the va-

lues of the environmental variables of each cell and of

each occurrence point. The distance between point A

and grid cell B for a single climate variable k is calcu-

lated as the absolute difference between A and B

divided by the range of k across all points. The Gower

distance (G) is the mean of the distances for all climate

variables and the Domain similarity statistic is calcu-

lated as 100� (1�G). The maximum similarity between

a grid cell and any point is mapped. The maximum

value is 100 (all cells in which presences occurred will

have this score); a high number (e.g. 495) implies a

high likelihood of the species being present. We used

the Domain model as implemented in DIVA-GIS.

We used the general additive modeling (GAM)

technique as implemented in GRASP version 0.4-3

(Lehmann et al., 2002) within the R statistical package.

GAMs use nonparametric smoothers to model non-

linear trends between dependent (species presence or

absence) and independent (environment) variables. We

used stepwise selection of the variables and the ANOVA

criterion to select the best model.

We used Maxent version 1.9.1 (available from http://

www.cs.princeton.edu/�schapire/maxent/). This model

is an application of a machine learning technique called

‘maximum-entropy.’ Maxent estimates the likelihood of a

species being present by finding the distribution of max-

imum entropy (i.e. that is closest to uniform) subject to the

constraint that the expected value of each environmental

variable under this estimated distribution matches

its empirical average (Phillips et al., 2006). Maxent uses

the ‘background’ data of the environmental layers in the

modeling process. The output of both Maxent and GAM

are values between 0 (low) and 1 (high).

Model runs

For each species, we selected random points from

the area predicted by the MM as currently suitable.

The number of points selected was the square root of

the number of cells currently deemed suitable. Sam-

pling was done for computational efficiency and to

better resemble the (sparse) data typically used in

CEM. The point distributions were then used to create

predictions with the CEM for current, future, and past

conditions (Fig. 1). All CEMs were run using the default

settings. Absence data used in GAM were the cells that

were unsuitable for a species (according to the MM), but

that were suitable for any of the other species, in

addition to a set of random background points that

covered areas currently unsuitable for all the species

considered (parts of the Arctic in Canada and Green-

land, and the Atacama desert in Chile).

Model evaluation

The output of CEMs are continuous values indicating the

suitability of any site for the species being modeled. To

transform these values to presence/absence data we

determined species specific thresholds above which a

species was considered present. For each model we chose

the value that produced a relative range size Eqn (1) that

was closest to zero (median across all species). This

calibration was done for the current climate, and these

thresholds were maintained throughout the modeling
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exercise and experimental climate shifts, as is the general

practice in climate change modeling studies. We used

range size to calibrate because of the importance of range

size in assessing risks of extinction (Thomas et al., 2004).

To evaluate how well the ranges predicted with the

CEMs corresponded to those of the MM we calculated,

for each species, time slice and CEM, the following four

indices: relative range size [RRS; Eqn (1)], overlap index

[OI; Eqn (2)], false positive rate [FPR; Eqn (3)], and false

negative rate [FNR; Eqn (4)]:

if m � c RRS ¼ c=m� 1;

else RRS ¼ �1�ðm=c� 1Þ;

(
ð1Þ

OI ¼ o=m; ð2Þ

FPR ¼ ðc� oÞ=m; ð3Þ

FNR ¼ ðm� oÞ=m; ð4Þ

where m is (the size of) the area where the MM predicts

a species to be present, c is the area where the CEM

predicts presence and o is the area where they overlap,

that is, both MM and CEM predict presence.

RRS compares the predicted range size of a CEM with

that of the MM. It was calculated according to Eqn (1)

because c/m is biased, with RRS deviating much more

from 1 when c4m than when moc (e.g. 1/4 vs. 4). Note,

however, that a score of 3 implies that the range size

predicted by the CEM was four times as big as that of the

MM, and that a score of �3 implies that it was four times

as small. OI measures the degree of overlap of the CEM

with the MM. FPR is a measure of model overprediction

(‘error of commission’) and FNR a measure of under-

prediction (‘error of omission’). In our analysis, an ideal

CEM would have RRS 5 0, OI 5 1, FPR 5 0, and FNR 5 0.

RRS and OI were also calculated to assess the effect of

climate change on the predictions made with the MM. In

this case, m refers to the prediction for current conditions,

and c to either future or past conditions. For each CEM

and the four indices we determined the statistical sig-

nificance of the differences between the predictions for

the current climate and for the other climates. To this end,

we used the Wilcoxon test (Mann–Whitney U-test), as

implemented in the R package.

Results

MM

Compared with the current situation, the MMs showed

considerable changes in range size for past conditions

but less so for future conditions. For future conditions,

RRS was �0.07 and OI was 0.54, indicating that median

Current
climate

Future
or past 
climate

Mechanistic model Climate envelope model

(a)

(b) (e)

(c) (d)

Extracted 
points

Compare

Fig. 1 Approach used to evaluate the ability of climate envelope models to predict species distributions under different climates. A

mechanistic model is used to predict the potential distribution for a species under current (a) and future (or past) (b) conditions (light

gray 5 not suitable, dark gray 5 suitable). Points are extracted randomly from the area deemed currently suitable for the species (c).

These points are used in the climate envelope model for current (d) and future (e) conditions. The statistical model is evaluated through

a comparison of (b) and (e). These maps show results for Berrya cordifolia (Willd.) for the Bioclim model.
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range size decreased slightly while the location of the

ranges shifted considerably, with only half the currently

suitable range also suitable under the future climate. For

past conditions, RRS was �0.50 and OI was 0.14. Hence,

for the last glacial maximum, modeled range sizes were

considerably smaller than for the current period with

past and current ranges overlapping only slightly.

Climate envelope model, current conditions

For all CEMs, we identified a threshold that produced

range sizes similar to current potential ranges as mod-

eled with the MM (RRS � 0; Table 1). However, there

was variation in how well CEMs reproduced the spatial

extent of the ranges modeled with the MM at this

threshold (Fig. 2). Maxent had the highest OI, with a

median value of 0.91 (when using six environmental

variables), which was marginally higher than Bioclim

(0.90). OI for GAM was 0.84, while Domain had the

lowest score (0.77). Maxent and Bioclim also had the

lowest median FPR and FNR, again with Domain hav-

ing the poorest score. Results were similar for the

predictions made when using 16 variables.

Climate envelope model, past, and future conditions

The results for past and future conditions varied strongly

between models (Fig. 2; Table 2). Domain substantially

underpredicted species ranges, particularly for past

climate conditions. It had a strong and statistically

significant (P � 0.01) decrease in RRS, OI, and FPR and

an increase in FNR under both past and future climates.

Bioclim performed much better than Domain across all

evaluation measures but it tended to underpredict, espe-

cially when using 18 variables (Fig. 2). Bioclim stood out

for a very low FPR but, in accordance with its low RRS,

it had a relatively high FNR, especially when running

the model with 18 climate variables. The FPR for current

conditions was not significantly different from that

for future or past conditions. Under future and past

climates, GAM predicted range sizes that were similar

to those predicted with the MM (RRS � 0) and its OI

was better than, or comparable with that of Bioclim.

RRS for Maxent was close to zero, but not as close

as for GAM. Maxent was the only model that had

a median RRS40, that is, it predicted larger range

sizes than the MM. The relatively high RRS is accom-

panied by a relatively high OI (i.e. most of the areas

predicted suitable are correctly classified). A high RRS

could come at the expense of a high FPR. However, the

median FPR for Maxent was not always higher than for

Table 1 Thresholds used to assign presence or absence to

grid cells for the four statistical models used, for the runs with

six and 18 environmental variables

6 variables 18 variables

Bioclim 0.07 0

Domain 93 93

GAM 0.67 0.56

Maxent 7 6

GAM, General Additive Modeling.

Fig. 2 Relative range size (RRS), overlap index (OI), false posi-

tive rate (FPR), and false negative rate (FNR) for a comparison

between the results obtained with four climate envelope models,

Bioclim (BIO), Domain (DOM), General Additive Modeling

(GAM), and Maxent (MAX) and the results obtained with a

mechanistic model. Six (upper panel) or 18 (lower panel) climatic

variables were used in the modeling of 100 plant species for

current (C), future (F; 2�CO2 conditions), and past (P; Last glacial

maximum, 21 000 BP) conditions. Median values are shown, with a

line between the 10th and 90th percentile. For legibility, some lines

have been truncated, but in those cases the values of the

10th or 90th percentile are provided at the point of truncation.
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GAM, albeit that it was highly variable for Maxent,

indicating that while its performance is good overall,

predictions for a few species may be quite poor.

For Domain and Bioclim there was a clear effect of the

number of environmental variables used on RRS and OI

with the results becoming worse when more variables

were used (Fig. 2). The results obtained with GAM were

less affected, but GAM performed better when only six

instead of 18 climatic variables were used (Table 2). For

Maxent the results obtained with six and with 18

variables were similar.

Discussion

The output of the MMs allowed us to evaluate the

ability of CEMs to predict species distributions across

time (climate regimes), independently of nonclimatic

factors that influence true species distributions and that

can make model results difficult to evaluate. MMs

predicted marked range reductions for the colder cli-

mate and shifted locations for both colder and warmer

climates than today. We found considerable variation

between CEMs in their ability to reproduce these pre-

dictions, as was to be expected given previously re-

ported variation in such predictions (Thuiller, 2003,

2004; Pearson et al., 2006). Maxent and GAM provided

reasonably good estimates of potential range shifts with

climate change. Domain strongly underestimated range

sizes. This model should not be used to predict the

effects of climate change on species distributions. Bio-

clim performed better than Domain, but not as well as

the other two models, because Bioclim systematically

underpredicts range sizes.

Of the four climate envelope modeling methods ex-

amined here, GAM might be the most appropriate if the

objective is to predict the likelihood of species extinc-

tion because it predicted relative range size most faith-

fully. Maxent had high spatial concordance with MMs

(high OI) and low false negative rates, which came at a

cost of a slight increase in RRS (41), relative to GAM.

For many applications, the benefit of having a more

accurate spatial representation of species distribution

patterns under different climates would offset the cost

of an increase of RRS. However, Maxent did show high

variation in RRS and FPR, with occasional very strong

overprediction, something that GAM and particularly

Bioclim were much less prone to. Bioclim can be used as

a conservative approach, for example, in the context of

reserve planning. It will likely underestimate future

ranges, but there is a high probability that areas identi-

fied as suitable for a species will be correctly identified.

Examining the mathematical properties of the climate

envelope modeling methods can help explain the dif-

ferences in their performance. Domain uses the Gower

distance metric to calculate suitability for a grid cell by

calculating a mean (over climate variables) weighted

distance of a grid cell to the nearest (in climate space)

occurrence point. All occurrence points are treated

separately and, unlike in the other models, there is no

generalization (creation of response functions). With a

change in climate, the average environmental distance

of the sites (grid cells) to the occurrence points is much

more likely to increase than to decrease. In other words,

Domain is probably very sensitive to the occurrence of

new combinations of the environmental variables and

this negatively affects its ability to predict a species’

Table 2 Statistical significance of differences between performance under future and past climate conditions of four climate

envelope models relative to their performance under current conditions

Bioclim Domain GAM Maxent

Future Past Future Past Future Past Future Past

6 variables

RRS o0.01 o0.01 o0.01 o0.01 0.50 0.19 0.05 0.01

OI o0.01 o0.01 o0.01 o0.01 0.27 0.01 0.31 0.25

FPR 0.34 0.80 0.01 o0.01 0.12 0.92 0.01 o0.01

FNR o0.01 o0.01 o0.01 o0.01 0.64 0.01 0.85 0.15

18 variables

RRS o0.01 o0.01 o0.01 o0.01 0.61 o0.01 0.25 o0.01

OI o0.01 o0.01 o0.01 o0.01 o0.01 o0.01 0.32 0.22

FPR 0.68 0.13 o0.01 o0.01 0.16 0.60 0.01 o0.01

FNR o0.01 o0.01 o0.01 o0.01 0.01 o0.01 0.85 0.02

Calculated using the Wilcoxon test (5Mann–Whitney U-test) for four indices (see text): relative range size (RRS), overlap index (OI),

false positive rate (FPR), and false negative rate (FNR), with n 5 100 plant species, and for models run with six or 18 environmental

variables.

GAM, General Additive Modeling.
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response to climate change. Bioclim uses independent

percentile distributions and is, therefore, less likely to

be very sensitive to the occurrence of new combinations

of environmental variables. However, if one or more

environmental variables are outside what was observed

in the current climate, even if this is not truly a limiting

factor, then Bioclim will underpredict (Fig. 3). GAM and

Maxent both use presence and absence (or random

background) data. This likely makes them able to

correctly identify as suitable at least some of the ‘new’

environmental space if the conditions are closer to the

conditions under which the species is currently present

than to the conditions under which it is absent. Accord-

ingly, Maxent and GAM both seemed to be able to

predict species distributions under novel combinations

of climate space.

The number of environmental variables used for

modeling strongly influenced the results with both

Domain and Bioclim. This contrasts with the results of

Beaumont et al. (2005), who found that Bioclim was

insensitive to the number of variables used. The extent

to which the number of variables influences the results

should be related to how correlated they are, and

perhaps that explains the differences between our re-

sults and those of Beaumont et al. (2005). GAM and

Maxent were much less influenced by the number of

variables used than either Bioclim or Domain. GAM

and Maxent use variable selection (stepwise variable

selection in the GRASP implementation of GAM) or

weighting and should thus be inherently less sensitive

to possible model overfitting. In some cases, Maxent

may have removed too many variables, leading it to

occasionally strongly overpredict range sizes.

We can only speculate whether the results reported

by Thomas et al. (2004) are affected by the modeling

artifacts uncovered here, but it certainly is a possibility

that some of the modeling approach used in that study

suffered from this problem. Of the nine data sets

considered by Thomas et al., two had been analyzed

with Bioclim, and one with an approach that appears to

combine aspects of Domain and Bioclim. For example,

Bioclim was used to model the effect of climate change

on Australian butterflies. This work was reported ex-

tensively by Beaumont et al. (2005) who used Bioclim to

model the distribution of 25 species in various ways

and found that in 91% of 300 cases the species declined

in range. Our findings suggest that these results might

be an artifact of the Bioclim model, and that this may

have biased the results obtained by Thomas et al. (2004).

Our results also suggest that that some CEMs can

indeed be useful to predict the effect of climate change

on species distributions. CEMs were also reasonably

good at predicting the distributions of British birds

under recent climate change (Araújo et al., 2005a, b);

and were able to predict changes in range sizes that are

similar to those predicted from molecular data (Ruegg

et al., 2006). While these results are encouraging, several

caveats need consideration. In our experimental design,

we purposefully eliminated nonclimatic effects on spe-

cies distributions, a basic assumption that is always

made when using CEMs to assess the effect of climate

change (Pearson & Dawson, 2003). In reality, species

distributions may be limited by both biotic and abiotic

factors such as species interactions and dispersal limita-

tion (Davis et al., 1998; Kearney & Porter, 2004; Araújo &

Pearson, 2005; Guisan & Thuiller, 2005), some of which

are anthropogenic (La Sorte, 2006). Further, most data

used for CEMs are from natural history collections and

may have inaccurate georeferences (Wieczorek et al.,

2004), and are biased in geographic space (Hijmans

et al., 2000) which can lead to biased distributions in

environmental space (Kadmon et al., 2004). While sig-

nificant progress in increasing the accuracy of CEMs

has been made, model accuracy is still low for some

regions and species (Elith et al., 2006). Moreover, the

best models for predicting current distributions might

‘overfit’ the data and such loss of generality could make

them less suitable to predict future distributions (Ran-

din et al., 2006).

In conclusion, we believe that progress in using CEMs

to predict the effect of climate change on species dis-

Fig. 3 Schematic description of predicting the distribution of a

species under different climates using two climate envelope

models, Bioclim, and Domain. There are 15 sites, with different

climates in the two time periods. The true requirements of the

species are constant and indicated with an ellipsoid. The inferred

requirements do not fully overlap with the true requirements

because there are insufficient sites where the species has been

observed and/or because parts of the true niche are currently not

present on the landscape, and because the model methods are

imperfect. Under future conditions, model performance is di-

minished because some sites are incorrectly classified as not

having the species (false negatives).
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tributions can be made through a number of comple-

mentary approaches, including (1) improving data and

modeling methods for predicting current distributions

(Graham et al., 2004; Guisan & Thuiller, 2005; Elith et al.,

2006); (2) evaluating the ability of CEMs to provide

accurate estimates of the effect of climate change by

comparing them with mechanistic approaches, as was

done in this paper; (3) increasing understanding of the

drivers of species distributions, and the extent to which

these are directly related to individual climatic variables

(Kearney & Porter, 2004; Gavin & Hu, 2006), and how

responses to climate change are affected by genetic

variability (Harte et al., 2004); (4) comparing predicted

past distributions with insights from fossil, pollen,

and molecular data (Hugall et al., 2002; Martı́nez-Meyer

et al., 2004; Ruegg et al., 2006); and (5) integrating

CEM and mechanistic modeling approaches (Midgley

& Thuiller, 2005).
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Carbon-Negative Biofuels
from Low-Input High-Diversity
Grassland Biomass
David Tilman,1* Jason Hill,1,2 Clarence Lehman1

Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can
provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per
hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly
higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD
biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram
hectare−1 year−1 of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during
biofuel production (0.32 megagram hectare−1 year−1). Moreover, LIHD biofuels can be produced on
agriculturally degraded lands and thus need to neither displace food production nor cause loss of
biodiversity via habitat destruction.

Globally escalating demands for both
food (1) and energy (2) have raised
concerns about the potential for food-

based biofuels to be sustainable, abundant, and
environmentally beneficial energy sources. Cur-
rent biofuel production competes for fertile
land with food production, increases pollution
from fertilizers and pesticides, and threatens
biodiversity when natural lands are converted
to biofuel production. The two major classes of
biomass for biofuel production recognized to
date are monoculture crops grown on fertile
soils (such as corn, soybeans, oilseed rape,
switchgrass, sugarcane, willow, and hybrid
poplar) (3–6) and waste biomass (such as straw,
corn stover, and waste wood) (7–9). Here, we
show the potential for a third major source of
biofuel biomass, high-diversity mixtures of
plants grown with low inputs on agriculturally
degraded land, to address such concerns.

We performed an experiment on agricul-
turally degraded and abandoned nitrogen-poor
sandy soil. We determined bioenergy produc-
tion and ecosystem carbon sequestration in 152
plots, planted in 1994, containing various
combinations of 1, 2, 4, 8, or 16 perennial
herbaceous grassland species (table S1) (10).
Species composition of each plot was deter-
mined by random draw from a pool of species.
Plots were unfertilized, irrigated only during

establishment, and otherwise grown with low
inputs (10). The 16-species plots are the high-
est diversity, or the LIHD (low-input, high-
diversity), treatment. All plots were burned in
early spring to remove aboveground biomass
before growth began. Soil samples, collected
before planting in 1994 and again in 2004,
determined carbon sequestration in soil. Plots
were sampled annually from 1996 to 2005 for
aboveground biomass production.

Annual production of aboveground bio-
energy (i.e., biomass yield multiplied by energy
released upon combustion) (10) was an ap-
proximate log function of planted species num-
ber (Fig. 1A). On average for the last 3 years of
the experiment (2003–2005), 2-, 4-, 8-, and 16-
species plots produced 84%, 100%, 157%, and
238% more bioenergy, respectively, than did
plots planted with single species. In a repeated
measures multivariate analysis of variance,
annual bioenergy production was positively
dependent on the number of planted species
(F1, 155 = 68.4, P < 0.0001), on time (F9, 147 =
8.81, P < 0.0001), and on a positive time-by-
species number interaction (F9, 147 = 11.3, P <
0.0001). The interaction occurred because
bioenergy production increased more through
time in LIHD treatments than in monocultures
and low-diversity treatments, as shown by the
ratio of bioenergy in LIHD (16 species) plots to
those in 8-, 4-, 2-, and 1-species plots (Fig. 1B).

The gross bioenergy yield from LIHD
plots was 68.1 GJ ha−1 year−1. Fossil energy
needed for biomass production, harvest, and
transport to a biofuel production facility was
estimated at 4.0 GJ ha−1 year−1 (table S2).

Different biofuel production methods capture
different proportions of bioenergy in deliver-
able, usable forms (Fig. 2) (10). Cocombus-
tion of degraded land LIHD biomass with coal
in existing coal-fired electric generation facili-
ties would provide a net gain of about 18.1 GJ
ha−1 as electricity (11). Converting LIHD bio-
mass into cellulosic ethanol and electricity is
estimated to net 17.8 GJ ha−1 (12). Conver-
sion into gasoline and diesel synfuels and
electricity via integrated gasification and com-
bined cycle technology with Fischer-Tropsch
hydrocarbon synthesis (IGCC-FT) is estimated
to net 28.4 GJ ha−1 (10, 13). In contrast, net
energy gains from corn and soybeans from
fertile agricultural soils are 18.8 GJ ha−1 for
corn grain ethanol and 14.4 GJ ha−1 for
soybean biodiesel (14). Thus, LIHD biomass
converted via IGCC-FT yields 51% more
usable energy per hectare from degraded in-
fertile land than does corn grain ethanol from
fertile soils. This higher net energy gain results
from (i) low-energy inputs in LIHD biomass
production because the crop is perennial and is
neither cultivated, treated with herbicides, nor
irrigated once established and likely requires
only phosphorus replacement fertilization be-
cause nitrogen is provided by legumes; (ii) the
more than 200% higher bioenergy yield
associated with high crop biodiversity; and
(iii) the use of all aboveground biomass, rather
than just seed, for energy. LIHD biofuels also
provide much greater net energy outputs per
unit of fossil fuel input than do current biofuels
[net energy balance (NEB) ratios of Fig. 2].
Fertile lands yield about 50% more LIHD
biomass (and bioenergy) than our degraded
soils (15, 16).

Annual carbon storage in soil was a log
function of plant species number (Fig. 1C).
For 1994–2004, there was no significant net
sequestration of atmospheric CO2 in mono-
culture plots [mean net release of CO2 of 0.48 ±
0.44 Mg ha−1 year−1 (mean ± SE)], but, in
LIHD plots, there was significant soil sequestra-
tion of CO2 (2.7 ± 0.29 Mg ha−1 year−1). Soil
carbon storage occurred even though all above-
ground biomass-based organic matter was re-
moved annually via burning. Periodic resampling
of soils in a series of prairie-like agriculturally
degraded fields found C storage rates similar to
those of the LIHD treatment and suggested that
this rate could be maintained for a century (17).
The observed annual rate of change in soil C at
a particular soil depth declined with depth (P =
0.035), suggesting that an additional 5% more
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C may be stored in soils deeper than we mea-
sured (below 60 cm depth).

In 2004, after 10 years of growth, atmo-
spheric CO2 sequestration in roots was a log
function of plant species numbers (Fig. 1D).
On an annual basis, 0.62 Mg ha−1 year−1 of
atmospheric CO2 was sequestered in roots of
species grown in monocultures, and 160%
more CO2 (1.7 Mg ha−1 year−1) was captured
in roots of 16-species plots. Multiple regres-
sion showed that root CO2 sequestration
(Mg ha−1 of CO2) increased as a log function of
plant species number (S), as a log function of
time (Year), and their interaction {Croot = –1.47 +
6.16log10(S) + 9.64log10(Year) + 9.60[log10(S) –
0.613][log10(Year) – 0.782] where Year = 3
for 1997, the first time roots were sampled;
overall F3, 1260 = 191, P < 0.0001; for log10(S),
F1, 1260 = 398, P < 0.0001; for Year, F1, 1260 = 148,
P = 0.0001; for S × Year, F1, 1260 = 27.3, P =
0.0001}. This regression suggests that most
root carbon storage occurred in the first decade
of growth; during the second decade, roots of
16-species plots are projected to store just 22%
of C stored during the first decade. Measure-
ments at greater depths in 10 LIHD plots sug-
gest that 43% more C may be stored in roots
between 30 and 100 cm.

LIHD plots had a total CO2 sequestration
rate of 4.4 Mg ha−1 year−1 in soil and roots
during the decade of observation. Trends sug-
gest that this rate might decline to about 3.3
Mg ha−1 year−1 during the second decade be-
cause of slower root mass accumulation. In

contrast, the annual rate of CO2 sequestration
for monocultures was 0.14 Mg ha−1 year−1 for
the first decade and projected to be indis-
tinguishable from zero for subsequent decades.

Across their full life cycles, biofuels can be
carbon neutral [no net effect on atmospheric

CO2 and other greenhouse gases (GHG)], car-
bon negative (net reduction in GHG), or carbon
sources (net increase in GHG), depending on
both how much CO2 and other greenhouse
gases, expressed as CO2 equivalents, are re-
moved from or released into the atmosphere

Fig. 1. Effects of plant diversi-
ty on biomass energy yield and
CO2 sequestration for low-input
perennial grasslands. (A) Gross
energy content of harvested
aboveground biomass (2003–
2005 plot averages) increases
with plant species number. (B)
Ratio of mean biomass energy
production of 16-species (LIHD)
treatment to means of each
lower diversity treatment. Di-
verse plots became increasingly
more productive over time. (C)
Annual net increase in soil
organic carbon (expressed as
mass of CO2 sequestered in
upper 60 cm of soil) increases
with plant diversity as does (D)
annual net sequestration of
atmospheric carbon (as mass
of CO2) in roots of perennial
plant species. Solid curved lines
are log fits; dashed curved lines
give 95% confidence intervals
for these fits.

Fig. 2. NEB for two food-based biofuels (current biofuels) grown on fertile soils and for LIHD biofuels
from agriculturally degraded soil. NEB is the sum of all energy outputs (including coproducts) minus the
sum of fossil energy inputs. NEB ratio is the sum of energy outputs divided by the sum of fossil energy
inputs. Estimates for corn grain ethanol and soybean biodiesel are from (14).
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during crop growth and how much fossil CO2

is released in biofuel production. Both corn
ethanol and soybean biodiesel are net carbon
sources but do have 12% and 41% lower net
GHG emissions, respectively, than combustion
of the gasoline and diesel they displace (14). In
contrast, LIHD biofuels are carbon negative,
leading to net sequestration of atmospheric
CO2 across the full life cycle of biofuel pro-
duction and combustion (table S3). LIHD
biomass removed and sequestered more atmo-
spheric CO2 than was released from fossil fuel
combustion during agriculture, transportation,
and processing (0.32 Mg ha−1 year−1 of CO2),
with net life cycle sequestration of 4.1 Mg ha−1

year−1 of CO2 for the first decade and an
estimated 2.7 to 3 Mg ha−1 year−1 for subse-
quent decades. GHG reductions from use of
LIHD biofuels in lieu of gasoline and diesel
fuel are from 6 to 16 times greater than those
from use of corn grain ethanol and soybean
biodiesel in lieu of fossil fuels (Fig. 3A).

LIHD biofuel production should be sustain-
able with low inputs of agrichemicals, as in our
study. Legumes in LIHD plots can supply nitro-
gen (18). In our experiment, total soil nitrogen
of LIHD plots increased 24.5% (P < 0.001)
from 1994–2004, but monoculture total soil
nitrogen was unchanged (P = 0.83). However,
some amount of N fertilization may be useful in
dry habitats that lack efficient N-fixing species.
Application of P or other nutrients may be
needed if initially limiting or to replace nutrient
exports (Fig. 3B). Production may be sustainable
with low pesticide use, because plant disease
incidence and invasion by exotic species are low
in high-diversity plant mixtures (Fig. 3C) (19).

Switchgrass (Panicum virgatum), which is
being developed as a perennial bioenergy crop,

was included in our experiment. Switchgrass
monocultures can be highly productive on fer-
tile soils, especially with application of pesti-
cides and fertilizer (20, 21). However, on our
infertile soils, switchgrass monoculture bio-
energy [23.0 ± 2.4 GJ ha−1 year−1 (mean ± SE)]
was indistinguishable from mean bioenergy of
monocultures of all other species (22.7 ± 2.7
GJ ha−1 year−1) and yielded just a third of the
energy of LIHD plots (10).

How much energy might LIHD biomass
potentially provide? For a rough global estimate,
consider that about 5 × 108 ha of agriculturally
abandoned and degraded land producing bio-
mass at 90 GJ ha−1 year−1 (22) could provide, via
IGCC-FT, about 13% of global petroleum con-
sumption for transportation and 19% of global
electricity consumption (2). Without accounting
for ecosystem CO2 sequestration, this could
eliminate 15% of current global CO2 emissions,
providing one of seven CO2 reduction “wedges”
needed to stabilize global CO2 (23). GHG
benefits would be larger if LIHD biofuels were,
in general, carbon negative, as might be expected
if late-successional native plant species were
used in LIHD biomass production on degraded
soils [e.g., (17)].

The doubling of global demand for food
and energy predicted for the coming 50 years
(1, 2) and the accelerating use of food crops
for biofuels have raised concerns about bio-
diversity loss if extant native ecosystems are
converted to meet demand for both food and
biofuels. There are also concerns about envi-
ronmental impacts of agrichemical pollution
from biofuel production and about climate
change from fossil fuel combustion (14, 24–26).
Because LIHD biomass can be produced on
abandoned agricultural lands, LIHD biofuels

need neither compete for fertile soils with food
production nor encourage ecosystem destruction.
LIHD biomass can produce carbon-negative
biofuels and can reduce agrichemical use com-
pared with food-based biofuels. Moreover, LIHD
ecosystem management may provide other
ecosystem services, including stable production
of energy, renewal of soil fertility, cleaner ground
and surface waters, wildlife habitat, and recre-
ation (18, 19, 24, 27, 28). We suggest that the
potential for biofuel production and carbon
sequestration via low inputs and high plant
diversity be explored more widely.
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Fig. 3. Environmental ef-
fects of bioenergy sources.
(A) GHG reduction for com-
plete life cycles from bio-
fuel production through
combustion, representing
reduction relative to emis-
sions from combustion of
fossil fuels for which a
biofuel substitutes. (B) Fer-
tilizer and (C) pesticide
application rates are U.S.
averages for corn and soy-
beans (29). For LIHD bio-
mass, application rates are
based on analyses of table
S2 (10).
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What Is Natural? The Need for
a Long-Term Perspective
in Biodiversity Conservation
K. J. Willis1* and H. J. B. Birks2

Ecosystems change in response to factors such as climate variability, invasions, and wildfires. Most
records used to assess such change are based on short-term ecological data or satellite imagery
spanning only a few decades. In many instances it is impossible to disentangle natural variability
from other, potentially significant trends in these records, partly because of their short time scale.
We summarize recent studies that show how paleoecological records can be used to provide a
longer temporal perspective to address specific conservation issues relating to biological invasions,
wildfires, climate change, and determination of natural variability. The use of such records can
reduce much of the uncertainty surrounding the question of what is “natural” and thereby start to
provide important guidance for long-term management and conservation.

Paleoecological records (e.g., fossil pollen,
seeds and fruits, animal remains, tree
rings, charcoal) spanning tens to millions

of years provide a valuable long-term perspec-
tive on the dynamics of contemporary ecologi-
cal systems (1). Such studies are increasingly
becoming part of community and landscape
ecological research (2). In contrast, conservation-
related research largely ignores paleoecological
records. For example, there are no temporal
records spanning more than 50 years included in
any of the key biodiversity assessments pub-
lished over the past 7 years (3). Paleoecological
records have been considered too descriptive
and imprecise, and therefore of little relevance to
the actual processes of conservation and man-
agement. Such criticisms may have been valid
30 years ago, but there is now a wealth of
information in paleoecological records pro-
viding detailed spatial and temporal resolutions
(1, 4–7) that match in detail most records
currently used in conservation research.

The potential of paleoecological records in
conservation biology has been highlighted
several times, including their application to bio-
diversity maintenance, ecosystem naturalness,
conservation evaluation, habitat alteration, chang-
ing disturbance regimes, and invasions [e.g.,
(8–14)]. Conservation of biodiversity in a
changing climate (15) and the relevant tempo-
ral and spatial scales for ecological restoration
(16) have also been considered to warrant a
longer-term temporal perspective. Most of

these studies are descriptive and provide little
practical application. A number of recent
applied paleoecological studies, however, have
begun to provide direct management infor-
mation for biodiversity conservation at local,
regional, and global scales. These include
recommendations relating to biological inva-
sions, wildfires, climate change, and conserva-
tion management within thresholds of natural
variability. The overriding message from these
studies is that such temporal perspectives are
essential for meaningful modeling, prediction,
and development of conservation strategies in
our rapidly changing Earth.

Biological Invasions
Biological invasions are of critical concern to
conservation organizations worldwide, with a
general perception that many invasives are
responsible for widespread community change
and even extinctions (17). At the Rio Earth Sum-
mit Convention on Biological Diversity in 1992,
for example, binding signatories were made “to
prevent the introduction of, control or eradicate
those alien species which threaten ecosystems,
habitats or species” (18). However, biological
invasions are complex. Some regions are more
prone to invasion, certain species are more
successful invaders than others, and sometimes
it is even unclear whether a species is alien or
native. The importance of the historical record in
improving our ability to predict the outcome of

non-native introductions has been acknowledged
[e.g., (13, 14)], but several recent paleoecological
studies provide direct guidelines for the identifi-
cation and management of invasives.

The distinction between what is native and
what is not is often unclear. A species is usually
classified as either native or exotic according to
whether it is located in its presumed area of
evolutionary origin and/or whether human agen-
cy is responsible for its current distribution. In
the absence of a temporal record to assess a spe-
cies history, the distinction can often become
blurred (16). For example, in a reexamination of
the British flora, several discrepancies between
published records were found, with the same
species being classified as “alien” or “native” de-
pending on personal interpretation (19) (Table 1).
There is also the question of how far back one
takes “human” activity in determining whether a
species is native or alien.When using evidence of
first occurrences of species based on paleoeco-
logical records to reassess “doubtful natives” in
the British flora, Preston et al. (19) determined
that at least 157 plant species had been intro-
duced to Britain by humans, intentionally or
unintentionally, from the start of the Neolithic
period (about 4000 years ago) to 500 years ago,
yet the terminology used for their classification
according to different floras is highly variable
(Table 1). Preston et al. proposed that such
species should be classified separately as
“archaeophytes.” They acknowledged, however,
that this causes problems with their conservation
status because this “non-native” label excludes
them from the British Red Data Book of
threatened or near-extinct species, and auto-
matically deems them to be of lower conserva-
tion value—even though some are in serious
decline and have been part of the British flora for
at least 500 years.

A similarly conflicting conservationmessage
was reached in an applied paleoecological study
on the origin of an invasive form of the com-
mon reed (Phragmites australis) in the marshes
of the inland wetlands of Lake Superior, North
America (20) (Fig. 1). Over recent decades,
P. australis populations have expanded rapidly
throughout the coastal wetlands of North
America, creating substantial changes in com-
munity structure and composition. In this
study, paleoecological and genetic analyses
were used to determine when the common reed
became established in this region and whether
the source was from a native or non-native
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Table 1. Classification of 157 species of British plants that were probably introduced more than
500 years ago (archaeophytes) according to three published floras (54–56).

Published
flora Native Doubtful

native Introduced Probably
introduced

Uncertain or
untreated Total

Dunn, 1905 (54) 31 — 103 — 23 157
Clapham et al., 1952 (55) 85 19 30 10 13 157
Stace, 1991 (56) 77 27 39 14 0 157
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population. A 4000-year paleoecological record
indicated that reeds were not part of the local
flora until very recently (several decades), and
that their recent expansion was probably linked
to changes in water levels in the wetlands and
human-induced changes to the landscape. The
simple conservation message from this study is
therefore to eradicate or control reed populations,
because the expansion was recent and is likely to
cause serious changes to the wetlands communi-
ty. However, genetic data from these reed pop-
ulations add another level of complexity because
they indicate that the reeds are a native variety,
raising the question of whether this is an exotic or
natural invasion.

Oceanic islands are particularly liable to in-
vasions, and it is often difficult to assess whether
particular species are native or introduced. The
invasive ornamental club moss Selaginella
kraussiana, for example, is widely planted in the
Neotropics, southern United States, Australasia,
and western Europe. It is common on the Azores
Islands in a range of habitats, but is it native there?
Paleoecological records (21) (Fig. 2) clearly show
that S. kraussiana had been present on Flores in
the Azores for several thousand years before
Portuguese discovery and Flemish settlement in
the 15th century, thereby establishing beyond
doubt its native status on Flores Island. Paleoecol-
ogy again helped here to resolve a question in
biodiversity conservation.

Another key question is whether invasive
species are the triggering mechanism for eco-
system change, or merely opportunists taking
advantage of environmental change caused by
other biotic or abiotic factors? Also, are there
particular factors that make a habitat more
susceptible to invasion? A study of the coloniza-
tion and spread of invasive shrubs in native
shrublands and early successional forests in the
northeastern United States, for example, found
that prevalence of agricultural fields (historic and
present-day) was the most influential factor
affecting the colonization and spread of invasive
shrubs (22). These native shrublands and early
successional forests currently have high conser-
vation status because of their diversity of ter-
restrial vertebrates. By considering the temporal
dimension, the authors argue that it should be
possible to identify those early successional
habitats that may be especially prone to exotic
invasion and ought to be of higher conservation

priority. This study used only 40 years of temporal
data, but studies incorporating longer temporal
time scales have also illustrated persistent legacies
of ancient land use that may influence the
vulnerability of a site to invasion (12), including
differences in soil pH, C, and N values. These
imprints can last for decades to centuries. The
identification of former land use by paleoecolog-
ical records can thus be a tool for understand-
ing and determining a habitat’s vulnerability to
invasion.

Introductions of non-native species often ap-
pear to fail a number of times before they even-
tually succeed; therefore, there is a lag between
first colonization and population expansion of
the invasive species (23). The reasons for re-
sistance to invasion are complex and can have as
much to do with environmental variables and
extreme events as with demographic and biotic
factors (6, 7). A study using paleoecological
records has shown that consideration should be
given to biological inertia (24), whereby a native
community occurs where environmental con-
ditions are no longer optimal but will remain in
situ without any triggering mechanism (e.g.,
hurricanes, windthrow, etc.) to “remove” this
resident population. Thus, the life history char-
acteristics and biology of the resident species,
and not the properties of the invading species,
are responsible for invasion lags. This phenom-
enon is particularly apparent in forest ecosys-
tems. In many current old-growth forests in
western North America, paleoecological studies
have shown that these stands were established
during the cooler and moister climate of the
Little Ice Age (about 650 to 150 years ago) and
therefore reflect recruitment responses to former

climate conditions (25). Such
information about ecological
legacies (1) is directly relevant
to conservation because such
forests may be at a critical
threshold and may be particu-
larly vulnerable to invasion after
a disturbance event, either
natural or human-induced.

Wildfires
Wildfires have been important
in shaping the structure and
function of fire-prone com-
munities throughout Earth’s
history (26). Of particular con-
cern to conservationists, howev-
er, are changes in the frequency,
severity, and extent of burning
from those perceived as the
“norm” (27). What processes
are driving this change (human
or climate)? How will it affect
the composition of plants and
animals in ecosystems, in partic-
ular those already identified as
vulnerable? And are there par-
ticular management techniques

Fig. 1. Native (?) common reed (Phragmites
australis) growing in Bark Bay Slough on Lake
Superior, North America [photo: E. A. Lynch];
rattlesnake (Crotalus mitchellii stephensi) in the
warm desert of western North America [photo:
Blake L. Thompson]; wood grouse or western
capercaillie (Tetrao urogallus) in the Cantabrian
Mountains, northern Spain [photo: E. Menoni].
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tree, shrub, and herb pollen and of Selaginella kraussiana
spores before and after human occupation of the island.
[Modified from (21)]
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that can be implemented to alter fire regimes?
Fundamental to these questions is establishing
the natural variability of wildfires so that this
can be used as a benchmark against which to
evaluate contemporary conditions and future
alternatives (28). Assessments based on short-
term records (<50 years) can easily lead to
misguided management plans (29).

Although climate change and human activ-
ities have long been acknowledged as drivers
of wildfires, results from recent paleoecological
studies show that these relationships are
complex. For example, although it is not
unreasonable to assume that an increase in
aridity would result in more fires, several studies
indicate otherwise. In the Alaskan boreal forest,
fires occurred more frequently under wetter
climatic conditions (30). A similar conclusion
was reached in a paleoecological study of fire
cycles in the Northern Great Plains
grasslands of North America (31).
Here, the highest charcoal flux
occurred during past moist inter-
vals when grass cover was exten-
sive and fuel loads were high.
Shifts in fuel quantity and quality
can cause changes in fire regimes.
Both studies show that there is a
complex climate-fuel-fire relation-
ship determining the variability of
wildfires (32). Such studies (33)
should be taken into account
when predicting future ecosystem
change within climate change
conservation strategies.

Prehistoric and historic human-
induced wildfires are often as-
sumed to have caused changes in
ecosystem structure and degrada-
tion, especially in tropical forests
where natural fires are rare and
tend to be limited in extent. Man-
agement plans to control such fires
are usually implemented, however,
without paleoecological evidence
to confirm such an assumption. One such
example is in the tropical dry forests of the
southern Ratanakiri Province, northeastern
Cambodia (34). Here, regional conservation
policy is based on the premise that burning by
humans has degraded the dense forests and
resulted in the present open forest–savanna
mosaic. However, a paleoecological study
shows that present-day fire activity is now
lower than it has been for the past 9300 years
(Fig. 3). Rather, the forest-savanna shift is
probably a consequence of monsoonal activity,
and the high-frequency but low-intensity fires
caused by humans may, in fact, conserve forest
cover. In this case, the current conservation man-
agement plan is clearly at odds with evidence
from the paleoecological record.

Interesting conclusions have also emerged
from studies examining ecosystem composition
in response to fire regimes. One of the main

findings of the work on the North American
grasslands described above, for example, is that
fire is not necessarily a universal feature of this
ecosystem but oscillates through time with cli-
mate (31). The impact of such variability in
burning regimes through time on ecosystem
composition can have conservation implica-
tions. This is well illustrated in a study on the
long-term record of fire and open canopy in a
forest in southern Sweden that contains an ex-
ceptionally large number of endangered species
of beetle (35). Of the 105 beetle species recorded
at this site living on or in rotting wood that are in
the Swedish Red Data Book of threatened or
near-extinct species, many are associated with
open forest, forest fires, or structures created
by fire. Yet a site-scale paleoecological study
indicates that the forest is more closed today
than at any time in the past 2500 years; although

there had been a significant amount of burning in
the past, there has been a large reduction in fires
over the past 200 years. The authors concluded
that openness of the site in the past as a
consequence of burning is an important ex-
planation for the high conservation value of the
site today (35). To conserve the diverse beetle
assemblage of this site, they suggested that open
forest conditions needed to be restored and that
prescribed burns would be the most appropriate
way to achieve this.

Climate Variability
Most conservation organizations have devel-
oped climate change conservation strategies [as
described in (36)] designed to conserve bio-
diversity in a changing climate. Two questions
central to current conservation strategies arise.
Where will biota move to in response to future
climate change? Which species and regions are

most at risk from future climate change?
Underlying these questions are key management
and planning issues—for example, ensuring that
reserve boundaries allow for potential species-
range shifts (37) and that the species and regions
most at risk are identified and protected (38).

In the evaluation of predictive models to
determine the biogeographic effects of climate
change, several studies have used paleoecolog-
ical records for backward prediction (hindcast-
ing) to assess errors potentially inherent in
species-envelope bioclimatic modeling (39).
This involves running models for past intervals
of time, using present-day species data but mod-
eling the species’ response to climate change
against paleoclimatic data as opposed to present-
day climatic data. The predicted distributions are
then tested against the distribution of the species
apparent in the fossil record for the time interval

covered by the paleoclimatic data
to assess model robustness (40).
In a study of 23 extant mammal
species in the United States (39),
for example, an ecological niche
model was run backward for the
time interval of the Last Full
Glacial (14,500 to 20,500 years
before the present) and predicted
distributions were compared to
actual distribution records obtained
from the FAUNMAP fossil data-
base (41). The model was also run
in reverse (i.e., using fossil data
and paleoclimatic data to predict
present distributions) and similar
comparisons were made. Results
indicated that for nine species the
model was able to predict accu-
rately the Pleistocene distributions
from the present-day data, and vice
versa. Not only did this confirm
that the model was robust for these
species, it also provided a test for
the underlying assumption of these
models that the species’ ecological

niche characteristics have remained constant
through time. A similar pattern was recently
found for several North American plant species
(42). The remaining species, however, either had
significant predictions only one way but not the
other (nine species) or were not significant in
either direction (five species).

The question of why some species’ distribu-
tions cannot be accurately predicted by species-
climate modeling can also be answered, at least
for some species, from paleoecological studies.
A study of the spread of Picea abies (spruce)
and Fagus sylvatica (beech) over the past 4000
years in southern Scandinavia, for example,
showed that at the local-stand scale the spread
of Picea closely tracked the changing area of
suitable regional climate, whereas the spread of
Fagus was more directly linked to anthropogen-
ic activities and disturbance by fire (43). Thus,
caution may be needed in using the results of
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Fig. 3. Reconstructed fire regimes in northeastern Cambodian monsoonal
forests over the past 9300 years, using microfossil charcoal concentration
from a dated sedimentary sequence (34). The record indicates that present-
day charcoal input is the lowest of the entire period. Conservation policies
that suggest that human burning has increased and resulted in the open
forest–savanna mosaic in this region are clearly misguided, as are man-
agement recommendations for fire suppression.
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predictive species-envelope models in conser-
vation planning, because the distributions of
some species today or in the past may be poorly
predicted.

Bioclimatic models are particularly relevant
to conservationists in determining and under-
standing the dynamics of the leading edge of
species-range margins and the potential space
that will be needed for future reserve boundaries
(40). There is also a considerable literature on
modeling to determine which species will go
extinct [e.g., (38)]. However, there are few
studies of the likely fate of rear-edge popula-
tions, that is, the source populations from which
the leading-edge populations migrate (Fig. 4)
(44). A key conservation objective should be the
preservation of conditions necessary for specia-
tion (45). Evidence from paleoecological and
genetic records indicates that the maintenance of
populations in these rear-edge regions could, in
fact, be critical for conservation of long-term
genetic diversity (44). Evidence also suggests
that these regions tend to be where plants and
animals were geographically and genetically
isolated in refugia during the cold stages of the
Pleistocene. In Europe, for example, refugial
localities have been recognized in Iberia, the
Balkans, and Italy and in mountain ranges such
as the Carpathians (46–48).

With the use of a combination of paleoeco-
logical and genetic evidence, other such regions
have been identified, and this information is
feeding into conservation policy. For example,
in a study on Eurasian populations of western
capercaillie (grouse)—a keystone species of
Palearctic boreal and high-altitude coniferous
forests (49)—a combined genetic and temporal
record enabled the identification of two regions
that should be classified as ecologically signif-
icant units (ESUs) because of the genetic
distinctiveness of the populations within them
from the rest of Europe. The distinctiveness of
the populations in these ESUs, located in the
Pyrenees and Cantabrian Mountains (Fig. 1), is
almost certainly related to their Pleistocene
refugial isolation. Similar historically related
genetic patterns have been identified in these
two regions for a number of plants and animals,
and this knowledge is now leading to interna-
tional recognition of the conservation impor-
tance of these areas (49).

In the United States, a similar approach using
a molecular and deep-time historical perspective
as a primary mechanism to frame biodiversity
reserves (50) has been applied to a number of
groups of plants and animals. Distinctive
patterns of genetic diversity related to geological
events in deep time (Pliocene/Miocene) and to
Pleistocene refugial isolation have been demon-
strated, for example, in four rattlesnake species
(Fig. 1; genus Crotalus) in the warm deserts of
western North America (50). Here it is argued
that an approach that seeks to understand the
causation of genetic patterns would be more
effective in encapsulating biodiversity than

current measures (based on the use of geological
features as a surrogate for diversity) and that
such studies should be routinely used in de-
veloping integrated regional conservation poli-
cies (50).

Determination of Thresholds Within
Natural Variability
Variability through time is an inherent part of
ecosystem behavior. It is thus essential to in-
corporate variability into management policies.
To do this reliably in our rapidly changing world
requires answers to several questions. What are
the baseline or “reference” conditions before re-
cent times? What is the range of natural var-
iability? Under what conditions do negative
impacts become apparent? How can thresholds
be determined beyond which specific manage-
ment plans should be implemented?

Gillson and Duffin (51) used paleoecological
records from savannas in Kruger National Park,
South Africa, to determine the natural variability
of woody vegetation cover during the past 5000
years. They used this information to address
whether woody cover has decreased below 80%
of its “highest ever value”—a threshold set by
ecosystem managers to define the upper and
lower level of accepted variation in this eco-
system. Paleoecological results indicated that
during the past 5000 years, the estimated woody
vegetation cover had remained at about 20%
of its “highest ever value,” and therefore that
management intervention in this part of the
park is unnecessary at present.

Other examples where paleoecological
records have been used to identify where natural
thresholds have recently been exceeded include
river ecosystems in Australia (52) and Colorado
(53). The large deep billabongs in the middle
reaches of the Murray River, Australia, for ex-
ample, do not currently support submerged mac-

rophyte beds. Yet paleoecological analyses
indicate that these were an important part of
the ecosystem before the arrival of Europeans
(52). In the Colorado delta ecosystem (53), pa-
leoecological studies suggest that there has been
a decline of up to 94% of shelly benthic mac-
roinvertebrates over the past 75 years. This de-
cline is probably associated with a reduction of
fresh water and nutrients resulting from the
diversion of the Colorado River by dams and
irrigation projects. Both studies provide quan-
titative assessments of the relative health (4)
of these river ecosystems and indicate thresh-
olds that have been exceeded—information
that is critical to their restoration and long-term
conservation.

Conclusions
Conservation biology and nature management
are primarily concerned with the present and in-
creasingly with the future. Paleoecology primar-
ily considers the past but can provide a historical
perspective to the present (1). It can also con-
tribute to key questions in conservation and man-
agement such as habitat naturalness, biological
invasions, disturbance regimes, natural variabil-
ity, and ecosystem health. With increasing
amounts of paleoecological data of a high spatial
and/or temporal resolution (4, 5), there is po-
tential for synergy between conservation biology
and paleoecology. There are, however, several
research needs and challenges that need to bemet
before an effective synergy can fully develop.
These include the following:

1) Paleoecological studies in biodiversity
hotspots with a high density of species. At present
there are few studies from these critical areas.

2) Improved taxonomic resolution of the
fossils found, because improved resolution in-
variably enhances the biological value of fossil
records (5, 21).
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Fig. 4. Schematic representation of the leading and rear-edge populations in response to climate
change (44). Paleoecological and genetic evidence suggests that the rear-edge populations may be
extremely important in the conservation of long-term genetic diversity and that more attention
must be given to modeling the impacts of future climate change on these populations and their
protection.
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3) Assessing terrestrial paleoecological data
in terms of “ecosystem health” to provide an
ecosystem’s health history (4). Some taxa in
paleoecological records are “indicators” of par-
ticular ecological conditions that can provide
useful “symptoms” about the ecosystem’s health.
Paleolimnologists (4) have effectively applied the
concept of ecosystem health to lakes in relation
to critical loads of pollutants. The same concept
could be usefully applied to forests, heathlands,
grasslands, wetlands, tundra, and savannas.

4) Greater discussion and collaboration be-
tween paleoecologists and conservation biolo-
gists, so that the most pertinent and urgent
research questions are addressed together and
the most relevant paleoecological data are col-
lected at the spatial and temporal scales of direct
concern in conservation.

Paleoecology provides a historical perspec-
tive that can help put present and future con-
servation and management policies into context.
The time is ripe for the two disciplines to work
more closely together and to develop a common
agenda for biodiversity conservation.
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