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The Accelerated Binonial Option Pricing Model

This paper describes the application of a convergence
acceleration technique to the binomial option priring m(~del~
in the cQntext of the valuati¢)n 6f the Ameri~:an put optic~n c)n
non-dividend paying stock. The resulting model, termed the
accelerated binonial c)pti()n pric:ing model, can also be viewed
as an approximatio.n to the Geske-Johnson model for the value
of the Ameri(?an put. The new model is a~:Jc:urate and faster
than the c:~.]nventional binomial model. It is alscl likely to
prove muc’.h more c:omputationally convenient than the
Geske-Johnson model.    It is applicable to a wi~Je range of
opticln pricing problems.
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I~.t OuUu. f. i <DI?

The bir-,ornial optior~ pricing ri;odel, ir;tr’oducecl by Co;.,’.q Ross

and Rubinstein [3] ~ is now wicle].y used to value options.,

particularly where r-,c~ analytic (c].osed form) so].utior~ e;.’ist_s~

as in the benchmark case of the Amer it.an put’. opt icir’,. More

recently, Geske arid J~.~l’~,n.son [5] introduced a method of

valuing Am~..-,rican put options based or, the compc:~und optic, f,

model and utilisir-,g convergence acceleration t.ecl"irliqtles. As

a result, their approach is a more efficient means of valuing

such options than the binomial. In this paper we present a

method, called t.he ac:celerated bir;omial option pr’iuing model,

which is a hybricl c,f the binomial and Geske-Johnson models.

It can be. viewed as a binomial model incorporating the

converger;ce acceleration techri i qtles used by S~ ...... l..e and

Johnson: equally it can be seen as a binomial approi.’imation

to the corltinu¢~u.s time Geske-Johr|sor] model. The purposeo"=,

this paper" is to preserYt the accelerated binomial option

pricing methocl and to illustrate.its accuracy., ravther than to

evaluate its. computational efficiency vis-a-vis other

methods.    However, the results so far obtained with the

accelerated binomial method show it to be more efficient than

the unmodified binomial mod~.l and computationally simpler

than the Geske-Johnson model. These issues are taken up

again in the paper~s conclusion.    We begin by swiftly

reviewing the binomial and Geske-Johnson moclels, then go on

to present the accelerated b’inc~mial option pricing mode]..



We deal in this paper with American put options written on

non-,diviclend paying stock. We make the usual assumptions -

namely that the risk free interest r’ate, r , and the

annualisecl standard deviation of the underlying stock price,

c~’, are both non--stoc:hastic and constant Over the life of the

option.    We denote time by the index t (t = 0 ... T, the

maturity date of the option) , the stock price at t by S(t)

and the e,.’ercise price by X.

II The Binc~mi,:~l Option Pricing Mode/

In the binomial option pricing model, the life of the option

is divided into N discrete time periods, during each of which

¯ 6
the price of the underlying asset is assumed to make a single

move~, either up or clown.     The magnitude of these                                                      mov~.~.m.~..’    ’~-’~n~’, is

qiven by the multiplicative parameters u and d. The

probability I of an upward movement is given by p, ancl t.he

one period risk free rat’.e we denote by q.

The binomial method approximat.es the continuc~us change in the

option’s value through time hy valuing the option at a

discrete set .of nodes which together make a cone shaped grid.

We identify each node in the cone by <j,n> where j indicates

the number of upward stock moves required to generate the

option’s immediate non-.negative exercise value at that node,

given by

Bj,~ = ma,v (O ; X -. uJ d~-j S) (for a put) (I)

and n is the period of the model (n = 0 ... N).

When valuing European options or American call options on
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non-dividend payinc] s’Loc~::., i’t is only necessary t(] calculate

the N+I. terminal e;.(ercise values of the option (i.e. the set

BjN., j=O . . . N in our nc~tation) .    Since tl~ere is n~.~

probability of early exercise in these cases the intermediate

values of ’Lhe binclmial process (for 0 < n < N) need not be

computed.    Instead the binomial formula is used to "jump

backwards"~ fr’c~m the terminal values tcl t.he initial option

value (at node <O,O>.l. In Geske and Shastri~s [6] analysis

of appro;.(imation methods for option valuations., it was this

feature of the binomial method that was chiefly respc3nsible

for its outperforming its competit(:~r’s (finite differenc:e

methods) in terms of computing demancls and e;.’pense by a

considerable margin in the valuing of a call option on

non-dividend paying stock (see, for ei.’.ample, Geske and

Shastri [6, table 2, p.60, and figure i., p.61]).

However, the ’application of the binomial method to the

valuing of an American put option on non-dividend paying

stock will be much less efficient.    This is because the

possibility of early e;.’ercise requires that both the holding

value and the e;.’ercise value of the option be computed for

each node in the pro(.:ess. We define the value of the option

at the jn +t~ node by

(2)

where Bj~ is as before and Aj~ is the Inolding value of the

option at that node:

Aj~ = (P/q) Vj+i,,..,+1 + ((l-p)/q)Vj,~+± (3)
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The binomial method entails the calculation of the values of

all nodes in su~:~essively earlier peri[.~ds, culminating in the

value Voo which is the .option’s .value.

l’II The G~-~s.-k’e and Johr~s~on Compound Optic’~n Approach

The 8eske-Johnson analytic:: formula for the value of an

American put option~ which we denote by ~., ~an be written:

]~ prob (Sr-.a+ < S~d+, S,,a+ >I S~a~ ~/ m < n)
n=l

m

(X-E[S~,w+:~r~a+ < Sna+, c.,.,_a+ > Stud+ ~/m .:" n])/r~,a+

That is, the value o’f the option is given by the sum of the

discounted conditional exercise values of %ihe c’..pt:[on at each

instant during its life. The condition in questi~3n is that,

at instant ndt, the stock price., S, should be below its

critical value S, not having fal].en below its cri’tical value

at any previou’s ir-,stant, mdt. To us~’.’.~ e:.’.pression (4} , then,

entails the evaluation of an infinite sequence of

successively higher order normal integrals, ref ].ec.ting the

fact that, at inst:ant ndt, est imat ing the cond i t ior~a].

..~ t.expectation of the option"s e;.’erci~,’= value, r-equir’es the

evaluation of an n-var’iate normal integral.

8eske and Johnson [5] surmount this difficulty by defining a

reduced number of early exercise instants during the life of

the option and using Richardson "s extrapolation to find an

approximation to the true ~ption value. ]heir" three point
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¯ foi’- example.,, defines a ==.~ o’f ....e ;.,’ t r a p o 3. a t i o n,

P(n)., based on e’.’ercise opF~or’tunities restricted as follows:

F’ (l) -= option value based on exercise oppor"kunities

restricted to T.~ P (2) = option value based on e;.,’erc, ise

opportunities at T and T/2; P(3) = option value based on

exercise opportunities at T, .,T/.-. and T/7.. The limit o’f this

sequent:e, P (n) n -~ is .the option’~s value., ~. The

approxima’tion to �, is then given by

= ~’~ (-.’. -F’ ( "I ) ]F’ F’ (._"3’,) + 4.. 5:~< [F’ (3) -’F’ (.::.) ] - O. 5>I< El::’ ~l (5)

(see Geske and Johnson., [5, pp. 1518 and 1523]).

IV Tt~e Accelerated 8inomi~l Option Pr"icing ~.-~del

The sequence of functions

where V is defined as earlier., converges to PN(S) (=Voo) for

any binomial model with N periods. Conver’genc’.:e is uniform

from below (see appendi’<) and occurs at P~(S)., where m is the

earliest period in the model for which Vo~ takes .its

immediate exercise value rather than its holding value (Breen

[2]). m will always be less than N unless the. put should be

exercised immediately. In other words., for a binomial option

pricing model with ’fii<ed N, the value of the option is the

limit of the sequenre P~.,(S). P~(S) defines a sequence ’of

option values with an increasing number of exercise
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opportunities. Thus~ F’o(S) is a European option, permitting

exrcise only at period N. PI(S2 is the value of an option

permit’tir~g ei.’ercise at period N and period N-I; and so on.

That the sequence converges to i~he option’s value is true by

definition (PN (S) =Voo2 .    That convergence is from below is

intuitively clear, insofar as, if this were not so, Pj (S) >

F’N(S) (j < N2 and Pj (S) w~.ould be the option’s va].ue.    But

this would imply that exercise opportunities in periods

earlier than period N-j would reduce the value of the optior~

- an obvious contradiction.

Consider now the related sequence, P",.~ ($2 , or F:" (n.~ for’

short, defined as foliows: P" (I) = Po(S2 ; P’ (22 = binomial

option value permitting exercise at N and N/2 only; F" (3,) =

binomial option value permitting exercise at N, 2N/3 and N/3

only. Again, this sequence co~verges to the opti~on"s value,

PN(S2 from below - that is, PN(S) is the limit of the

sequence F" (n) as n -~ .     It follows too that F" (22> P" (I)

and that P’ (32 > P" (1,) , though not necessarily tha’L P" (3) >

F" (22 , although in practice this usually seems to be the

case. a

To apply the Richardson extrapolation technique to the

binomial we proceed by analogy with Geske and Johnson"s

exposition. The parallels between the secluences P and P" are

clear’: in both the number’ of e,’.’ercise opportunities increases

as we move down the sequence. Thus we apply formula (5,) to

the terms P" (n2 .~ n= 1,2,3. The value of the option is then

¯ given as may (P", X-S) .
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In practical ter’ms the r’esulting ac:celerat.ed binomial model

is very easy to progr’am. To give some idea of its accuracy

we refer first to Table I.~ wher’e three sets of Americ:an

option values, for" the data -originally given by Cox and

Rubinstein [4] and F’arkinson [8] are shov.~n, These three-sets

of values are based on., respectively., the unmodified binomial

with 150 periods or Parkinson’~s numeric:al apprc, ac:h; the

Geske-Johnson ’~ analytic"~ method us i ~’~g a four point

extrapolation; and the ac:celerat.ed binomial metlnod presented

here., using a three point extrapolation over a 150 period

model.    All three sets o’f values agree very closely.    The

largest error in the accelerated binomial method is of the

order of one an~ a half cents coci~pared with the b.ino~~ial or

numeric’al value. Clearly a four point extrapolation would be

more accurate, What is most str’iking about the accelerated

binomial method., ho~ever".~ is the reduction it brings about in

the amount of computation required, The unmodified binomial

method reqL!ires the calc.Ltlation of (N+I)e node values, which.~

for N=I50.~ is 22801. The accelerated binomia!.~ on the other

hand, calls for only 4.N + I0 calculations - 610 for a 150

period model.    Thus tlne accelerated binomial is very much

faster than the bin~.~mia], method, redu.r..ing the number’ of node

value calculations by 97 per cent.     A second source of

comparison will be found in Table 2., ~hich shows put option

values calculated using the accelerated binomial together

with values obtained using three other methods - the finite

difference method.~ the Geske-Johnson method and Mar...mil’lan~s

[9] quadratic approximation.    Comparing the three other
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methods against the finite dif’ference values it c:an be seen

that there is little to choose between them, although the

accelerated binomial is, i’f any’thing marginally more a~c~ur’ate

than either the Geske-O’ohnson model (which is here computed

using a three point extrapolation) or" Ma(;millan’~s. A similar

conclusion is r’ea~.~hed i’f we compare the a(.~celerated binomial

values in the present ]"able 1 with those given by Macmillan

[9, pp. 131-132] for" the same data using his own method.

[ TABLES I AND 2 HERE ]

V Cc}nc).L~sion

The only previous attempt to investigate t.he applicat, ion of

convergence ac.celeration techniques to the binomial option

pricing model is contained .in a paper by Omberg [7] .    His

approach diffe1’~s from the present one insofar as he sought to

find a means by which to accelerate the convergence of a

sequence of binomial option models with increasing N (rather

than, as in the approach used here, seeking to accelerate the

convergence of a particular binomial model with fi,~,ed N) .

However, such a sequenc.e converges in an oscillating, rather’

than uniform, manner, and On, berg showed that it was

impossible to select the parameters of the binomial model in

such a way as to ensure uniform convergen(~e. Nevertheless,

Omberg [7, p.464.] notes that, if convergence acceleration

could be applied to the binomial, then "binomial-pricing

models might prove to be considerably more eff~.¢:ient than

compound option models".

The present accelerated binomial model has advantages over
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both the binomial and ......... .~    .i ......... ~,,~ one ,, ..... ,

it is mt.lGh faster- than the unmodif led binomial, suggesting

that it might prove to b(--~ more efficient than other numeri(al

methods (such as finite differonce methods) not only for

valuing a small number of optionss, but also for valuing a

large number. On the other hand, the accelerat.ed binomial,

viewed as an approYimation to the Geske-Johnson model,

removes the need to evaluate multivar’iate normal integrals of

up to order three or four (in a four point extrapolation) - a

cemputational].y time consuming task. =-’ That this is the main

disadvantage of the Gesl.::e-Johnson method has been recognised

by a number of authors, including Barone-Adesi and Whaley

[I], Omberg [7] and also Selby and Hodges [10] who have

demonstrated a means by which the integral e’~aluation prob].em

c::an be ........ ~o more manageab],e proportiorlsed u(... eu . ]"he approach

outlined here, however, i’~ likely to prove i:ar’ more

convenient and accessible even than a 8eske-Johnson model

incorporating Selby and Hodges’~ modifications.

Sin~e the binomial itself is an approximation to the true

option value, our application of the Richardson e,vtr’apolation

technique yields an approximation to an approyimation.

Nevertheles.=i, this can be made as accurate as one desires,

first by choosing a sufficiently large value for" N, and,

secondly, by e~-’trapolating from a greater number of eyercise

points.    Clearly, however’, our choice of the conventional

value of N (15(:)) and of a simple three point ei.(trapolation

yields results which are sufficiently accurate for most

practical purposes.    Finally, because the model presented
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here is a modific:at’i.c~n to the binc~mial, it reta.ins.; all the

fleY, ibility of the latter. Thus the ac.celerated bin~3mial can

be used tc~ value all t.he variety (.~f options (on fclreign

e;.’change, c:ommc, dities, ’futures, and so on) for whi(:h the

bi~c~mial itsel.’f is appli~.able.
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FOOTNOTES

I.     By which we mean, of c:c)urse, the prclbability within the
binomial model implied by the risk neutrality assumpt, ion.

2.     As with the sequence F’(n), this means that F" (n) does.
not converge uniformly to its limit.    In discussing the
Geske-Johnson model Omberg [7, pp    463-464] has s~.f~ge,-::,ted
that unifor’m c:onvergenc:e of the sequence of P(n) would be
desirable on the c]rounds that this would ensure that the
convergence acceleration technique per’forms as int.ended. For’
both the sequences P(n) and F’’~ (n) this could be accomplished
by ensuring that each term in the sequer~ce permits early
exercise at every instant (cir’ period, in the case. of F" (n))
at which exercise was permitted in forming ear].ier terms.
Thus, the term F:’(3) in the Gesk.e-Johnson sequence would be
amended to permit eyer’cise at T, 3T/4, 2T/4 and T/4 - and.
analogously for P’~ (3).    In what follows, however, we retain
the original spe~.i’fic.ations of the terms of P and P’~.

3. The accelerated binomial, unlike the Geske-JohnsorJ
approach, does not require the separate calculat ion of the
c:ritical stock price at each permitted exercise point.
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APPEND I X

Uniform [imnvergence is defined by Dini"s theorem.    In our

case4 to show that the sequenc.e of functions F:’~(ED (a=O ...

N) converges uniformly we need only to demonstrate that, for

all S, P~(S)~ P~_..~. (S) .

Wr’ite F’~-i (S) as

n
}] (p/q) J ((l-p) lq) ~’"J Vj

j =0

(n-9
= Ii ,~. j / (p/q) J ((l-.-p) /q) ~-±-J V j,.., (l-p)/q

j =0

n-I (n-- I~
¯+ Z \j-lJ(p/q) j-I ((l-p)/q),-,-J V3,., p/q

j=l

Write F’~ (c,) as

n-I (n-l)
Z j (p/q) J ((1-p)/q),",-t-J

j =0
Vj ~,~-. ~.

(al)

(a~.

Since for all Vj~,

Vj.~,_z >/ Vj+±.,.,(p/q) + Vjr, (l-p)/q

a2 is ~/

n-I (n~. i)
"£ (p/q) J ((l-p)/q) ~--l-j

j =0
[Vj+±.,..,(p/q) + Vj,.., (1-p)/q]

C-9= Z     j (plq) J ((l--p) lq) ~-’i-J Vj~ (l-p) lq
j =0

n-I (n- 0
+ 7. j (p/q) j-i (Xl-p)/q)~-l.-j V j+l.~,

j=O
plq

= 1-.., j (p/q) J ((l-p)/q) ,-.,-i-j Vj ~ (l-p)/q
j = 0 o (’n-q

+ I] j-lJ (p/q) J-~. ((l-p)/q) ~"-’J V j,.., p/q
3=:1.
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Thus F’~t~.’) ~ F’~-~,,3 (S) and the sequence converges uniformly
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TABLES

Table I:    Values of American Put Option . using
Geske-Oohrlson and Ac:celerated Binomial Methods

numerical

A. 8=$40; r=l.05

X     ~ T Binomial Geske- Accelerated
Johnson Binomial

35.00 0.2000 0.08330 0.01000 0.006200 0.006000
35.00 0.2000 0.33330 0.20000 0.199900 0.198900
35.00 0.2000 0.58330 0.43000 0.432100 0.433800
40.00 0.2000 0.08330 0.85000 0.852800 0.851200
40.00 0.2000 0.33330 1.58000 1.580700 1.574000
40.00 0.2000 0.58330 1.99000 1.990500 1.984000
45.00 0.2000 0.08330 5.00000 4.998500 5.000000
45.00 0.2000 0.33330 5.09000 5.095100 5.102000
45.00 0.2000 0.58330 5.27000 5.271900 5.285000
35.00 0.3000 0.08330 0.08000 0.077400 0.077400
35.00 0.3000 0.33330 0.70000 0.696900 0.698500
35.00 0.3000 0.58330 1.22000 1.219400 1.224000
40.00 0.3000 0.08330 1.31000 1.310000 1.309000
40.00 0.3000 0.33330 2.48000 2.481700 2.476000
40.00 0.3000 0.58330" 3.17000 3.173300 3.159000
45.00 0.3000 0.08330 5.06000 5.059900 5.063000
45.00 0.3000 0.33330 5.71000 5.701200 5.698000
45.00 0.3000 0.58330 6.24000 6.236500 6.239000
35.00 0.4000 0.08330 0.25000 0.246600 0.245000
35.00 0.4000 0.33330 1.35000 1.345000 1.350000
35.00 0.4000 0.58330 2.16000 2.156800 2.159000
40.00 0.4000 0.08330 1.77000 1.767900 1.766000
40.00 0.4000 0.33330 3.38000 3.363200 3.383000
40.00 0.4000 0.58330 4.35000 4.355600 4.339000
45.00 0.4000 0.08330 5.29000 5.285500 5.287000
45.00 0.4000 0.33330 6.51000 6.50%00 6.505000
45.00 0.4000 0.58330 7.39000 7.383100 7.382000

B. 8=I; X=I; T=I

r Numerical Geske- Accelerated
Johnson Binomial

1.133 0.5000 0.14800 0.14760 0.14720
1.083 0.4000 0.12600 0.12580 0.12510
1.046 0.3000 0.10100 0.10050 0.09990 .
I.020 0.2000 0.07100 0.07120 0.07090
1.005 0.1000 0.03800 0.03770 0.03770
1.094 0.3000 0.08600 0.08590 0.08560
1.041 0.2000 0.06400 0.06400 0.06390
1.010 0.1000 0.03600 0.03570 0.03560
1.083 0.2000 0.05300 0.05250 0.05240
1.020 0.1000 0.03300 0.03220 0.03220
1.127 0.2000 0.04400 0.04390 0.0446Q
1.030 0.1000 0.03000 0.02920 0.02920
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Notes to Table I:
For the binomial     and accelerated binomial , N=I50.
Geske-Johnsor~ value is based on four po’irrL extrapolation;
Accelerated    Bi nomi al     value is based on    tlTree    point
e,’.’ trapol at i (in.     Gesl.::e-O o17 r, sor~ values are from Geske and
Johnson [5~ p. 1519]. Values in column 4, panel A, are from
Cox and Rubinstein [4~ p.248]; values in column 3~ panel 3~
are from Parkinson [8, pp. 30-34].
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Table 2:    Values o; American Put Option using    Finite
DiTTer’enc:e,         Geske-Johnson,       Macmi I i an ’ s       Quadratic
Approxiri,ar~’ien and Accelerated Binomial Methods (X=IO0)

r    o- t    S FD    GJ    MO    AB

1.08 0.2 0.25 80 20.00 20.00 20.00 20.00
1.08 0.2 0.25 90 10.04 10.07 I0.01 10.06
1,08 0.2 0.25 I00 3.22 3.21 3.22 3.22
I.OB 0.2 0.25 110 0.66 0.66 0.6B 0.66
l,OB 0,2 0,25 120 0,09 0,09 0, I0 0,09
1,13 0,2 0,25 80 20,00 20.01 20.00 20,01
1.13 0.2 0.25 90 I0.00 0.96 I0.00 I0.00
1,13 0.2 0,25 I00 2,92 2,91 2,93 2,92
1,13 0,2 0,25 II0 0,55 0,55 0,5B 0,56
1.13 0.2 0.25 120 0.07 0.07 0.08 0.07
l,OB 0.4 0,25 80 20,32 20,37 20.25 20,36
1,08 0,4 0,25 90 12,56 12.55 1.2,51 12,56
l.OB 0.4 0.25 I00 7.11 7.10 7.10 7.09
1.08 0.4 0.25 II0 3.70 3.70 3.71 3.70
1.08 0.4 0.25 120 1.79 1.79 1.81 1.80
I,OB 0,2 0,50 80 20,00 19,94 20,00 20,00
1,08 0,2 0,50 90 10,29 10,37 10,23 10,37
1,0B 0,2 0,50 100 4,19 4.17 4,19 4,17
l,OB 0,2 0,50 II0 1,41 1,41 1,45 1,40
l.OB 0.2 0.50 120 0.40 0.40 0.42 0.40

Key: FD Tinite diTference method;
GJ Geske-Johnson method,    basded on

extrapol ati on;
MQ    Macmillan’s quadratic approximation;
AB accelerated binomial with N=150 and

extrapolation.

Col umns
p.315].

1 to 7 from Barone-Adesi and Whaley

three    point

three point

[I, Table 4,


