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Abstrat

Strutured doument retrieval aims at retrieving the doument omponents that best satisfy a

query, instead of merely retrieving pre-de�ned doument units. This paper reports on an investigation

of a tf -idf -a approah, where tf and idf are the lassial term frequeny and inverse doument

frequeny, and a, a new parameter alled aessibility, that aptures the struture of douments.

The tf -idf -a approah is de�ned using a probabilisti relational algebra. To investigate the

retrieval quality and estimate the a values, we developed a method that automatially onstruts

diverse test olletions of strutured douments from a standard test olletion, with whih experi-

ments were arried out. The analysis of the experiments provides estimates of the a values.

1 Introdution

In traditional information retrieval (IR) systems [18℄, retrievable units are �xed. For example, the whole

doument, or, sometimes, pre-de�ned parts suh as paragraphs onstitute the retrievable units. The

logial struture of douments (hapter, setion, table, formula, author information, bibliographi item,

et) is therefore \attened" and not exploited. Classial retrieval methods lak the possibility to intera-

tively determine the size and the type of retrievable units, that best suit an atual retrieval task or user

preferenes.

Current researh is aiming at developing retrieval models that dynamially return doument omponents

of varying omplexity. A retrieval result may then onsist of several entry points to a same dou-

ment, whereby eah entry point is weighted aording to how it satis�es the query. Authors suh as

[17, 6, 13, 15, 8℄ have developed and implemented suh approahes. Their models exploit the ontent
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and the logial struture of douments to estimate the relevane of doument omponents to queries,

based on the aggregation of the estimated relevane of their related omponents. These models have

been based on various formal theories (e.g. fuzzy logi [3℄, Dempster-Shafer's theory of evidene [13℄,

probabilisti logi [17, 2℄, and Bayesian inferene [15℄). What these models have in ommon is that the

basi omponents of their retrieval funtion are variants of the two standard term weighting shemes,

term frequeny (tf ) and inverse doument frequeny (idf ). Evidene assoiated with the logial struture

of douments is often enoded into one or both of these dimensions.

In this paper, we make this evidene expliit by introduing the \aessibility" dimension, denoted by

a. This dimension measures the strength of the strutural relationship between doument omponents:

the stronger the relationship, the more impat has the ontent of a omponent in desribing the ontent

of its related omponents (e.g. [17, 6℄). We refer to the approah as tf -idf -a. We are interested in

investigating how the a dimension a�ets the retrieval of doument omponents of varying omplexity.

To arry out this investigation, we require a framework that expliitly aptures the ontent and the

struture of douments in terms of our tf -idf -a approah. We use a probabilisti relational algebra

[17℄ for this purpose (Setion 2). Our investigation also requires test olletions of strutured douments.

Sine relevane assessments for strutured douments are diÆult to obtain and manual assessment is

expensive and task spei�, we developed an automati approah for reating strutured douments and

generating relevane assessments from a at test olletion (Setion 3). Finally, we perform retrieval runs

for di�erent settings of the aessibility dimension. The analysis provides us with methods for estimating

the appropriate setting of the aessibility dimension for strutured doument retrieval (Setion 4).

2 The tf -idf -a Approah

We view a strutured doument as a tree whose nodes, alled ontexts, are the omponents of the

doument (e.g., hapters, setions, et.) and whose edges represent the omposition relationship (e.g.,

a hapter ontains several setions). The root ontext of the tree, whih is unique for eah doument,

embodies the whole doument. Atomi ontexts are doument omponents that orrespond to the last

elements of the omposition hains. All other nodes are referred to as inner ontexts.

Retrieval on strutured douments takes both the logial struture and the ontent of douments into

aount and returns, in response to a user query, doument omponents of varying omplexity (root, inner

or atomi ontexts). This retrieval methodology ombines querying - �nding whih atomi ontexts math

the query - and browsing along the douments' struture - �nding the level of omplexity that best math

the query [5℄. Take, for example, an artile with �ve setions. We an de�ne a retrieval strategy that

is to retrieve the whole artile if more than three of its setions are relevant to the query. Dynamially

returning doument omponents of varying omplexity an, however, lead to user disorientation and

ognitive overload [6, 7, 10℄. This is beause the presentation of doument omponents in the retrieval

result does not take into aount their strutural proximity within the douments. In the above example,
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depending on the assigned relevane status values, the artile and its setions ould be displayed at

di�erent positions in the ranking.

To redue user disorientation and ognitive overload, a retrieval strategy would be to retrieve (and

therefore display to the user) super-ontexts omposed of many relevant sub-ontexts before - or instead

of - retrieving the sub-ontexts themselves. This strategy would prioritise the retrieval of larger super-

ontexts from where the sub-ontexts ould be aessed through diret browsing [6, 5℄. Other strategies

ould favour smaller, more spei� ontexts, by assigning smaller relevane status values to large ontexts.

To allow the implementation of any of the above retrieval strategies, we follow the aggregation-based

approah to strutured doument retrieval (e.g. [17, 11, 2, 15, 6, 8℄). We base the estimation of relevane,

or in other words, we ompute the retrieval status value (RSV) of a ontext based on a ontent desription

that is derived from its ontent and the ontent of its sub-ontexts. For this purpose, we augment the

ontent of a super-ontext with that of its sub-ontexts. The augmentation proess is applied to the

whole doument tree struture, starting with the atomi ontexts, where no augmentation is performed,

and ending with the root ontext.

In this framework, the browsing element of the retrieval strategy is then implemented within the method

of augmentation. By ontrolling the extent to whih the sub-ontexts of a super-ontext ontribute to

its representation we an diretly inuene the derived RSVs.

Via the augmentation proess we an also inuene the extent to whih the individual sub-ontexts

ontribute to the representation of the super-ontext. This way ertain sub-ontexts, suh as titles,

abstrats and onlusions, et. ould be emphasised while others ould be de-emphasised.

We model this impat of the sub-ontexts on the super-ontext by expanding the two dimensions, term

frequeny, tf , and inverse doument frequeny, idf , standard to IR, with a third dimension, the aes-

sibility dimension, a1. We refer to the inuening power of a sub-ontext over its super-ontext as

the sub-ontext's importane. What the a dimension represents, then, is the degree to whih

the sub-ontext is important to the super-ontext.

In the remainder of this setion we show, by means of probabilisti relational algebra de�ned in [17, 9℄,

how this dimension an be used to inorporate this qualitative notion of ontext importane for strutured

doument retrieval.

2.1 Probabilisti Relational Algebra

Probabilisti Relational Algebra (PRA) is a language model that inorporates probability theory with the

well known relational paradigm. The algebra allows the modelling of doument and query representations

as relations onsisting of probabilisti tuples, and it de�nes operators, with similar semantis to SQL but

1The term \aessibility" is taken from the framework of possible worlds and aessibility relations of a Kripke struture

[4℄. In [12℄, a semantis of the tf -idf -a is de�ned, where ontexts are modelled as possible worlds and their struture is

modelled through the use of aessibility relations.

3



with probabilisti interpretations, whih allow the desription of retrieval strategies.

2.1.1 Doument and query modelling

A PRA program desribing the representation of a strutured doument olletion uses relations suh

as term, termspae, and a. The term relation represents the tf dimension and onsists of probabilisti

tuples in the form of tf weight term(index term,ontext), whih assign tf weight values to eah (index term,

ontext) pair in the olletion (e.g. index terms that our in ontexts). The value of tf weight 2 [0,1℄ is

a probabilisti interpretation of the term frequeny. The termspae relation models the idf dimension by

assigning idf values to the index terms in the olletion. This is stored in tuples in the form of idf weight

termspae(index term), where idf weight 2 [0,1℄. The a relation desribes the doument struture and

onsists of tuples a weight a(ontext p,ontext ), where ontext  is \aessible" from ontext p with

a probability a weight2.

A query representation in PRA is desribed by the qterm relation whih is in the form of q weight

qterm(query term), where the q weight desribes the importane of the query term, and query term are

the terms omposing the query.

2.1.2 Relational operators in PRA

Similarly to SQL, PRA supports a number of relational operators. Those used in this paper are SELECT,

PROJECT, JOIN, and UNITE. Their syntax and funtionalities are desribed next.

� SELECT[riteria℄(relation) returns those probabilisti tuples of relation that math the

spei�ed riteria, where the format of riteria is $olumn=3a value. For example, SE-

LECT[$1=sailing℄(termspae) will return all those tuples from the termspae relation that have

the term \sailing" in olumn one. To store the resulting tuple in a relation we use the following

syntax: new relation = SELECT[riteria℄(relation). The arity of the new relation equals to the

arity of relation.

� JOIN[$olumn1=$olumn2 ℄(relation1,relation2) joins (mathes) two relations and returns

tuples that ontain mathing data in their respetive olumns, where olumn1 spei�es a olumn of

relation1 and olumn2 relates to relation2. The arity of the returned tuples is the sum of the arity

of the tuples in relation1 and relation2. For example, new term=JOIN[$1=$1℄(term,termspae) will

populate new term with tuples that have the same value in olumn one. The format of the resulting

tuples is new weight new term(index term,ontext,index term), where the value of new weight is

2On a oneptual level there is no restrition on whih ontexts an aess whih other ontexts, so this formalism an be

adopted to desribe networked arhitetures. In this study, however, we only deal with tree type strutures where ontext p

and ontext  form a parent-hild (super-ontext and sub-ontext) relationship.
3Also <;>;�; et.

4



derived from the values of tf weight and idf weight (e.g. based on probability theory, or fuzzy

theory).

� PROJECT[olumns℄(relation) returns tuples that ontain only the spei�ed olumns

of relation, where the format of olumns is $olumn1,$olumn2, et. For example,

new term=PROJECT[$1,$3℄(JOIN[$2=$2℄(term,a)) returns all (index term,ontext p) pairs

where the index term ours in ontext p's sub-ontext. This is beause the JOIN operator re-

turns the tuples new weight(index term,ontext ,ontext p,ontext ), where ontext p is the super-

ontext of ontext . Projeting olumn one and three into new term results in new weight

new term(index term,ontext p).

� UNITE(relation1,relation2) returns the union of the tuples stored in relation1 and relation2.

For example, new term=UNITE(term,PROJECT[$1,$3℄(JOIN[$2=$2℄(term,a))) will produe a

relation that inludes tuples of the term relation and the resulting tuples of the PROJECT opera-

tion. The probabilities of the tuples in new term are alulated aording to probability theory or

fuzzy theory.

Based on the relations desribing the doument and query spae and with the use of the PRA operators

we an implement a retrieval strategy that takes into aount both the struture and the ontent of the

douments by augmenting the ontent of sub-ontexts into the super-ontext, where the augmentation

an be ontrolled by the a weight values.

2.1.3 Retrieval strategies

Let us �rst model the lassial tf idf retrieval funtion. For this, we use the JOIN and PROJECT

operations of PRA.

t�df index = PROJECT[$1,$2℄(JOIN[$1=$1℄(term,termspae))

retrieve t�df = PROJECT[$3℄(JOIN[$1=$1℄(qterm,t�df index ))

Here, the �rst funtion omputes the tf idf indexing. It produes tuples in the form of tf idf weight

t�df index(index term,ontext). The tf idf weight is alulated using probability theory and the inde-

pendene assumption as tf weight � idf weight. The seond funtion joins (mathes) the query terms

with the t�df index terms and produes the retrieval results in the form of rsv retrieve t�df(ontext). The

RSVs given in rsv are alulated aording to probability theory assuming disjointness with respet to

the term spae (termspae) as follows:

rsv(ontext) =
X

query termi

q weighti � tf weighti(ontext)� idf weighti
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We use next the a relation to take the struture into onsideration. We augment the ontent of the

super-ontext by that of its sub-ontexts. This is modelled by the following PRA equation.

t�dfa index = PROJECT[$1,$3℄(JOIN[$2=$2℄(t�df index,a))

The augmented relation onsists of tuples t�dfa weight t�dfa index(index term,ontext p) where on-

text p is the super-ontext of ontext  whih is indexed by index term. The value of t�dfa weight

is alulated as tf idf weight � a weight (assuming probabilisti independene). Based on the t�d-

fa index we an now de�ne our retrieval strategy for strutured douments.

t�dfa index = PROJECT[$1,$3℄(JOIN[$2=$2℄(t�df index,a))

retrieve t�dfa = PROJECT[$3℄(JOIN[$1=$1℄(qterm,t�dfa index ))

retrieve = UNITE(retrieve t�df,retrieve t�dfa)

The RSVs of the retrieval result are alulated (by the UNITE operator) aording to probability theory

and assuming independene:

rsv(ontext) = P (retrieve tfidf(ontext) OR retrieve tfidfa(ontext))

= P (retrieve tfidf(ontext)) + P (retrieve tfidfa(ontext))�

P (retrieve tfidf(ontext) AND retrieve tfidfa(ontext))

= P (retrieve tfidf(ontext)) + P (retrieve tfidfa(ontext))�

P (retrieve tfidf(ontext))� P (retrieve tfidfa(ontext))

Sine the weight of t�dfa index is diretly inuened by the weight assoiated with a, the resulting

RSVs is also dependent on a.

2.2 Example

Consider the following olletion of one doument do1 omposed of two setions, se1 and se2. Terms

suh as sailing, boats, et. our in the olletion:

0.1 term(sailing, do1)

0.8 term(boats, do1)

0.7 term(sailing, se1)

0.8 term(greee, se2)

0.4 termspae(sailing)

0.3 termspae(boats)

0.2 termspae(greee)

0.1 termspae(santorini)

0.8 a(do1, se1)
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0.6 a(do1, se2)

Let us take the query \sailing boats", represented by the following PRA program.

qterm(sailing)

qterm(boats)

Given this query and applying the lassial tf idf retrieval funtion (as desribed in the previous setion)

to our doument olletion we retrieve the following doument omponents.

0.28 retrieved t�df(do1)

0.28 retrieved t�df(se1)

Both retrieved ontexts have the relevane status value of 0.28. The above retrieval strategy, however,

does not take into aount the struture of the doument, e.g. that se1 whih is about sailing is part

of do1. From a user's point of view, it might be better to retrieve �rst - or only - do1 sine se1 an

be aessed from do1 by browsing down from do1 to se1. Let us now apply our tf idf a retrieval

strategy. We obtain:

0.441 retrieve(do1)

0.28 retrieve(se1)

This shows that the RSV of do1 inreases when we take into aount the fat that do1 is omposed

of se1, whih is also indexed by the term "sailing". This is done using the strutural knowledge stored

in a. This demonstrates that by using our third dimension, a, we obtain a ranking that exploits the

struture of the doument to determine whih doument omponents should be retrieved higher in the

ranking.

In designing appliations for strutured doument retrieval, we are faed with the problem of determining

the probabilities (weights) of the a relation. In our retrieval appliations so far, onstant a values suh

as 0.5 and 0.6 were used. However we want to establish methods to derive estimates of the a values.

To ahieve this, we require test olletions with ontrolled parameters to allow us to derive appropriate

estimations of the a values with respet to these parameters. In the following setion we present a

method for reating simulated test olletions of strutured douments that allow suh an investigation.

3 Automati Constrution of Strutured Doument Test Col-

letions

Although many test olletions are omposed of douments that ontain some internal struture [19, 1℄,

relevane judgements are usually made at the doument level (root ontexts) or at the atomi ontext

level. This means that they annot be used for the evaluation of strutured doument retrieval systems,

whih would require relevane judgements at the root, atomi and inner levels.
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Our investigation requires several test olletions of strutured douments with di�erent harateristis

(e.g. depth and width of doument tree struture). These will enable us to investigate the a dimension

under di�erent onditions. Sine relevane assessments for strutured douments are diÆult to obtain

and manual assessment is expensive and task spei�, it was imperative to �nd a way to automatially

build suh test olletions. We developed a methodology that allowed us to reate diverse olletions

of strutured douments and automatially generate relevane assessments. Our methodology exploits

existing standard test olletions with their existing queries and relevane judgements so that no human

resoures are neessary. In addition our methodology allows the reation of all test olletions deemed

neessary to arry out our investigation regarding the e�et of the a dimension for strutured doument

retrieval.

In Setion 3.1 we disuss how we reated the strutured douments, in Setion 3.2 we disuss how we

deided on the relevane of the doument omponents, and �nally, in Setion 3.3 we show the results of

the methodology using the CACM olletion4.

3.1 Constrution of the douments

Our basi methodology is to ombine douments from a test olletion to form simulated strutured

douments. That is to treat a number of original douments from the olletion as omponents of a

strutured doument. A simpli�ed version of this strategy was used in [13℄. In the remainder of this

setion we shall present a more sophistiated version, and deal with some of the issues arising from the

onstrution of simulated strutured douments. To illustrate our methodology, we used a well known

small standard test olletion, the CACM test olletion.

Using the methodology of ombining douments, it is possible to reate two types of test olletions:

homogeneous olletions in whih the douments have the same logial struture and heterogeneous ol-

letions in whih the douments have varying logial struture. In our experiments, Setion 4, we use

these olletions to see how the values of a ompare for the two types of olletions.

By ontrolling the number of douments ombined, and the way douments are ombined, it is also

possible to generate di�erent types of strutured douments. We used two main riteria to generate

strutured douments. The �rst riterion is width. This orresponds to the number of douments that

are ombined at eah level, i.e. how many ontexts in a doument, and how many sub-ontexts per

ontext. The seond riterion is depth. This orresponds to how many levels are in the tree struture.

For example a doument with no sub-ontexts (all the text is at one level) has depth of 1, a doument

with sub-ontexts has depth 2, a doument with sub-sub-ontexts has depth 3, and so on. Using these

riteria it is possible to automatially generate test olletions of strutured douments that vary in width

and depth.

4The olletion has 3204 douments and 64 queries. See www.ds.gla.a.uk/idom/ir resoures/tests olletions/ for

details of the olletion.
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For the experiments we desribe in Setion 4 we onstruted eight homogeneous olletions of strutured

douments. The types of logial struture are shown in Figure 1. Pair (EE), Triple (EEE), Quad

(EEEE), Sext (EEEEEE) and Ot (EEEEEEEE) are omposed of root and atomi ontexts only. These

test olletions will be useful in estimating the a values based on the width riterion. The other

olletions Pair-E ((EE)E), Pair-2 ((EE)(EE)) and Triple-3 ((EEE)(EEE)(EEE)) have root, inner and

atomi ontexts. These olletions are useful for estimating the a values based on the depth riterion.

Colletions of eah type were built from the CACM test olletion where douments of the test olletion,

referred to as \original douments", were used to form the atomi ontexts.

d1

e1 e2

Pair (EE)

d1

e1 e2

e3s1

Pair-E ((EE)E)

d1

e1 e2

s1 s2

e3 e4

Pair-2 ((EE)(EE))

d1

e2e1 e3

Triple (EEE)

e1 e2 e3

d1

s1 s2 s3

e4 e5 e6 e7 e8 e9

Triple-3

((EEE)(EEE)(EEE))

e1 e2 e3 e4

d1

Quad (EEEE)

e6e5e4e3e2e1

d1

Sext (EEEEEE)

e6e5e4e3e2e1

d1

e7 e8

Ot (EEEEEEEE)

Figure 1: Types of logial struture

We also reated one heterogeneous test olletion, referred to as Mix, whih is omposed of a mixture of

Pair (EE) and Triple (EEE) douments.

We should note here that we are aware that the strutured douments reated in this manner often

will not have a meaningful ontent and may not reet term distributions in real strutured douments.

Nevertheless the use of simulated douments does allow for extensive investigation, Setion 4, to provide

initial estimates for the a values. We are urrently using these estimates in our urrent work on a

real test olletion of strutured douments (XML-based douments). We are not, therefore, suggesting

that we an use the arti�ially reated test olletions as substitutes for real douments and relevane

assessments. Rather we use them as a test-bed to obtain estimates for parameters that will be used in

more realisti evaluations. As mentioned before, the neessity of using arti�ial test olletions omes

from the lak of real test olletions.

One of the advantages of our approah is that we an automatially reate olletions diverse in type and

size. However we must take steps to ensure that the reated olletions are realisti and of manageable

size to allow experimentation.

With a straight ombinatori approah, we an derive from a olletion of N original douments the

possible number of strutured douments would be N2 over 2 for the Pair type of olletion (that is about

5 million douments for the 3204 douments of the CACM olletion). Therefore we require methods

to ut down the number of atual douments ombined. In the partiular experiments we arried out,

we used two strategies to aomplish this: disarding \noisy" douments and minimising \dependent"

douments. These strategies are based on the assumption that a doument whih has not been expliitly

9



marked relevant to a query is onsidered not-relevant. Both strategies are based on an analysis of the

atomi ontexts of the strutured douments, i.e. the original douments from the CACM olletion.

(1) disarding \noisy" douments: If a doument's sub-ontexts are a mixture of relevant and non-

relevant ontexts for all queries in the olletion then the doument is onsidered to be noisy.

That is, there is no query in the olletion for whih all sub-ontexts are relevant or all sub-ontexts are

non-relevant. We disard all noisy douments from the olletion. This does not mean that we are only

onsidering strutured douments where all sub-ontexts are in agreement; we simply insist that they are

in agreement for at least one query in the olletion5.

(2) minimising \dependent" douments: With a straight ombination approah we also have the

problem of multiple ourrenes of the same atomi onepts (the original douments in the test

olletion appearing many times). This ould mean that our simulated strutured douments may

be very similar - or dependent - due to the overlap between the sub-ontexts.

Our seond approah to utting down the number of reated douments is therefore to minimise the

number of dependent douments.

We do not, however, want to eradiate multiple ourrene ompletely. First, multiple ourrene mimi

real-world situations where similar doument parts are used in several douments (e.g. web, hypertext,

digital libraries). Seond, exlusive usage of an atomi ontext requires a proedure to determine whih

atomi ontext leads to the \best" strutured doument, whih is diÆult, if not impossible to assess.

The way we redue the number of multiple ourrenes is to redue the repeated use of atomi ontexts

that are relevant to the same query. That is, we do not want to reate many strutured douments that

ontain the same set of relevant ontexts.

Our basi proedure is to redue the number of douments whose atomi ontexts are all relevant to the

same query, i.e. omposed of omponents that are all relevant to the query. The reason we onentrate

on relevant ontexts is that these are the ones we use to deide whether the whole strutured doument

is relevant or not, (see Setion 3.2).

For eah atomi ontext, ei, whih is relevant to a query, qj , we only allow ei to appear in one doument

whose other atomi ontexts are all relevant to qj . This redues multiple ourrenes of ei in douments

omposed entirely of relevant atomi ontexts. As there may be many strutured douments ontaining

ei whose atomi ontexts are relevant, we need a method to hoose whih of these douments to use

in the olletion. We do this by hoosing the doument with the lowest noise value. This means that

we prefer douments that are relevant to multiple queries over douments that are only relevant to one

query. If more than one suh douments exists we hoose one randomly.

Both these steps redue the number of strutured douments to a manageable size.

5This approah an be extended to de�ne the degree of noise we allow in the olletion.
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3.2 Construting the relevane assessments

We have so far desribed how we reated the strutured douments and how we ut down the potential

number of douments reated. What we have now to onsider are the queries and relevane assessments.

The queries and relevane assessments ome from the standard test olletions that are used to build

the simulated strutured douments. However, given that a strutured doument may be omposed of

a mixture of relevant and non-relevant douments, we have to deide when to lassify a root ontext

(strutured doument), or an inner ontext, as relevant or non-relevant.

Our approah de�nes the relevane of non-atomi ontexts as the aggregation of the relevane of their

sub-ontexts.

Let a non-atomi ontext d be omposed of k sub-ontexts e1; :::; ek. For a given query, we have three

ases: all the sub-ontexts e1 to ek are relevant; all the sub-ontexts are not relevant; and neither of

the previous two ases holds. In the latter, we say that we have \ontraditory" relevane assessments.

For the �rst two ases, it is reasonable to assess that d is relevant and d is not relevant to the query,

respetively. In the third ase, an aggregation strategy is required to deide the relevane of d to a query.

We apply the following two strategies:

� optimisti relevane: d is assessed relevant to the query if at least one of its sub-ontexts is assessed

relevant to the query; d is assessed non-relevant if all its sub-ontexts are assessed non-relevant to

the query.

� pessimisti relevane: d is assessed relevant to the query if all its sub-ontexts are assessed relevant

to the query; in all other ases, d is assessed non-relevant to the query.

Variants of the above ould be used; e.g., d is onsidered relevant if 2=3 of its sub-ontexts are relevant

[11℄. We are urrently arrying out researh to devise strategies that may be loser to user's views of

relevane with respet to strutured doument retrieval6.

The point of using di�erent aggregation strategies is that it allows us to investigate the performane of the

a dimension when using di�erent relevane riteria. For example, the optimisti strategy orresponds

to a loose de�nition of relevane (where a doument is relevant if it ontains any relevant omponent)

and the pessimisti strategy orresponds to a strit de�nition of relevane (where all omponents must

be relevant before the strutured doument is relevant).

3.3 Example

In the previous setions we have shown how we an use existing test olletions to reate olletions of

strutured douments. These olletions an be of varying width and depth, be based on di�ering notions

6For instane, in an experiment related to passage retrieval, some relevant douments ontained no parts that were

individually assessed relevant by (expert) users [20℄. See [14℄ for a survey on the notion of relevane in IR.

11



of relevane and be of idential or varying struture (homogeneous or heterogeneous). The exibility of

this methodology is that it allows the reation of diverse olletion types from a single original test

olletion.

The olletions we reated for the experiments reported in this paper were based on the CACM olletion.

We have desribed the olletion types, we shall now examine the olletions in more detail to show the

di�erenes between them.

Table 1 shows the number of root, inner and atomi ontexts for the olletions. As it an be seen, the

homogeneous olletions display a relationship between the atomi ontexts and root and inner ontext.

For instane, the Pair olletion has twie as many atomi ontexts as root ontexts, the Triple olletion

has three times as many atomi ontexts as root ontexts, et. This does not hold, however, for the

heterogeneous Mix olletion, whih is ombined of a mixture of doument types.

Coll. Num. Num. Num. Total

Root Inner Atomi Num.

Pair 383 0 766 1149

Pair-E 247 247 741 1235

Triple 247 0 741 988

Quad 180 0 720 900

Pair-2 180 360 720 1260

Triple-3 66 198 594 858

Sext 109 0 654 763

Ot 80 0 640 720

Mix 280 0 700 980

Table 1: Number of ontexts

One of the ways we ut down the number of reated strutured douments was to redue the number of

multiple ourrenes of atomi ontexts. As shown in Table 2, we do not exlude all multiple ourrenes,

however suh ourrenes are rare. For, example, in the Triple-3 olletion, 20 of the original 3204

douments are used three times among the 594 atomi ontexts.

The above two measures are independent of how we deide on the relevane of a ontext, i.e. whether we

use the optimisti or pessimisti aggregation strategy. The hoie of aggregation strategy will a�et the

number of relevant ontexts. As an example we show in, Figure 2, the number of relevant root ontexts

when using the Pair olletion, (full �gures an be found in [16℄). As it an be seen, for the optimisti

aggregation strategy we have almost twie as many relevant root ontexts (average 15.53 per query) as

for the pessimisti aggregation strategy (average 7.85 per query). This demonstrates that the aggregation

strategy an be used to reate olletions with di�erent harateristis.

In this setion we desribed the reation of a number of olletions based on the CACM olletion. In

the following setion we investigate the a dimension using these olletions.
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Ourrene 1 2 3 4 5 6

frequeny

Pair 398 86 33 14 7 1

Pair-E 392 82 31 14 6 1

Triple 392 82 31 14 6 1

Quad 388 82 28 12 6 1

Pair-2 391 84 32 11 3 1

Triple-3 336 83 20 8 0 0

Sext 362 74 22 12 6 0

Ot 352 75 21 11 5 1

Mix 366 85 27 12 7 0

Table 2: Multiple ourrene of ontexts
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Figure 2: Distribution of relevant ontexts
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4 Experiments

Using the di�erent types of olletions, and their assoiated properties, we arried out a number of

experiments to investigate the aessibility dimension for the retrieval of strutured douments. With

our set of test olletions of strutured douments and their various and ontrolled harateristis, we

studied the e�et of di�erent a values on the retrieval quality.

We targeted the following questions:

1. Is there an optimal setting of the a parameter for a ontext with n sub-ontexts? (Setion 4.1).

An optimal setting is one whih gives the best average preision.

2. With high a values, we expet large ontexts to be retrieved with a higher RSV than small

ontexts. What is the \break-even point", i.e. whih setting of a will retrieve large and small

ontexts with the same preferene? (Setion 4.2)

4.1 Optimal values of the aessibility dimension

For all our onstruted olletions, for inreasing values of a (ranging from 0:1 to 0:9), we omputed

the RSV of eah ontext, using the augmentation proess desribed in Setion 2. With the obtained

rankings (of root, inner and atomi ontexts) and our relevane assessments (optimisti or pessimisti),

we alulated preision/reall values and then the average preision values. The graphs in Figure 3 show

for eah aessibility value the orresponding average preision. We show the graphs for Pair, Pair-E

and Mix only. All graphs show a \bell shape". The optimal aessibility values and their orresponding

maximal preision values are given in Table 3.

Optimisti relevane Pessimisti relevane

olletion max. av. preision a max. av. preision a

Pair 0.4702 0.75 0.4359 0.65

Triple 0.4719 0.6 0.4479 0.45

Quad 0.455 0.55 0.4474 0.35

Sext 0.4431 0.45 0.4507 0.25

Ot 0.4277 0.35 0.4404 0.2

Pair-2 0.4722 0.8 0.4556 0.6

Pair-E 0.4787 0.75 0.4464 0.65

Triple-3 0.4566 0.65 0.4694 0.4

Mix 0.4608 0.75 0.4307 0.5

Table 3: Optimal aessibility values and orresponding maximum preision

Looking at Pair, Triple, Quad, Sext and Ot, we an see that the optimal aessibility values derease
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Figure 3: Aessibility values and orresponding average preision values

with the number of sub-ontexts. This holds for both relevane aggregation strategies. The a value

an be approximated with the funtion

a = a � 1p
n

where n is the number of sub-ontexts. The parameter a depends on the relevane aggregation strategy.

With the method of least square polynomials (see Appendix), values of a are 1:068 and 0:78 for optimisti

and pessimisti relevane assessments, respetively.

The optimal a values obtained for Pair and Triple are lose to those of Pair-2 and Pair-E, and Triple-3,

respetively. This indiates that for depth-two olletions (Pair-2, Pair-E, Triple-3) we an apply the

above estimates for a independently of the depth of the olletion, indiating that approximations

based on the number of sub-ontexts seem appropriate.

The a value for Mix used the same �xed aessibility values for all douments, whether they were Pair

or Triple douments. This ould be onsidered as \unfair", sine, as disussed above, the setting of the

a for a ontext depends on the number of its sub-ontexts. Therefore, we performed an additional

experiment, where the a values were set to 0.75 and 0.6, respetively, for ontexts with two and three

sub-ontexts in the optimisti relevane ase, and 0.65 and 0.45 for the pessimisti ase. These are the

optimal aessibility values obtained for Pair and Triple (see Table 3). The average preision values are

0.4615 and 0.4301 for optimisti and pessimisti relevane assessments, respetively. Compared to the

values obtained with �xed aessibility values (0.4608 and 0.4307, respetively), there is no signi�ant

hange. An experimental setting with a more heterogeneous olletion would be more appropriate for
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omparing �xed and variable settings of the a value.

From the results on the homogeneous olletions, we onlude that we an set the a parameter for a

ontext aording to the funtion a � 1p
n
where a an be viewed as the parameter reeting the relevane

aggregation strategy.

4.2 Large or small ontexts

One major role of the aessibility dimension is to emphasise the retrieval preferene of large vs small

ontexts. For example, ontexts deeper in the struture (small ontexts) should be retrieved before

ontexts upper (large ontexts) in the struture when spei� ontexts are preferred to more exhaustive

ontexts [6℄. The a value gives powerful ontrol regarding exhaustiveness and spei�ity of the retrieval.

With small a values, small ontexts \overtake" large ontexts, whereas with high a values large

ontexts dominate the upper ranks.

For demonstrating and investigating this e�et, we produed for eah olletion with our tf -idf -a

method de�ned in Setion 2 a ranked list of ontexts for di�erent a values, ranging again from 0:1 to

0:9. For eah type of ontexts (atomi, inner and root), we alulate its average rank over all retrieval

results for a olletion. These average values are then plotted into a graph in relation to the aessibility

values. Figure 4 shows the obtained graphs for Ot, Triple-3 and Mix. In all graphs, the root ontext

urve starts in the upper left orner, whereas the atomi ontext urve starts in the lower left orner. For

instane, we see that for the Ot olletion, the \break-even point" is around 0:1 and 0:2 for pessimisti

relevane assessment.

With the Triple-3 olletion we obtain three break-even points for root-inner, root-atomi, and inner-

atomi. Whereas the average rank of inner nodes does not vary greatly with varying a values, the

e�et on root and atomi ontexts is similar to the e�et observed with the Ot olletion, but with

di�erent break-even points values (e.g. around 0:4�0:5 for optimisti relevane assessment). For the Mix

olletion the break-even-point loates around 0:5, a higher value than that for the Ot olletion.

Whereas as in Setion 4.1, the maximum average preision leads to a setting of a, the experiments

regarding small and large ontexts provide us with a seond soure for setting the a value, one that

ontrols the retrieval of exhaustive vs spei� doument entry points.

5 Conlusion

In this work we investigated how to expliitly inorporate the notion of struture into strutured doument

retrieval. This is in ontrast to other researh, (e.g. [3, 15, 8, 20℄), where the struture of a doument

is only impliitly aptured within the retrieval model. The advantage of our approah is that we an

investigate the e�et of di�ering doument strutures upon the suess of strutured doument retrieval.
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Figure 4: E�et of the aessibility on the types of retrieved ontexts

Our approah to strutured douments ranks doument ontexts (doument omponents of varying gran-

ularity) based on a desription of their individual ontent augmented with that of their sub-ontexts.

Therefore a doument's ontext enapsulates the ontent of all its sub-ontexts taking into aount their

importane. This was implemented using PRA, a probabilisti relational algebra. In our model, and

implementation, we quantitatively inorporated the degree to whih a sub-ontext ontributes to the

ontent of a super-ontext using the a dimension, i.e. higher a values mean that the sub-ontext

ontributes more to the desription of a super-ontext.

We arried out extensive experiments on olletions of douments with varying struture to provide

estimates for a. This investigation is neessary to allow the setting of a to values that will failitate

the retrieval of doument omponents of varying granularity.

The experiments required the development of test olletions of strutured douments. We developed

a methodology for the automati onstrution of test olletions of strutured douments using stan-

dard test olletions with their set of douments, queries and orresponding relevane assessments. The

methodology makes it possible to generate test olletions of strutured douments with varying width

and depth, based on di�ering notions of relevane and with idential or varying struture.

The analysis of the retrieval results allowed us to derive a general reommendation for appropriate settings

of the a value for strutured doument retrieval. The a values depend on the number of sub-ontexts

of a ontexts, and the relevane assessment aggregation strategies. They also depend on the required

exhaustiveness and spei�ity of the retrieval. These results are being used as the basis for an evaluation

on a real strutured doument olletion.
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Least square polynomials

Consider the experimental values of a in relation with the square root of the number of sub-ontexts.

Assuming a � 1p
ni

where ni ranges in the set f2; 3; 4; 6; 8g is the funtion for estimating the optimal

aessibility values, we apply least square polynomials as follows for alulating a.
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