THE ECONOMIC AND SOCIAL RESEARCH INSTITUTE
Memorandum Series No. 180.

Richard Breen

The Acwelerated Eimomial Gptiom Fricimg Model

This paper describes the mpplicetion of a comvergence acceleration technique to the binomial option pricjmg models in the context of the valuation of the fmeriman put option on nom-dividemd peyimg stoct: Tme resultimg modely termed the actelerated bimomial option pricing model. can also be viewed as an approximation to the Gewke-Jotheon model for the velue of the Americen put. The new model is accurate and faster tham the conventiomaj winomial model. it. is ajeo lit:ely to prove mumb more computationally wonvenient them the Gestemotimeon model. It is applicelule to a wide ramge of option pricing problems.

The Accelerated Einomial Option Fricing Model

I Introcumtiom

The binomial optiom pricing model, introduced by Eox, Fose amd Fibinstejn [z], je now widely used to value optionsa particularly where mo analytic (wlosed form) sojution existsy as in the benchmarb cese of the fmertien put optionn More recentlyn Geste amd Johneon [5] introduced a method of valuing Amerjean put optioms based on the compoumd option model and utilisimg convergence acceleration tecmmiques. As a pesult. thejr approath is a more wfficient means of valuing such options than the binomjal. In thjs paper we present a method, called the acoelerated binomial option priaimg model, which is a hybrid of the binomial and Geskemohromon modele. It can be viewed as a binomial model incorporatimg fhe convergence acceleration techmiques used by beske and Johmsona equally it can be seen as a binomial approximation to the contimuous time Geske-Johnsom model. The purpose of this paper is to present the accelerated binomial option pricing method amd to illustrate its acwurawy rather than to evaluate its computational efficiency vis-a-vis other methods. However, the results so far obtained with the accelerated bimomial method show it to be more efficient than the ummodified binomial model and computationally simpler than the Geske-Johmson model. These issues are taken up again in the paper"s conclusion. We begin by swiftly reviewing the binomial and Geste-Johnsori modele, then go on to present the actelerated bimonial option pricing model.

We deal in this peaper with mmericem put options written on non- dividend paying stock: We make the usual assumptions namely that the rist: free jnterest rate, ry and the annualised standard deviation of the umdernyimg stome price, or are both mon stochastic and constant over the life of the option. We demote time by the index t (t $=0 .$. T, the meturity detue of the option) the stock prywe ate t by $s(t)$ and the exercise price by x.

IJ The Biramina Dption Pricirg Model

In the biromial option pricing model, the life of the option ie divided inte N discrete time periods, during each of which the price of the underlying asset is ascumed to make a single move, either up of down. The magnituele of these movementes j. $=$ given by the multiplicative parmanters u and dn The probability i of an upward movement is given by p, and the one period riets free rate we denote by q.

The binomial method approximates the continuous change in the option"s value through time by valuing the option at a discrete set of nodes which together make a cone shaped grid. We identify each node in the cone by j, n where j imdicates the number of upward stock moves required to generate the option"s immediate non-megative exercise value at that node. given by

$$
\begin{equation*}
E_{j, m}=\max (0 ; x-u j d r-j \text { S) (for a put) } \tag{1}
\end{equation*}
$$

and n is the period of the model ($n=0 \ldots N$. .
When valuing European options or American call options on
non-dividend paying =tocks it js maly necessary to calculate the $N+1$. terminal exercise values of the option (inen the set Ejw: $j=0$... N in our notationl. Since there is mo probability of early exercise in these cases the intermediate values of the binomial process (for o \& n \& Nego mot be computed. Instead the binomial formula is used to "jump bactwards* from the termimal values to the initial option value (at. mode \&o, os). In Geske and Shastri"s [6] amalysis of approximation methods for option valuations. it was this feature of the binomial method thet wes chiefly responsibie for its outperforming its competitors (finite difference methods) in terms of computing demands and expense by a considerable margin in the valuing of a call option on non-dividend paying stoct sees, for examples Geste and Shastri [6. table 2, 0.60 , and figure 1, p.61]).

However, the application of the binomial method to the valuing of an American put option on mon-dividemd paying stock will be much less efficjent. This is beceuse the possibility of early exercise requires that both the holding value and the exertise value of the option be computed for each mode in the process. We define the value or the option at the in th node by

$$
\begin{equation*}
V_{j n}=\max \left(A_{j m:} E_{j m}\right) \tag{2}
\end{equation*}
$$

where $E_{j n} i s$ as before and $A_{j n} i s$ the holding value of the option at that node:

$$
A_{j n}=(p / q) V_{j+1, m+1}+((1-p) / q) V_{j+m+1}
$$

The binomial method entails the calculation of the values of all nodes in successively earlier periods, culminatimg in the value Voo which is the optiom"s value.

III The Eeske and Johmaon Emmpound Dption Approach

The Geskemohmson analytic: formula for the value of an American put options which we denote by ty Ean be writtem:

That is, the value of the option is given by the sum of the digcounted conditional exercise values of the option at each jnstant durimg its life. The condition in question is that: at instent not, the stock price, s, should be below its critical value $\overline{\mathrm{S}}$, not having fallen below its critical value at any previous instamt, mot: To use expression (4), thens entails the evaluation of an infinite gequence of successively higher order normal integrals, reflecting the fact that, at instant ndt, estimatimg the conditiomal expectation of the option $=$ exercise value. requifes the evaluation of an n-variate normal integraln

Geske and Johnson [5] surmount this difficulty by definimg a reduced mumber of eerly exercise instants during the life of the option and using Fichardson"s extrapolation to find an approximation to the true option value. Their three point
extrapolationg for Examplen defines a set of mptiom valuas. F' (m) , based on exercise opportumities restricted as follows: F(1) = option value based on exercise opportumities restricted to T: $F(2)=$ option value based on exercise opportunities at T and $T / 2: F(3)=$ option value based on exercise opportumities at $T, ~ 2 T / B$ and T / Z The 1 imit of this sequence, $F(n) \quad n \rightarrow \infty$ is the optionss value, 4 * The appmoximation to pis then given by

$$
\begin{equation*}
F=F(3)+4 n 5 *[F(x)-F(2)]-0.5 *[F(2)-F(1)] \tag{5}
\end{equation*}
$$

(see Geske ame Johnson. [5. Pp. 1518 and 152s]).

IV The Accelemaxed Einomial Option Pricimg Model
The sequence of functions

$$
\begin{equation*}
F_{a}(B)=\underset{j}{N-a}\binom{N-a}{j}(p / q) j \quad((1-p) / q) N-a-j v_{j} N-G \tag{6}
\end{equation*}
$$

where V is defined as earlier, converges to Fin (5) ($=\sqrt{v o}$) for any binomial model with N periods. Comvergence is umiform from below (see appendix) and occurs at $F_{m}(S)$, where m is the earliest period in the model for which Vom tafes its iminediate exercime value rather than its holding value (Ereen [2]. m will always be less than N undess the put should be exercised immediately. In other words. for a binomial option pricing model with fixed N, the value of the option is the Iimit of the sequence $F_{a}(5)$. $F_{\mathrm{a}}(5)$ defines a sequence of option values with an increasing mumber of exercise
opportunities. Thus. Fo(S) is a European option, permitting exrcise only at period N. $F_{1}(S)$ is the value of an option permitting exercise at period N and period $N-1$ and so on. That the sequence ronverges to the option's value is true by definition ($F_{N}(G)=V_{o c}$). That convergence is from below is intuitively clear, insofar as, if this were not so, $\mathrm{F}_{\mathrm{j}}(\mathrm{s})$) $F_{N}(5)$ ($j<N$) and $F_{j}(S)$ would be the option"s value. Eut this would imply that exercise opportunities in periods earlier than period $N-j$ would reduce the value of the option - an obvious contradiction.

Consider now the related sequence, $F^{\prime \prime}{ }^{n}(5)$, or F : (n) for short: defined as follows: $F^{\prime \prime}(1)=F_{o}(S): F^{\prime \prime}(2)=$ binomial option value permitting exercise at N and $N / 2$ only: $F^{*}(B)=$ binomial option value permitting exercise at $N, 2 N / B$ and $N / 3$ only. Again, this sequence coriverges to the option"s value, $F_{N}(S)$ from below - that is. FiN(S) is the limit of the sequence $F^{\prime \prime}(n)$ as $n \rightarrow \infty$. It follows too that $F^{\prime \prime}(2)$) $F^{\prime \prime}(1)$ and that $F^{\prime \prime}(3)$? $F^{\prime \prime}(1)$, though not necessarily that $F^{\prime}(3)$) $F^{\prime \prime}(2)$, although in practice this usually seems to be the case. ${ }^{2}$

To apply the Fichardson extrapolation technique to the binomial we proceed by analagy with Geske and Johnson"s expasition. The parallels between the sequences F and F are clear: in both the number of exercise opportunities increases as we move down the sequence. Thus we apply formula (5) to the terms $F^{*}(n), n=1,2,3$. The value of the option is then given as max $\left\langle F^{\prime} ; x-5\right.$).

In practical terme the resulting actelerated binomial model. is very easy to program. To give some ides or its accuracy we refer first to Table 1 , where three sets of American option values for the data origimally given by Cox and Fubingtein [4] and Forkingon [8] are shown. These three sets of values are based on, respectively, the umodified binomial with 150 periocs or Fartincon"s mumericel approach: the GeskemJohmson "analytje" method usjmg a four point extrapolation: and the arcelerated binomial method presented here, using a three point extrapolation over a 150 period model. All three setc of values agree very wlosely. The largest error in the acemerated binomial method is of the order of one and a half cents compared with the bimomial or numerjcal value. Clearly a four point extrapolation would be more accuraten What is most striking about the accelerated binomial method, however: is the reduction it brings about in the amount of computation required. The ummodified binomial. method requires the calculation of ($N+1$) e node values: which: for $N=150, ~ i s$ 22eot. The accelerated binomial. on the other hand: Ealls for only $44+10$ calculations - 40 for a 150 period model. Thus the accelerated binomial is very much faster than the binomial method, fertumimg the number of mode value calculations by 97 per cent. A second source of Eomparison will be found in Table 2. which shows put option values calculated using the accelerated binomiel together with values obtained using three other methods - the finite difference method: the Geste-Johnson method and Marmillan ${ }^{3}$ [9] quadratic approximation. Comparing the three other
methods against the finite difference values it can be sem that there is little to choose between thems alotough the accelerated bimomial is: jf anything marginally more accurate them either the Geske-Johnson model (which is here computed using a three point extrapolation or Macmillan"s. A similar conclumion $i s$ reached if we compare the accelerated binomial values in the present Table 1 with those given by Macmillan [9; pp. 131-132] for the mame deta using his own method.

[TAELES 1. AND 2 HEFE]

(Comelu:iom

The only previous attempt to investigate the application of convergence arceleration techmiques to the bimomial option pricing model is montained.in a paper by Gmberg [7]. Hi.s approach differs from the present one insofar as he sought to find a means by which to accelerate the convergence of a sequence of bimomial option models with increasing N (rather than: as in the approach used heres seeting to accelerate the convergence of a particular binomial model with fixed N. However: such a sequence converges in an oscillating: rather than uniform, manner: and Omberg showed that it was impossible to select the parameters of the binomial model in such a wey as to ensure uniform comvergence. Nevertheless, Omberg [7, p.464] notes that, if convergence acceleration could be applied to the binomialy then "binomial"pricing models might prove to be considerably more efficient tham compound option models"

The present accelereted binomial model has advantages over
both the binomial and Gegke-Johneon models. On the one hand. it $i s$ much faster than the unmodified binomial. suggesting that it might prove to be more efficient than other numerical methods (such as finite difference methods) not only for valuing a small number of options, but also for valuing a large number. On the other hand, the accelerated binomial: viewed as an approximation to the Geske-Johnson model: removes the need to evaluate multivariate normal integrals of up to order three or four (in a four point extrapolation) - a computationally time consuming task: \equiv That this is the main disadvantage of the Geske-Johnson method has been recognised by a number of authors, including Barone-Adesi and Whaley [1]: Omberg [7] and alse Selby and Hodges [10] who have demonstrated a means by which the integral evaluation problem can be reduced to more manageable proportions. The approach outlined here, however: is likely to prove far more convenient and accessible even than a Geske-Johnson model incorporating Gelby and Hodges" modifications.

Since the binomial itself is an approximation to the true option values, our application of the Fichardson extrapolation technique yields an approximation to an approximation. Nevertheless. this can be made as accurate as one desires. first by choosing a sufficiently large value for N and. secondly: by extrapolating from a greater number of exercise points. Clearly, however: our choice of the conventionad value of N (150) and of a simple three point extrepolation yields results which are sufficiently accurate for most practical purposes. Finally, because the model presented
here is a modificatiom to the binomials it retains all the flexibility of the latter. Thus the ar.celerated binomial can be used to value all the variety of options son foreign exchange, commodities, futures, and so on) for which the binomiel itself is applicable.

1. Ey which we meang of course, the probability within the binomial model implied by the rist: neutuelity assumption.
2. As with the sequence F (n); this means that: F " (n) does. not comverge uniformly to its limitn \quad m discussimg the Geskemothnsom model Gmberg [7. pp. 46z-464] has wugcemted thet uniform womvergence of the sequence of F (n) would be desirable on the groumds that this would ensure that the convergence acweleration technique performe as intended. For both the sequemwes F (n) and $F{ }^{\prime}(n)$ this could be accomplished by ensuring that eewh term in the sequemee permits early exercise at every instant (or period, in the mese of Fo (n)) at which exercise was permitted in forming earlier terms. Thus: the term F (3) in the Geste-Johnson sequence would be amended to permit exerci巨e at T, ST/4, 2T/4 and T/4 - amd. analogously for F (3). In what follows, however, we retain the original specjficetions of the terms of F and $F{ }^{*}$.
. The actelereted bimomidy, unlite the Gestemohrsom approach, does not require the separate calculation of the critical stoct price at each permitted exercise point.

AFFFENDIX

Uniform convergence is defined by Dins theorem. In our case, to show that the sequence of functions Fe(F) (a wo... N) converges uniformly we need only to demonstrate that: for al $5, F_{a}(5\rangle \geqslant F_{=-1}(S)_{n}$

Write $F_{\text {an }}(S)$ as
$\sum_{j=0}^{n}\binom{\Pi}{j}(p / q)_{j} \quad((1-p) / q)^{m \cdots j} V_{j}$

$$
\begin{align*}
& =\sum_{j=0}^{n-1}\binom{n-1}{j}(p / q) j((1-p) / q) \pi-1-j V_{j n}(1-p) / q \\
& +\sum_{j=1}^{n-1}\binom{n-1}{j-1}(p / q) j-1 \quad((1-p) / q) \cdots \cdots v_{j n} p / q
\end{align*}
$$

Write $F_{a}(E)$ as

$$
\begin{equation*}
\sum_{j=0}^{n-1}\binom{n-1}{j}(p ; q) j \quad((1-p) / q) m-1, \cdots j \quad V_{j n-1} \tag{a2}
\end{equation*}
$$

Since for all $V_{j m}$

$$
v_{j, n-1} \geqslant v_{j+1, n}(p / q)+v_{j n}(1-p) / q
$$

as 15

$$
\begin{aligned}
& \sum_{j=0}^{n-1}\binom{n-1}{j}(p / q) j((1-p) / q) n-1-j \quad\left[V_{j+1, n}(p / q)+V_{j n}(1-p) / q\right] \\
& =\sum_{j=0}^{n-1}\binom{n-1}{j}(p / q) j \quad((1-p) / q) n \cdots+1-j \quad V_{j n}(1-p) / q
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{n-1}\binom{n-1}{j}(p / q\rangle j \quad((1-p) / q) n-1-j V_{j n}(1-p) / q \\
& +\sum_{j=1}^{n}\binom{n-1}{j-1}(p / q) j-1 \cdot((1-p) / q) n-j v_{j} p p / q
\end{aligned}
$$

Thus $F_{m}(S) \geqslant F_{m-1}(S)$ and the sequence converges uniformly.

FEFEFENCES

1. Earone-mdesi, G. arid F. En Whaleyn 'Efficient Analytic Approximation of American Option Values. Journal ot Finance 42 (June 1987), 301-320.
2. Ereen, Fi. 'Improvimg the Efficiency of the Einomial Option Fricing Model.' unpublished working paper, 1788.
 A Simplified Approech. Journal or Finamaial Esomomís 7 (September 1979), 227-263.
3. Con, J.C. and M. Fubinstein. Gptions Markets. Englewood Cliffs, N.J.: Frentice Hall, 1785.
4. Geste, Fi. and H_{n} E. Johnson. 'The Americenf Fut Dptioni Valued Amalytically. " ourmal ot Firtace z4 (December 1984), 1511.1524.
5. Geske, Fi, and K. Shastri. "Valuation by fpproximatiom: A Comparison of Altermative Option Valuation Techniques.' Tournal of Financial and Guantitative Analysi=20 (Marmb 1985), 45-71.
6. Dmberg, E. 'A Note on the Convergence of the EinomialFricimg and Compound-Dption Models. Jourmal of Finamee 42 (June 1987), 463-469.
7. Farkjnson, M. 'Option Fricing: The Anerican Fut. ' The Journal of Business 50 (January 1977), 21-36.
8. Macmillan, L. W. 'Analytic Approximation for' the American Fut Option. Aguances in Futures and options Researth 1 (1.786) , 119-139.
9. Selby, M. J. F. and S. D. Hodges. 'On the Evaluation of Compound Options.' Wanagement soience EX (March 19e7), 347-355.

TABLES
Table 1 : Values of Americen Fut option usimg numewieal, Geske-Johnson and Accelemated Einomial Methods
A. $s=\$ 40 ; r=1.05$

X	σ	T	Bindial	GeskeJohnson	Accelerated Binamial
35.00	0.2000	0.08330	0.01000	0.006200	0.006000
35.00	0.2000	0.33330	0.20000	0.199900	0.198900
35.00	0.2000	0.58330	0.43000	0.432100	0.433800
40.00	0.2000	0.08330	0.85000	0.852800	0.851200
40.00	0.2000	0.33330	1.58000	1.580700	1.574000
40.00	0.2000	0.58330	1.99000	1.790500	1.984000
45.00	0.2000	0.08330	5.00000	4.978500	5.000000
45.00	0.2000	0.33330	5.07000	5.095100	5.102000
45.00	0.2000	0.58330	5.27000	5.271900	5.285000
35.00	0.3000	0.08330	0.08000	0.077400	0.077400
35.00	0.3000	0.33330	0.70000	0.696900	0.698500
35.00	0.3000	0.58330	1.22000	1.219400	1.224000
40.00	0.3000	0.08330	1.31000	1.310000	1.309000
40.00	0.3000	0.33330	2.48000	2.481700	2.476000
40.00	0.3000	0.56330°	3.17000	3.173300	3.159000
45.00	0.3000	0.08330	5.06000	5.059900	5.063000
45.00	0.3000	0.33330	5.71000	5.701200	5.698000
45.00	0.3000	0.58330	6.24000	6.236500	6.239000
35.00	0.4000	0.08330	0.25000	0.246600	0.245000
35.00	0.4000	0.33330	1.35000	1.345000	1.350000
35.00	0.4000	0.56330	2.16000	2.156800	2.159000
40.00	0.4000	0.06330	1.77000	1.767900	1.766000
40.00	0.4000	0.33330	3.38000	3.363200	3.383000
40.00	0.4000	0.58330	4.35000	4.355600	4.339000
45.00	0.4000	0.08330	5.29000	5.285500	5.287000
45.00	0.4000	0.33330	6.51000	6.509300	6.505000
45.00	0.4000	0.58330	7.39000	7.383100	7.382000

B. $S=1 ; x=1 ; T=1$

r	σ	Nuaerical	Geske- Johnson	Accelerated Binomial
1.133	0.5000	0.14800	0.14760	0.14720
1.083	0.4000	0.12600	0.12580	0.12510
1.046	0.3000	0.10100	0.10050	0.09990
1.020	0.2000	0.07100	0.07120	0.07090
1.005	0.1000	0.03800	0.03770	0.03770
1.094	0.3000	0.08600	0.08590	0.06560
1.041	0.2000	0.06400	0.06400	0.05370
1.010	0.1000	0.03600	0.03570	0.03560
1.083	0.2000	0.05300	0.05250	0.05240
1.020	0.1000	0.03300	0.03220	0.03220
1.127	0.2000	0.04400	0.04390	0.04460
1.030	0.1000	0.03000	0.02920	0.02920

Notes to Table 1:
For the bimomial and accelerated binomied, N=16O. Geske-Jommeon velue $i=b e s e d$ on four point extrepolations Accelerated Einomial value is based on three point extrapolation. Geske-Tohnson values are from Geste amd Jotneon 5 E, p. 15197n values in colum 4, panel A, are from Cox and Fubinstein [4, p.248]: values in colum Z, panel Z, are from Forkimson [8, pP. 30-34].

Table 2: Values of American fut Option using Finite Difference, Geske-Johnson, Macmillan's Duadratic Approximation and Accelerated Einomial Methods ($x=100$)

r	σ	t	S	FD	GJ	MQ	$A B$
1.08	0.2	0.25	80	20.00	20.00	20.00	20.00
1.08	0.2	0.25	90	10.04	10.07	10.01	10.06
1.08	0.2	0.25	100	3.22	3.21	3.22	3.22
1.08	0.2	0.25	110	0.66	0.66	0.68	0.66
1.08	0.2	0.25	120	0.09	0.09	0.10	0.09
1.13	0.2	0.25	80	20.00	20.01	20.00	20.01
1.13	0.2	0.25	90	10.00	0.96	10.00	10.00
1.13	0.2	0.25	100	2.92	2.91	2.93	2.92
1.13	0.2	0.25	110	0.55	0.55	0.58	0.56
1.13	0.2	0.25	120	0.07	0.07	0.08	0.07
1.08	0.4	0.25	80	20.32	20.37	20.25	20.36
1.08	0.4	0.25	90	12.56	12.55	12.51	12.56
1.08	0.4	0.25	100	7.11	7.10	7.10	7.09
1.08	0.4	0.25	110	3.70	3.70	3.71	3.70
1.08	0.4	0.25	120	1.79	1.79	1.81	1.80
1.08	0.2	0.50	80	20.00	19.94	20.00	20.00
1.08	0.2	0.50	90	10.29	10.37	10.23	10.37
1.08	0.2	0.50	100	4.19	4.17	4.19	4.17
1.08	0.2	0.50	110	1.41	1.41	1.45	1.40
1.08	0.2	0.50	120	0.40	0.40	0.42	0.40

Key: FD finite djfference method;
GJ Geske-Johnson method, besded on three point extrapolation:
M0 Macmillan's quadratic approsimation:
$A B$ accelerated binomial with $N=150$ and three point extrepolation.

Colums 1 to 7 from Earone-Adesi and Whaley [1, Table 4, p.315].

