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Abstract

Blood glucose concentrations are controlled by a
loop incorporating two components, the beta cells
which secrete insulin and the insulin-sensitive tissues
(liver, muscle, adipose) which respond to it. Loss of
blood glucose control might result from failure of
the beta cells to secrete insulin, resistance of the tis-
sues to its action, or a combination of both. The dis-
tinctions between Type I (insulin-dependent) and
Type II (non-insulin-dependent) diabetes mellitus
are becoming increasingly blurred both clinically
and aetiologically, where beta-cell insufficiency is
the shared characteristic. The ‘Accelerator Hypoth-
esis’ identifies three processes which variably acceler-
ate the loss of beta cells through apoptosis: constitu-
tion, insulin resistance and autoimmunity.

None of the accelerators leads to diabetes without ex-
cess weight gain, a trend which the ‘Accelerator Hy-
pothesis’ deems central to the rising incidence of
both types of diabetes in the industrially developed
world. Weight gain causes an increase in insulin resis-
tance, which results in the weakening of glucose con-
trol. The rising blood glucose (glucotoxicity) acceler-
ates beta-cell apoptosis directly in all and, by indu-
cing beta-cell immunogens, further accelerates it in
a subset genetically predisposed to autoimmunity.
Rather than overlap between two types of diabetes,
the ‘Accelerator Hypothesis’ envisages overlay.
Body mass is central to the development and rising
incidence of all diabetes. Only tempo distinguishes
the ‘types’. The control of weight gain, and with it in-
sulin resistance, could be the means of minimising
both.

The issue

Diabetes is currently of two types. Type I (insulin-de-
pendent) diabetes mellitus is an autoimmune disor-
der of childhood, characterised by acute onset, keto-
acidosis and insulin dependency. Type II diabetes is
a metabolic disorder of middle-life, slow in onset
and non-insulin-dependent.
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The definitions need urgent revision. More than
half of the patients with Type I diabetes present in
adulthood, when their onset is slow and many do not
develop acidosis or require insulin for many years
[1]. Type II diabetes occurs in teenagers [2], some-
times with keto-acidosis [3], and insulin-dependency
frequently ensues given time. Clinically, there is little
other than tempo to distinguish two types of diabetes.

The Hypothesis

The ‘Accelerator Hypothesis’ argues that Type I and
Type 1I diabetes are one and the same, distinguish-
able only by their rate of beta cell loss and the accel-
erators responsible. The first accelerator, a constitu-
tionally (intrinsically) high rate of beta-cell apoptosis,
is necessary for diabetes to develop but in itself rarely
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sufficient to cause it. Insulin resistance, the second ac-
celerator, results from weight gain and physical inac-
tivity which further increases the rate of beta-cell
apoptosis and accounts for the rising incidence of
Type I as well as Type 11 diabetes in industrially de-
veloped societies. Finally, a small and genetically de-
fined subset of patients with both intrinsic lesion and
insulin resistance develops beta-cell autoimmunity,
the third accelerator. Immune damage in the case of
so-called Type I diabetes, when superimposed on
slower lesions of the islets shared by both types,
merely accelerates the rate of beta-cell loss further.
Insulin dependency is the end-stage towards which
all diabetes moves and the notions of Type I and
Type 11, insulin- and non-insulin-dependent, are con-
sequently artificial.

Of the three accelerators, one is intrinsic and two
are acquired. Insulin resistance, the second accelera-
tor, is associated with visceral fat mass and is widely
believed to explain the epidemic rise of Type II dia-
betes in the industrially developed world [4]. The
‘Accelerator Hypothesis’ argues that visceral weight
gain is also central to Type I diabetes, as much re-
sponsible for its rising incidence as for that of Type
IT diabetes, and the environmental factor in Type I
diabetes that has eluded epidemiology for so long.

The concept of an aetiological link between the
two types of diabetes is not new and has been sugges-
ted before by the author [5] but the evidence is now
stronger. Rather than overlap between the two types
of diabetes, the ‘Accelerator Hypothesis’ envisages
overlay. Type I diabetes is the same as Type II except
for one essential add-on: immune response.

Pathophysiology of diabetes

Type I diabetes is associated with autoantibodies and
activated lymphocytes which are reactive with beta-
cell antigens [6]. Its course is characterised by a symp-
tomless prediabetic phase whose presence can be in-
ferred from immune markers. Pre-Type I diabetes is
a period of accelerated beta-cell loss, whose tempo
varies from acute in those who present young to suba-
cute or chronic in those who present later in life [7].
The differences in tempo could be under genetic con-
trol, since children who develop Type I diabetes tend
to carry different immune-response (HLA) genes
from those who develop it later in life [8, 9]. Beta
cell autoimmunity appears to start early in life, inso-
far as immune markers predictive of future diabetes
can be present as early as 9 months of age [10].

Type II diabetes results from a variable combina-
tion of insulin resistance and defective insulin re-
sponse [11]. Blood insulin concentrations are raised,
at least initially, but are never sufficient to meet the
resistance that entrains them. Like Type I, Type II
diabetes also presents after a variable period of pre-
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diabetes, whose presence can be revealed by high
fasting insulin-to-glucose ratios and later by glycosur-
ia or hyperglycaemia in circumstances which tem-
porarily increase insulin resistance — typically preg-
nancy, thyrotoxicosis or a course of anti-inflamma-
tory steroids. Between 17 and 63 % of women whose
glycosuria during pregnancy is attributable to glucose
intolerance will subsequently become diabetic, de-
pending on the series quoted [12]. Of these, a propor-
tion (around 20% according to one study [13]) will
develop Type I diabetes, emphasizing the principle
to be established here that prediabetes of Type I and
Type II differ only in tempo and not in outcome.
Both represent a period of accelerated beta cell loss.

Loss of the first phase insulin response to intrave-
nous glucose is a feature characteristic of pre-Type 11
diabetes [14]. It is not clear whether the abnormality
is acquired or an intrinsic disturbance of insulin secre-
tion regarded as necessary, though on its own not
usually sufficient, to cause Type II diabetes. The issue
is important to a unifying hypothesis, because loss of
the first phase insulin response is also characteristic of
pre-Type I diabetes, where clearly it is acquired [15].

It has long been recognised that islet cells are both
metabolically and immunogenically up-regulated
when functionally stressed by rising blood sugar [16].
Beta-cell stress (glucotoxicity) will result from their
own low functional mass, or from insulin resistance,
both of which reduce the efficiency of feedback con-
trol so that the blood glucose rises. These phenomena
underpin the rationale for DPT-1, a North American
Type I diabetes prevention study which is using low-
dose insulin to rest the beta-cell and thereby down-
regulate the autoimmmune response [17]. At what-
ever age it emerges, insulin resistance could be
expected to increase beta-cell stress and to intensify
an autoimmune response in those who are genetically
predisposed. The phenomenon of insulin resistance
which, as the result of progressively rising body
weight, has been largely responsible for reducing the
age at presentation of Type II diabetes over recent
time might be doing the same for Type I diabetes by
promoting the immunological accelerants of beta
cell death in a progressively younger age group. If
there is little clinically to distinguish two types of dia-
betes, there is little fundamentally either.

The design of negative feed-back loops ensures
that their output is maintained in the face of pertur-
bation and the behaviour of biological control groups
is particular in this respect [18]. Blood glucose con-
centrations do not rise linearly with beta cell loss or
with insulin resistance, but only slowly to the point
of inflexion where the capacity of the loop becomes
saturated, control is lost, and diabetes emerges. All
patients who develop diabetes of whichever type pro-
gress down the same path of deteriorating control to
the point of loop saturation, whether it takes months,
years or decades.
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Programmed cell death — apoptosis and phagocytosis

Apoptosis, or programmed cell death, is a physiologi-
cal process whereby cell turnover in a tissue is main-
tained and controlled throughout life [19]. Cells un-
dergoing apoptosis have specific morphological char-
acteristics which distinguish the process from necro-
sis. So rapid is the removal of apoptotic debris that,
however high their turnover, only a small proportion
of cells in a tissue can be identified as apoptotic at a
given time.

It remains controversial whether the autoimmune
events of Type I diabetes are the ‘cause’ of islet cell
damage, or the ‘response’ to it. I have previously ar-
gued, like others before [20], that the immune system
evolved originally as a ‘house-keeper’, programmed
to phagocytose the detritus of natural cell-death
[21]. Tt retains that primordial function. From this
perspective, autoimmunity will be antigen-driven
and specific, its intensity responsive to the rate of
apoptosis and modulated by genetic influences. The
issues of self-tolerance and its abrogation, which
have always made it difficult conceptually to recon-
cile autoimmunity with a normal immune system,
are not at issue where clones expand appropriately
to remove apoptotic antigen. Antibodies in this con-
text are the classic immunological adaptors. They
link the specific subparticulate molecules to be
cleared to non-specific Fc reptors of phagocytic neu-
trophils, which in turn engulf the complex [22].

Apoptosis has not in the past been considered a
process capable of inducing an immune response. Re-
cent studies nevertheless indicate that apoptotic cells
can display autoreactive antigen in their blebs, prefer-
entially activate dendritic cells capable of priming tis-
sue-specific cytotoxic T cells and induce the forma-
tion of autoantibodies [23]. Indeed, it has now been
shown in animal models that autoimmunity might be
triggered by waves of intense apoptosis during the
early neonatal period [24]. If the characteristic shared
by Type I and Type 1I diabetes is one of intrinsically
excessive beta-cell apoptosis modulated by insulin re-
sistance, the difference between them might be in the
immune response genotype, which in Type I diabetes
acts to accelerate the beta-cell loss further.

Is there evidence that accelerated beta-cell apop-
tosis underpins the diabetic state? Like obese hu-
mans, Zucker diabetic fatty (ZDF) rats show early
compensation (fourfold beta-cell hyperplasia) in re-
sponse to insulin resistance, followed by decompen-
sation ( > 50% loss) [25]. In prediabetic and diabetic
ZDF islets, apoptosis measured by DNA laddering
is increased more than threefold and sevenfold re-
spectively, compared with lean ZDF control rats,
showing how inability of the beta-cell mass to re-
spond to mounting insulin resistance leads to loss of
glucose control and diabetes [26]. By the time of diag-
nosis, the beta-cell mass of the spontaneously Type 11
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diabetic Goto-Kakizaki rat falls to half that of its Wis-
tar control [27]. Sucrose-feeding leads to a further re-
duction of 50% with clear evidence of accelerated
apoptosis.

The effects of hyperglycaemia on the insulin secre-
tory response have also been studied in the desert
gerbil Psammomys obesus, which develops nutrition-
dependent diabetes associated with moderate obesity
[28]. Sustained exposure of Psammomys islets to hy-
perglycaemia in vivo is associated with nuclear disin-
tegration, a raised beta-cell apoptotic index and irre-
versible loss of insulin secretion [29]. Glucose toxicity
is thought to be mediated by oxidative stress due to
the activation of cytokines [30] and antioxidants can
prevent it [31].

Fibrinogen and C-reactive protein, both acute
phase reactants, are increased in seropositive patients
with Type II diabetes, who account for more than
12% of elderly people [32]. Glucose tolerance was
worse and the need for medication greater (i.e. the
process more advanced) in the autoimmune sub-
group. Type II diabetes has been viewed as an acute
phase disease of the adaptive immune system in
which cytokines released from macrophages, adipose
cells or endothelial cells generate oxidative radicals
which accelerate beta-cell loss [33, 34]. Among the
cytokines, tumour necrosis factor-a (TNF-a) both in-
creases insulin resistance at the level of the insulin re-
ceptor [35] and accelerates beta-cell apoptosis [36].

Tumour necrosis factor-a is secreted in large
amounts by visceral (central) fat which [37], distinct
from the subcutaneous fat elsewhere in the body,
seems to supply the causal link between weight gain,
insulin resistance and diabetes [38]. Visceral fat cells
also generate fatty acids, which further accelerate
beta-cell apoptosis in the rat model [26]. Diet can
modulate beta-cell apotosis both directly [26] and ap-
parently by gestational programming of the next gen-
eration [39].

Islet tissue from diabetic humans is seldom avail-
able for histological examination of its apoptotic state
but the United Kingdom Prospective Diabetes Study
(UKPDS) was able to monitor islet cell function
over 6 years in patients with Type II diabetes [40].
Nearly 3000 patients were allocated intensive therapy
either with sulphonylureas or with insulin, the first of
which stimulates, while the second rests the beta cell.
Glycaemic control nevertheless deteriorated in both
groups, to a similar extent and with a progressive
loss of insulin response measured formally by glucose
clamp. There is one report from Japan of a rando-
mised trial of insulin therapy versus oral hypoglycae-
mic drugs in an autoimmune (islet cell antibody posi-
tive) subset of adult-onset diabetics [41]. The patients
treated with insulin preserved C-peptide longer than
those receiving oral hypoglycaemics, and lost ICA ex-
pression. Others have shown a fall in ICA titre during
the administration of parenteral insulin to subjects at
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high risk of developing Type I diabetes [42]. In com-
bination, these observations suggest that accelerated
beta-cell loss is intrinsic to all diabetes, inevitable
and inexorable. The rate of loss can be accelerated
by the oxidative stresses of hyperglycaemia and auto-
immunity and slowed, but not returned to normal, by
beta-cell rest.

Insulin resistance

Many theories have sought to account for insulin re-
sistance. The ‘Thrifty Genotype Hypothesis’ argues
for gene selection against muscle proteolysis during
an evolutionary history of recurring famine [43, 44].
In contrast, the “Thrifty Phenotype Hypothesis’ [45],
which first described an association between low
birth weight and insulin resistance, explains the link
as a gestational programming of the foetus in re-
sponse to poor maternal nutrition. More recently,
the ‘Foetal Insulin Hypothesis’ has cited observations
in families with maturity onset diabetes of the young
(MODY) to illustrate the dependence of foetal
growth on the genetics of foetal and maternal insulin
secretion [46]. It predicts that a gene or a combina-
tion of genes responsible for insulin resistance will
be found which leads both to low weight at birth
through insulin resistance and to glucose intolerance
later in life.

There is a common theme to all three hypotheses:
insulin resistance, which might arguably have fa-
voured survival in times of famine, leaves many in to-
day’s junk food culture unable to control their blood
sugar. None of the theories, however, estimates how
much of today’s diabetes (the attributable propor-
tion) can be accounted for by congenital insulin resis-
tance already present at birth, nor do these theories
explain the rising incidence of Type 11 diabetes which,
according to the logic of all three hypotheses, should
by now be stable or falling as nutrition in pregnancy
improves and gene selection operates to deselect the
less fit. Insulin resistance acquired through lifestyle
change is more likely than genes or gestational ex-
perience to underlie the recent rise in diabetes and
its ever younger presentation.

Importantly for the ‘Accelerator Hypothesis’, glu-
cose clamp studies 20 years ago showed that non-in-
sulinised patients with autoimmune diabetes were as
insulin resistant as metabolic diabetics of comparable
glucose tolerance [47]. Furthermore, the rise in proin-
sulin to insulin ratio, which has long been the hall-
mark of insulin resistance in pre-Type II diabetes,
has more recently been shown to characterise pre-
Type I diabetes as well [48]. Most seropositive Type
IT diabetic adults become Type I more rapidly than
those who are seronegative [49], and these observa-
tions together provide robust support for the ‘over-
lay’ and ‘accelerator’ concepts. The slower tempo of
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progression in adults has provided the means of
showing that all diabetes is associated with insulin re-
sistance (the second accelerator), that a subgroup ad-
vances more rapidly to insulin-dependency as a result
of autoimmunity (the third accelerator), and that this
subgroup, had it been free of autoimmunity, would
have progressed to diabetes in any case, albeit at a la-
ter date.

Susceptibility and risk

Type Il diabetes is prevalent in industrially developed
societies. It affects up to 30% of some populations
[50], suggesting that susceptibility to diabetes is com-
mon, though not universal, inasmuch as some of
those at greatest risk (i.e. the pathologically obese)
never develop the disease. Concordance in monozy-
gotic twin pairs is widely believed to reflect the genet-
ic contribution to chance and is at around 75% in
Type 11 diabetes (rising to 95 % if those with glucose
intolerance alone are included) [51], but less than
20% in Type I [52]. However, these figures should
be interpreted with caution, as gestational program-
ming might modulate a risk which could readily be
misconstrued as susceptibility, and wrongly ascribed
to genetics. The correlation between weight at birth,
a surrogate for foetal nutrition, and glucose tolerance
in adulthood might have more to do with the gesta-
tional environment provided by the mother than
with the genes she shares with her offspring [46].
This can be resolved only by tracking phenotype
with genotype from one generation to the next.
Clearly, if insulin resistance and the allele(s) respon-
sible for it were to travel from father to offspring, it
would not be appropriate to attribute the insulin re-
sistance to gestational programming.

If both types of diabetes are genetically influenced
but to different degrees, a theory which views one as
merely a subgroup of the other must consider their
different heritability. The high familial concordance
of Type II diabetes, a strongly BMI-dependent disor-
der, can be ascribed to widespread prevalence of the
first accelerator gene (implied from the ever-rising
prevelance of diabetes in western populations as a
whole) coupled with the strong familial association
of obesity. The first accelerator gene might respond
to Neel’s ‘thrifty genotype’ [44], which has selectively
survived the pressures of famine during the course of
evolution.

Susceptibility to Type I diabetes, on the other
hand, is vested in a small number of relatively uncom-
mon genetic polymorphisms, at least in the young.
Thus, around 50 % of Type I diabetes presenting be-
fore the age of 16 years occurs in children heterozy-
gous for HLA DQB alleles which are found together
in around only 2 % of the population [53]. A Finnish
study of elderly men with Type II diabetes found no



918

difference in their frequency of diabetes-associated
haplotypes from that associated with Type I diabetes
[54]. Thus, glucose intolerance, Type I and Type 11
diabetes all share specific HLA susceptibility genes.
Once the faster tempo that characterizes the develop-
ment of diabetes in the younger age groups ceases to
operate in the elderly, the genotypes and phenotypes
of diabetes become indistinguishable. On this basis,
the overlay concept of the ‘Accelerator Hypothesis’
would predict a higher than random prevalence of
Type 1 diabetes among the primary relatives of Type
II diabetics [55].

The epidemiology of diabetes

Over the past 20 years, the incidence of Type II dia-
betes in the western world has increased dramatically,
a pattern which parallels closely the rising incidence
of obesity and that of insulin resistance [56]. Further-
more, age at presentation has been falling, such that
the incidence of Type II diabetes in American adoles-
cents has increased tenfold, and in Japanese school
children 36-fold, within a generation [57]. Rather
strikingly, the same pattern of increasing incidence
and younger age at presentation has occurred for
Type I diabetes over the same time period.

Several studies in Europe show a doubling in inci-
dence of Type I diabetes over the last generation,
with a clear shift of presentation to younger age
groups, although the data are largely restricted to
children and adolescents [58-69]. The incidence of
Type I diabetes has been highest around puberty in
all populations studied [60, 61]. The earlier peak in
girls is consistent with their earlier maturation
(Fig.1). The association between diabetes and puber-
ty has never been clearly explained. The hormonal
changes of puberty (particularly the rise in growth
hormone) could place demands on insulin production
which already damaged islets are not able to meet.
Again, body mass index rises rapidly during puberty,
and with it insulin resistance [63].

If this latter were the correct explanation, the ‘Ac-
celerator Hypothesis” would predict a corresponding-
ly earlier presentation of diabetes as the BMI pre-
viously associated with puberty is reached at a pro-
gressively younger age. It has been reported how,
over recent years, the age-at-onset curve for diabetes
has risen to include most of early childhood, all but
losing its peri-pubertal peak [64]. Others have shown
independently that weight gain early in childhood is
associated with a higher risk of early Type I diabetes
[65, 66] and the same appears to be true for Type II
diabetes [2]. Most recently, the Childhood Diabetes
in Finland Study Group has reported that a relative
weight in childhood of more than 120 % is associated
with a more than twofold greater risk of developing
Type I diabetes [68]. These observations provide im-
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portant support for the ‘Hypothesis’. They point to a
central role for body mass and by implication for in-
sulin resistance in the development of Type I and
Type 1I diabetes.

Seasonality of birth among those with Type I dia-
betes has been reported though not consistently [68,
69]. The predominance of winter births has led to
the suggestion that viral infection during late gesta-
tion might trigger autoimmune insulitis but a sea-
sonal variation of birth weight has not previously
been considered as an alternative explanation. The
prevalence of obesity later in life has recently been
shown to vary with the month of birth, the association
being strongest among those born early in the year
and after cold winters [70].

There are several reports that children exposed to
(cow’s) milk formula feeds before the third month of
life are at greater risk of developing Type I diabetes
[71, 72]. Evidence from the spontaneously Type I dia-
betic BB rat that removal of intact cow’s milk protein
from its chow can prevent the onset of autoimmune
diabetes [73], although now controversial [74], has
led many to search for an immunological explanation.
Most recently, human trials of Nutramigen, an infant
formula which contains casein-hydrolysates rather
than intact cow’s milk protein, have been piloted.
However, interpretation of the epidemiological evi-
dence incriminating cow’s milk protein has not con-
sidered the body mass differences between breast-
fed and bottle-fed infants. Formula-fed infants are
heavier than those who are breast-fed [63], and the
differences are due to a greater fat mass [75]. The dif-
ferences in weight gain are a confounder and their
implications for insulin resistance, oxidative stress
and beta-cell loss merit attention.

Body mass: the elusive ‘trigger’ of Type | diabetes

Type I diabetes at onset is associated with weight loss,
which is also of course true for Type II diabetes when
it enters the corresponding phase of beta-cell decom-
pensation. Diabetes is the end-result of a pathological
process, not the process itself. The process which
leads to Type I diabetes begins early in life [10, 11],
but insulin resistance present at birth, whether it
proves to be genetic, acquired in utero or a combina-
tion of the two, cannot explain the exponential rise
in diabetes experienced over the past generation.
The rise is almost certainly related to the secular in-
crease in body weight which has occurred over the
same period [76] and to the reduction in physical ac-
tivity which has accompanied it [77]. If the rising inci-
dence and earlier presentation of diabetes were to be
explained by an ever heavier population at all ages,
weight gain would have as much a role in the demo-
graphy changes of Type I diabetes as it does in that
of Type II diabetes.
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Fig.1. The association between insulin resistance (IR) and in-
sulin secretory capacity (ISC, beta cell mass) in the control of
blood glucose (modified after Matthews et al.) [62]. Four sub-
jects, with either mild or severe IR, are depicted at the inter-
sections of curves which define the relation between the plas-
ma concentrations of glucose and insulin at two values of IR
(twice normal and eight times normal) and of ISC (normal
and one-quarter normal). Subject A has an IR twice normal
(2 N), but an ISC 100% (1 N) which is sufficient to meet it.
Fasting blood sugar control is normal. Subjects B and C are de-
compensating, but for different reasons. In B, IR is now eight
times normal (8 N), but ISC still 100% (1 N). This depiction
characterises the pre-Type II diabetic, with high circulating in-
sulin concentrations but deteriorating glucose tolerance. In C,
IR is again twice normal (2 N), but ISC markedly reduced at
25% (0.25 N), typical of the pre-Type I diabetic. Subject D
has established diabetes resulting from a combination of high
IR and low ISC, which has deteriorated compared with subject
B, and no longer sufficient to maintain blood sugar control

Ascribing the rising incidence of Type I diabetes to
metabolic, rather than to immunological, factors has
new and important implications. Clinical research
over the past 20 years has focused almost exclusively
on exogenous factors (viruses, toxins, allergens)
deemed able to initiate, facilitate or intensify autoim-
mune damage to the beta cell. Although many have
been proposed [78], none has been confirmed. The
prevalence of obesity meanwhile has doubled. Insulin
resistance, resulting from a combination of obesity
and physical inactivity, is a serious candidate for the
‘elusive’ environmental factor responsible for the ris-
ing incidence of Type I diabetes and, as such, a true
accelerator.

Diabetes: 1 and Il, or one and the same?

The rise in incidence of diabetes in ‘westernised’
countries over recent time has occurred over a period
too brief for changes in the gene pool to exert such an
influence. Similarly, there is no evidence of falling
birth weight over the same period to suggest a dete-
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rioration in foetal quality with its attendant risk of in-
sulin resistance — indeed, birth weights have risen.
More likely, it is the progressive increase in body
weight, with the rising prevalence of obesity at all
ages over the past 20 years, which is responsible.

The ‘Accelerator Hypothesis’ at its simplest can be
reduced to the unfavourable interplay of two phe-
nomena: disturbed beta-cell apoptosis and insulin re-
sistance (Fig.1). Apoptosis occurs throughout life at
a variable rate but is intrinsically higher in those who
are susceptible to diabetes. Many people of normal
body mass, despite intrinsically rapid beta-cell apop-
tosis, never develop glucose intolerance because in-
sulin secretory reserve remains sufficient in such cir-
cumstances to maintain control of blood glucose con-
centrations. However, insulin resistance, whether
present at birth or acquired through the accumulation
of visceral fat during life, makes demands on insulin
secretion which in some cannot be met.

Autoimmune damage of the beta cells is an addi-
tional factor, restricted by genotype to small and in-
dependent minorities of the intrinsically diabetes-
susceptible and non-susceptible populations alike.
At its most aggressive, autoimmunity might be suffi-
cient to cause diabetes of itself, though an accelerator
different from insulin resistance would be needed to
account for the increase in apoptosis which provokes
it. The ‘Accelerator Hypothesis’ predicts that in older
patients, where beta-cell auto-reactivity is less ag-
gressive, those with islet-cell autoimmunity most like-
ly to develop diabetes will already have the diabetic
phenotype — a low beta cell mass and high insulin re-
sistance. Those who do not could be expected to re-
main seropositive but healthy, to succumb only as
and when the intrinsic beta-cell mass wanes and/or in-
sulin resistance rises with the corpulence of advan-
cing age.

Tempo alone, it is argued, distinguishes what in the
past have been described as two separate types of dia-
betes. The three phases in the progression to overt
diabetes — pre-diabetes, chemical diabetes and clini-
cal diabetes — can all be identified in both types, dif-
fering only (but sometimes substantially) in their re-
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lative duration. Not to take account of these differen-
ces in tempo of the three phases will make it concep-
tually difficult to regard as equivalent two diabetic
states where insulin is needed from the outset in one,
but only (if ever) after a long period of clinical dia-
betes in the other. The requirement for insulin is
nevertheless reached at exactly corresponding points
in the progression of pre-diabetes in both cases — the
point of inflexion in the control curve, where the
loop becomes saturated and glucose control is lost
[18]. All people with diabetes pass through this point
to insulin-dependence — some do so very quickly, but
others might not reach it in a lifetime.

A hypothesis postulating body mass as a primary
risk factor in the aetiology of Type I, and Type 11, dia-
betes is novel but eminently testable. It must first be
established whether people with pre-Type I diabetes
are insulin-resistant compared with healthy control
subjects, and whether the greater body mass recorded
during the infancy of those who later develop Type I
diabetes is sufficient to account for the resistance. Me-
tabolic studies in Type I diabetics have been more con-
cerned with beta-cell function and have measured the
insulin response to glucose rather than the glucose re-
sponse to insulin. If they prove to be more insulin-re-
sistant, it should be determined whether the pre-Type
I diabetics carry more visceral fat before decompensa-
tion. Finally, it must be established whether strategies
to reduce the second accelerator (insulin resistance)
in those at risk from Type I diabetes, through weight
loss, metformin, or one of the new thiazolidinediones
[79] is paralleled by a deceleration in the third — auto-
immune damage to the beta cells.

The notion that Type I diabetes merely represents
the accelerated development of Type II diabetes is
important if it implies that strategies currently on
trial to remove the immunological accelerator of
Type 1 diabetes (e.g. DPT-1 [17]) leave unchanged
the insulin resistance which provoked it and the risk
of later developing Type Il diabetes. Conversely, the
control of weight gain, and with it insulin resistance,
could be the fundamental means of minimising the
risk of both.
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