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Abstract

Climate envelope models (CEMs) have been used to predict the distribution of species
under current, past, and future climatic conditions by inferring a species” environmental
requirements from localities where it is currently known to occur. CEMs can be evaluated
for their ability to predict current species distributions but it is unclear whether models
that are successful in predicting current distributions are equally successful in predicting
distributions under different climates (i.e. different regions or time periods). We eval-
uated the ability of CEMs to predict species distributions under different climates by
comparing their predictions with those obtained with a mechanistic model (MM). In an
MM the distribution of a species is modeled based on knowledge of a species’ physiology.
The potential distributions of 100 plant species were modeled with an MM for current
conditions, a past climate reconstruction (21 000 years before present) and a future climate
projection (double preindustrial CO, conditions). Point localities extracted from the
currently suitable area according to the MM were used to predict current, future, and
past distributions with four CEMs covering a broad range of statistical approaches:
Bioclim (percentile distributions), Domain (distance metric)) GAM (general additive
modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly
underestimating range sizes for past or future conditions. Maxent and GAM performed as
well under current climates as under past and future climates. Bioclim slightly under-
estimated range sizes but the predicted ranges overlapped more with the ranges predicted
with the MM than those predicted with GAM did. Ranges predicted with Maxent
overlapped most with those produced with the MMs, but compared with the ranges
predicted with GAM they were more variable and sometimes much too large. Our results
suggest that some CEMs can indeed be used to predict species distributions under climate
change, but individual modeling approaches should be validated for this purpose, and
model choice could be made dependent on the purpose of a particular study.
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Introduction

A number of species have been affected by recent
climatic change, with changes in phenology and ranges
expanding towards higher latitudes and altitudes (e.g.
Parmesan & Yohe, 2003; Root et al., 2003). Understand-
ing how species will respond to projected future climate
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change is of fundamental importance for effective man-
agement and conservation of biodiversity (Hannah
et al., 2002). Likewise, insight into the distributions of
species during past climates can help to understand
current patterns of species distributions and genetic
variation (Hugall ef al., 2002; Peterson et al., 2004;
Graham et al., 2006, Ruegg et al., 2006). Predicting
species ranges for different climates is commonly done
with ‘climate envelope models’ (CEMs) that use the
current geographic distribution of a species to infer its
environmental requirements. Based on these require-
ments, a species’ geographic distribution for the cur-
rent, or for past or future climates is predicted. A recent
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compilation of such studies on the effect of projected
climate change indicates that an alarming number of
species may lose a large part of their range and become
‘committed to extinction’ (Thomas et al., 2004).

There are some obvious cases of species that with
climate change should lose parts of their range, such as
mountain-top endemics, for which warming would
seem highly threatening (Theurillat & Guisan, 2001;
Williams et al., 2003). However, a general tendency of
species ranges to get smaller with climate warming is
counter-intuitive because there are more species in
warm areas than in cold areas. The predicted trend
towards reduction in range sizes that Thomas et al.
(2004) found may have been caused by a biased selection
of the species or regions studied. Another possibility is
that some CEMs are biased and tend to underestimate
range sizes under future climates. Thuiller et al. (2004)
pointed out the problem of strong variation between
CEM predictions of future distributions.

A persistent problem with CEMs is the difficulty in
evaluating predicted distributions under different cli-
mates (i.e. reconstructions of past climates or projections
of future climates). Whereas predictions under current
circumstances can be tested using independent model
training and testing datasets (Fielding & Bell, 1997), such
a direct assessment cannot be done for future climates, for
which there are no observed data. Using the fossil record,
such tests are in principle possible for past climates
(Martinez-Meyer et al., 2004), but the number of sites from
which fossils of a species are known for a given time
period is often very small, and the available climate
reconstructions are coarse and uncertain. Aradjo et al.
(2005a,b) used recent changes in the distribution of
breeding birds in Britain and found reasonable agreement
between observed and predicted changes over a period
of 20 years. Such studies are useful but may be hampered
by the confounding effect of changes in species’ ranges for
reasons unrelated to climate change (e.g. anthropogenic
land cover change). Finally, some support for the use of
CEMs for climate change studies can be drawn from
successes in predicting a species range from data from
one continent to another, as has been done for introduced
invasive species (Peterson, 2003; Thuiller et al., 2005).

There are a number of reasons why a prediction of a
species’ distribution after climate change could be less
accurate than such a prediction for current climatic
circumstances (Davis ef al., 1998; Guisan & Thuiller,
2005). CEMs are ‘statistical’ models that do not attempt
to describe ‘cause and effect’ between model parameters
and response (Guisan & Zimmermann, 2000; Pearson &
Dawson, 2003; Kearney & Porter, 2004). For example, the
inferred environmental requirements are dependent on
the climatic conditions that are currently available on the
landscape. A species may be well adapted to a combina-
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tion of rainfall and temperature that currently does
not exist in the region where it occurs. If new combina-
tions of climatic variables appear in the future, or if
entirely new conditions occur (e.g. higher rainfall than
currently observed anywhere), a statistical model may
incorrectly classify such environments as unsuitable.
The degree to which different statistical models may
be affected by these problems has proved difficult to
determine, but large variability among different CEM
approaches used to predict species distributions under a
projected future climate have been reported (Thuiller,
2003, 2004; Pearson et al., 2006).

Here, we present a new framework for evaluating the
ability of CEMs to predict species distributions under a
different climate. In this framework, the results ob-
tained with CEMs are compared with those obtained
with a mechanistic model for individual species (MM).
In an MM, the distribution of a species is defined by a
set of functions based on knowledge of the physiology
of that species. Results obtained with an MM are
independent of current climate because the model
parameters are not derived from the current distribu-
tion of a species. MMs are considered superior for
understanding the relationship between climate and
the distribution of species (Woodward & Rochefort,
1991; Malanson et al., 1992; Prentice et al., 1992; also
see the discussion in Guisan & Zimmermann, 2000) and
have been used to study the distribution of a lizard in
Australia (Kearney & Porter, 2004) and effects of climate
change on crop production (Rosenzweig & Parry, 1994;
Hijmans, 2003). A drawback of MMs is that physiolo-
gical data required to parameterize the model are not
available for most species. Another problem with the
use of MMs of individual species is that they tend to be
based on a species eco-physiology but do not account
for nonclimatic influences on species distribution such
as biotic interactions or dispersal limitations (Pearson &
Dawson, 2003). CEMs do not directly model such non-
climatic influences either, but they may do so indirectly
if limits to species distributions caused by factors such
as competition occur on an environmental gradient and
are therefore correlated with environmental variables.
MMs may, thus, be of limited value in comparison with
CEMs for accurately predicting current distributions of
species. However, MMs are uniquely suitable for under-
standing the effect of different climates on species
distributions, when assuming universal dispersal and
the absence of competition, that is, MMs can be used to
evaluate the intrinsic ability of CEMs to accurately
predict spatial distributions of species under different
climates. In this paper, we used an MM to predict the
potential distributions of 100 plant species for current
conditions, and for a future (warmer) and past (colder)
climate. By comparing the MM results with those
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obtained using four different CEMs, we evaluate the
ability of each CEM to predict a species range under
different climates.

Materials and methods

Climate data

We used monthly precipitation and minimum and
maximum temperature data for three periods: ‘current’,
‘future’, and ‘past’. For current conditions, we used the
WorldClim database (Hijmans et al., 2005a). This dataset
has a spatial resolution of approximately 1km and was
created by interpolation using a thin-plate smoothing
spline of observed climate at weather stations, with
latitude, longitude, and elevation as independent vari-
ables (Hutchinson, 1995, 2004). Projected future climate
data were from Duffy et al. (2003) and Govindasamy
et al. (2003). They ran the CCM3 global climate model
(GCM) at approximately 50km spatial resolution to
simulate conditions at doubled atmospheric levels of
CO; (2 xCO,) as compared with preindustrial condi-
tions. To our knowledge, these data are at the highest
spatial resolution currently available for projected fu-
ture global climate data. Past climate data used were
GCM reconstructions for the last glacial maximum
(LGM; 21000 BP). These data were generated with the
ECHAM3 model (DKRZ, 1992; Lorenz et al., 1996), are
at an approximately 312 km spatial resolution and are
available at http: // www.Isce.cea.fr/pmip/

For both GCMs there were also ‘control runs’ for the
current conditions available. We calculated the differ-
ence (absolute for temperature and relative for precipi-
tation) between the modeled current and past or future
conditions and statistically downscaled these to a 1km
spatial resolution, using bilinear interpolation in Arc/
Info (ESRI, Redlands, CA, USA). The projected future or
past climate was then calculated from the current
climate (WorldClim database) and the downscaled
model differences. This approach was taken to assure
consistency of the climate layers across time slices and
that the downscaled climate realistically reflected the
higher resolution topography.

We limited our area of study to the Americas, and
projected all data to the Lambert Equal Area projection
(latitude = 0° and longitude =—80°) to obtain grid cells
of equal area and allow for easy calculations of range
sizes. We aggregated the data to cells of 10 km spatial
resolution using bilinear interpolation. Mean annual
temperature for this dataset was 4.8°C for current,
0.7°C for past, and 6.8 °C for future conditions. Mean
annual precipitation was 1045 mm for current, 1128 mm
for future, and 1015 mm for past conditions. Predicted
past and future temperature changes were much larger

at high latitudes than in the tropics. Precipitation chan-
ged in different directions in different places, and this
was particularly pronounced comparing current with
LGM conditions, that is, the model suggests that it was
much dryer than today in some places, but much wetter
in other places, resulting in similar mean precipitation
across the whole study area.

In the CEMs, we used the following six bioclimatic
variables (Nix, 1986): annual mean temperature, mean
diurnal temperature range, mean annual temperature
range, annual precipitation, precipitation seasonality
(coefficient of variation), and precipitation of the driest
quarter. We chose these variables because they repre-
sent general trends (means), variation (seasonality), and
limiting variables (i.e. minimum and maximum tem-
peratures). To evaluate the effect of the number of
variables included on model performance, we also run
the models using 19 variables: the above six and max-
imum temperature of the warmest month, minimum
temperature of the coldest month, isothermality
(monthly/annual temperature range), temperature sea-
sonality (standard deviation across months), mean tem-
perature of wettest quarter, mean temperature of driest
quarter, mean temperature of warmest quarter, mean
temperature of coldest quarter, precipitation of wettest
month, precipitation of driest month, precipitation of
wettest quarter, precipitation of warmest quarter, and
precipitation of coldest quarter.

MM

We used the MM that is implemented in DIVA-GIS 5.1
(Hijmans et al., 2005b). This is a ‘Plantgro’ type model
(Hackett & Vanclay, 1998) in which requirements for
plant growth are described as plateau-shaped curves
that indicate plant response (expressed as 0-1) to
monthly precipitation and minimum and mean tempera-
ture. Response is zero below a minimum and above a
maximum threshold, and one between a minimum and a
maximum optimal value (Hijmans et al., 2005b; cf. Hack-
ett, 1991; Austin, 1992). Overall response across environ-
mental variables follows the Sprengel-Liebig Law of the
Minimum (Hackett, 1991; Van der Ploeg et al., 1999), that
is, the most limiting factor determines the overall re-
sponse. Interaction between temperature and rainfall is
not considered. Model scores are calculated for 24 pos-
sible growing periods, starting at the first or the 15th day
of each month, the highest score is retained. The length
of the growing period is specified as a number of days.
For each location (grid cell) the model calculates the
suitability for a species using a score from 0 (not suitable)
to 100 (highly suitable). Based on comparison with
known distributions of some species, we considered only
areas with scores above 90 as suitable for a species.
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MM parameters for 100 randomly selected plant
species (out of 1710 species for which parameters were
available) were taken from the ECOCROP database
(FAO, 1999), which includes killing (minimum) tem-
perature, and minimum, maximum, and range of opti-
mal temperatures; the minimum and maximum length
of the growing season; and minimum, maximum and
range of optimal amount of rainfall for each species.
The species included are all of economic importance,
including annuals and perennials that are used for (e.g.
food, fuel or fodder). We ran the MM to predict the
potential distribution of the plant species, using the
monthly temperature and rainfall data for current,
future, and past conditions.

A similar modeling approach has been used to study
the effect of climate change on species distributions by
Booth et al. (1999) and Miles et al. (2004). Here, we are
not concerned about the quality of the predictions made
per se. What is important for our purpose is to have a
model that provides a plausible prediction of the area
that is suitable for a species, based on parameters that
were not directly derived from its current known geo-
graphic distribution.

CEMs

We employed four CEMs: Bioclim, Domain, GAM, and
Maxent. We chose these because they are well-known
models that represent a variety of different statistical
approaches. We used Bioclim (Nix, 1986; Busby, 1991)
as implemented in DIVA-GIS. This model treats the
environmental data values at the locations of species
occurrence as multiple one-tailed percentile distribu-
tions, that is, it creates a percentile distribution for each
variable so that, for example, the fifth percentile is
treated the same as the 95th percentile. For each grid
cell, the values of each environmental variable are
assessed to determine their position in this percentile
distribution. The lowest score across environmental
values for a grid cell is mapped and can be null’
(outside the observed range of values) or range from
zero (low) to the theoretical maximum of 50 (very high).

In the Domain model (Carpenter et al., 1993), the
Gower distance statistic is calculated between the va-
lues of the environmental variables of each cell and of
each occurrence point. The distance between point A
and grid cell B for a single climate variable k is calcu-
lated as the absolute difference between A and B
divided by the range of k across all points. The Gower
distance (G) is the mean of the distances for all climate
variables and the Domain similarity statistic is calcu-
lated as 100 x (1—G). The maximum similarity between
a grid cell and any point is mapped. The maximum
value is 100 (all cells in which presences occurred will
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have this score); a high number (e.g. >95) implies a
high likelihood of the species being present. We used
the Domain model as implemented in DIVA-GIS.

We used the general additive modeling (GAM)
technique as implemented in GRASP version 0.4-3
(Lehmann et al., 2002) within the R statistical package.
GAMs use nonparametric smoothers to model non-
linear trends between dependent (species presence or
absence) and independent (environment) variables. We
used stepwise selection of the variables and the ANOvVA
criterion to select the best model.

We used Maxent version 1.9.1 (available from http://
www.cs.princeton.edu/~schapire/maxent/). This model
is an application of a machine learning technique called
‘maximum-entropy.” Maxent estimates the likelihood of a
species being present by finding the distribution of max-
imum entropy (i.e. that is closest to uniform) subject to the
constraint that the expected value of each environmental
variable under this estimated distribution matches
its empirical average (Phillips et al., 2006). Maxent uses
the ‘background’ data of the environmental layers in the
modeling process. The output of both Maxent and GAM
are values between 0 (low) and 1 (high).

Model runs

For each species, we selected random points from
the area predicted by the MM as currently suitable.
The number of points selected was the square root of
the number of cells currently deemed suitable. Sam-
pling was done for computational efficiency and to
better resemble the (sparse) data typically used in
CEM. The point distributions were then used to create
predictions with the CEM for current, future, and past
conditions (Fig. 1). All CEMs were run using the default
settings. Absence data used in GAM were the cells that
were unsuitable for a species (according to the MM), but
that were suitable for any of the other species, in
addition to a set of random background points that
covered areas currently unsuitable for all the species
considered (parts of the Arctic in Canada and Green-
land, and the Atacama desert in Chile).

Model evaluation

The output of CEMs are continuous values indicating the
suitability of any site for the species being modeled. To
transform these values to presence/absence data we
determined species specific thresholds above which a
species was considered present. For each model we chose
the value that produced a relative range size Eqn (1) that
was closest to zero (median across all species). This
calibration was done for the current climate, and these
thresholds were maintained throughout the modeling
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Fig. 1 Approach used to evaluate the ability of climate envelope models to predict species distributions under different climates. A
mechanistic model is used to predict the potential distribution for a species under current (a) and future (or past) (b) conditions (light
gray = not suitable, dark gray = suitable). Points are extracted randomly from the area deemed currently suitable for the species (c).
These points are used in the climate envelope model for current (d) and future (e) conditions. The statistical model is evaluated through
a comparison of (b) and (e). These maps show results for Berrya cordifolia (Willd.) for the Bioclim model.

exercise and experimental climate shifts, as is the general
practice in climate change modeling studies. We used
range size to calibrate because of the importance of range
size in assessing risks of extinction (Thomas et al., 2004).

To evaluate how well the ranges predicted with the
CEMs corresponded to those of the MM we calculated,
for each species, time slice and CEM, the following four
indices: relative range size [RRS; Eqn (1)], overlap index
[OL; Eqn (2)], false positive rate [FPR; Eqn (3)], and false
negative rate [FNR; Eqn (4)]:

{ifmgc RRS = ¢/m — 1, Q
else RRS = —1*(m/c — 1),

Ol =o/m, (2)

FPR = (¢ —0)/m, (3)

FNR = (m —0)/m, 4)

where m is (the size of) the area where the MM predicts
a species to be present, ¢ is the area where the CEM
predicts presence and o is the area where they overlap,
that is, both MM and CEM predict presence.

RRS compares the predicted range size of a CEM with
that of the MM. It was calculated according to Eqn (1)
because c/m is biased, with RRS deviating much more
from 1 when ¢>m than when m<c (e.g. 1/4 vs. 4). Note,

however, that a score of 3 implies that the range size
predicted by the CEM was four times as big as that of the
MM, and that a score of —3 implies that it was four times
as small. OI measures the degree of overlap of the CEM
with the MM. FPR is a measure of model overprediction
(‘error of commission’) and FNR a measure of under-
prediction (‘error of omission’). In our analysis, an ideal
CEM would have RRS=0,OI =1, FPR =0, and FNR = 0.
RRS and OI were also calculated to assess the effect of
climate change on the predictions made with the MM. In
this case, m refers to the prediction for current conditions,
and c to either future or past conditions. For each CEM
and the four indices we determined the statistical sig-
nificance of the differences between the predictions for
the current climate and for the other climates. To this end,
we used the Wilcoxon test (Mann-Whitney U-test), as
implemented in the R package.

Results

MM

Compared with the current situation, the MMs showed
considerable changes in range size for past conditions
but less so for future conditions. For future conditions,
RRS was —0.07 and OI was 0.54, indicating that median
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Table 1 Thresholds used to assign presence or absence to
grid cells for the four statistical models used, for the runs with
six and 18 environmental variables

6 variables 18 variables

Bioclim 0.07 0
Domain 93 93
GAM 0.67 0.56
Maxent 7 6

GAM, General Additive Modeling.

range size decreased slightly while the location of the
ranges shifted considerably, with only half the currently
suitable range also suitable under the future climate. For
past conditions, RRS was —0.50 and OI was 0.14. Hence,
for the last glacial maximum, modeled range sizes were
considerably smaller than for the current period with
past and current ranges overlapping only slightly.

Climate envelope model, current conditions

For all CEMs, we identified a threshold that produced
range sizes similar to current potential ranges as mod-
eled with the MM (RRS =~ 0; Table 1). However, there
was variation in how well CEMs reproduced the spatial
extent of the ranges modeled with the MM at this
threshold (Fig. 2). Maxent had the highest OI, with a
median value of 0.91 (when using six environmental
variables), which was marginally higher than Bioclim
(0.90). OI for GAM was 0.84, while Domain had the
lowest score (0.77). Maxent and Bioclim also had the
lowest median FPR and FNR, again with Domain hav-
ing the poorest score. Results were similar for the
predictions made when using 16 variables.

Climate envelope model, past, and future conditions

The results for past and future conditions varied strongly
between models (Fig. 2; Table 2). Domain substantially
underpredicted species ranges, particularly for past
climate conditions. It had a strong and statistically
significant (P < 0.01) decrease in RRS, O], and FPR and
an increase in FNR under both past and future climates.

Bioclim performed much better than Domain across all
evaluation measures but it tended to underpredict, espe-
cially when using 18 variables (Fig. 2). Bioclim stood out
for a very low FPR but, in accordance with its low RRS,
it had a relatively high FNR, especially when running
the model with 18 climate variables. The FPR for current
conditions was not significantly different from that
for future or past conditions. Under future and past
climates, GAM predicted range sizes that were similar
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Fig. 2 Relative range size (RRS), overlap index (OI), false posi-
tive rate (FPR), and false negative rate (FNR) for a comparison
between the results obtained with four climate envelope models,
Bioclim (BIO), Domain (DOM), General Additive Modeling
(GAM), and Maxent (MAX) and the results obtained with a
mechanistic model. Six (upper panel) or 18 (lower panel) climatic
variables were used in the modeling of 100 plant species for
current (C), future (F; 2 x CO, conditions), and past (P; Last glacial
maximum, 21 000 BP) conditions. Median values are shown, with a
line between the 10th and 90th percentile. For legibility, some lines
have been truncated, but in those cases the values of the
10th or 90th percentile are provided at the point of truncation.

to those predicted with the MM (RRS ~ 0) and its OI
was better than, or comparable with that of Bioclim.
RRS for Maxent was close to zero, but not as close
as for GAM. Maxent was the only model that had
a median RRS>0, that is, it predicted larger range
sizes than the MM. The relatively high RRS is accom-
panied by a relatively high OI (i.e. most of the areas
predicted suitable are correctly classified). A high RRS
could come at the expense of a high FPR. However, the
median FPR for Maxent was not always higher than for
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Table 2 Statistical significance of differences between performance under future and past climate conditions of four climate
envelope models relative to their performance under current conditions

Bioclim Domain GAM Maxent
Future Past Future Past Future Past Future Past
6 variables
RRS <0.01 <0.01 <0.01 <0.01 0.50 0.19 0.05 0.01
Ol <0.01 <0.01 <0.01 <0.01 0.27 0.01 0.31 0.25
FPR 0.34 0.80 0.01 <0.01 0.12 0.92 0.01 <0.01
FNR <0.01 <0.01 <0.01 <0.01 0.64 0.01 0.85 0.15
18 variables
RRS <0.01 <0.01 <0.01 <0.01 0.61 <0.01 0.25 <0.01
Ol <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.32 0.22
FPR 0.68 0.13 <0.01 <0.01 0.16 0.60 0.01 <0.01
FNR <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.85 0.02

Calculated using the Wilcoxon test (=Mann-Whitney U-test) for four indices (see text): relative range size (RRS), overlap index (OI),
false positive rate (FPR), and false negative rate (FNR), with #n = 100 plant species, and for models run with six or 18 environmental

variables.
GAM, General Additive Modeling.

GAM, albeit that it was highly variable for Maxent,
indicating that while its performance is good overall,
predictions for a few species may be quite poor.

For Domain and Bioclim there was a clear effect of the
number of environmental variables used on RRS and OI
with the results becoming worse when more variables
were used (Fig. 2). The results obtained with GAM were
less affected, but GAM performed better when only six
instead of 18 climatic variables were used (Table 2). For
Maxent the results obtained with six and with 18
variables were similar.

Discussion

The output of the MMs allowed us to evaluate the
ability of CEMs to predict species distributions across
time (climate regimes), independently of nonclimatic
factors that influence true species distributions and that
can make model results difficult to evaluate. MMs
predicted marked range reductions for the colder cli-
mate and shifted locations for both colder and warmer
climates than today. We found considerable variation
between CEMs in their ability to reproduce these pre-
dictions, as was to be expected given previously re-
ported variation in such predictions (Thuiller, 2003,
2004; Pearson et al., 2006). Maxent and GAM provided
reasonably good estimates of potential range shifts with
climate change. Domain strongly underestimated range
sizes. This model should not be used to predict the
effects of climate change on species distributions. Bio-
clim performed better than Domain, but not as well as
the other two models, because Bioclim systematically
underpredicts range sizes.

Of the four climate envelope modeling methods ex-
amined here, GAM might be the most appropriate if the
objective is to predict the likelihood of species extinc-
tion because it predicted relative range size most faith-
fully. Maxent had high spatial concordance with MMs
(high OI) and low false negative rates, which came at a
cost of a slight increase in RRS (>1), relative to GAM.
For many applications, the benefit of having a more
accurate spatial representation of species distribution
patterns under different climates would offset the cost
of an increase of RRS. However, Maxent did show high
variation in RRS and FPR, with occasional very strong
overprediction, something that GAM and particularly
Bioclim were much less prone to. Bioclim can be used as
a conservative approach, for example, in the context of
reserve planning. It will likely underestimate future
ranges, but there is a high probability that areas identi-
fied as suitable for a species will be correctly identified.

Examining the mathematical properties of the climate
envelope modeling methods can help explain the dif-
ferences in their performance. Domain uses the Gower
distance metric to calculate suitability for a grid cell by
calculating a mean (over climate variables) weighted
distance of a grid cell to the nearest (in climate space)
occurrence point. All occurrence points are treated
separately and, unlike in the other models, there is no
generalization (creation of response functions). With a
change in climate, the average environmental distance
of the sites (grid cells) to the occurrence points is much
more likely to increase than to decrease. In other words,
Domain is probably very sensitive to the occurrence of
new combinations of the environmental variables and
this negatively affects its ability to predict a species’

© 2006 The Authors
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Fig. 3 Schematic description of predicting the distribution of a
species under different climates using two climate envelope
models, Bioclim, and Domain. There are 15 sites, with different
climates in the two time periods. The true requirements of the
species are constant and indicated with an ellipsoid. The inferred
requirements do not fully overlap with the true requirements
because there are insufficient sites where the species has been
observed and/or because parts of the true niche are currently not
present on the landscape, and because the model methods are
imperfect. Under future conditions, model performance is di-
minished because some sites are incorrectly classified as not
having the species (false negatives).

response to climate change. Bioclim uses independent
percentile distributions and is, therefore, less likely to
be very sensitive to the occurrence of new combinations
of environmental variables. However, if one or more
environmental variables are outside what was observed
in the current climate, even if this is not truly a limiting
factor, then Bioclim will underpredict (Fig. 3). GAM and
Maxent both use presence and absence (or random
background) data. This likely makes them able to
correctly identify as suitable at least some of the ‘new’
environmental space if the conditions are closer to the
conditions under which the species is currently present
than to the conditions under which it is absent. Accord-
ingly, Maxent and GAM both seemed to be able to
predict species distributions under novel combinations
of climate space.

The number of environmental variables used for
modeling strongly influenced the results with both
Domain and Bioclim. This contrasts with the results of
Beaumont et al. (2005), who found that Bioclim was
insensitive to the number of variables used. The extent
to which the number of variables influences the results
should be related to how correlated they are, and
perhaps that explains the differences between our re-
sults and those of Beaumont et al. (2005). GAM and
Maxent were much less influenced by the number of
variables used than either Bioclim or Domain. GAM

© 2006 The Authors

and Maxent use variable selection (stepwise variable
selection in the GRASP implementation of GAM) or
weighting and should thus be inherently less sensitive
to possible model overfitting. In some cases, Maxent
may have removed too many variables, leading it to
occasionally strongly overpredict range sizes.

We can only speculate whether the results reported
by Thomas et al. (2004) are affected by the modeling
artifacts uncovered here, but it certainly is a possibility
that some of the modeling approach used in that study
suffered from this problem. Of the nine data sets
considered by Thomas et al., two had been analyzed
with Bioclim, and one with an approach that appears to
combine aspects of Domain and Bioclim. For example,
Bioclim was used to model the effect of climate change
on Australian butterflies. This work was reported ex-
tensively by Beaumont et al. (2005) who used Bioclim to
model the distribution of 25 species in various ways
and found that in 91% of 300 cases the species declined
in range. Our findings suggest that these results might
be an artifact of the Bioclim model, and that this may
have biased the results obtained by Thomas et al. (2004).

Our results also suggest that that some CEMs can
indeed be useful to predict the effect of climate change
on species distributions. CEMs were also reasonably
good at predicting the distributions of British birds
under recent climate change (Aratjo et al., 2005a,b);
and were able to predict changes in range sizes that are
similar to those predicted from molecular data (Ruegg
et al., 2006). While these results are encouraging, several
caveats need consideration. In our experimental design,
we purposefully eliminated nonclimatic effects on spe-
cies distributions, a basic assumption that is always
made when using CEMs to assess the effect of climate
change (Pearson & Dawson, 2003). In reality, species
distributions may be limited by both biotic and abiotic
factors such as species interactions and dispersal limita-
tion (Davis et al., 1998; Kearney & Porter, 2004; Aratjo &
Pearson, 2005; Guisan & Thuiller, 2005), some of which
are anthropogenic (La Sorte, 2006). Further, most data
used for CEMs are from natural history collections and
may have inaccurate georeferences (Wieczorek et al.,
2004), and are biased in geographic space (Hijmans
et al., 2000) which can lead to biased distributions in
environmental space (Kadmon et al., 2004). While sig-
nificant progress in increasing the accuracy of CEMs
has been made, model accuracy is still low for some
regions and species (Elith et al., 2006). Moreover, the
best models for predicting current distributions might
‘overfit’ the data and such loss of generality could make
them less suitable to predict future distributions (Ran-
din et al., 2006).

In conclusion, we believe that progress in using CEMs
to predict the effect of climate change on species dis-
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tributions can be made through a number of comple-
mentary approaches, including (1) improving data and
modeling methods for predicting current distributions
(Graham et al., 2004; Guisan & Thuiller, 2005; Elith et al.,
2006); (2) evaluating the ability of CEMs to provide
accurate estimates of the effect of climate change by
comparing them with mechanistic approaches, as was
done in this paper; (3) increasing understanding of the
drivers of species distributions, and the extent to which
these are directly related to individual climatic variables
(Kearney & Porter, 2004; Gavin & Hu, 2006), and how
responses to climate change are affected by genetic
variability (Harte et al., 2004); (4) comparing predicted
past distributions with insights from fossil, pollen,
and molecular data (Hugall et al., 2002; Martinez-Meyer
et al., 2004; Ruegg et al, 2006); and (5) integrating
CEM and mechanistic modeling approaches (Midgley
& Thuiller, 2005).
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Carbon-Negative Biofuels
from Low-Input High-Diversity

Grassland Biomass

David Tilman,** Jason Hill,"? Clarence Lehman®

Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can
provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per
hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly
higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD
biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram
hectare™ year™ of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during
biofuel production (0.32 megagram hectare™ year™*). Moreover, LIHD biofuels can be produced on
agriculturally degraded lands and thus need to neither displace food production nor cause loss of

biodiversity via habitat destruction.

lobally escalating demands for both
Gfood (1) and energy (2) have raised

concerns about the potential for food-
based biofuels to be sustainable, abundant, and
environmentally beneficial energy sources. Cur-
rent biofuel production competes for fertile
land with food production, increases pollution
from fertilizers and pesticides, and threatens
biodiversity when natural lands are converted
to biofuel production. The two major classes of
biomass for biofuel production recognized to
date are monoculture crops grown on fertile
soils (such as corn, soybeans, oilseed rape,
switchgrass, sugarcane, willow, and hybrid
poplar) (3—6) and waste biomass (such as straw,
corn stover, and waste wood) (7-9). Here, we
show the potential for a third major source of
biofuel biomass, high-diversity mixtures of
plants grown with low inputs on agriculturally
degraded land, to address such concerns.

We performed an experiment on agricul-
turally degraded and abandoned nitrogen-poor
sandy soil. We determined bioenergy produc-
tion and ecosystem carbon sequestration in 152
plots, planted in 1994, containing various
combinations of 1, 2, 4, 8, or 16 perennial
herbaceous grassland species (table S1) (10).
Species composition of each plot was deter-
mined by random draw from a pool of species.
Plots were unfertilized, irrigated only during
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establishment, and otherwise grown with low
inputs (/0). The 16-species plots are the high-
est diversity, or the LIHD (low-input, high-
diversity), treatment. All plots were burned in
early spring to remove aboveground biomass
before growth began. Soil samples, collected
before planting in 1994 and again in 2004,
determined carbon sequestration in soil. Plots
were sampled annually from 1996 to 2005 for
aboveground biomass production.

Annual production of aboveground bio-
energy (i.e., biomass yield multiplied by energy
released upon combustion) (/0) was an ap-
proximate log function of planted species num-
ber (Fig. 1A). On average for the last 3 years of
the experiment (2003-2005), 2-, 4-, 8-, and 16-
species plots produced 84%, 100%, 157%, and
238% more bioenergy, respectively, than did
plots planted with single species. In a repeated
measures multivariate analysis of variance,
annual bioenergy production was positively
dependent on the number of planted species
(F], 155 = 684, P< 00001), on time (ng 147 =
8.81, P < 0.0001), and on a positive time-by-
species number interaction (Fy 147 = 11.3, P <
0.0001). The interaction occurred because
bioenergy production increased more through
time in LIHD treatments than in monocultures
and low-diversity treatments, as shown by the
ratio of bioenergy in LIHD (16 species) plots to
those in 8-, 4-, 2-, and 1-species plots (Fig. 1B).

The gross bioenergy yield from LIHD
plots was 68.1 GJ ha ' year '. Fossil energy
needed for biomass production, harvest, and
transport to a biofuel production facility was
estimated at 4.0 GJ ha ' year ' (table S2).

Different biofuel production methods capture
different proportions of bioenergy in deliver-
able, usable forms (Fig. 2) (/0). Cocombus-
tion of degraded land LIHD biomass with coal
in existing coal-fired electric generation facili-
ties would provide a net gain of about 18.1 GJ
ha™' as electricity (/7). Converting LIHD bio-
mass into cellulosic ethanol and electricity is
estimated to net 17.8 GJ ha ' (12). Conver-
sion into gasoline and diesel synfuels and
electricity via integrated gasification and com-
bined cycle technology with Fischer-Tropsch
hydrocarbon synthesis (IGCC-FT) is estimated
to net 28.4 GJ ha ' (10, 13). In contrast, net
energy gains from corn and soybeans from
fertile agricultural soils are 18.8 GJ ha ' for
corn grain ethanol and 14.4 GJ ha ' for
soybean biodiesel (/4). Thus, LIHD biomass
converted via IGCC-FT yields 51% more
usable energy per hectare from degraded in-
fertile land than does corn grain ethanol from
fertile soils. This higher net energy gain results
from (i) low-energy inputs in LIHD biomass
production because the crop is perennial and is
neither cultivated, treated with herbicides, nor
irrigated once established and likely requires
only phosphorus replacement fertilization be-
cause nitrogen is provided by legumes; (ii) the
more than 200% higher bioenergy yield
associated with high crop biodiversity; and
(iii) the use of all aboveground biomass, rather
than just seed, for energy. LIHD biofuels also
provide much greater net energy outputs per
unit of fossil fuel input than do current biofuels
[net energy balance (NEB) ratios of Fig. 2].
Fertile lands yield about 50% more LIHD
biomass (and bioenergy) than our degraded
soils (15, 16).

Annual carbon storage in soil was a log
function of plant species number (Fig. 1C).
For 1994-2004, there was no significant net
sequestration of atmospheric CO, in mono-
culture plots [mean net release of CO, of 0.48 +
0.44 Mg ha ! yeaf1 (mean = SE)], but, in
LIHD plots, there was significant soil sequestra-
tion of CO, (2.7 + 0.29 Mg ha ' year '). Soil
carbon storage occurred even though all above-
ground biomass-based organic matter was re-
moved annually via buming. Periodic resampling
of soils in a series of prairie-like agriculturally
degraded fields found C storage rates similar to
those of the LIHD treatment and suggested that
this rate could be maintained for a century (/7).
The observed annual rate of change in soil C at
a particular soil depth declined with depth (P =
0.035), suggesting that an additional 5% more
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ty on biomass energy yield and
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C may be stored in soils deeper than we mea-
sured (below 60 cm depth).

In 2004, after 10 years of growth, atmo-
spheric CO, sequestration in roots was a log
function of plant species numbers (Fig. 1D).
On an annual basis, 0.62 Mg ha™! yearf1 of
atmospheric CO, was sequestered in roots of
species grown in monocultures, and 160%
more CO, (1.7 Mg ha ! year ') was captured
in roots of 16-species plots. Multiple regres-
sion showed that root CO, sequestration
(Mg ha! of CO,) increased as a log function of
plant species number (S), as a log function of
time (Year), and their interaction {C,,o =—1.47 +
6.16logo(S) + 9.64log;o(Year) + 9.60[log,o(S) —
0.613][logo(Year) — 0.782] where Year = 3
for 1997, the first time roots were sampled;
overall F3_ 1260 = 191, P < 0.0001; for log;(S),
Fl, 1260 — 398, P< 00001, for Year, Fl, 1260 — 148,
P= 00001, for § x Year, Fl, 1260 — 273, P=
0.0001}. This regression suggests that most
root carbon storage occurred in the first decade
of growth; during the second decade, roots of
16-species plots are projected to store just 22%
of C stored during the first decade. Measure-
ments at greater depths in 10 LIHD plots sug-
gest that 43% more C may be stored in roots
between 30 and 100 cm.

LIHD plots had a total CO, sequestration
rate of 4.4 Mg ha ' year ' in soil and roots
during the decade of observation. Trends sug-
gest that this rate might decline to about 3.3
Mg ha ' year ' during the second decade be-
cause of slower root mass accumulation. In
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Fig. 2. NEB for two food-based biofuels (current biofuels) grown on fertile soils and for LIHD biofuels
from agriculturally degraded soil. NEB is the sum of all energy outputs (including coproducts) minus the
sum of fossil energy inputs. NEB ratio is the sum of energy outputs divided by the sum of fossil energy
inputs. Estimates for corn grain ethanol and soybean biodiesel are from (14).

contrast, the annual rate of CO, sequestration
for monocultures was 0.14 Mg ha ' year ' for
the first decade and projected to be indis-
tinguishable from zero for subsequent decades.

Across their full life cycles, biofuels can be
carbon neutral [no net effect on atmospheric

CO, and other greenhouse gases (GHG)], car-
bon negative (net reduction in GHG), or carbon
sources (net increase in GHG), depending on
both how much CO, and other greenhouse
gases, expressed as CO, equivalents, are re-
moved from or released into the atmosphere
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during crop growth and how much fossil CO,
is released in biofuel production. Both corn
ethanol and soybean biodiesel are net carbon
sources but do have 12% and 41% lower net
GHG emissions, respectively, than combustion
of the gasoline and diesel they displace (/4). In
contrast, LIHD biofuels are carbon negative,
leading to net sequestration of atmospheric
CO, across the full life cycle of biofuel pro-
duction and combustion (table S3). LIHD
biomass removed and sequestered more atmo-
spheric CO, than was released from fossil fuel
combustion during agriculture, transportation,
and processing (0.32 Mg ha ! year ' of CO,),
with net life cycle sequestration of 4.1 Mg ha '
yearfl of CO, for the first decade and an
estimated 2.7 to 3 Mg ha ' year ' for subse-
quent decades. GHG reductions from use of
LIHD biofuels in lieu of gasoline and diesel
fuel are from 6 to 16 times greater than those
from use of corn grain ethanol and soybean
biodiesel in lieu of fossil fuels (Fig. 3A).
LIHD biofuel production should be sustain-
able with low inputs of agrichemicals, as in our
study. Legumes in LIHD plots can supply nitro-
gen (/8). In our experiment, total soil nitrogen
of LIHD plots increased 24.5% (P < 0.001)
from 1994-2004, but monoculture total soil
nitrogen was unchanged (P = 0.83). However,
some amount of N fertilization may be useful in
dry habitats that lack efficient N-fixing species.
Application of P or other nutrients may be
needed if initially limiting or to replace nutrient
exports (Fig. 3B). Production may be sustainable
with low pesticide use, because plant disease
incidence and invasion by exotic species are low
in high-diversity plant mixtures (Fig. 3C) (19).
Switchgrass (Panicum virgatum), which is
being developed as a perennial bioenergy crop,

Fig. 3. Environmental ef-
fects of bioenergy sources.

was included in our experiment. Switchgrass
monocultures can be highly productive on fer-
tile soils, especially with application of pesti-
cides and fertilizer (20, 21). However, on our
infertile soils, switchgrass monoculture bio-
energy [23.0£2.4 GJ ha ' year ' (mean + SE)]
was indistinguishable from mean bioenergy of
monocultures of all other species (22.7 £+ 2.7
GJ ha ' year ') and yielded just a third of the
energy of LIHD plots (/0).

How much energy might LIHD biomass
potentially provide? For a rough global estimate,
consider that about 5 x 10° ha of agriculturally
abandoned and degraded land producing bio-
mass at 90 GJ ha ' year ! (22) could provide, via
IGCC-FT, about 13% of global petroleum con-
sumption for transportation and 19% of global
electricity consumption (2). Without accounting
for ecosystem CO, sequestration, this could
eliminate 15% of current global CO, emissions,
providing one of seven CO, reduction “wedges”
needed to stabilize global CO, (23). GHG
benefits would be larger if LIHD biofuels were,
in general, carbon negative, as might be expected
if late-successional native plant species were
used in LIHD biomass production on degraded
soils [e.g., (17)].

The doubling of global demand for food
and energy predicted for the coming 50 years
(I, 2) and the accelerating use of food crops
for biofuels have raised concerns about bio-
diversity loss if extant native ecosystems are
converted to meet demand for both food and
biofuels. There are also concerns about envi-
ronmental impacts of agrichemical pollution
from biofuel production and about climate
change from fossil fuel combustion (/4, 24-26).
Because LIHD biomass can be produced on
abandoned agricultural lands, LIHD biofuels

LIHD prairie bioenergy

Current biofuels on degraded soil

(A) GHG reduction for com- Aﬁ 12,500 — o '
plete life cycles from bio- §°s 10000
. = O ’
fuel prqductlon throqgh § g 7.500
combustion, representing @ %,
. . ) g* 5,000 [
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3 —
3.:_" 21—
R
0 |
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need neither compete for fertile soils with food
production nor encourage ecosystem destruction.
LIHD biomass can produce carbon-negative
biofuels and can reduce agrichemical use com-
pared with food-based biofuels. Moreover, LIHD
ecosystem management may provide other
ecosystem services, including stable production
of energy, renewal of soil fertility, cleaner ground
and surface waters, wildlife habitat, and recre-
ation (18, 19, 24, 27, 28). We suggest that the
potential for biofuel production and carbon
sequestration via low inputs and high plant
diversity be explored more widely.
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What Is Natural? The Need for
a Long-Term Perspective
in Biodiversity Conservation

K. J. Willis** and H. ]. B. Birks?

Ecosystems change in response to factors such as climate variability, invasions, and wildfires. Most
records used to assess such change are based on short-term ecological data or satellite imagery
spanning only a few decades. In many instances it is impossible to disentangle natural variability
from other, potentially significant trends in these records, partly because of their short time scale.
We summarize recent studies that show how paleoecological records can be used to provide a
longer temporal perspective to address specific conservation issues relating to biological invasions,
wildfires, climate change, and determination of natural variability. The use of such records can
reduce much of the uncertainty surrounding the question of what is “natural” and thereby start to

provide important guidance for long-term management and conservation.

seeds and fruits, animal remains, tree

rings, charcoal) spanning tens to millions
of years provide a valuable long-term perspec-
tive on the dynamics of contemporary ecologi-
cal systems (/). Such studies are increasingly
becoming part of community and landscape
ecological research (2). In contrast, conservation-
related research largely ignores paleoecological
records. For example, there are no temporal
records spanning more than 50 years included in
any of the key biodiversity assessments pub-
lished over the past 7 years (3). Paleoecological
records have been considered too descriptive
and imprecise, and therefore of little relevance to
the actual processes of conservation and man-
agement. Such criticisms may have been valid
30 years ago, but there is now a wealth of
information in paleoecological records pro-
viding detailed spatial and temporal resolutions
(I, 4-7) that match in detail most records
currently used in conservation research.

The potential of paleoecological records in
conservation biology has been highlighted
several times, including their application to bio-
diversity maintenance, ecosystem naturalness,
conservation evaluation, habitat alteration, chang-
ing disturbance regimes, and invasions [e.g.,
(8—14)]. Conservation of biodiversity in a
changing climate (/5) and the relevant tempo-
ral and spatial scales for ecological restoration
(16) have also been considered to warrant a
longer-term temporal perspective. Most of

P aleoecological records (e.g., fossil pollen,
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these studies are descriptive and provide little
practical application. A number of recent
applied paleoecological studies, however, have
begun to provide direct management infor-
mation for biodiversity conservation at local,
regional, and global scales. These include
recommendations relating to biological inva-
sions, wildfires, climate change, and conserva-
tion management within thresholds of natural
variability. The overriding message from these
studies is that such temporal perspectives are
essential for meaningful modeling, prediction,
and development of conservation strategies in
our rapidly changing Earth.

Biological Invasions

Biological invasions are of critical concern to
conservation organizations worldwide, with a
general perception that many invasives are
responsible for widespread community change
and even extinctions (/7). At the Rio Earth Sum-
mit Convention on Biological Diversity in 1992,
for example, binding signatories were made “to
prevent the introduction of, control or eradicate
those alien species which threaten ecosystems,
habitats or species” (/8). However, biological
invasions are complex. Some regions are more
prone to invasion, certain species are more
successful invaders than others, and sometimes
it is even unclear whether a species is alien or
native. The importance of the historical record in
improving our ability to predict the outcome of

A A

non-native introductions has been acknowledged
[e.g., (13, 14)], but several recent paleoecological
studies provide direct guidelines for the identifi-
cation and management of invasives.

The distinction between what is native and
what is not is often unclear. A species is usually
classified as either native or exotic according to
whether it is located in its presumed area of
evolutionary origin and/or whether human agen-
cy is responsible for its current distribution. In
the absence of a temporal record to assess a spe-
cies history, the distinction can often become
blurred (16). For example, in a reexamination of
the British flora, several discrepancies between
published records were found, with the same
species being classified as “alien” or “native” de-
pending on personal interpretation (/9) (Table 1).
There is also the question of how far back one
takes “human” activity in determining whether a
species is native or alien. When using evidence of
first occurrences of species based on paleoeco-
logical records to reassess “doubtful natives” in
the British flora, Preston et al. (19) determined
that at least 157 plant species had been intro-
duced to Britain by humans, intentionally or
unintentionally, from the start of the Neolithic
period (about 4000 years ago) to 500 years ago,
yet the terminology used for their classification
according to different floras is highly variable
(Table 1). Preston et al. proposed that such
species should be classified separately as
“archaeophytes.” They acknowledged, however,
that this causes problems with their conservation
status because this “non-native” label excludes
them from the British Red Data Book of
threatened or near-extinct species, and auto-
matically deems them to be of lower conserva-
tion value—even though some are in serious
decline and have been part of the British flora for
at least 500 years.

A similarly conflicting conservation message
was reached in an applied paleoecological study
on the origin of an invasive form of the com-
mon reed (Phragmites australis) in the marshes
of the inland wetlands of Lake Superior, North
America (20) (Fig. 1). Over recent decades,
P, australis populations have expanded rapidly
throughout the coastal wetlands of North
America, creating substantial changes in com-
munity structure and composition. In this
study, paleoecological and genetic analyses
were used to determine when the common reed
became established in this region and whether
the source was from a native or non-native

Table 1. Classification of 157 species of British plants that were probably introduced more than
500 years ago (archaeophytes) according to three published floras (54—56).

Published Doubtful

Probably Uncertain or

flora Native native Introduced introduced untreated Total

Dunn, 1905 (54) 31 — 103 — 23 157

Clapham et al., 1952 (55) 85 19 30 10 13 157

Stace, 1991 (56) 77 27 39 14 0 157
www.sciencemag.org SCIENCE VOL 314 24 NOVEMBER 2006
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population. A 4000-year paleoecological record
indicated that reeds were not part of the local
flora until very recently (several decades), and
that their recent expansion was probably linked
to changes in water levels in the wetlands and
human-induced changes to the landscape. The
simple conservation message from this study is
therefore to eradicate or control reed populations,
because the expansion was recent and is likely to
cause serious changes to the wetlands communi-
ty. However, genetic data from these reed pop-
ulations add another level of complexity because
they indicate that the reeds are a native variety,
raising the question of whether this is an exotic or
natural invasion.

Fig. 1. Native (?) common reed (Phragmites
australis) growing in Bark Bay Slough on Lake
Superior, North America [photo: E. A. Lynch];
rattlesnake (Crotalus mitchellii stephensi) in the
warm desert of western North America [photo:
Blake L. Thompson]; wood grouse or western
capercaillie (Tetrao urogallus) in the Cantabrian
Mountains, northern Spain [photo: E. Menonil.

Oceanic islands are particularly liable to in-
vasions, and it is often difficult to assess whether
particular species are native or introduced. The
invasive ornamental club moss Selaginella
kraussiana, for example, is widely planted in the
Neotropics, southern United States, Australasia,
and western Europe. It is common on the Azores
Islands in a range of habitats, but is it native there?
Paleoecological records (27) (Fig. 2) clearly show
that S. kraussiana had been present on Flores in
the Azores for several thousand years before
Portuguese discovery and Flemish settlement in
the 15th century, thereby establishing beyond
doubt its native status on Flores Island. Paleoecol-
ogy again helped here to resolve a question in
biodiversity conservation.

Another key question is whether invasive
species are the triggering mechanism for eco-
system change, or merely opportunists taking
advantage of environmental change caused by
other biotic or abiotic factors? Also, are there
particular factors that make a habitat more
susceptible to invasion? A study of the coloniza-
tion and spread of invasive shrubs in native
shrublands and early successional forests in the
northeastern United States, for example, found
that prevalence of agricultural fields (historic and
present-day) was the most influential factor
affecting the colonization and spread of invasive
shrubs (22). These native shrublands and early
successional forests currently have high conser-
vation status because of their diversity of ter-
restrial vertebrates. By considering the temporal
dimension, the authors argue that it should be
possible to identify those early successional
habitats that may be especially prone to exotic
invasion and ought to be of higher conservation

priority. This study used only 40 years of temporal
data, but studies incorporating longer temporal
time scales have also illustrated persistent legacies
of ancient land use that may influence the
vulnerability of a site to invasion (/2), including
differences in soil pH, C, and N values. These
imprints can last for decades to centuries. The
identification of former land use by paleoecolog-
ical records can thus be a tool for understand-
ing and determining a habitat’s vulnerability to
invasion.

Introductions of non-native species often ap-
pear to fail a number of times before they even-
tually succeed; therefore, there is a lag between
first colonization and population expansion of
the invasive species (23). The reasons for re-
sistance to invasion are complex and can have as
much to do with environmental variables and
extreme events as with demographic and biotic
factors (6, 7). A study using paleoecological
records has shown that consideration should be
given to biological inertia (24), whereby a native
community occurs where environmental con-
ditions are no longer optimal but will remain in
situ without any triggering mechanism (e.g.,
hurricanes, windthrow, etc.) to “remove” this
resident population. Thus, the life history char-
acteristics and biology of the resident species,
and not the properties of the invading species,
are responsible for invasion lags. This phenom-
enon is particularly apparent in forest ecosys-
tems. In many current old-growth forests in
western North America, paleoecological studies
have shown that these stands were established
during the cooler and moister climate of the
Little Ice Age (about 650 to 150 years ago) and
therefore reflect recruitment responses to former
climate conditions (25). Such
information about ecological

\° @ legacies (/) is directly relevant
> Ze? to conservation because such
1C dates cm o «60 & \’0%"9 forests may be at a critical
& g P i
Modern- 1201 threshold and may be particu-
1401 larly. vulnerable to invasion'aﬂer
J Human a disturbance e.vent, either
100 + 70 BP- 1607 impact natural or human-induced.
505+558P- ] ] Wildfires
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4 in shaping the structure and
705 +35 BP- 220- functioril %f fire-prone com-
895 + 35 BP- 240: L munities throughout Earth’s
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4 “norm” (27). What processes
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Fig. 2. Simplified pollen diagram from Lagoa Rasa, Flores Is-
land, Azores, for the past 3000 years showing the percentage of
tree, shrub, and herb pollen and of Selaginella kraussiana
spores before and after human occupation of the island.

[Modified from (21)]

the composition of plants and
animals in ecosystems, in partic-
ular those already identified as
vulnerable? And are there par-
ticular management techniques
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that can be implemented to alter fire regimes?
Fundamental to these questions is establishing
the natural variability of wildfires so that this
can be used as a benchmark against which to
evaluate contemporary conditions and future
alternatives (28). Assessments based on short-
term records (<50 years) can easily lead to
misguided management plans (29).

Although climate change and human activ-
ities have long been acknowledged as drivers
of wildfires, results from recent paleoecological
studies show that these relationships are
complex. For example, although it is not
unreasonable to assume that an increase in
aridity would result in more fires, several studies
indicate otherwise. In the Alaskan boreal forest,
fires occurred more frequently under wetter
climatic conditions (30). A similar conclusion
was reached in a paleoecological study of fire
cycles in the Northern Great Plains
grasslands of North America (37).
Here, the highest charcoal flux
occurred during past moist inter-
vals when grass cover was exten-
sive and fuel loads were high.
Shifts in fuel quantity and quality
can cause changes in fire regimes.
Both studies show that there is a
complex climate-fuel-fire relation-
ship determining the variability of
wildfires (32). Such studies (33)
should be taken into account
when predicting future ecosystem
change within climate change
conservation strategies.

300+

Charcoal concentration (mm?3 mI")

Prehistoric and historic human- 0

induced wildfires are often as-
sumed to have caused changes in
ecosystem structure and degrada-
tion, especially in tropical forests
where natural fires are rare and
tend to be limited in extent. Man-
agement plans to control such fires
are usually implemented, however,
without paleoecological evidence
to confirm such an assumption. One such
example is in the tropical dry forests of the
southern Ratanakiri Province, northeastern
Cambodia (34). Here, regional conservation
policy is based on the premise that burning by
humans has degraded the dense forests and
resulted in the present open forest-savanna
mosaic. However, a paleoecological study
shows that present-day fire activity is now
lower than it has been for the past 9300 years
(Fig. 3). Rather, the forest-savanna shift is
probably a consequence of monsoonal activity,
and the high-frequency but low-intensity fires
caused by humans may, in fact, conserve forest
cover. In this case, the current conservation man-
agement plan is clearly at odds with evidence
from the paleoecological record.

Interesting conclusions have also emerged
from studies examining ecosystem composition
in response to fire regimes. One of the main

findings of the work on the North American
grasslands described above, for example, is that
fire is not necessarily a universal feature of this
ecosystem but oscillates through time with cli-
mate (37). The impact of such variability in
burning regimes through time on ecosystem
composition can have conservation implica-
tions. This is well illustrated in a study on the
long-term record of fire and open canopy in a
forest in southern Sweden that contains an ex-
ceptionally large number of endangered species
of beetle (35). Ofthe 105 beetle species recorded
at this site living on or in rotting wood that are in
the Swedish Red Data Book of threatened or
near-extinct species, many are associated with
open forest, forest fires, or structures created
by fire. Yet a site-scale paleoecological study
indicates that the forest is more closed today
than at any time in the past 2500 years; although

1000 2000 3000 4000 5000
Age (years BP)

6000 7000 8000

Fig. 3. Reconstructed fire regimes in northeastern Cambodian monsoonal
forests over the past 9300 years, using microfossil charcoal concentration
from a dated sedimentary sequence (34). The record indicates that present-
day charcoal input is the lowest of the entire period. Conservation policies
that suggest that human burning has increased and resulted in the open
forest—savanna mosaic in this region are clearly misguided, as are man-
agement recommendations for fire suppression.

there had been a significant amount of burning in
the past, there has been a large reduction in fires
over the past 200 years. The authors concluded
that openness of the site in the past as a
consequence of burning is an important ex-
planation for the high conservation value of the
site today (35). To conserve the diverse beetle
assemblage of this site, they suggested that open
forest conditions needed to be restored and that
prescribed burns would be the most appropriate
way to achieve this.

Climate Variability

Most conservation organizations have devel-
oped climate change conservation strategies [as
described in (36)] designed to conserve bio-
diversity in a changing climate. Two questions
central to current conservation strategies arise.
Where will biota move to in response to future
climate change? Which species and regions are

REVI

most at risk from future climate change?
Underlying these questions are key management
and planning issues—for example, ensuring that
reserve boundaries allow for potential species-
range shifts (37) and that the species and regions
most at risk are identified and protected (38).

In the evaluation of predictive models to
determine the biogeographic effects of climate
change, several studies have used paleoecolog-
ical records for backward prediction (hindcast-
ing) to assess errors potentially inherent in
species-envelope bioclimatic modeling (39).
This involves running models for past intervals
of time, using present-day species data but mod-
eling the species’ response to climate change
against paleoclimatic data as opposed to present-
day climatic data. The predicted distributions are
then tested against the distribution of the species
apparent in the fossil record for the time interval
covered by the paleoclimatic data
to assess model robustness (40).
In a study of 23 extant mammal
species in the United States (39),
for example, an ecological niche
model was run backward for the
time interval of the Last Full
Glacial (14,500 to 20,500 years
before the present) and predicted
distributions were compared to
actual distribution records obtained
from the FAUNMAP fossil data-
base (41). The model was also run
in reverse (i.e., using fossil data
and paleoclimatic data to predict
present distributions) and similar
comparisons were made. Results
indicated that for nine species the
model was able to predict accu-
rately the Pleistocene distributions
from the present-day data, and vice
versa. Not only did this confirm
that the model was robust for these
species, it also provided a test for
the underlying assumption of these
models that the species’ ecological
niche characteristics have remained constant
through time. A similar pattern was recently
found for several North American plant species
(42). The remaining species, however, either had
significant predictions only one way but not the
other (nine species) or were not significant in
either direction (five species).

The question of why some species’ distribu-
tions cannot be accurately predicted by species-
climate modeling can also be answered, at least
for some species, from paleoecological studies.
A study of the spread of Picea abies (spruce)
and Fagus sylvatica (beech) over the past 4000
years in southern Scandinavia, for example,
showed that at the local-stand scale the spread
of Picea closely tracked the changing area of
suitable regional climate, whereas the spread of
Fagus was more directly linked to anthropogen-
ic activities and disturbance by fire (43). Thus,
caution may be needed in using the results of

9000 9300
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predictive species-envelope models in conser-
vation planning, because the distributions of
some species today or in the past may be poorly
predicted.

Bioclimatic models are particularly relevant
to conservationists in determining and under-
standing the dynamics of the leading edge of
species-range margins and the potential space
that will be needed for future reserve boundaries
(40). There is also a considerable literature on
modeling to determine which species will go
extinct [e.g., (38)]. However, there are few
studies of the likely fate of rear-edge popula-
tions, that is, the source populations from which
the leading-edge populations migrate (Fig. 4)
(44). A key conservation objective should be the
preservation of conditions necessary for specia-
tion (45). Evidence from paleoecological and
genetic records indicates that the maintenance of
populations in these rear-edge regions could, in
fact, be critical for conservation of long-term
genetic diversity (44). Evidence also suggests
that these regions tend to be where plants and
animals were geographically and genetically
isolated in refugia during the cold stages of the
Pleistocene. In Europe, for example, refugial
localities have been recognized in Iberia, the
Balkans, and Italy and in mountain ranges such
as the Carpathians (46—438).

With the use of a combination of paleoeco-
logical and genetic evidence, other such regions
have been identified, and this information is
feeding into conservation policy. For example,
in a study on Eurasian populations of western
capercaillie (grouse)—a keystone species of
Palearctic boreal and high-altitude coniferous
forests (49)—a combined genetic and temporal
record enabled the identification of two regions
that should be classified as ecologically signif-
icant units (ESUs) because of the genetic
distinctiveness of the populations within them
from the rest of Europe. The distinctiveness of
the populations in these ESUs, located in the
Pyrenees and Cantabrian Mountains (Fig. 1), is
almost certainly related to their Pleistocene
refugial isolation. Similar historically related
genetic patterns have been identified in these
two regions for a number of plants and animals,
and this knowledge is now leading to interna-
tional recognition of the conservation impor-
tance of these areas (49).

In the United States, a similar approach using
a molecular and deep-time historical perspective
as a primary mechanism to frame biodiversity
reserves (50) has been applied to a number of
groups of plants and animals. Distinctive
patterns of genetic diversity related to geological
events in deep time (Pliocene/Miocene) and to
Pleistocene refugial isolation have been demon-
strated, for example, in four rattlesnake species
(Fig. 1; genus Crotalus) in the warm deserts of
western North America (50). Here it is argued
that an approach that seeks to understand the
causation of genetic patterns would be more
effective in encapsulating biodiversity than

current measures (based on the use of geological
features as a surrogate for diversity) and that
such studies should be routinely used in de-
veloping integrated regional conservation poli-
cies (50).

Determination of Thresholds Within
Natural Variability

Variability through time is an inherent part of
ecosystem behavior. It is thus essential to in-
corporate variability into management policies.
To do this reliably in our rapidly changing world
requires answers to several questions. What are
the baseline or “reference” conditions before re-
cent times? What is the range of natural var-
iability? Under what conditions do negative
impacts become apparent? How can thresholds
be determined beyond which specific manage-
ment plans should be implemented?

Gillson and Duffin (57) used paleoecological
records from savannas in Kruger National Park,
South Aftica, to determine the natural variability
of woody vegetation cover during the past 5000
years. They used this information to address
whether woody cover has decreased below 80%
of its “highest ever value”—a threshold set by
ecosystem managers to define the upper and
lower level of accepted variation in this eco-
system. Paleoecological results indicated that
during the past 5000 years, the estimated woody
vegetation cover had remained at about 20%
ofits “highest ever value,” and therefore that
management intervention in this part of the
park is unnecessary at present.

Other examples where paleoecological
records have been used to identify where natural
thresholds have recently been exceeded include
river ecosystems in Australia (52) and Colorado
(53). The large deep billabongs in the middle
reaches of the Murray River, Australia, for ex-
ample, do not currently support submerged mac-
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rophyte beds. Yet paleoecological analyses
indicate that these were an important part of
the ecosystem before the arrival of Europeans
(52). In the Colorado delta ecosystem (53), pa-
leoecological studies suggest that there has been
a decline of up to 94% of shelly benthic mac-
roinvertebrates over the past 75 years. This de-
cline is probably associated with a reduction of
fresh water and nutrients resulting from the
diversion of the Colorado River by dams and
irrigation projects. Both studies provide quan-
titative assessments of the relative health (4)
of these river ecosystems and indicate thresh-
olds that have been exceeded—information
that is critical to their restoration and long-term
conservation.

Conclusions

Conservation biology and nature management
are primarily concerned with the present and in-
creasingly with the future. Paleoecology primar-
ily considers the past but can provide a historical
perspective to the present (/). It can also con-
tribute to key questions in conservation and man-
agement such as habitat naturalness, biological
invasions, disturbance regimes, natural variabil-
ity, and ecosystem health. With increasing
amounts of paleoecological data of a high spatial
and/or temporal resolution (4, 5), there is po-
tential for synergy between conservation biology
and paleoecology. There are, however, several
research needs and challenges that need to be met
before an effective synergy can fully develop.
These include the following:

1) Paleoecological studies in biodiversity
hotspots with a high density of species. At present
there are few studies from these critical areas.

2) Improved taxonomic resolution of the
fossils found, because improved resolution in-
variably enhances the biological value of fossil
records (5, 21).

Within-population  Between-population

age genetic diversity genetic diversity

Fig. 4. Schematic representation of the leading and rear-edge populations in response to climate
change (44). Paleoecological and genetic evidence suggests that the rear-edge populations may be
extremely important in the conservation of long-term genetic diversity and that more attention
must be given to modeling the impacts of future climate change on these populations and their

protection.
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3) Assessing terrestrial paleoecological data
in terms of “ecosystem health” to provide an
ecosystem’s health history (4). Some taxa in
paleoecological records are “indicators” of par-
ticular ecological conditions that can provide
useful “symptoms” about the ecosystem’s health.
Paleolimnologists (4) have effectively applied the
concept of ecosystem health to lakes in relation
to critical loads of pollutants. The same concept
could be usefully applied to forests, heathlands,
grasslands, wetlands, tundra, and savannas.

4) Greater discussion and collaboration be-
tween paleoecologists and conservation biolo-
gists, so that the most pertinent and urgent
research questions are addressed together and
the most relevant paleoecological data are col-
lected at the spatial and temporal scales of direct
concern in conservation.

Paleoecology provides a historical perspec-
tive that can help put present and future con-
servation and management policies into context.
The time is ripe for the two disciplines to work
more closely together and to develop a common
agenda for biodiversity conservation.
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