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Here we present a comprehensive map of the accessible chromatin landscape of the mouse hippocampus at single-cell res-

olution. Substantial advances of this work include the optimization of a single-cell combinatorial indexing assay for trans-

posase accessible chromatin (sci-ATAC-seq); a software suite, scitools, for the rapid processing and visualization of single-cell

combinatorial indexing data sets; and a valuable resource of hippocampal regulatory networks at single-cell resolution. We

used sci-ATAC-seq to produce 2346 high-quality single-cell chromatin accessibility maps with a mean unique read count

per cell of 29,201 from both fresh and frozen hippocampi, observing little difference in accessibility patterns between

the preparations. By using this data set, we identified eight distinct major clusters of cells representing both neuronal

and nonneuronal cell types and characterized the driving regulatory factors and differentially accessible loci that define

each cluster. Within pyramidal neurons, we identified four major clusters, including CA1 and CA3 neurons, and three ad-

ditional subclusters. We then applied a recently described coaccessibility framework, Cicero, which identified 146,818 links

between promoters and putative distal regulatory DNA. Identified coaccessibility networks showed cell-type specificity,

shedding light on key dynamic loci that reconfigure to specify hippocampal cell lineages. Lastly, we performed an additional

sci-ATAC-seq preparation from cultured hippocampal neurons (899 high-quality cells, 43,532 mean unique reads) that re-

vealed substantial alterations in their epigenetic landscape compared with nuclei from hippocampal tissue. This data set and

accompanying analysis tools provide a new resource that can guide subsequent studies of the hippocampus.

[Supplemental material is available for this article.]

A major goal in the life sciences is to map cell types and identify

the respective genomic properties of each of the cell types in com-

plex tissues. Traditional strategies that use intact tissue are limited

to averaging of the constituent cell profiles. To overcome this lim-

itation, there has been a burst in development of unbiased single-

cell genomics assays, leveraging the concept that each single cell

can only occupy a single position in the landscape of cell types

(Trapnell 2015). This push into the single-cell space has largely

centered on the use of single-cell transcriptional profiling.

Although profiling the RNA complement has produced valuable

information (Zeisel et al. 2018; Saunders et al. 2018), the ability

to profile chromatin status, namely, active versus inactive, has

lagged behind, leaving open the question as to what extent acces-

sible chromatin profiles are linked to cell specificity, particularly

with respect to distal enhancer elements (Corces et al. 2016).

Recently, progress has been made to ascertain chromatin ac-

cessibility profiles in single cells using assay for transposase-acces-

sible chromatin (ATAC-seq) technologies. These strategies have

been applied tomyogenesis (Pliner et al. 2018), hematopoietic dif-

ferentiation (Buenrostro et al. 2018), fly embryonic development

(Cusanovich et al. 2018b), the mouse (Preissl et al. 2018) and hu-

man cortex (Lake et al. 2018), and, most recently, an atlas of mul-

tiple tissues in the mouse, although lacking the hippocampus

(Cusanovich et al. 2018a). The core concept behind the methods

used in several of these studies is a combinatorial indexing schema

whereby librarymolecules are barcoded twice, once at the transpo-

sase stage and then again at the PCR stage. This platform has also

been extended to profile other properties, including transcription,

genome sequencing, chromatin folding, and DNA methylation

(Cao et al. 2017; Ramani et al. 2017; Vitak et al. 2017; Mulqueen

et al. 2018; Yin et al. 2018). In this work, we optimized the sci-

ATAC-seq assay for the analysis of fresh and frozen hippocampal

tissue samples to produce single-cell chromatin accessibility pro-

files in high throughput, with greater information content—as

measured by unique reads per cell. These improvements will also

facilitate the use of this technology platform on frozen samples,

enabling the assessment of banked tissue isolates.
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The hippocampus is critical to the formation and retrieval of

episodic and spatial memory (Scoville and Milner 1957; O’Keefe

and Dostrovsky 1971; Smith and Milner 1981; Zola-Morgan et al.

1986). Historically, cell types within the

hippocampus have been broadly classi-

fied by their morphology (Ramon y Cajal

1911; Lorente de No 1934) and electro-

physiological properties (Kandel and

Spencer 1961; Kandel et al. 1961; Spencer

and Kandel 1961a,b). More recently,

types have been identified by their tran-

scriptionalprofiles (Leinet al. 2004;Cem-

browski et al. 2016), and single-cell

transcriptomics has also revealed poten-

tial subclasses within previously defined

cell types (Zeisel et al. 2015; Habib et al.

2017). The defined classes of cells within

thehippocampus and the existing single-

cell transcriptome data allowed us to re-

fine our sci-ATAC-seq method and pro-

vide the first single-cell epigenomics

profile of the murine hippocampus.

Results

Single-cell chromatin accessibility

profiles from mouse hippocampus

Weused sci-ATAC-seq toprofile two fresh

and two frozen mouse total hippocampi

to map the accessible chromatin land-

scape (Methods). Each samplewas freshly

isolated from an adult (P60) wild-type

mouse (C57-Bl6) and either processed

immediately or flash frozen using liquid

nitrogen.Nucleiwere isolated and carried

through the sci-ATAC-seq protocol with

several optimizations frompreviously de-

scribed implementations (Methods; Fig.

1A; Supplemental Protocol). Briefly, nu-

cleiwere isolatedbydouncehomogeniza-

tion of tissue in nuclei isolation buffer

followed by fluorescence-assisted nuclei

sorting (FANS) usingDAPI as a stain to se-

lect for intact, single nuclei. One of the

key improvements to our workflow was

the addition of Tween20 (Sigma-Aldrich)

to the nuclei isolation buffer, which we

believe increased the permeability of the

nucleus and removed more of the cell

membrane. We then performed sci-

ATAC-seq as previously described using

a 55°C tagmentation temperature (Meth-

ods; Supplemental Protocol). Sequence

reads were processed, and subsequent

analysis was performed using scitools

(Supplemental Code).

In total, we produced 2346 single

cells passing quality control (1000 or

more unique reads present in peaks and

≥25% of all unique reads present in

peaks, alignment q≥10, not aligned to

chrM, unscaffolded, alternative, or random contigs) evenly repre-

sented across replicates (two frozen, two fresh). Based on existing

single-cell RNA-seq studies, we assumed that our cell number

B CA

D

F

I

G

H
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Figure 1. sci-ATAC-seq of themurine hippocampus. (A) sci-ATAC-seqworkflow. Two indexes are incor-
porated into librarymolecules for each cell, enabling single-cell discrimination. (B) LSI-t-SNE projection of
single cells colored by tissue preparation method. Little variation in t-SNE space is observed between the
fresh or frozen startingmaterial. (C) LSI-t-SNE projection of cells colored by assigned cluster and cell type.
(D) Enrichment of accessibility of proximal regulatory elements for marker genes as identified by single-
cell RNA-seq (Smart-seq protocol [S]) (Zeisel et al. 2015) and DroNc-seq (D) (Habib et al. 2017) for each
cell. The microglial population is enlarged for visibility. Black arrows indicate the cell cluster associated
with the marker gene set. (E) sci-ATAC-seq read plots at Glul (astrocyte marker gene) and Prox1 (dentate
granule cell marker gene). (F) Coembedding (t-SNE) of single-cell RNA-seq and DroNc-seq cells from D
with our sci-ATAC-seq cells using Seurat3. Cells are colored by their study: “A” designates this study, “D”
designates cells from Habib et al. (2017), and “S” designates cells from Zeisel et al. (2015). Cell type des-
ignation is from their published study (RNA) or our designations (for the sci-ATAC-seq cells).
(G) PhenoGraph cluster designations on the coembedded cells. (H) Representative cluster cell composi-
tions. The percentage of cells within each of the three assays that were assigned to the coembedding
cluster using PhenoGraph is reported. For example (noted by an asterisk), in Cluster 8, 93.0% of the
sci-ATAC-seq cells thatwere assigned to Cluster 8were designated as astrocytes. (I) chromVAR globalmo-
tif deviation Z-scores for each cell for select motifs. Dashed lines and values correspond to mean values of
cell populations.
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should be sufficient for preliminary cell type deconvolution (Zeisel

et al. 2015; Habib et al. 2017); however, we believe future innova-

tionmay enable greater numbers. Cells had amean unique aligned

read count of 29,201, which is higher than other high-throughput

single-cell ATAC-seqworkflows to date (Supplemental Table 1).We

observed a strong correlation inATAC signal between the aggregate

profiles of the four replicates (Pearson R>0.99), indicating high

reproducibility across preparations for both fresh and frozen tissue.

We did notice a statistically significant (t-test P-value =2.2 ×10−6)

increased number of unique reads per cell in the frozen samples;

however, this can be attributed to greater sequencing depth (Sup-

plemental Figs. 1, 2; Supplemental Table 1) or possibly to the

freeze–thaw cycle increasing the permeability of the nucleus. Be-

tween replicates of the same preparation method, no statistically

significant differences were observed. Chromatin accessibility

peaks were identified by the aggregation of all cells to produce an

ensemble data set containing all called peaks, resulting in a prelim-

inary set of 93,994high-confidence peaks,with ameanof 36.4%of

reads from each cell falling within these regions. The fraction of

reads in peaks for the frozen samples was greater than for the fresh

samples (P-value =1.3 ×10−4) (Supplemental Fig. 2; Supplemental

Table 1).

We constructed a read count matrix of our ensemble

peaks and single cells from all conditions (Supplemental Data,

InVivo.counts.matrix) by tallying the number of reads for each

cell at each peak.We next used scitools to perform latent semantic

indexing (LSI), as previously described (Cusanovich et al. 2015,

2018b), with the exclusion of cells with reads at fewer than 1000

sites and of sites with fewer than 50 cells exhibiting signal. The

LSI matrix was projected into two-dimensional (2D) space using

t-distributed stochastic neighbor embedding (t-SNE) for visualiza-

tion, which revealed distinct domains occupied by clusters of cells.

Wenext used density-based clustering (Ester et al. 1996) and aggre-

gated cells by cluster, called cluster-specific peaks, and added them

to a union peak set (n=98,043, 4% increase in peak count) for

which all subsequent analysis was performed. We then identified

ninemajor clusters (Fig. 1C), one ofwhich likely being barcode col-

lisions and removed from further analysis (Methods). A compari-

son of the proportion of cells assigned to each cluster with

respect to fresh or frozen samples did not yield a significant differ-

ence (X2=9.85, P-value =0.20) (Fig. 1B; Supplemental Table 2), al-

though increasedproportionsof interneurons (INTs) andmicroglia

(MRG) were observed in the frozen preparation.

To assign each of our identified clusters to a cell type, we took

advantage of published single-cell RNA-seq data that produced sets

of marker genes associated with cell types identified at the tran-

scriptional level (Zeisel et al. 2015; Habib et al. 2017). For each

set of cell-type–specific genes, we identified peaks 20 kbp in either

direction from the transcriptional start site, which were then used

to calculate the enrichment for accessible chromatin for each cell

within these regions. This produced a deviation Z-score, similar

to previously described methods (Buenrostro et al. 2015; Schep

et al. 2017). We then visualized these scores on our t-SNE projec-

tions, which enabled us to clearly identify a number of neuronal

and nonneuronal cell types, including astrocytes (ASTs), two

groups of pyramidal neurons (designated neurons 1 [NR1] and 2

[NR2]), INTs, oligodendrocytes (OLIs), MRG, and OLI progenitor

cells (OPCs) (Fig. 1D). To complement this strategy, we also turned

tomarker genes described previously in the literature that were not

present in available single-cell RNA-seq data sets and assessed the

chromatin accessibility at elements proximal to these genes (Fig.

1E; Supplemental Fig. 3; Lein et al. 2004; Zhang et al. 2014;

Cembrowski et al. 2016). For example, the Glul gene, an estab-

lished marker for ASTs (Martinez-Hernandez et al. 1977; Fages

et al. 1988), showed accessibility only in the population of cells

we identified as ASTs (Fig. 1E, left). Prox1, previously shown to

be enriched in the dentate gyrus (Lein et al. 2004), is accessible pre-

dominantly in the dentate granule cell population (GRN) (Fig. 1E,

right). Markers for particular cell types were also consistent with in

situ hybridization data from the Allen Institute for Brain Science

(Supplemental Fig. 3) and RNA-seq data from sorted cells (Zhang

et al. 2014; Cembrowski et al. 2016). Based on our cell type assign-

ments, the number of cells in each population reflects the propor-

tions seen within the intact hippocampus (Supplemental Table 1;

Abusaad et al. 1999). This includes the observation of 14-fold and

41-fold fewer ASTs andMRG comparedwith neurons, respectively,

in line with previous studies (Kimoto et al. 2009).

To further confirm our cell type assignments, we used the re-

cently released function in Seurat3 for the coembedding of single-

cell ATAC-seq and single-cell RNA-seq data sets in a shared t-SNE

space (Stuart et al. 2018).We first generated gene activity scores us-

ing Cicero (described below), which uses linked distal regulatory

elements and promoters to approximate the putative activity of

each gene (Pliner et al. 2018). These scores, along with transcript

count matrices from Smart-seq and DroNc-seq publications

(Zeisel et al. 2015; Habib et al. 2017), were processed using

Seurat3 to identify anchors and effectively normalize them to

one another to enable PCA and then visualization in a shared

t-SNE space (Fig. 1F). Cells from our study were positioned proxi-

mal to cells withmatching assignments in their respective publica-

tions. We next identified 18 distinct clusters (Fig. 1G) using

PhenoGraph (Levine et al. 2015). Within these clusters, we quan-

tified the percentage of cells assigned to each cell type within each

of the three data sets to assess themost represented cell type that is

present. This analysis further confirmed our cell type assignments

with substantial concordance between the highest represented cell

types across platforms (Fig. 1H). However, cross–data set assign-

mentwas far fromperfect, with certain cell types performingbetter

than others; for example, OLIs performedwell versus granule cells,

which did not. We suspect that the major driver of the discrepan-

cies is because of the indirect nature of the gene activity scores for

the single-cell ATAC-seq data.

Global DNA-binding motif accessibility

To assess the global activity of DNA-binding proteins, we used the

recently described software tool, chromVAR (Schep et al. 2017),

which aggregates the chromatin accessibility signal genome-wide

at sites harboring a given motif, followed by the calculation of a

deviation Z-score for each cell. This score represents the putative

activity level of the DNA binding protein that corresponds to the

assessed motif, which we then visualized on our t-SNE projections

(Fig. 1I; heatmap in Supplemental Fig. 4). In line with expecta-

tions, our cell type clusters showed enrichment for accessibility

at DNA-binding motifs concordant with the identified cell type

(Fig. 1I; Supplemental Fig. 5). The analysis included the assess-

ment of global accessibility for neuron-specific factors, such as

NEUROD2, which associates with active chromatin marks (e.g.,

H3K27ac) in cortical tissue (Guner et al. 2017) and exhibited great-

er accessibility in the two pyramidal cell clusters (mean z-score (µz)

= 1.49 and 0.95 forNR1 andNR2 respectively; all other cell types µz

≤−0.74). We also observed increased accessibility of NEUROD1,

also associated with active chromatin (Pataskar et al. 2016), in a

portion of one of the pyramidal neuron clusters (NR2, µz=1.02)

Single-cell ATAC-seq of the hippocampus
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with less accessibility across glial popula-

tions (µz≤−2.10). Although many stud-

ies have identified a role for SOX3

during neural differentiation, consistent

with a previous expression study (Cheah

and Thomas 2015), we observed in-

creased SOX3 accessibility in AST (µz=

1.59), OLI (µz=2.85), and OPC (µz=

1.67) populations, suggesting a glial role

for this transcription factor in adulthood.

ELF1, an ETS family member associated

with activating interferon response in

the hematopoietic lineage (Larsen et al.

2015), exhibited elevated accessibility in

the microglial population (µz=2.64),

which also respond to interferon in the

brain (e.g., Goldmann et al. 2015). We

also observed a strong enrichment for

CTCF motif accessibility in glial cell pop-

ulations (AST µz=1.86, OLI µz=2.22,

OPC µz= 2.51, MRG µz=1.96) and INTs

(µ =2.27) compared with granule cells

(µz=−0.45) or pyramidal neurons (NR1

µz=−1.65,NR2µz=−0.33),whichwas re-

inforced by our subsequent differential

accessibility analysis described below.

To confirm that the observedmotif acces-

sibility increase is owing to true CTCF

binding sites and not just the motif pres-

ence, we also performed a deviation anal-

ysis using peaks called from publicly

available CTCF ChIP-seq data of the

mouse hippocampus (Sams et al. 2016),

which revealed very similar patterns of

accessibility (Pearson R2 =0.68) (Supple-

mental Fig. 6).

Differential accessibility by cell type

We next sought to show that accessible

regions could be identified according

to cell type. To provide sufficient signal,

we aggregated cells within clusters in

their local neighborhoods as has been

described previously (Cusanovich et al.

2018b) and then performed a differential

accessibilityanalysis for eachcluster com-

pared with the rest of the cells (Methods;

Fig. 2A). Numbers of significant (Q-value

≤0.01, log2 fold-change ≥1) loci ranged

from 894 (OPCs) to 7796 (granule cells),

with substantial cell-type–specific signal

(Fig. 2B; Supplemental Figs. 7–9; Supplemental Table 3). To charac-

terize these loci,we performedamotif enrichment analysis to iden-

tify DNA-binding proteins that may bind within the differentially

accessible regions (Fig. 2B, right). In contrast to the prior global ac-

cessibility analysis, in which all accessible loci were used to detect

increased signal at sites harboring a given motif in each cell, here

we are detecting enrichment of motifs in the specific subsets of

loci that were determined to be differentially accessible. This strat-

egy revealed enrichment for binding by the SOX10 transcription

factor inOLIs (Claus Stolt et al. 2002) andbyNEUROG2 in the den-

tate granule cells (Roybon et al. 2009).Within the INT population,

themotifwith thehighest enrichmentwasCTCF. This is consistent

with our prior global analysis of accessibility at motifs (Fig. 1I);

however, this reciprocal approach suggests that a set of sites very

specific to INTs harborCTCFas opposed to sites thatmaybe shared

across numerous cell types with varying levels of accessibility. One

of these regions was in an intron in the gene-encoding actin fila-

ment-associated protein 1 (Afap1) (Supplemental Fig. 10). The

ChIP data revealed CTCF binding within the same intron flanking

the accessible region. Previous work has suggested that CTCF may

A

B

C

Figure 2. Differential accessibility analysis between cell types. (A) Volcano plots −log10(Q-value)
(y-axis) versus log2 accessibility signal fold-change (x-axis) showing all peaks. Each comparison is for
the indicated cell population versus all other cell types. Significant peaks (number indicated, Q-value
≤0.01, log2 fold-change≥1) are in black. (B) ATAC-seq signal plots for the top differential accessible peaks
for each cell type. The most significantly enriched motif for each set is shown on the right along with the
corresponding P-value and closest-matching known motif. (C) Fos locus with enhancers E1 through E5
highlighted to show cell-type–specific utilization.

Sinnamon et al.

860 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 29, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.243725.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.243725.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.243725.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.243725.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.243725.118/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


have a particular importance in this cell type (Kim et al. 2018).

CTCF binding motifs were enriched in the accessible chromatin

of affinity-purified parvalbumin-positive cortical INTs but not in

VIP-positive INTs or excitatory neurons (Mo et al. 2015) and mice

expressing one CTCF allele only in inhibitory neurons exhibit

memory impairment (Kim et al. 2018). Recent data have also sug-

gested that CTCF plays a role in the generation of cortical INTs by

regulating the expression of the LIM homeodomain factor LHX6

(Elbert et al. 2019). The potential selective importance of CTCF in

INTs warrants further study.

To further determine the utility of our method in assigning

regulatory elements to cell types, we testedwhether we could parse

enhancers that had been identified in the literature as inducers of

target genes in response to neuronal activity. We focused on the

Fos gene that has been studied previously as a general reporter of

neuronal activity throughout the brain (Bullitt 1990). Specifically,

five enhancers (E1–E5) have been characterized (Kim et al. 2010)

for both regulation during neuronal activity and type of stimula-

tion (Joo et al. 2015). When we examined ATAC-seq signal at the

five enhancers across cell types in hippocampus, we identified

cell-type–specific patterns of accessibility. Enhancers E1 and E3

were accessible only in neurons, whereas E2 and E5were accessible

in all cell types (Fig. 2C). Further, enhancer E4 was accessible in

group 2 but not group 1 pyramidal neurons andwas also accessible

in a small portion of dentate granule cells. Our findings suggest

cell-type specificity in stimuli responsiveness within the hippo-

campus, even between pyramidal cell subpopulations, opening

the door to new studies of the basis of these signaling differences

and demonstrating the utility of single-cell epigenomics over tradi-

tional bulk tissue assays.

More generally, our differential accessibility analysis was able

to identify new enhancers by comparison with chromatin marks

known to be associated with enhancers (Gjoneska et al. 2015).

For example, during examination of the most significantly differ-

entially accessible loci for dentate granule cells, one of the top

hits was a regionmarked by bothH3K4me1 andH3K27ac, suggest-

ing a putative enhancer upstream of the gene Slc4a4 (Supplemen-

tal Fig. 11). Slc4a4 encodes a sodium/bicarbonate cotransporter

involved in mediating both intracellular and extracellular pH (Svi-

char et al. 2011), and Slc4a4 expression is elevated in dentate gran-

ule neurons. Although these accessible loci were enriched only in

dentate neurons, several other accessible regions were identified in

dentate granule cells and in the two pyramidal neuron popula-

tions, suggesting this gene is expressed in multiple cell types

and, like Fos, may exhibit variable responses in different cell types.

Pyramidal neuron subclustering

In our initial clustering, the twomost prevalent pyramidal neuron

populations, CA1 and CA3, were not able to be definitively re-

solved. We reasoned that analyzing these cells in isolation and us-

ing a recently describedmethod for discerning themes, or “topics”

of correlated signal within the data, BEDTools (Bravo González-

Blas et al. 2018), may provide improved granularity. Based on a la-

tent Dirichlet allocation framework, cisTopic identifies related sets

of peaks that are classified as topics. On our NR1 and NR2 data set,

the optimum number of topics was determined to be 30

(Supplemental Fig. 12), which was then used to project cells into

2D space using uniform manifold approximation and projection

(UMAP) (Fig. 3A; Becht et al. 2019). Cells split into four distinct

groups that were identified using PhenoGraph (Levine et al.

2015) on the topic matrix (Fig. 3B). One of the clusters was com-

posed almost exclusively of the NR1 cells (95%), with theNR2 cells

split into three groups. We did not observe any bias in cluster as-

signment with respect to the fresh versus frozen prepared cells

(Supplemental Fig. 13). We next examined genes specifically asso-

ciated with CA1 and CA3 neurons and were clearly able to assign

two of the four clusters based on specific accessibility of promoters

and/or cis regulatory elements at these loci (Supplemental Fig. 14).

We also observed some enrichment of CA2-specific genes and

genes associated with mossy cells (MCs) in two of the other clus-

ters, suggesting that these cell types are likely present in the iden-

tified clusters; however, they may not make up the entirety of the

population.

In addition to improved sensitivity, cisTopic produces sets of

peaks that are associated with one another as topics (Fig. 3C; Sup-

plemental Fig. 15), several of which exhibited high cluster specif-

icity. This included CA3-specific topic 13, which was enriched

for NEUROD1. These cells were within the same region of the

NR2 cluster that also exhibited increased NERUROD1 accessibility

(Fig. 3B, right; Fig. 1I). Motif enrichment files for all topics can be

found in Supplemental Data 1.We additionally performed a differ-

ential accessibility analysis between the clusters (Supplemental

Fig. 16). Although none of the significant peaks were proximal

to definitive marker genes, these sites may be useful to inform fu-

ture functional studies.

We suspected that the fourth cluster (teal; Other/MC) might

contain additional cellular subtypes based on the hierarchical clus-

tering of topics. We therefore performed the same subclustering

analysis as we did for theNR1 andNR2 groups specifically for these

cells (optimum topic number = 13) (Supplemental Figs. 17, 18;

Supplemental Data 2), which revealed three distinct clusters (Fig.

3D). When we assessed the topics closely associated with one of

the clusters (Fig. 3E,F), we observed a very high enrichment for

AP-1–associated proteins, suggesting that they may be neurons

in a heightened activity state (Fig. 3F), althoughwedid not observe

enrichment of accessibility for any cell-type–specific marker genes

orDNA-bindingmotifs, as was the case for a second cluster.We did

observe increased chromatin accessibility proximal to several MC

marker genes (Cembrowski et al. 2016), which was most pro-

nounced at Pmp22 and Thbs2 (Supplemental Fig. 19).

Cis-regulatory networks in the hippocampus

Manyenhancerelements reside far fromthe transcriptionstart sites

of the genes they regulate, making enhancer–gene associations

challenging. To accomplish this, we leveraged the recently de-

scribed Cicero algorithm (Pliner et al. 2018), which uses an unsu-

pervised machine-learning framework to link distal regulatory

elements to their prospective genes via patterns of coaccessibility

in the single-cell regulatory landscape. We applied Cicero to our

hippocampus sci-ATAC-seq data set to produce 487,156 links be-

tween ATAC-seq peaks at a coaccessibility score cutoff of 0.1

(Supplemental Data, InVivo.cicero_links.txt). Of these, 47,498

(10.5%)were linksbetween twopromoters, 146,818 (32.4%) linked

a distal regulatory element to a promoter, and 259,236 (57.2%)

were between two distal elements. We next compared our Cicero-

linked peaks with existing chromatin conformation data that had

been produced on mouse cortical tissue (Dixon et al. 2012), as no

hippocampus data sets are currently available; however, amajority

of topological associated domains (TADs) are conserved across cell

types (Dixon et al. 2012). Consistent with expectations, we ob-

served a 1.1- to 1.5-fold enrichment (P<1 ×10−4 across all Cicero

link thresholds out to 500 kbp) (Methods; Fig. 4A) for linked peaks
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that occur within the same TAD over equidistant peaks present in

different TADs, suggesting that the identified links are associated

with higher-order chromatin structure. We then identified cis-

coaccessibility networks (CCANs) using Cicero, which uses a

Louvain-based clustering algorithm, which can inform us about

coregulated chromatinhubs in thegenome.Byusingacoaccessibil-

ity score threshold of 0.15 (based on high intra-TAD enrichment)

(Fig. 4A), we identified 3243 CCANs, which incorporated 102,736

sites (mean 31.7 peaks/CCAN).

To identify the enrichment of cell-type specificity of CCANs,

we aggregated ATAC-seq signal within each CCAN for each cell

type and performed a Z-score normalization (Supplemental Fig.

20). We then projected the CCANs in 2D space using t-SNE and vi-

sualized thembasedon their enrichment to their highestmatching

cell type (Fig. 4B,C; Supplemental Fig. 21). This revealed distinct

sets of coaccessibility networks for each

cell type, with common networks falling

toward the center of the projection space.

CCANs with greater numbers of peaks

tended to be less cell-type–specific, likely

owing to the large number of genes that

are encompassed by the CCAN, the ma-

jority of which are not cell-type–specific

(Supplemental Fig. 22). This observation

is also consistent with chromatin confor-

mation literature (Supplemental Fig. 23;

Dixon et al. 2012). We probed our cell-

type–specific CCANs further by assessing

networks that incorporated marker gene

promoters. Prox1 (dentate granule mark-

er) was present in a CCAN that included

89 total accessibility sites and was associ-

ated with the correct cell type (Fig. 4D,E).

Although much of the CCAN did not

exhibit cell-type specificity, the region

centered on Prox1 (with the highest coac-

cessibility values) drove the assignment.

To dissect out the major components of

the larger CCAN, we used Cicero specifi-

callyon the dentate granule cells (Supple-

mental Fig. 24A). This revealed three

distinct CCANs within the region, with

the Prox1-containing CCAN exhibit-

ing the greatest specificity to the dentate

granule cells (Supplemental Fig. 24B).

This suggests the possibility of larger

chromatinnetworkswith subsets of regu-

latory elements andgenes joiningor leav-

ing the network based on cell type.

Finally,we identified anumberofCCANs

that were overlapping that included mu-

tually exclusive sets of peaks, suggesting

two alternative folding patterns of chro-

matin within the regions dependent

uponthecell type (Supplemental Fig. 25).

In vitro neurons exhibit an altered

epigenetic profile

To examine how well in vitro cultured

hippocampal neuronal populations

match their in vivo counterparts at the

epigenetic level, we isolated hippocampal neurons from P0 pups

and allowed them to mature for 16–18 d in vitro (DIV). At this

stage, the neurons had extended long processes and expressed

markers of mature neurons such as MAP2. We performed sci-

ATAC-seq as described above and produced 899 high-quality sin-

gle-cell chromatin accessibility profiles passing our quality thresh-

olds (Methods). Our mean unique read count per cell was again

high, compared with currently published work, at 43,532. We

then performed peak calling on the ensemble of in vitro sci-

ATAC-seq profiles, resulting in 111,005 total peaks. Similar to

our in vivo preparations, the ATAC-seq signal correlated well be-

tween the two replicates (Pearson R>0.99). Subsequent filtering,

LSI-t-SNE, and clustering, as described for the in vivo preparation,

revealed four distinct populations (Fig. 5A). Upon examination via

marker gene and DNA-binding motif accessibility enrichment, we

A

B

D

E

F

C

Figure 3. Pyramidal neuron subclustering. (A) Subclustering of the NR1- and NR2-assigned cells using
cisTopic and UMAP. (B) Cluster assignments identified using PhenoGraph. CA1 and CA3 neuronal pop-
ulations exhibited strong signal at cell-type–specific marker genes. Asterisk indicates putative assignment
based onmodest enrichment at marker genes. Right panels show the NEUROD1motif enrichment in the
original t-SNE coordinates (top) that correspond to the region of cells assigned to CA3 cluster (bottom).
(C ) Biclustering of cisTopic topics and weights for each cell. Highlighted topics exhibit high cluster spe-
cificity. (D) Further subclustering of theOther/MC cell population produced three distinct groups, includ-
ing putative mossy cells (MCs). (E) Biclustering of cisTopic topics and weights for each cell. Highlighted
topics exhibit high cluster specificity. (F) Topic 5, specific to one of the subclusters, is highly enriched for
AP-1–related motifs, suggesting the cells may be in a state of heightened activity.
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determined one of the clusters to be the INT population (40.6% of

cells), with the remainder being excitatory (59.4%).

We performed peak calling on the combined reads from both

the in vivo and in vitro experiments and merged these peaks with

those called on each set individually to produce a combined peak

call set composed of 174,503 sites. It is important to note that

much of the increase over the in vivo peak set was because of in-

creased coverage at sites that may not have met the calling thresh-

old as opposed to peaks exclusive to the in vitro cultured neurons.

We then performed LSI and t-SNE on the resulting count matrix

using cells produced in both experiments. Although the in vitro

cultured glutamatergic neurons largely

formed their own grouping independent

of their in vivo counterparts, the inhibi-

tory neurons from the in vitro prepara-

tion grouped more closely with the in

vivo population (Fig. 5B).

We next examined the global DNA-

binding motif accessibility of the com-

bined population (Fig. 5C). The starkest

differences between the in vivo and in vi-

tro cell populations was in motifs associ-

ated with the AP-1 complex, that is, the

FOS, JUN, ATF, and JDP families (µz =

4.32 and−1.72 for in vitro and in vivo, re-

spectively). TheAP-1 complexplays ama-

jor role in stimulus response, including

cell stress (Hess 2004), which is expected

for neurons grown and matured ex vivo.

It has also been shown that AP-1 modu-

lates chromatin during neuronal activa-

tion (Su et al. 2017), suggesting the

possibility of an elevated activity state in

neuronal cultures compared with their

invivo counterparts;however, thedecou-

pling of the many functional roles of the

AP-1 complex from one another using

global accessibility is not currently possi-

ble.We also examined themotifs for sev-

eral other transcription factors that

are relevant to neuronal development.

NEUROD1, discussed above, responsible

for early differentiation (E14.5 ventricu-

lar proliferative zone) (Pataskar et al.

2016) and survival of neurons, exhibited

shared accessibility enrichment in a

subset of cells from both the in vivo and

in vitro neuronal populations. MEF2C

delineates early precursors of a subset of

inhibitory INTs (Mayer et al. 2018), and

we observed shared, elevated MEF2C ac-

cessibility in the INT populations, with

greater accessibility in the in vitro cells

(µz=3.91) over that of the in vivo INTs

(µz=1.10). In contrast to NEUROD1 and

MEF2C, NEUROD2 acts later in hippo-

campal development than NEUROD1

(Pleasure et al. 2000), is expressed in mi-

grating granule neurons, and binds to a

number of neuron-specific promoters.

The DNA-binding motif for NEUROD2

was globally more accessible in the in

vivo neurons compared with their in vitro counterpart (µz=2.05

and µz=0.05 for in vivo and in vitro, respectively). This finding

may reflect its later developmental appearance and that the

main targets of NEUROD2 are involved in layer-specific differenti-

ation and axonal pathfinding, which are not likely to be occurring

in vitro.

Differential accessibility analysis comparing in vitro and in

vivo counterparts shed further light on the epigenetic differences

between the two populations (Fig. 5D). A comparison of the INT

populations produced 4356 and 7575 peaks significantly differen-

tially accessible in the in vivo (INT) and in vitro (VT2) populations,

A
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Figure 4. Cis-coaccessibility analysis using Cicero. (A) Cicero links at several coaccessibility score thresh-
olds are heavily enriched for links that contain peaks present in the same topological associated domain
(TAD) as determined by Hi-Cmethods (Dixon et al. 2012). The enrichment decreases at greater distances
(x-axis). (B) t-SNE projection of cis-coaccessibility networks (CCANs) colored by the cell type with the
greatest accessibility for the CCAN. Each point represents an individual CCAN. Networks generally group
by cell type. CCAN 174, which includes the Prox1 gene shown below in D, is indicated with an arrow.
(C) Accessibility Z-scores for CCANs for granule cells and microglia. (D) CCAN ID 174 including the
Prox1 promoter (dentate granule marker gene). (E) CCAN 174 has the greatest accessibility signal in cells
identified as dentate granule cells.
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respectively (Q-value ≤0.01, log2 fold-change ≥1). A motif enrich-

ment analysis of these peak sets revealed themost significantly en-

riched motifs corresponded to NEUROD1 in the in vivo peaks (P=

1×10−24), a motif that showed low global accessibility in both INT

populations (Fig. 4C). INT peaks specific to the in vitro population

were significantly enriched for ATF3 (P=1×10−815), which exhib-

its elevated accessibility of AP-1 in the in vitro cell populations and

has a shared role in cell stress and interaction with the AP-1 com-

plex (Hai and Curran 1991). We also examined differential acces-

sibility between the most closely grouped excitatory neuronal

populations, which produced 1761 and 2964 for NR1 (in vivo)

and VT1 (in vitro), respectively (Q-value ≤0.01, log2 fold-change

≥1). The most significantly enriched motif in the in vivo peak

set was EGR2 (P=1 ×10−90), again a transcription factor expressed

highly in migrating neural crest cells (Wilkinson et al. 1989) that

may be absent in an in vitro setting where cell migration is not

pertinent.

Discussion

A better understanding of the role of spe-

cific cell populations in hippocampal

function is a necessary step in order to

study disease processes that involve this

region critical to memory and learning.

Thus far, studies have used gene expres-

sion data from sorted populations (Cem-

browski et al. 2016) and single cells

(Zeisel et al. 2015; Habib et al. 2017) to

identify subpopulations of cells and

novel marker genes for the cells within

the hippocampus. Here, we provide the

most in-depth epigenetic analysis of the

hippocampus at single-cell resolution to

date. Our sci-ATAC-seq protocol (Meth-

ods) has been optimized for primary cell

culture and both fresh or frozen tissue

and produces unique read counts per

cell in the tens of thousands, a full or-

der-of-magnitude improvement over the

initial sci-ATAC-seq publication (Cusa-

novich et al. 2015). The data sets released

with this study can be readily analyzed

using scitools (https://github.com/

adeylab). This tool suite is designed to

be complementary to other single-cell

ATAC-seq analysis packages, such as

chromVAR, cisTopic, and Cicero, and

serves as an easy framework for integrat-

ing analyses and generating plots to as-

sess data quality and facilitate biological

interpretation.

We used our sci-ATAC-seq maps to

identify the major cell types of the hip-

pocampus, with sufficient depth and

library complexity to profile less abun-

dant cell types, such as MRG and

OPCs. By using the recently described

cisTopic analysis tool, we were able to

achieve a high degree of granularity

within the pyramidal neuron popula-

tion, enabling the definitive identifica-

tion of CA1 and CA3 neurons; a

population of putative CA2 neurons; and three lower-abundance

populations, likely containing MCs and two unidentified neuro-

nal subtypes. Our analysis of global motif accessibility revealed

the expected enrichment of motifs associated with specific cell

populations in addition to uncovering unanticipated findings,

such as increased accessibility at CTCF motifs in INT and glial

populations, a finding that was also observed in our differential

accessibility analysis. We used our data set to map CCANs, en-

abling the association of distal elements with promoters or other

regulatory loci. Finally, we directly compared the accessibility pro-

files of neurons that were matured in vitro with their in vivo

counterparts to identify altered pathways or chromatin state con-

figurations that should be considered for future experimental de-

sign. This revealed a stark difference in the global accessibility for

motifs associated with the AP-1 complex, which is involved in

cell stress as well as neuronal activity. Future work to identify

the cause and effect of elevated AP-1 complex activity is

BA

C

D

Figure 5. Comparison of the accessible chromatin landscape of in vitro-cultured neurons with in vivo-
obtained profiles. (A) LSI-t-SNE projections of in vitro-obtained cells reveals four clusters, one of which
exhibits interneuron patterns (VT2) and the remaining excitatory neurons (VT1, VT3-4). (B) LSI-t-SNE
projection of the combined in vivo and in vitro data sets colored by independently called clusters.
Excitatory neurons in the two conditions generally cluster separately, with interneurons more closely as-
sociated. (C) chromVAR global motif deviation Z-scores for select motifs for each cell. Dashed lines and
values correspond to mean values of cell populations. (D) Differential accessibility analysis between in
vivo and in vitro interneurons (top; INT vs. VT2, respectively) and between two closest excitatory neuron
populations between in vivo and in vitro conditions (NR1 and VT1, respectively). ATAC-seq signal is
shown for the top differentially accessible loci with the top three motifs and corresponding P-values
and matching motifs to the right.
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warranted to understand its impact on studies that use hippocam-

pal neurons matured in vitro.

We believe that the chromatin accessibility maps we provide

in this work, including the profiling of in vitro cultured neurons,

and the software tools we are releasing are a valuable resource for

any groups studying the hippocampus or those that wish to ana-

lyze single-cell chromatin accessibility data. Our maps comple-

ment existing single-cell transcriptional data and take the field

one step closer to a comprehensive atlas of themammalian hippo-

campus; however, we acknowledge that future innovation built off

of the data sets we and others have produced will be required to

achieve that goal.

Methods

Isolation of hippocampus tissue

All animal studies were approved by the Oregon Health and Sci-

ence University Institutional Animal Care and Use Committee.

Sixty-day-old C57BL/6J mice were deeply anesthetized using iso-

flurane. After decapitation, the brain was removed, and the total

hippocampus was isolated and placed in ice-cold phosphate-buff-

ered saline (pH 7.4).

In vitro culturing of hippocampal neurons

Pups (P0) were killed by decapitation, and the brains dissected in

ice-cold Hanks basal salt solution (HBSS; pH 7.4) with 25 mM

HEPES buffer. Individual hippocampi were excised without the

meninges and pooled by individual animal. The tissue was treated

with 2%papain and 80 ng/mLDNase I inHBSS for 10 min at 37°C.

Tissue pieces were rinsed three times with hibernate A containing

2 mM GlutaMAX and 1 × B27 supplement. Neurons were dissoci-

ated carefully and filtered with a 0.4-μmmesh. Neurons were plat-

ed at a density of 1 ×106 cells per well of a six-well dish coated with

50 μg/mL Poly-L-lysine hydrobromide in boric acid buffer (50 mM

boric acid, 12.5 mM sodium borate, decahydrate). The neurons

were plated in neurobasal A containing 1×B27 supplement and

2 mM GlutaMAX. After 2 h, the media was changed to remove

cell debris. Media half changes occurred every 3 d with fresh neu-

robasal A containing 1×B27 and 2 mM GlutaMAX. Cells were

maintained at 37°C with 5% CO2 in a humidified incubator.

Sci-ATAC-seq assay and sequencing

Tissue was diced on ice using a sterile razor blade in freshly pre-

pared nuclei isolation buffer (NIB; 500 µL 10 mM Tris-HCl at pH

0.5, 100 µL 10 mM NaCl, 150 µL MgCl2, 500 µL 0.1% Igepal,

0.1%Tween20, 1 unitQiagenprotease inhibitor, nuclease-freewa-

ter to 50 mL) followed by dounce homogenization. For cultured

cells, nuclei were directly isolated by removingmedia andwashing

once with ice cold PBS, and then NIB was added to cover the dish

followed by incubation on ice for 5 min, scraping using a tissue

scraper, and then an additional 5-min incubation on ice. For

both tissue and cultured cells, nuclei were then pelleted and resus-

pended in 1 mL NIB with DAPI added to a final concentration of

5 mg/mL. Nuclei were then strained in a 35-µm strainer and sorted

on a Sony SH800 flow sorter and deposited into 0.2 mL PCR plates

containing 5 µL of 2 ×TD buffer and 5 µL of NIB, with 2500 nuclei

deposited per well. Plates were placed on ice until transposition.

Tagmentation was performed by the addition of 1 µL of 2.5 µM

barcoded transposome (EZ-Tn5 variant) (Amini et al. 2014) and in-

cubated for 15 min at 55°C followed by placing the plate on ice to

stop the reaction. All wells were then pooled using wide-bore pi-

pette tips, and DAPI was added to a final concentration of 5 mg/

mL. Tagmented nuclei were then strained and sorted again, and

22 were deposited into each new PCR well containing 0.25 µL

20 mg/mL BSA, 0.5 µL 1% SDS, 7.75 µL nuclease-free water,

2.5 µL barcoded forward primer, and 2.5 µL reverse primer.

Plates were kept on ice until all sorting was completed. After sort-

ing, plateswere incubated for 15 min at 55°C to denature the trans-

posase followed by placing the plate on ice and adding 12 µL of

PCR mix (7.5 µL NPM, 4 µL nuclease-free water, 0.5 µL

100 × SYBR Green) and then PCR amplified using the following

conditions: for 5 h at 72°C, for 0:30 at 98°C, and cycles of

[10 min at 98°C, 30 min at 63°C, 1 h at 72°C; plate read, 10 min

at 72°C] on a Bio-Rad CFX real-time thermocycler. Reactions

were pulled when mid-exponential, typically 17–22 cycles. Post-

amplification, 5 µL of each reaction was pooled and cleaned up us-

ing a QIAquick PCR purification column. Libraries were quantified

using a Qubit fluorimeter, diluted to ∼4 ng/µL, and assessed on an

Agilent Bioanalyzer HS chip. Sequencing was performed as previ-

ously described on a NextSeq 500 (research use only) using custom

primers and chemistry (Vitak et al. 2017). A detailed sci-ATAC-seq

protocol is provided as a Supplemental Protocol.

For fresh replicates, nuclei were divided into two transposase

plates that were processed separately. Each transposase plate was

then pooled and the nuclei sorted into a full PCR plate for each

preparation. The frozen hippocampi were processed using one

half of a transposase plate for each biological replicate, and then

all wells were pooled and sorted into a single PCR plate. We also

had two biological replicates for the in vitro preparations that

were processed according to the same workflow as the two frozen

samples.

The scitools suite

All initial analysis was performed with scitools, a custom software

packagewe developed to help analyze sci-ATAC-seq data and other

combinatorial indexing data (sci-). The toolset is a collection of

commands to perform common functions for sci- data sets, includ-

ingwrappers that use existing tools, including BWA (Li andDurbin

2009), MACS2 (Zhang et al. 2008), BEDTools (Quinlan and Hall

2010), SAMtools, as well as R (R Core Team 2019) libraries: ggplot2
(Wickham2016), chromVAR (Schepet al. 2017), chromVARmotifs,

Cicero (Pliner et al. 2018), RtSNE, and DBSCAN (Ester et al. 1996).

Usage of scitools for any of these functions should cite the relevant

utilities. Scitools can be found at https://github.com/adeylab/

scitools (an evolving tool) or as Supplemental Code for the version

used at the time of this manuscript.

Sci-ATAC-seq data processing

BCL files were first converted to FASTQ files using bcl2fastq

(2.19.0). We then demultiplexed our reads using scitools (fastq-

dump, fastq-split) based on the two separate Tn5 tagmentation

events on the P5 and P7 ends of the molecules and the following

added unique PCR indexes on both sides. In order for a barcode

to be considered a match, each of these four indexes constituting

a barcode had to be within two Hamming edit distances away

from their expected counterpart.We aligned to themm10 genome

using the scitools fastq-align function within scitools, which

mapped reads using BWA-MEM. Aligned reads were filtered based

on a quality score cutoff of 10 and PCR duplicates removed in a

barcode-aware manner using scitools bam-rmdup.We determined

whether a barcode represented a cell as opposed to it representing

noise by using the mixed model approach previously presented

(Vitak et al. 2017). Peaks were then called using scitools callpeak,

which uses MACS2 to identify peaks, and then extended to
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500 bp followed by peakmerging and filtering of peaks that extend

beyond chromosome boundaries.

LSI and 2D embedding

Count matrices were generated using scitools counts to produce a

matrix of read counts at cells (columns) by called peaks (rows). This

matrix was then filtered using scitools filter-matrix to exclude rows

with fewer than 10 cells having reads (-R 10), and columns (cells)

with fewer than 1000 rows with reads (-C 1000). The matrix was

then carried through term-frequency inverse-document-frequen-

cy transformation using scitools tfidf followed by LSI, retaining

SVD dimensions 1 through 15 using scitools lsi. The resulting

LSI matrix was used in scitools t-SNE, which makes use of the

RtSNE R package. All t-SNE plots were generated using scitools

plot-dims using an annotation file to encode cluster ID, sample

ID, or other variables, including chromVAR motif deviation

Z-scores.

Coembedding of single-cell RNA-seq cells with sci-ATAC-seq cells

We used Cicero (Pliner et al. 2018) to produce gene activity scores

based on the chromatin accessibility signal at the promoter and

linked distal elements to each gene. These scores were loaded

into Seurat3 (Stuart et al. 2018) alongwith the gene read countma-

trices from Zeisel et al. (2015) (Smart-seq), and Habib et al. (2017)

(DroNc-seq). We then performed anchor identification and inte-

gration of the three data sets as decribed by Stuart et al. (2018).

We then performed PCA and t-SNE on the integrated data.

Clusters were identified using PhenoGraph (Levine et al. 2015)

on the PCA dimensions.

Identifying transcription factor–associated changes

Weapplied the chromVAR (Schep et al. 2017) R package to our data

to infer changes in global motif accessibility across our cell popu-

lations. This provides information on the putative binding of

transcription factors and, consequently, the possible ongoing bio-

logical processes in cell populations. The mouse_pwms_v1 motif

set from the chromVARmotifs R package was used in this analysis.

The bias-corrected motif deviation scores were plotted on the

t-SNE embedded 2D coordinates with the scitools plot-dims -Mop-

tion for visualization.

Cell-type–dependent differential accessibility

To accurately identify differentially accessible peaks, we used the

make_glasso_cds function from the Cicero (ver = 0.0.0.9000) pack-

age to create clusters of k=50 cells based on their low-dimensional

t-SNE coordinates. We then selected clusters with 99% cell type

purity and aggregated accessibility profiles.We posited that the ag-

gregate profiles would provide the replicates required for the

DESeq2 R package (Love et al. 2014), which in turn internally

corrects for technical biases such as assay efficiency. With this

method, we tested (using the inherent nBinomWaldTest) for differ-
entially accessible sites between cell types against all other cell

types combined. We corrected for multiple testing at q=0.01 and

further filtered differentially accessible sites by removing peaks ac-

cessible at q=0.2 in any of the other cell types. We also note that

scitools aggregate-cells is also capable of aggregating cells in re-

duced dimensional space for purposes of differential accessibility

analysis. We then applied HOMER (Heinz et al. 2010) (http

://homer.ucsd.edu/homer/motif/) to identify potential de novo

and known regulators of chromatin accessibility within the cell-

type–dependent differentially accessible sites. We used all accessi-

ble peaks as background and the mm10 findMotifsGenome

command.

Subclustering of pyramidal neurons

We applied cisTopic ver = 0.2.0 (BravoGonzález-Blas et al. 2018) to

separate out subpopulations within the in vivo neuronal cell pop-

ulations we found (NR1, NR2). We chose the optimal number of

topics (30) (Supplemental Fig. 12) by running several models rang-

ing from five to 50 topics and picking the model with the highest

log-likelihood in the last iteration. We used the 250 burn-in itera-

tions and 300 recording iterations for this analysis.We determined

topic associated regions via topic binarization with GammaFit (in-

cluded in cisTopic) on the region–topics distributionsmatrix (thrP

=0.975). We then projected the neuronal cells into 2D space via

UMAP (Becht et al. 2019) on the topics–cell distributions matrix

and observed four distinct cell groupings.We identified these clus-

ters with the Rphenograph ver= 0.99.1 (Levine et al. 2015) package

on the topics–cell distributions matrix (d=4 clusters of k = 150).

The sameprocessing and parameterswere used to perform subclus-

tering on the cluster exhibiting high heterogeneity.

To correctly characterize these four clusters, we called poten-

tial de novo and known regulators of chromatin accessibility with

HOMER (run with the mm10 genome and all sites as background

using the findMotifsGenome command) on the top associated re-

gions of topics that were enriched in individual clusters (identified

via the topics–cell distributions matrix). In addition, we called dif-

ferentially accessible sites unique to each of the clusters using

DESeq2 (as in the preceding Methods subsection, “Cell-type–de-

pendent differential accessibility”) and again applied HOMER for

motif enrichment for these sites.

Identifying cis-regulatory networks in the hippocampus

We used the recently described Cicero package (Pliner et al. 2018)

to identify CCANs according to the recommended workflow. For

CCAN identification, we used a P=0.15 threshold cutoff, which

identified 2066 chromatin networks that incorporated 47,805 sites

of our in vivo cell populations. Fold enrichment for links within

annotated TADs (Dixon et al. 2012) was performed by calculating

the proportion of distance-matched (±25 kbp of specified 50-kbp

distance interval) intra-TAD links over inter-TAD links at a range

of coaccessibility score cutoffs (0.05 to 0.25 at 0.05 intervals).

Ten thousand permutations were then performed for each dis-

tance bin by randomly assigning two distance-matched peaks as

linked and retaining the same total number of links for each coac-

cessibility cutoff and then calculating the fold intra-TAD enrich-

ment as described above.

Cell-type–specific cis-regulatory networks

To assign CCANs to cell types, we first calculated the fraction of

cells of each cell type that have signal at a peak and assumed

that the distribution of reads per cell across cell types is close to

uniform.We then Z-scored the resulting matrix across the CCANs

and then visualized the separation of CCANs by cell type by biclus-

tering and plotting the heatmap using the complexHeatmap (ver =

1.17.1) R package. We also visualized CCAN cell-type specificity

by using t-SNE on the Z-scored group read fractions to embed

CCANs in 2D. We assigned the cell type to each of the CCANs

based on the highest Z-scored value. We next identified CCANs

that contain at least one of the genes (Prox1, Dsp, Ociad2, Dkk3,
Glul,Gfap,Mog,Cldn11,C1qa,Wfs1,Mobp, Pdgfra) shown to be dif-

ferentially accessible in our data. We intersected ±80-kbp regions

before and after transcription start sites of these genes with the

CCANs using BEDTools intersect. We plotted the CCANs around
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genes in which the cell type assigned to the CCANs matched the

cell-type specificity of the gene using the Cicero plot_connections
function. We used chromVAR to further validate the relative en-

richment of CCANs by using CCAN peaks as motif input files.

We used scitools plot dims -M option to visualize the deviation

scores for the CCANs on the t-SNE coordinates. We have to note

that in order for this method to work, peaks within the CCANs

had to be accessible across multiple cell types, so we decided to

use only CCANswith 10 ormore peaks for this analysis.We finally

included a more in-depth analysis of CCAN 174 centered around

Prox1. We called CCANs just within granule cells and identified

three different sub CCANs, with the core of the original CCAN

174 showing even higher specify in the chromVAR deviation

scores plots (Supplemental Fig. 24).

Data access

All raw and processed sequencing data generated in this study

have been submitted to the NCBI Gene Expression Omnibus

(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-

ber GSE118987 as reads as well as data tables and metadata in

the form of data.gz files, which can be split into their components

via “scitools split-data.” See Supplemental Note 1 and Supplemen-

tal Figure 26 for additional details on data sets provided as well as

the scitools documentation, which can be found at https://github

.com/adeylab/scitools (an evolving tool) or as Supplemental Code

for the version used at the time of this manuscript.
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