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A two-component superconductor may hypothetically support a vestigial order phase above its
superconducting transition temperature, with rotational or time-reversal symmetry spontaneously
broken while remain non-superconducting. This has been suggested as an explanation to the ob-
served normal state nematicity of the nematic superconductor MxBi2Se3. We examine the condition
for this vestigial order to occur within Ginzburg-Landau theory with order parameter fluctuations,
on both the nematic and chiral sides of the theory. Contrary to prior theoretical results, we rule out a
large portion of parameter space for possible vestigial order. We argue that very extreme anisotropy
is one prerequisite for the formation of a stable vestigial phase via this mechanism, which is likely
not met in real materials.

I. INTRODUCTION

Superconductivity in doped topological insulator
Bi2Se3 has captured much recent attention. While the
crystal is supposed to have D3d symmetry that sees
three-fold rotational symmetry in the basal plane, two-
fold anisotropy in the superconducting phase in the
basal plane have been observed in experiments[1–6]. See
Yonezawa [7] for a review. Nematic superconductivity is a
proposed explanation [8]. More precisely, it has been pro-
posed that the superconducting order parameter belongs
to a two-dimensional representation, and the energetics
is such that, below the superconducting transition, the
order parameter picks a state with spontaneously bro-
ken rotational symmetry (other than the other possibil-
ity where time reversal symmetry is broken, c.f. the case
for UPt3 [9, 10]).

If the order parameter belongs to a two-dimensional
representation, one expects an internal degree of free-
dom (rotation of the order parameter in this case) to
reveal itself under suitable circumstances. However, so
far no experiments have convincingly shown this degree
of freedom. One may expect external stress can re-orient
the order parameter [11], but an experiment at Argonne
[12] turns out to be negative. In a related experiment on
multidomain sample at Kyoto [13], only changes of the
relative sizes of the domains were found. One might also
expect that there should be special features in the upper
critical field such as kinks as a function of the magnitude
of the field [14] (c.f. [15]) or angle in the plane [16]. Nei-
ther has been reported so far and a recent experiment [17]
specifically looking for these features was not able to find
one. Others [18] and us [19] have predicted the existence
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of half quantum vortices or skyrmions (which are unique
to multicomponent order parameters but absent in sin-
gle component systems). We have also investigated the
special features in shear stress tensor due to the multi-
dimensional nature of order parameter [20]. Experiments
examining these predictions have not yet been reported.

A nematic superconducting order breaks both gauge
and rotational symmetry. In principle the symmetries
are not necessarily broken at the same temperature. A
few years ago, [21] predicted that “vestigial nematic or-
der” can exist in this system: as the temperature is low-
ered, the symmetry preserving normal state first makes
a transition into a state with broken rotational symme-
try, and only later gauge symmetry is broken, forming
the nematic superconducting state. This possibility is
unique to a multi-component order parameter: a super-
conductor with an order parameter belonging to a one-
dimensional representation, even if it is not s-wave, can-
not exhibit this vestigial order. Observation of this “ves-
tigial nematic state” would be a “smoking gun” of this
nature of the order parameter. Electronic nematicity in
the normal phase was first reported in [22], and then [23]
claimed to observe the double transitions, with a vesti-
gial order phase sandwiched in between normal and su-
perconducting phases. In particular, length change of the
sample as a function of temperature or field was moni-
tored. A rapid and directional dependent change as a
function of temperature above the superconducting tran-
sition was observed and interpreted by these authors as
a step indicating a first order transition into a vestigial
nematic-ordered state. It is remarkable that the relative
change in length is only of order 10−7, even smaller than
the distortion from perfect D3d found at room temper-
atures from another group [24]. We are therefore not
sufficiently convinced by [23]: their result may simply
reflect a broadened superconducting transition due to,
e.g., sample inhomogeneity. We are thus motivated to
consider the criterion for vestigial order in more detail
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in the present paper. Time-reversal-symmetry-breaking
vestigial order associated with a superconductor was dis-
cussed in [25, 26]. Vestigial orders have been recently
discussed in many other systems [27, 28].

As mentioned above, a two-component order parame-
ter can instead breaks the time-reversal symmetry and
form a chiral superconductor. A unifying Ginzburg-
Landau (GL) theory in two complementary regions of pa-
rameter space describes respectively chiral and nematic
superconductors. To be more specific, the sign of β2 in-
troduced in (3) controls the choice: negative for nematic
and positive for chiral. While only the nematic side of
the theory is experimentally relevant to MxBi2Se3, we
study both sides of the theory. The relevance of chiral
superconductivity in MxBi2Se3 is discussed in [29–31].

In this paper, we set out to find vestigial order for
both the chiral and the nematic sides of the GL theory
using a modified Luttinger-Ward (LW) approach, and
find none. For the region |β2/β1| < 1/2 (β1 also given in
(3)), we expect a second order transition from the nor-
mal phase to the appropriate (chiral or nematic) super-
conducting phase, without a vestigial order in between.
For β2/β1 < −1/2 (“deeply nematic”) or β2/β1 > 1/2
(“deeply chiral”), we predict a joint first order transition
directly into the appropriate superconducting phase and
no vestigial order for physically relevant choices of pa-
rameters. Our negative result contradicts [21, 23], but is
not inconsistent with [26]. Comparison with these prior
works will be made as we present our result. Previously

we made available a preprint [32] that erroneously pre-
dicted a vestigial nematic phase in the deep nematic re-
gion. We will comment on the difference in section IV
A.

The organization of this paper is as followed. In Sec-
tion II we introduce the effective Hamiltonian for the
two-component order parameter, and also the concept of
a vestigial order. In Section III we give the formulas of
the LW formalism with UV-divergence subtraction. We
report and discuss our results for the chiral and nematic
cases in Sections IV and V, respectively. Section VI is
the conclusion.

II. THEORETICAL MODEL

The superconductors in question can all be described
by a two-component complex order parameter field

η(~r) =

(
ηx(~r)
ηy(~r)

)
. (1)

As the notation suggests, under rotations about the z-
axis, η transforms just like a vector in the xy-plane. Fo-
cusing on the case with trigonal symmetry, one can write
down a phenomenological effective Hamiltonian density
H = HK + Hi, split into the kinetic part HK and the
interaction Hi:

βHK = α(η∗j ηj) +K1(∂iηj)
∗(∂iηj) +K2(∂iηi)

∗(∂jηj) +K3(∂iηj)
∗(∂jηi) +Kzz(∂zηj)

∗(∂zηj)

+
K ′

2

[
(∂zη

∗
y)(∂xηx − ∂yηy) + (∂zη

∗
x)(∂xηy + ∂yηx) + c.c.

]
; (2)

βHi =
β1
2

(η∗i ηi)(η
∗
j ηj) +

β2
2

(ηiηi)
∗(ηjηj). (3)

Repeated indices i or j = x, y are summed over, and
“c.c.” stands for complex conjugate. The parameter
α labels the temperature, as is usual in the GL the-
ory. We may also write α = α′(T − T0), where T0
is the meanfield critical temperature of superconduc-
tivity, and we are interested only in the small-α limit.
β = (kBT )−1 ≈ (kBT0)−1 is the usual inverted tem-
perature, and can be regarded as approximately a con-
stant. Effective Hamiltonian density of this form has
been adopted in the literature [16, 21], and the notation
here is in line with our previous papers [11, 20]. The
gradient terms proportional to K1,2,3 exhaust all allowed
possibility in a completely cylindrically symmetric or a
D6 system, while K ′ is additionally allowed by the lower
D3d symmetry [33]. The “Fermi surface warping” dis-
cussed in [34] is one possible origin of such K ′ term [35].
Thermodynamics is formally governed by the partition

function Z =
∫
DηDη†e−

∫
d3r βH.

Stability requires β1 > 0 and β2 > −β1, so that Hi
is bounded from below. If β2 < 0, the uniform mean-
field ground state of H has a finite and real η up to an
overall phase factor. This is the nematic superconducting
state that breaks both global U(1) and rotational symme-
try. On the other hand, if β2 > 0, the meanfield ground
state favors ηx = ±iηy. This is the chiral superconduct-
ing state, which is invariant under spatial rotation, but
breaks the time-reversal symmetry along with the global
U(1) symmetry.

It turns out that the physics is more intuitively repre-
sented in the alternative basis

Φ =

(
φ↑
φ↓

)
≡ 1√

2

(
ηx + iηy
ηx − iηy

)
. (4)

As the notation suggests, we will adopt the analogy of
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Φ being a (pseudo-)spin-1/2 object. The original η is
related to Φ by a change of spin quantization axis in this
language. We will take the thermodynamic limit, pass to
the Fourier space, and rescale the momenta so that HK
appears in a much more pleasing form:

βHK =

∫
p

Φ†(p) (ε0(p)σ0 + εx(p)σx + εy(p)σy) Φ(p);

ε0(p) = p2x + p2y + p2z + α;

εx(p) = C1

(
p2x − p2y

)
/2 + C2 pzpy;

εy(p) = C1 pxpy + C2 pzpx;

C1 =
K2 +K3

2K1 +K2 +K3
; C2 =

K ′√
Kz(2K1 +K2 +K3)

.

(5)

We introduce the shorthand notation
∫
p
≡
∫
d3p/(2π)3;

σx,y,z are the usual Pauli matrices, and σ0 is the identity
matrix. Terms without derivatives are not affected by
the rescaling. In the pseudospin language, εx and εy are
effectively spin-orbit coupling terms.

In terms of Φ, Hi can be written as

βHi =
g1
2

(
|φ↑|4 + |φ↓|4

)
+ g2 |φ↑|2|φ↓|2

=
∑

i=x,y,z

λi
2

(
Φ†σiΦ

)2 (6)

where g1 = β1 and g2 = β1 + 2β2. The stability re-
quirement is g1 > 0, g2 > −g1. The meanfield ne-
matic (chiral) superconducting phase requires g1 greater
(smaller) than g2. In the second line, the coefficients are
λx = λy = (g1 + g2)/2 and λz = g1. This form is often
more useful in calculation.

In the meanfield description, the global U(1) symmetry
and rotational (time-reversal) symmetry are both spon-
taneously broken at the critical temperature for a ne-
matic (chiral) superconductor. When fluctuation is in-
cluded, however, a priori there is no reason for every-
thing to occur at once. Indeed, a non-zero expectation
value of 〈Φ†σzΦ〉 breaks the time-reversal symmetry, but
still respects the global U(1) symmetry. For the rota-
tional symmetry, 〈Φ†σx,yΦ〉 is the analogous quantity.
Either may be non-vanishing while 〈Φ〉 itself remains
zero. Ref [21] proposed the existence of 〈Φ†σx,yΦ〉 6= 0
ordering mediated by superconducting fluctuation above
Tc in MxBi2Se3, giving rise to the so-called vestigial ne-
matic order. Historically, the idea of such bilinears can
be found in the study of the “metallic superfluid” [36]
and “super-counter-fluid” [37], and subsequently seen in
several other models for multi-component superfluid or
superconductor [25, 38–40][41].

In the spin-1/2 metaphor, the vestigial nematic order
discussed here is a spin order in the xy-plane: a superpo-
sition of up and down spin. The fact that 〈Φ†σx,yΦ〉 6= 0
requires 〈φ∗↑φ↓〉 6= 0. Equation (6) suggests that the order
is favored only when g2 < 0, and one expect no vestigial
order at all for g1 > g2 > 0. This criterion contradicts

β2/β1

g2/g1

−1 − 1
2 0

1
2

−1 0 1 2
DN N C DC

FIG. 1. A visual guide for translating between β2/β1 and
g2/g1 (note that the relation is non-linear). The ratios control
critical behavior of the system. The labels DN, N, C, DC are
deep nematic, nematic, chiral, deep chiral, respectively.

the previous theoretical result [21, 23], and is indeed the
initial motivation of the present work. Though it will
presently be shown that g2 < 0 alone is insufficient to
stabilize the vestigial nematic phase.

On the chiral side, we will later deduce a similar neces-
sary (but insufficient) condition g2 > 2g1 for the vestigial
phase, but we do not see a simple way to read this off
from (6). These g2 < 0 and g2 > 2g1 regions corresponds
to the deep nematic and deep chiral regions introduced
in the previous section; see Fig 1.

We note that the deep nematic region g2 < 0, while
not obviously forbidden, seems not easily attained, ei-
ther. Calculations of these GL coefficients from various
microscopic models are done in supplementary materials
of [18, 42]. It appears to us that, of all the models dis-
cussed in these two references, none exhibits a negative
g2[43].

Unfortunately, a treatment using 〈Φ†σiΦ〉 as the order
parameter is far from straightforward. [21] attempted
this but was forced to employed a Hubbard-Stratonovich
decoupling which fails to account for all scattering chan-
nels, and this is likely the main cause of their error. (See
the appendix of [26] and the present authors’ preprint
[32] for further discussion.) Here we appeal to the spin
metaphor again: a spin order and an effective Zeeman
splitting along the direction of the order mutually imply
each other. We therefore look instead at the self energy
of Φ, and employ the Zeeman part as the order parameter
for the vestigial phase.

III. RENORMALIZED BOSONIC SELF
ENERGY METHOD

The celebrated LW functional [44] is the natural
method to treat self energy in a self-consistent way. To
make it work for the bosonic Φ field, we have to make a
simple extension so that the UV divergence of a bosonic
field theory is handled properly. Well-known extra com-
plication for this divergence-removal process is present in
d = 4 [45–48], but the problem at hand effectively lives
in d = 3, and the process is very straightforward. We
will state the formulas here, and interested reader are
referred to the appendix for a more detailed discussion.

In d = 3, the temperature parameter α is the only
quantity that receives UV-divergent correction. Follow-
ing the standard procedure of perturbative renormaliza-
tion [49], a counter term δα|Φ|2 is added to βH to can-
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cel the the divergence. This counter term is determined
order-by-order in perturbation theory in any preferred
renormalization scheme, and without reference to any
self-consistent condition yet.

We assume the theory is translationally invariant and
take the thermodynamic limit. Let G(k) be the (varia-
tional) momentum-space matrix propagator of the inter-
acting theory:

(2π)3δ(3)(k − q) [G(k)]ij ≡
∫
d3x

∫
d3y ei(k·x−q·y) 〈φ∗i (x)φj(y)〉 (7)

The free energy density functional Ω[G] now reads

βΩ[G] =

∫
k

Tr logG(k)−1 −
∫
k

Tr
{[
G(k)−1 −G0(k)−1

]
G(k)

}
+ δα

∫
k

TrG(k) + ΦLW [G].

(8)

We have introduced the shorthand
∫
k

=
∫
d3k/(2π)3, and

Tr here refers exclusively to the matrix trace. G0 is the
free propagator. The LW functional ΦLW [G] is defined
as usual to be the generating functional of two-particle
irreducible self energy diagrams [44, 50]. The first line
of (8) is the non-interacting part, and the second line
vanishes in the non-interacting limit. This free energy
itself still contains a UV-divergent additive constant, but
the physically relevant quantity (Ω[G] − Ω[G0]) is UV-
finite to all order in perturbation theory. This claim will
be shown explicitly to one-loop order in the subsequent
calculation, and the general argument is presented in the
appendix.

Superfluid order can be incorporated into this for-
malism, too. We restrict ourselves to a uniform order
Φ̄ ≡ 〈Φ〉 6= 0 here, and let the fluctuating part be

Φ̃ ≡ Φ − Φ̄. Now that Φ̄ breaks the U(1) symmetry, we
have to adopt the Nambu spinor notation to effectively

account for four real scalar degrees of freedom:

Ψ =

ψ11

ψ12

ψ21

ψ22

 ≡

φ̃↑
φ̃∗↑
φ̃↓
φ̃∗↓

 . (9)

Expanding the original H yields additional effective self
energy and cubic interaction for Ψ; let us put

βH[Φ] = βH[Φ̄] + βH[Φ̃] +
1

2
Ψ†MΨ +

1

3!
Nijkψiψjψk

(10)
where the coefficients M and Nijk are, of course, depen-
dent on Φ̄ (and Φ̄†).

Let G̃ be the 4 × 4 matrix propagator of the Ψ field,
and G̃0 the non-interacting limit of that. The free energy
density with possible superconducting order is

βΩ[G̃] =
1

2

∫
k

Tr log G̃(k)−1 − 1

2

∫
k

Tr
{[

G̃(k)−1 − G̃0(k)−1
]
G̃(k)

}
+

1

2

∫
k

Tr
[
(δα+ M)G̃(k)

]
+ Φ̃LW [G̃] +H[Φ̄] + δα|Φ̄|2.

(11)

The LW functional Φ̃LW is defined as the generator of 2PI
self energy diagrams for the Ψ field, taking into account
the effective cubic interaction 1

3!Nijkψiψjψk.

Great care must be taken, however, when interpret-
ing the result whit superfluid order. It has been known
[45, 50] that similar approaches (within Hartree-Fock-
like approximation) always predict first order transitions
even when second order ones are expected on symme-
try ground, and the solutions always weakly violate the
Goldstone theorem in the superfluid phase; it is believed
that these methods do not adequately handle the strong
critical fluctuation when the spectrum is nearly gapless.

Unfortunately our d = 3 renormalized variant turns out
to be no different. Such artifacts will be discussed in
more detail when they are encountered.

IV. THE CHIRAL SIDE

A. Decoupled limit

Let us first focus on the story of the chiral side of the
theory (g1 < g2) given the much cleaner algebra, even
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(a) (b)

FIG. 2. (a) The two-loop Hartree-Fock vacuum diagram con-
tributing to the LW functional ΦLW . (b) The associated one-
loop proper self energy diagram.

though MxBi2Se3 is on the nematic side. Most of the
physics is in fact very similar on either sides. We will
start with the decoupled limit with C1 = C2 = 0, so
called because the effective spin-orbit coupling vanishes.
The gradient term now has full rotational invariance, but
the interaction still distinguishes the z-direction from the
rest, so the theory enjoys full cylindrical symmetry. We
will confine ourselves to α > 0. In the subsequent discus-
sion, apart from the (self-explanatory) superconducting
and vestigial phases, we will refer to the high temperature
phase without any ordering as the “symmetric phase”.

The main approximation here is the truncation of ΦLW
to the Hartree-Fock term represented by the Feynman
diagram Fig 2a. In terms of the full propagator G, it
reads

ΦLW ≈
∑

i=x,y,z

λi
2

{[∫
k

Tr(σiG(k))

]2

+ Tr

[
σi

(∫
p

G(p)

)
σi

(∫
k

G(k)

)]}
.

(12)

where the second form of (6) is used. We have not specify
our ansatz for G, but any sensible choice would make (12)
UV-divergent. We will simply assume that the integrals
are regularized in some suitable scheme and press on.

The non-interacting propagator is identified as
G0(k) = (k2 + α)−1σ0. The proper self energy diagram
generated by (12) is depicted in Fig 2b. It represents

a momentum-independent energy shift. We therefore
adopt the ansatz

G(k)−1 = (k2 + α+ h0)σ0 + ~h · ~σ, (13)

where h0 and ~h = (hx, hy, hz) are the variational param-

eters. The traceless part ~h · ~σ is the induced Zeeman
splitting: non-vanishing hx or hy indicates vestigial ne-
matic order, while a non-zero hz implies vestigial chiral
order. It is necessary to allow for h0 variation: while
α is fixed by the physical temperature, it is the average
energy gap of the symmetric phase only. Any other so-
lution can in principle have a different value of average
gap at the same temperature, reflected by a h0 6= 0. [51]

We opt for the following condition to specify the renor-
malization counter term δα: in the symmetric phase, the
one-loop correction Fig 2b should be exactly canceled by
the counter term, leaving the renormalized value α un-
changed. This is accomplished by choosing

δα = −(2g1 + g2)

∫
k

1

k2 + α

= −(λx + λy + λz)

∫
k

1

k2 + α
,

(14)

also regularized with the same suitable scheme used in
(12).

With all the necessary ingredients in place, the free
energy density Ω given in (8) can be calculated up to
the Hartree-Fock approximation. As mentioned earlier,
one needs to discard a UV-divergent additive constant,
and then the expression is manifestly UV-finite. One

recognizes that the gap matrix [(α + h0)σ0 + ~h · ~σ] has

eigenvalues α+ h0 ± |~h|, and defines the quantities

m1 =

√
α+ h0 + |~h| ≥ 0,

m2 =

√
α+ h0 − |~h| ≥ 0

(15)

to be the square root of the eigenvalues. Now the free
energy density relative to the symmetric phase can be
conveniently written as

β(Ω− Ωs) =
1

12π
(m3

1 +m3
2)− α

4π
(m1 +m2) +

(2g1 + g2)

64π2
(m1 +m2 − 2

√
α)2

+
1

64π2|~h|2
[
g2(h2x + h2y) + (2g1 − g2)h2z

]
(m1 −m2)2 +

1

3π
α3/2,

(16)

where Ωs is the free energy density of the symmetric so-
lution m1 = m2 =

√
α.

Any vestigial order is indicated by m1 6= m2. On the
chiral side (2g1 − g2) < g2, and it is clear that for any

given |~h|, the lowest Ω is always obtained by choosing

hx = hy = 0, and the order, if exists, must be purely
chiral. We will adopt this choice from here on.

To proceed, we first introduce the dimensionless quan-
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u

v

(a)

u

v

(b)

u

v

(c)

FIG. 3. The landscape of free energy density Ω on the entire
uv-plane. The shaded region is unphysical. The dots rep-
resent stationary points, and the arrows points toward the
direction of lower Ω. Only the v > 0 side is plotted here; the
other side is symmetrical. (a) At high temperature (α > αc2),
the symmetric state u = v = 0 is the stable minimum inside
the physical region. (b) As the temperature is lowered, the
saddle point is drawn toward the symmetric state, and it is
within the physical region for αc2 > α > αcc. (We zoom in
on the symmetric state, and the maximum on the far left is
not shown.) Note that the u + 2 = v edge may have a lower
free energy than the symmetric state after the saddle point
has crossed into the physical region. (c) The saddle point
eventually collapses in on the symmetric state and annihi-
lates at α = αcc. Below this temperature there is no stable
equilibrium.

tities:

u ≡
(
m1 +m2 − 2

√
a
)
/
√
a;

v ≡ (m1 −m2) /
√
a.

(17)

The physically meaningful range of values is u ≥ −2,
|v| < (u + 2). The symmetric phase corresponds to u =
v = 0, and a vestigial chiral order is indicated by v 6= 0.
The free energy (16) has a very clean dimensionless form
in terms of u and v:

(
4π

α3/2

)
β(Ω− Ωs) =

(
1

2
+

(2g1 + g2)

16π
√
α

)
u2 +

u3

12
+

(
1

2
+

(2g1 − g2)

16π
√
α

)
v2 +

uv2

4
. (18)

This expression is bounded from below within the phys-
ical region.

The symmetric solution u = v = 0 is always a sta-
tionary point. If (2g1 − g2) > 0, it is always a stable
equilibrium, thus confirming our previous assertion that
(2g1− g2) < 0 is a necessary condition for a vestigial chi-
ral phase. When the quantity is negative, the sign of the
v2 coefficient changes at the instability temperature αcc:

√
αcc =

g2 − 2g1
8π

, (19)

and renders the symmetric phase unstable. The vanish-
ing of this coefficient is equivalent to a diverging chiral
susceptibility, and may be naively taken as the critical
point of a second order transition into the vestigial chiral
phase. Alas, this textbook interpretation fails utterly for

the present problem: a closer look at (18) reveals that
there exists no stable solution for α < αcc.

Let us elaborate. Since (18) is only a cubic polyno-
mial, its stationary points on the full uv-plane can be
exactly found. In the α → ∞ limit, these are: local
minimum (u, v) = (0, 0) (the symmetric solution), local
maximum (−4, 0), and two saddle points (−2,±2). Apart
from (0, 0), the other stationary points are outside the
physical region, and (0, 0) is the global minimum inside
the physical region. See Fig 3a for a sketch.

As α is lowered, the symmetric solution remains at
(0, 0), the local maximum move down the −u-direction,
and the two saddle points draw nearer toward (0, 0).
At α = αc2 [52] , the saddle points cross the edges
|v| = (u+2) into the physical region. That is, an initially
gapless (m2 = 0) solution of the saddle point equations
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becomes available. See Fig 3b. This gapless solution at
αc2 has special implication when we discuss the supercon-
ducting order later. Eventually at αcc the saddle points
and the minimum merge, and leaving the symmetric so-
lution unstable in the v-direction. This is depicted in Fig
3c.

In fact, below αc2, the edges of the physical region
are lower in free energy than the saddle points, and the
saddle points are drawing closer to the symmetric solu-
tion continuously. Therefore, at some point in the range
αcc < α < αc2, the edges already are lower than the
symmetric solution, and (18) no longer has an equilib-
rium. One thing left out of the analysis is the supercon-
ducting order: it is therefore natural to conjecture that a
joint first order transition into the superconducting phase
takes place within αcc < α < αc2.

B. Joint first order transition

Let us now produce evidence for the above conjecture
using (11). We assume a uniform chiral superconducting
order φ̄↑ = 0, φ̄↓ = φ̄, chosen to be real. There is another
degenerate choice with the spin reversed. Clearly the
chiral Zeeman self energy and the chiral superconducting
order mutually favor each other, and we will leave out
other components in the subsequent analysis. Given the
form of the interaction (6), one expects the pseudospin
be conserved even in the presence of the superconducting
order. This leads us to write down the variational matrix
propagator:

G̃(p) =


ε0(p) + h0 + hz r1e

−iθ1

r1e
iθ1 ε0(p) + h0 + hz

ε0(p) + h0 − hz r2e
−iθ2

r2e
iθ2 ε0(p) + h0 − hz

 . (20)

The phases θ1 and θ2 of the off-diagonal components are
undetermined a priori, even though the superconducting
order itself has been set to be real. The amplitudes r1,
r2 are positive.

Again, the result is most conveniently expressed in
terms of the square roots of the eigenvalues of the 4× 4

gap matrix G̃(p = 0). We thus define

m11 =
√
α+ h0 + hz + r1,

m12 =
√
α+ h0 + hz − r1,

m21 =
√
α+ h0 − hz + r2,

m22 =
√
α+ h0 − hz − r2.

(21)

It can be shown that θ1 drops out of the free energy
completely, and θ2 = 0 always minimizes the free energy.
Furthermore, all stationary solutions satisfy m11−m12 =
0. So we will set θ2 = 0 and m11 = m12 = m1 from here.
The resultant free energy density is

βΩ =
1

24π
(2m3

1 +m3
21 +m3

22)− α

8π
(2m1 +m21 +m22) + αφ̄2 +

g1
2
φ̄4

+
g1

128π2

[
8(m1 −

√
α)2 + 3(m21 −

√
α)2 + 3(m22 −

√
α)2 + 2(m21 −

√
α)2(m22 −

√
α)2
]

+
g2

32π2
(m1 −

√
α)
(
m21 +m22 − 2

√
α
)
− g1

8π
φ̄2
(
3m21 +m22 − 4

√
α
)
− g2

4π
φ̄2
(
m1 −

√
α
)
.

(22)

We proceed to solve the saddle point equations
∂Ω/∂m1 = ∂Ω/∂m21 = ∂Ω/∂m22 = ∂Ω/∂φ̄ = 0. All
previously found stationary points (the symmetric solu-
tion and the pair of saddle points) remain solutions with
φ̄ = 0. In addition, there exist stationary points with
φ̄ 6= 0 not connected to the symmetric solution. As the
temperature is lowered, a pair of φ̄ 6= 0 solutions come
into existence through a saddle-node bifurcation, one lo-

cal maximum and the other minimum. See Fig 4a. When
the temperature is further lowered, the maximum is con-
tinuously connected to the aforementioned gapless, non-
superconducting solution at αc2, and ceases to exist for
α < αc2. The other solution rapidly overtakes the sym-
metric state to become the global minimum in free energy
at some α > αcc, before the symmetric state turns un-
stable. Neither branch of the superconducting solutions



8

0.000 0.002 0.004 0.006 0.008 0.010 0.012
0.0

0.1

0.2

0.3

0.4

(a)

0.000 0.002 0.004 0.006 0.008 0.010 0.012
0.000

0.005

0.010

0.015

0.020

0.025

0.030

(m
22

)2

(b)

α

φ̄

(c)

FIG. 4. (a) Superconducting order parameter φ̄ and (b) small-
est energy gap m2

22 versus α for the superconducting solution,
plotted at g2/g1 = 2.5. The dotted branch is the unstable so-
lution that annihilates as it becomes gapless at αcc slightly
bigger than zero, and the solid line is the (meta-)stable branch
that continues onto lower temperature. φ̄ is in unit of

√
g1,

and everything else in unit of g21 . We see that m2
22 6= 0 ex-

plicitly violates Goldstone’s theorem. (c) The schematic il-
lustration of the conjectured actual superconducting solution
(dashed) alongside the Hartree-Fock solution (solid). The
dotted line represents the first order transition temperature.
As marked on the diagram, the artifact dominates the appar-
ent first order jump given by the Hartree-Fock solution.

exhibit a gapless Goldstone mode: see Fig 4b.
This is reminiscent to the typical result obtained from

similar self-energy methods; see ref [45] and in particular
appendix G of [50]. In these other reported cases, the bi-

furcation structure is seen as an artifact of the method:
the normal gapless solution is physically expected to be
the onset of degenerate superconducting minima, rather
than the termination of degenerate maxima. We there-
fore conjecture the following: a pair superconducting lo-
cal minima (related by time-reversal) grow out of the
gapless, normal solution at αc2. They continue to ex-
ist and becomes the true equilibrium solution at some
α > αc. See Fig 4c.

Apart from qualitatively establishing the joint first or-
der transition into the superconducting phase, we believe
that any quantitative results here should be taken with
more than a few grains of salt. In particular, (22) indi-
cates a very strong first order transition, but we believe
much of this jump is artifact of the self energy method.
Unfortunately we have no other way to estimate the mag-
nitude of the jump.

C. Away from the decoupled limit

Finally, one may restore C1, C2 6= 0 and re-do the cal-
culation to see if the effective spin-orbit coupling changes
the picture. The renormalization counter term δα is
changed accordingly:

δα = −(2g1 + g2)

∫
k

ε0(k)

ε0(k)2 − εx(k)2 − εy(k)2
. (23)

An analytic evaluation of Ω is now impossible even in
the non-interacting limit, and we perform an expansion
in powers of C1 and C2. It can be seen that the first or-
der correction vanishes, and quadratic correction terms
are proportional to the parameter J ≡ ( 8

15C
2
1 + 2

15C
2
2 ),

coming from the angular average of (ε2x + ε2y). We esti-
mate the typical value of J would be of the order 0.1 or
smaller (see apendix), though we cannot definitely rule
out a bigger, more extreme value. As noted in [21], the
theory is still cylindrically symmetric at this order; the
three-fold anisotropy sets in only at cubic order in C1

and C2. In the absence of a superconducting order, this
first correction to the free energy reads:

βΩ = (decoupled limit)

+
J

8π
(m1 +m2)−1

{[
(m4

1 +m3
1m2 +m2

1m
2
2 +m1m

3
2 +m4

2)− 5α(m2
1 +m1m2 +m2

2)
]

+
(2g1 + g2)

8π

[
5(m3

1 + 2m2
1m2 + 2m1m

2
2 +m3

2)− 5

2

√
α(5m2

1 + 14m1m2 + 5m2
2)

]
+

(2g1 − g2)

8π

[
5

4
(m1 +m2)(m1 −m2)2 − (m1 −m2)4

4(m1 +m2)

]}
+ . . .

(24)

m1 and m2 are defined in (15).

We adopt a different strategy to analyze this free en- ergy. The above expression is Taylor expanded in terms
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of the dimensionless variables u and v introduced in (17),
and the series is truncated to contain only u2, uv2, v2,
and v4, in the spirit of the GL theory. Completing the
square on u generates a (negative) correction to the v4

coefficient, valid for v small enough. If the overall effec-
tive quartic coefficient is positive, we argue that a second
order transition to the vestigial phase does take place;
otherwise the joint first order transition remains the only
possibility. Applying the criterion to the decoupled limit
(18), one sees that the intrinsic v4 coefficient is absent,
and the correction from u-fluctuation makes the overall
effective v4 coefficient negative. Indeed there is no vesti-
gial phase as we have already concluded. For the present
expression (24), we have(

4π

α3/2

)
βΩ ≈

[
1

2
+

15

16
J +

(
2g1 + g2
16π
√
α

)(
1 +

15

4
J

)]
u2

+

[
1

2
+

5

16
J +

(
2g1 − g2
16π
√
α

)(
1 +

5

4
J

)]
v2

+

[
1

4
+

15

32
J +

(
2g1 + g2
16π
√
α

)
5

8
J

]
uv2

+ J

[
1

64
−
(

2g1 − g2
16π
√
α

)
1

16

]
v4.

(25)

At the first glance, the effective spin-orbit coupling
does tend to stabilize the vestigial phase by generating
a positive v4 term. (2g1 − g2) < 0 is still required for
non-trivial behavior, and the instability temperature αcc
now takes an O(J) correction:

√
αcc =

(g2 − 2g1)

8π

(
1 +

5

8
J + . . .

)
. (26)

In principle one would want to expand every expression
to O(J), but the ratio Rc ≡ (g2 + 2g1)/(g2 − 2g1) ≥ 1
is unconstrained and potentially very big. The product
RcJ ≥ J may or may not be small, and extra attention
is due when analyzing the result. At αcc, taking into
account the u-fluctuation, the effective v4 coefficient is

(
3

64
J +O(J2)

)
−

[
1
4 + 15

32J +
(

5J
16+10J

)
Rc

]2
1
3 + 15

16J +
(

4+15J
8+5J

)
Rc

. (27)

The first term is the “intrinsic” v4 coefficient, and the
second term comes from the u-fluctuation. It can be
numerically checked that (27) is never positive for any
Rc ≥ 1 for any given J . Nevertheless, the expression is
only meaningful for small J , and we can only rule out the
vestigial chiral phase when effective spin-orbit coupling
is not strong.

In conclusion, for a range of physically reasonable pa-
rameters, the vestigial chiral order cannot exist above
a weak-coupling two-component chiral superconductor
via the Ginzburg-Landau mechanism investigated in the
present paper and [21, 27]. Even though there is an ap-
parent divergent in chiral susceptibility, this does not in-
dicate a second order phase transition, since there is no

(meta)-stable non-superconducting state available below
the instability temperature αcc. Instead, the system un-
dergoes a joint first order transition into the supercon-
ducting phase at a temperature slightly above αcc. This
negative result holds for arbitrary ratio of coupling con-
stants Rc, but requires the coefficient J to be small. Re-
call that J is a measure of the size of anisotropic gradient
terms in the effective Hamiltonian. The typical value of
J is small, however, and it already takes some extreme
choice of parameters to bring J ∼ O(1).

D. Comparison with Fischer and Berg

Fischer and Berg [26] considered a very similar model
of a two-component order parameters with tetragonal
symmetry, instead of the trigonal symmetry considered in
this work. They identified effectively the same g2 > 2g1
criterion. They also found a stable vestigial chiral phase
at larger g2 in their numerical calculation.

Technically, our model and theirs differ in two ways.
First, using the second form of (6), all three λx,y,z can
take arbitrary values in the tetragonal case, while the
trigonal symmetry imposes λx = λy in addition. Second,
the form of allowed effective spin-orbit coupling is differ-
ent under tetragonal symmetry. To the order at which
we are working, the spin-orbit coupling term is replaced
by its angular average, and the difference amounts to a
change in the J parameter. And the interaction terms
practically have the same form with different coupling
constants. Thus our negative result, with minimal mod-
ification, should be applicable for the tetragonal symme-
try, too.

One key technical difference between our method and
Fischer and Berg’s is the removal of UV-divergence.
We argue that (for a weak-coupling superconductor) the
long-wavelength physics of the finite-temperature phase
transition cannot depend on anything at the atomic scale,
that all relevant scales of the problem are much smaller
compared to the size of the Brillouin zone, and it is very
natural to subtract off the UV-divergence. And we ex-
pect to see small g1 and g2 compared with lattice scales,
reflecting the smallness of the Ginzburg parameter or the
ratio Tc/EF .

On the other hand, Fischer and Berg regularized their
model with a lattice. The inverse lattice spacing becomes
their momentum unit, and Tc is their energy unit. The
vestigial chiral phase found in their numerical calculation
required not only a large ratio of (g2−2g1)/(g2+2g1), but
also that g1, g2 individually of order unity in their cho-
sen units. It is not clear to us that their theory contained
any small parameter, and the parameter range where the
vestigial chiral phase was found seems unlikely to be re-
alized in real materials. They did not find a vestigial
chiral phase when the coupling constant is sufficiently
small compared with the cutoff; this is consistent with
our negative result.

We also note that the harmonic variational approach
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adopted by Fischer and Berg is in effect identical to our
LW approach with Hartree-Fock approximation. The LW
approach, however, offers a clear direction for systematic
improvement.

V. THE NEMATIC SIDE

A. Non-existence of vestigial order

Most of the result from the previous section can be di-
rectly transplanted to the nematic case (g2 < g1). The
free energy (16) is valid irrespective to the values of g1
and g2. This time, one always chooses hz = 0 for the min-
imum, and any possible vestigial order is always purely
nematic. We note that the theory in the decoupled limit
does not possess a preferred nematic orientation due to

its full cylindrical symmetry; an orientation must be ran-
domly and spontaneously chosen in the ordered phase.
This is but an artifact of the forth order GL theory in
the decoupled limit: the effective spin-orbit terms and
the sixth order terms in the GL expansion would breaks
the rotational symmetry down to six-fold [11, 16].

Once hz is set to zero, one recognizes that all results
in section IV A automatically apply if (2g1 − g2) is re-
placed by g2. In particular, the symmetric solution be-
comes unstable if g2 < 0, and the instability occurs at
αcn = (g2/8π)2. But no vestigial nematic phase is to
be found, as no stable minimum of free energy exists be-
low αcn without superconducting order. A joint first or-
der superconducting transition at a temperature slightly
above αcn is again the real answer.

The calculation for correction due to effective spin-
orbit coupling proceeds in the same manner, but the co-
efficients naturally turn out to have different values. The
leading correction to the free energy is

βΩ = (decoupled limit)

+
J

64π
(m1 +m2)−1

{[
(9m4

1 + 9m3
1m2 + 4m2

1m
2
2 + 9m1m

3
2 + 9m4

2)− 5α(7m2
1 + 10m1m2 + 7m2

2)
]

+
(2g1 + g2)

8π

[
5(7m3

1 + 17m2
1m2 + 17m1m

2
2 + 7m3

2)− 10
√
α(13m2

1 + 22m1m2 + 13m2
2)
]

+
g2
8π

[
19(m1 +m2)(m1 −m2)2 +

4m1m2(m1 −m2)2

(m1 +m2)

]}
+ . . .

(28)

The instability temperature is again shifted by O(J):

√
αcn = − g2

8π

(
1 +

5

4
J + . . .

)
. (29)

Expanding in terms of u, v defined in (17) yields(
4π

α3/2

)
βΩ ≈

[
1

2
+

15

16
J +

(
2g1 + g2
16π
√
α

)(
1 +

15

4
J

)]
u2

+

[
1

2
+

5

8
J +

(
g2

16π
√
α

)(
1 +

5

2
J

)]
v2

+

[
1

4
+

15

32
J +

(
2g1 + g2
16π
√
α

)
5

16
J

]
uv2

+ J

[
1

128
−
(

g2
16π
√
α

)
1

32

]
v4.

(30)

Going through the same exercise of eliminating u using
its saddle point equation, the overall effective v4 coeffi-
cient thus generated is again found to be always negative
for all J . (Again, note that the approximation is not valid
for large-J .) We can once again conclude that there is
no vestigial nematic phase when J is sufficiently small to
justify the perturbative treatment.

B. Symmetry and renormalization group

There is in fact a lot of prior hints on our negative re-
sult. The renormalization group analysis [53] in d = 4−ε
reveals four fixed points for our model: the Gaussian
fixed point g1 = g2 = 0, the Heisenberg fixed point with
g1 = g2, the Ising fixed point with g2 = 0, and the ne-
matic fixed point in between; see Fig 5. Without effective
spin-orbit coupling, at one-loop order, the nematic fixed
point sits on top the Heisenberg fixed point; the separa-
tion of the two is stabilized either by the two-loop contri-
bution or by the inclusion of spin-orbit coupling as a per-
turbation. This suggests the picture: for g1 > g2 > 0, the
system goes from the normal symmetric phase straight
into the nematic superconducting phase through a sec-
ond order transition, and something else must happen for
g2 < 0.

Along the g2 = 0 line, the two pseudospins are not cou-
pled by the interaction. If we further switch off the effec-
tive spin-orbit coupling, the theory enjoys an enhanced
SU(2)× SU(2) symmetry. The g2 = 0 boundary should
therefore be very robust given the symmetry protection.
And it also makes ample sense that a line of enhanced
symmetry separates the two regions in the parameter
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H

N

FIG. 5. The perturbative RG flow. The dark shaded region
is unstable, and the light shaded regions are the deep nematic
(g2 < 0) and deep chiral (g2 > 2g1) regions. The four fixed
points are labeled on the diagram: G for Gaussian, H for
Heisenberg, I for Ising, and N for nematic.

space that have markedly different critical behaviors.
The fact that vestigial order is not to be found in the

g2 < 0 region may be more surprising. However, we note
that conventional wisdom [53] indeed calls for a first order
transition for this and other similar situations.

It is much harder to frame the story on the chiral side in
terms of renormalization group. Perurbative calculation
reveals no fixed point for g2 > g1. While there exist
claims of a chiral fixed point [54, 55], the result appears
to at least require a number of spin components much
larger than two [56–58]. And more importantly, nothing
special can be said about the g2 = 2g1 line.

VI. CONCLUSION

The central (negative) result presented in this paper is
the following: within Ginzburg-Landau theory with fluc-
tuations, in a region of the parameter space centered
around the effective spin-orbit-decoupled limit, vestigial
order cannot exist in the normal state of a weak-coupling
two-component superconductor. We argue in the ap-
pendix that the physically relevant range of parameters
is near the decoupled limit.

To recap, for 0 < g2 < 2g1 we still obtain a second
order phase transition into the nematic or chiral super-
conducting phase, similar to the simple meanfield pre-
diction. The system must be outside this range, i.e. in
the respective deep nematic or chiral regime, to deviate
from the meanfield behavior. And even then, we pre-
dict a joint first order transition rather than a vestigial
order phase. The 0 < g2 < 2g1 criterion was priorly ob-
tained by Fischer and Berg [26]. This is summarized in
the phase diagram Fig 6.

On the nematic side, existing renormalization group
analysis and symmetry argument [53] already hinted at

the g2 < 0 criterion. But it does comes as a surprise that
no vestigial nematic phase is found at all. Our result
contradicts Hecker and Schmalian’s [21]. We believe the
Hubbard-Stratonovich decoupling adopted in their anal-
ysis underestimates the interaction strength and results
in their error. It is also worth noting that the existing

β2/β10

α

−1 −0.5 0.5

FIG. 6. The proposed phase diagram. The shaded re-
gion represents superconductivity, and the unshaded, high-
temperature phase is symmetric (normal without vestigial or-
der). The solid phase boundary represents second order tran-
sition, and the dashed boundary represents joint first order
transition.

calculations of GL coefficients from various microscopic
models (see supplementary materials of [18, 42] for the
calculation; also see footnote [39]) all results in g2 > 0;
that is, none is in the deep nematic region.

Fischer and Berg [26] found a stable vestigial chiral
phase for a similar model with tetragonal symmetry, but
only when the coupling constants are comparable in size
to the large-momentum cutoff in their numerical analysis.
We argue that this regime is not physical relevant. For
weaker coupling, their result is consistent with ours.

One certain conclusion can be drawn from the this
work: the normal state anisotropy observed in MxBi2Se3
[22, 23] cannot be interpreted as a vestigial order associ-
ated to the underlying superconductivity. Whatever else
the origin of this normal state anisotropy is, it is likely
to have important implication on the pairing mechanism
leading to the superconductivity. Our result can read-
ily be generalized to other unconventional superconduc-
tors and superfluids with two-component order parame-
ters but different symmetries.
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Appendix A: Renormalized Bosonic Luttinger-Ward
Formalism

In this appendix, we justify the treatment of the
counter term δα, and argue that the result is UV-finite
to all order of approximation.

The proof for UV-finiteness of (8) is in fact almost
trivial: the theory given by (2) and (3) is super-
renormalizable in d = 3, and the usual power-counting
argument [49] shows that there is a grand total of three
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(a) (b)

(c)

FIG. 7. The (a) three-loop and (b) four-loop divergent vac-
uum diagrams contributing to ΦLW ; (c) the two-loop proper
self energy obtained from the three-loop vacuum diagram.

UV-divergent vacuum Feynman diagrams contributing
to ΦLW . The two-loop Hartree-Fock diagram Fig 2a is
treated in the main text, and the other diagrams are
shown here in Fig 7. The three-loop diagram yields a
logarithmic-divergent proper self energy insertion affect-
ing α only, and a corresponding two-loop contribution to
δα can be computed in perturbation theory. The four-
loop diagram only contains a diverging additive constant
that does not affect any physics. One only needs to ex-
plicitly check the UV-finiteness for the two- and three-
loop cases. We thus consider the matter settled, and
move on to show that (8) does yield the desired thermo-
dynamic potential.

The perturbative construction of the original LW for-
malism can be found in many textbooks, and we recom-
mend the very accessible review given by Eder [59]. Es-
sentially, one first shows that the non-interacting part of
(8) yields the desired free energy for the non-interacting
theory. And then the interaction is adiabatically turned
on, and one proceeds to show that the variation of the
LW functional ΦLW matches the change in free energy.
Note that the whole derivation is in a sense formulated in
the “bare” theory. In condensed matter context, the for-
malism is usually employed to treat an electronic model
that either is explicitly defined on a lattice or has a k-
space Brillouin zone, and UV-divergence and superfluid
order (the two conceptual difficulties here for boson gas)
are not even present. There is no need for renormaliza-
tion, and no distinction between bare and renormalized
theories for the fermionic case.

At the first glance, it seems that if one is to recognize
(G−10 + δα) as the “bare free propagator”, then one ar-
rives at (8) immediately. But there is a conceptual issue:
δα is negative and divergent, and this “bare free prop-
agator” represents a theory without stable equilibrium;
the non-interacting partition function does not even ex-

ist, and consequently it cannot be used as a starting point
to construct the interacting free energy. The key point
is that δα should only be turned on together with the
quartic interaction. The original proof must be adapted
to accommodate δα as a two-leg interaction vertex, and
the rest is otherwise straightforward.

The extension to include the superfluid order (11)
is also technically straightforward with conceptual fine
prints. This time, one may actually desire a negative
renormalized value for α, but there is of course no such
thing as a non-interacting bosonic theory with a negative
energy gap. A prescription for the “non-interacting the-
ory” (as good as any other stable choice) is to start with
a non-interacting value of α = 0+. Then α is adiabati-
cally taken to the desired negative value, together with
the switching-on of δα and the quartic interaction. The
other new addition is the effective three-leg interaction
vertex in the presence of the superfluid order. Adapting
the proof to include these new elements is not difficult.

Appendix B: Numerical estimation of GL coefficients

In the main text, we investigate the effective Hamilto-
nian (5) and (6) for small C1 and C2. We will estimate
these ratios for MxBi2Se3.

Estimations for C1 is readily available in the exist-
ing literature. Ref [18] gave the values of 1/3 and
1/2 for two different models. The present authors es-
timated from reported Hc2 anisotropy (for M = Cu)
that (K2 + K3)/2K1 ≈ 0.6 [19], and this translates to
C1 ≈ 0.4.

The ratio C2 involves K ′ and Kz, both much less docu-
mented. K ′ embodies the breaking of hexagonal symme-
try in the basal plane down to trigonal, which is unlikely
to be big judging from the crystal structure. Within
the weak-coupling approximation, such a term originates
from the anisotropy of the Fermi surface; the normal
state Fermi surface was experimentally reconstructed in
[60, 61] at different doping levels, and it appears to us
that neither groups reported a significant departure from
full isotropy in the basal plane. While a numerical esti-
mation is unavailable, we believe the ratio K ′/K1 is likely
to be much smaller than order unity.

Ref [26] adopted Kz/K1 = 10−2 in their model in-
tended to approximate Sr2RuO4. But this choice is only
vaguely guided by the observation that there is “extreme
anisotropy” in the real material, and of course isn’t di-
rectly related to MxBi2Se3. The ratio of anisotropic
Hc2 (field direction parallel v.s. perpendicular to the

basal plane) equals the ratio
√
Kz/(2K1 +K2 +K3) and√

Kz/K1, depending on the relative nematic orienta-
tion: see [15]. Based on the available Hc2 measurements
[2, 6, 62], we put Kz/K1 in the neighborhood of 1/10.

Combining the above observations, we believe C2 is
at most of order unity, possibly much less. This put
the effective spin-orbit coefficient J <∼ 0.2, justifying our
perturbative treatment. Conversely, to get J ≈ 1, as-
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suming the extreme C1 = 1 and keeping the estimation
Kz/K1 ≈ 1/10, a ratio of K ′/K1 > 2 is required, indi-
cating a fairly large anisotropy not seen in the material.

We also note that in the 2D limit of Kz/K1 → 0,
C1 → 1 according to ref [18], while C2 diverges. There-
fore the quasi-2D limit is another way to get a large J .
This calls for (K ′/K1)2 > (Kz/K1) if we seek J ≈ 1.
Very extreme anisotropy in the z-direction is needed if

the basal plane is only weakly three-fold anisotropic.
Again this is irrelevant to real materials.

Finally, on a somewhat different track, we want to
remark that the chemical potential for superconducting
MxBi2Se3 is reported to be of the order 100meV or more
in [63], while its Tc is below 4K. The ratio Tc/EF is there-
fore a small number, and the application of our result
(based on GL analysis) to MxBi2Se3 is well-justified.
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