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The Accumulation Buffer: 

Hardware Support for High-Quality Rendering 
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This paper describes a system architecture that supports realtime 

generation of complex images, efficient generation of extremely 

high-quality images, and a smooth trade-off between the two. 

Based on the paradigm of integration, the architecture extends a 

state-of-the-art rendering system with an additional high-precision 

image buffer. This additional buffer, called the Accumulation 

Buffer, is used to integrate images that are rendered into the 

framebuffer. While originally conceived as a solution to the 

problem of aliasing, the Accumulation Buffer provides a general 

solution to the problems of motion blur and depth-of-field as well. 

Because the architecture is a direct extension of current 

workstation rendering technology, we begin by discussing the 

performance and quality characteristics of that technology. The 

problem of spatial aliasing is then discussed, and the 

Accumulation Buffer is shown to be a desirable solution. Finally 

the generality of the Accumulation Buffer is explored, 

concentrating on its application to the problems of motion blur, 

depth-of-field, and soft shadows. 
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1. Introduction 

Traditional 3D graphics workstations include simplistic scan 

conversion hardware that samples points, lines, and polygons with 

a single infinitely small sample per pixel. As a result, the 

renderings of these primitives show aliasing artifacts. While 

increasing monitor pixel density has reduced the effects of 

aliasing, motion, the result of increased workstation performance, 

has increased them. The problem of aliasing remains significant 

in workstation rendering architectures. 

Contemporary workstations have attempted to solve the problem 

of aliasing using a variety of architectures. Several vendors offer 

machines that compute proper pixel coverage for points and lines. 

An early example is the raster-based Evans and Sutherland PS- 

390 [E&S 87], whose design goal was to duplicate the point and 

line quality of its calligraphic predecessors. A simpler and less 

effective line drawing algorithm is implemented by the Silicon 

Graphics GT system [Akeley 88]. This solution offers a great 

improvement over aliased lines, but still displays slope and 

endpoint related anomalies. Both these point and line solutions, 

and all others known to the authors, rely on the following two 

observations: 

1. Pixel coverages are relatively easy to compute, because the 

screen geometry of the scan converted primitive is regular 

and predictable. 

2. The quality of intersections is relatively less important than 

the quality of background-abutting edges, both because 

background-abutting edges predominate, and because 

intersections are typically between unrelated points or lines. 

Neither of these assumptions is correct for polygons. Because 

vertexes and narrow areas are neither regular nor predictable, it is 

difficult to compute correct pixel coverage during polygon scan 

conversion. Further, polygons frequently share edges with related 

polygons, and intersect unrelated polygons. Still, there are some 

examples of workstation-class machines that attempt these 

calculations. The Pixel Machine [Potmesil 89] takes the brute- 

force approach of oversampling and convolution with an arbitrary 

filter. While effective, this approach does not map nicely onto 

conventional scan-conversion hardware (the Pixel Machine scan 

conversion system is an array of general purpose processors). The 

Graphicon 2000 [Star 89] implements an approximation of an A- 

buffer [Carpenter 84], including hardware that computes a 4x4 

coverage mask for each pixel. This implementation suffers from 

limited (fixed) resolution and errors at polygon vertexes and edges 

(when the polygon is very thin). 
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We sought a polygon antialiasing solution with the following 

properties: 

• Compatibility. The solution should leverage the capabil!ties 

of a contemporary scan conversion system. It should be 

orthogonal to the features already present, including surface 

generation, blending, texture mapping, and interactive 

constructive solid geometry generation. 

• High Quality. There should be no limit to the quality of the 

result obtained. Thus, for example, fixed size masks, and 

algorithms that store finite amounts of depth or color data per 

pixel, could not be used. 

• Smooth performance~quality tradeoff Not only must the 

quality of the result be allowed to increase without bound, but 

it also must decrease smoothly toward an acceptable 

minimum. As quality is decreased, performance must 

increase toward a maximum that is competitive with other 

contemporary architectures. 

First we describe the performance and quality characteristics of 

the current generation of workstation graphics systems. Then we 

describe an architecture that extends these characteristics to 

include polygon antialiasing. Finally we discuss the additional 

system features that result from the generality of our solution. 

2. Current Architectures 

The problem of correctly sampling, and thus antialiasing polygons 

has been solved many times in many ways. Our concern here is 

to solve it in a manner that complements the operation of a 

contemporary high-performance scan conversion system. We 

must first be familiar with the properties of such a system. 

2.1 Polygon Performance 

The most obvious trend in high-performance workstation graphics 

is toward the capability of rendering lots of small polygons per 

second. Numbers for previous generation machines reached the 

100,000 to 150,000 range [Akeley 88, Apgar 88]. The recently 

introduced Silicon Graphics 4D VGX raises this number to 

750,000 RGB lighted, Gouraud shaded, z-buffered, connected 

triangles per second, and to 1,000,000 per second when the 

triangles are fiat shaded. 

Substantial hardware resources are dedicated toward achieving 

these impressive polygon rates. We would like to leverage this 

investment when drawing antialiased polygons. 

2.2 Sampling Quality 

A second trend is that toward improved sampling quality. 

Traditional workstation scan conversion systems have taken a less 

than rigorous attitude toward sampling. Shortcuts in arithmetic 

processing result in artifacts such as: 

1. Non-subpixel positioning. After transformation, vertex 

coordinates are rounded to the nearest pixel location in an 

integer screen space. 

2. Bresenham sampling. Pixels are included in the scan 

conversion of a polygon based on arithmetic appropriate for 

a line fill, rather than for an area sampling. 
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3. Sloppy iteration. Insufficient accuracy is maintained during 

edge iteration. Slopes and initial values of parameters are 

not corrected for the subpixel locations of vertexes, spans or 

s c a n s .  

Early Silicon Graphics machines [SGI 85] and Hewlett Packard 

graphics systems [Swanson 86] were guilty of all thr~e errors. 

The Silicon Graphics GT graphics system, first shipped early in 

1988, addressed issues 2 and 3, but still forced transformed 

coordinates to the nearest pixel center [Akeley 88]. More recently 

shipped machines, including the Silicon Graphics Personal Iris 

and the Stellar GSI000 [Apgar 88], correctly address all three 

concerns. The Pixel-Planes system [Fuchs 85] is an early example 

of an architecture that implements accurate polygon sampling. 

2.3 Point Sampling 

We refer to a scan conversion algorithm that rigorously selects 

pixels for inclusion, and rigorously computes parameter values at 

each pixel, as a Point Sampling algorithm. Such rigor is most 

easily defined for triangles. The requirements are: 

1. The projected vertexes of the triangle must not be perturbed 

during the scan conversion proc,Sss. 

2. Pixels must be chosen for inclusion in the triangle scan 

conversion based on whether their infinitely small sample 

point is inside or outside the exact triangle boundary. A fair 

test must be established for pixets whose sample point is 

exactly on the triangle boundary. 

3. Parameter values must be assigned to each pixel based on 

exact calculation at the infinitely small sample point. Such 

exact calculation is easily defined for triangles as the 

solution of the plane equation specified by the parameter 

values at the triangle's three vertexes. 

While Point Sampling can require significantly more arithmetic 

than less rigorous sampling, it has numerous benefits. The Point 

Sampling pixel inclusion property insures that adjacent polygons 

neither share nor omit any pixels along their common border. 

Thus algorithms that count on the number of times a pixel is 

drawn, such as transparency and constructive solid geometry 

[Goldfeather 86], operate correctly. Redraws of single-buffered 

images also are much less "noisy", because pixels change color 

less often. 

The planar sampling inherent in Point Sampling allows polygon 

intersections to be Z-buffered accurately, resulting in smooth 

transitions from one polygon to the other. Likewise, smooth 

shaded polygons show no shear artifacts, such as those illustrated 

at the bottom of Figure 1. 

Finally, as we will see in the following section, the accuracy 

inherent in Point Sampling allows images to be integrated with 

predictable results. 

3. Antialiasing 

When polygons are sampled with only one sample per pixel, 

aliased images, such as the one illustrated in Figure 2, are created. 

To obtain a properly sampled (antialiased) result, the rendering 

must take into account the areas of all the polygons that contribute 

to the shading of each pixel, rather than just a single sample point. 

This can be accomplished in one of two fundamentally different 

ways: 
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1. Area Sampling. The fraction of pixel coverage due to each 

polygon that intersects the pixel (perhaps multiplied by a 

filter function) is computed, and these fractions are blended 

to obtain the final pixel shading. 

2. Multi-Point Sampling. Many point samples are taken in the 

region of each pixel, and these samples are integrated 

(again perhaps with a weighting function) to obtain the final 

pixel shading. 

3.1 Area Sampling 

While the area sampling solution has proved useful when 

antialiasing points and lines, its implementation for the 

antialiasing of polygons has several problems. These include: 

1. Pixel coverage by a polygon is not easy to compute. Unlike 

points and lines, polygons can become arbitrarily thin, and 

have vertexes with arbitrary orientation relative to the pixel. 

Pixel coverage therefore cannot be computed with a simple 

function such as distance from the center of a point (or 

line). 

2. The choice of parameter values to assign to each coverage 

fraction is arbitrary and inaccurate. Because parameters 

typically vary across the pixel, no single sample will yield a 

correct value. Worse yet, when the fraction-piece does not 

include the pixel center, a Point Sample algorithm has no 

parameter value to assign. (Any attempt to compute a 

parameter value outside a Point Sampled polygon risks 

substantial overflow or underflow.) 

3. Correctly blending the pieces into a final pixel value is 

difficult as well. If the geometric relationship of the pieces 

is not known, blending will fail either for correlated edges 

(adjacent polygons) or for uncorrelated edges (intersecting 

polygons), depending on the blending function chosen. 

Knowing the geometric relationship requires that some sort 

of multi-sample operation be done, which violates the spirit 

of this solution. 

While all of these problems can and have been managed well 

enough for useful area sampling systems to be built, we know of 

no solution that meets our requirements of compatibility, high 

quality, and smooth performance~quality tradeoffi Compatibility 

is compromised because hardware that is fundamentally designed 

to do Point Sampling is being used to do area sampling, and 

because the Z-buffer hardware is no longer useable (the pieces 

must be sorted, either prior to rendering or in the framebuffer 

itself). High quality is compromised for all the reasons listed 

above. Additionally, a smooth tradeoff between performance and 

quality is unlikely as there is no obvious parameter to vary. 

3.2 The Accumulation Buffer 

Solution 2, the integration of multiple point samples taken in the 

region of each pixel, is typically thought to require scan 

conversion and storage of multiple samples per pixel in a single 

rendering pass. The availability of hardware that renders roughly 

1,000,000 Point Sampled polygons per second, however, allows 

an alternative implementation to be considered. Specifically, the 

Point Sampling hardware is used to render multiple images, each 

with the sample point jittered by a specific amount. These images 

are then integrated to form the final, antialiased result. 

This basic technique for creating antialiased images has been 

described by others. [Fuchs 85] was the first to propose a 

successive refinement method that uses accumulation to create 

antialiased images by rendering the scene repeatedly with sub- 

pixel offsets. Also, [Deering 88] proposed that sub-pixet offsets 

could be jittered to further reduce aliasing, while [Mammen 89] 

described using alpha blending hardware to accumulate a series of 

images. 

The Accumulation Buffer provides 16 bits to store each red, 

green, blue, and alpha color component, for a total of 64 bits per 

pixel. The primary operations that may be applied to the 

Accumulation buffer are: 

1. Cleat'. The 16-bit components for red, green, blue and 

alpha are set to 0 for each pixel. 

2. Add with weight. Each pixel in the drawing buffer is added 

to the Accumulation Buffer after being multiplied by a 

floating-point weight that may be positive or negative. 

3. Return with scale. The contents of the Accumulation 

Buffer are returned to the drawing buffer after being scaled 

by a positive, floating-point constant. 

Figure 2. Point sampled polygons. 311 
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Figure 3. Super sampled polygons. 

Each of these operations can be performed for all the pixels in a 

viewport on the screen at extremely high rates given the parallel 

architecture of modem framebuffers [Akeley 88]. 

3.3 Super Sampling 

As a first example of the use of the Accumulation Buffer, consider 

duplicating the result of a single-pass super sample operation. 

Each pixel is sampled on an nxm regular grid. The process is 

begun by initializing the Accumulation Buffer, using the Clear 

command. The scene is then rendered nxm times, each time with 

a different subpixel offset. After each subpixel rendering is 

completed, it is added to the Accumulation Buffer using the Add 

with weight function, with weight set to one. When the final pass 

has been completed, the Accumulation Buffer contents are 

returned to the drawing buffer using the Return with scale 

operation, with scale set to 1/(nxm). The image is made visible 

by swapping the drawing and display buffers. 

The results of 3 by 3 super-sampling with the Accumulation 

Buffer are shown on the left side of Figure 3. At the cost a finite 

amount of hardware (64 bits per pixel) and multiple passes 

through the data base, the Accumulation Buffer has reproduced 

the result of a very expensive multi-sample framebuffer. Because 

the Z-buffer is "reused" on each iteration, each sample is correctly 

depth buffered as well. From a programming standpoint, all that 

has been required is multiple passes through a data base, each 

preceded by a slight modification to the projection matrix [see 

appendix A for the arithmetic]. No change is made either to the 

data base itself, or to the process of its traversal. In particular, no 

sorting of the data is required, and all framebuffer algorithms that 

were used (blending, constructive solid geometry, etc.) continue 

to work identically. 

There is no reason to be confined to regular nxm super-sampling 

in this architecture. The right side of Figure 3 shows geometry 

being sampled 23 positions per pixel. A relaxation technique can 

be used to automatically generate irregular super-sampling 

patterns for any sample count. To do this, N sample points are 

randomly distributed inside the area of the pixel. Then repulsion 

forces were calculated and each point is moved incrementally to 

respond to this force. By repeating this process, a distribution of 

sample points is obtained. Figure 4 shows sample patterns with 

several different numbers of samples per pixel. 

3.4 Sampling with a Gaussian 

In the limit, the above process will create antialiased images that 

are box filtered. However, there is no reason to limit samples to 

the area of a single pixel. Better results can be obtained by using 

other sampling functions. By distributing point samples in the 

region surrounding each pixel center, superior antialiasing results 
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Figure 4. Sample patterns for 1, 2, 3, 4, 5, 8, 
16, 33, and 60 samples per pixel. 
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can be obtained. Geometry can be sampled using a Gaussian (or 

other sample function) in three distinct ways. 

1. The first technique is to distribute samples with an even 

density around each pixel center, and weight each sample 

using a Gaussian. 

2. Another technique is to distribute samples using a Gaussian 

distribution and weight each sample equally. This 

implements importance sampling. 

3. As an alternative we can use convolution. After each image 

is drawn into the drawing buffer, a 3 by 3 filter kernel is 

calculated based on the subpixel offset used to create the 

image. The drawn image is convolved by the kernel to 

distribute samples to neighboring pixels. Then this 

convolved image is added to the Accumulation Buffer. 

Figure 5. illustrates the difference between the box and the 

Gaussian filters. The left part of this figure shows the point 

samples that contribute to a pixel when simple super-sampling 

(box sampling) is used, while the right part of this figure shows 

the sample contributions if Gaussian sampling is used. 

To see the effectiveness of this antialiasing solutior/see Figure 6. 

This shows an infinite perspective checker-board sampled with 1, 

4, 16, and 64 samples per pixel. The top row uses a box filter to 

sample the geometry, while in the bottom row a Gaussian filter is 

used. 

4. Additional Applications 

The integration capabilities of the Accumulation Buffer allow us 

to handle problems of motion blur, depth of field, and soft 

shadows as well. Several general solutions to these problems 

have been discussed in the past [Cook 84, Cook 86, Dippe 85]. 
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Figure 5. Box and Gaussian sampling geometry. 
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Figure 6. Antialiasing quality. The top row was created using a box filter while the bottom row shows the effect of 
using a Gaussian. The images were made with 1, 4, 16 and 64 samples per pixel. 
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These solutions use raytracing to perform Monte Carlo evaluation 

of the integrals in the rendering equation [Kajiya 86]. 

As an alternative, the Accumulation Buffer may be used to 

evaluate these integrals. We have already shown how the 

Accumulation Buffer can be used to integrate light arriving in the 

vicinity of each pixel. In the following section we show how it 

can be used to integrate light reflected by objects that move during 

the time the camer shutter is open to solve the problem of motion 

blur. In addition we show how is can be used to integrate light 

travelling along different paths through the camera lens to 

introduce depth of field, and also show how soft shadows can be 

created by integrating illumination from area light sources. These 

results are natural extensions of the work described in [Cook 84]. 

4.1 Motion Blur 

In order to properly render objects with motion blur, we must 

integrate light reflected from all objects over the time that the 

camera shutter is open. Several different approaches to this 

problem have been explored. As mentioned above, stochastic 

sampling has been used in raytracers to sample rays over time to 

create motion blurred images. Another approach uses image 

processing techniques to provide an approximate solution 

[Potmesil 85]. Other solutions work well only if graphics 

primitives are drawn in priority order and do not self intersect 

[Max 85]. We would like to use a Z-buffering approach to solve 

this problem. 

In order to create motion blurred images with the Accumulation 

Buffer, we follow almost the same procedure that was used above 

to perform antialiasing. However, instead of changing the 

subpixel offset on each pass, the geometry is allowed to move as 

the image is being accumulated. By accumulating a series of 

discrete still images, motion blur can easily be created as shown 

in Figure 7. This image was created by integrating 23 images. 

If N images are integrated, This process will normally create a 

new image for display once every N frames. However, if higher 

update rates are desired, and all the frames are weighted equally, 

filtering by repeated integration [Heckbert 86] can be used to 

increase performance. To do this, we first accumulate N moving 

frames, and then display the accumulated image. Now the frame 

that was drawn N-1 frames ago is drawn, and it is subtracted from 

the Accumulation Buffer. Finally, the next frame is drawn added 

to the Accumulation Buffer. The result is a moving box average 

that is advanced one frame at a time. A new image can be 

displayed for every two images drawn. 

4.2 Depth of Field 

To create depth of field in an image, light traveling along different 

paths through the aperture of the lens must be integrated. 

Solutions to this problem include stochastic sampling using 

raytracing as described above, and an approximate solution 

provided by [Potmesil 82]. In our architecture, the projection 

matrix is modified as images are accumulated to view the scene 

from various discrete points across the aperture of the lens. The 

eye point is perturbed using a distribution of sample points as 

shown in Figure 8. For each sample point, the projection matrix 

is loaded, and the scene is drawn [see appendix B for the 

arithmetic]. After accumulating a number of images, the 

Accumulation Buffer will hold an image that demonstrates depth 

of field. Figure 9 shows an image created by accumulating 23 

images. 

4.3 Soft Shadows 

To properly sample light sources requires that we integrate light 

emitted from the entire area of each light source. Again stochastic 

raytracing solves this problem as described above. Other 

solutions include [Brotman 84], where the scene is rendered with 

shadows while being illuminated from different points on the 

surface of each light source. And [Reeves 87] where shadow 

boundaries are blurred to simulate penumbra. To create proper 

penumbra, again we integrate a series of crude images. 

We assume that the rendering hardware can render the scene 

illuminated by one light source with correct shadows. Given this 

capability, the solution is to repeatedly render the scene, while 

accumulating images. Each time the scene is drawn, a light 

source is chosen and a point on that light source is chosen. A 

Figure 7. Motion blur image generated by accumulating Figure 8. Positions of 23 sample locations used to 

314 23 images, sample the aperture of the camera lens. 
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Figure 9. Depth of field image generated by accumulating 
23 images. 

series of images are integrated to create correct penumbra. Figure 

10 shows the result of illuminating a scene with one light, and 

accumulating 23 images. 

4.4 Doing it all 

We have shown how the accumulation buffer provides solutions 

to the problems of spatial aliasing, motion-blur, depth of field, and 

penumbra. However, in each of the examples above only one 

problem was solved independently. For example, the motion- 

blur, depth of field, and penumbra images all demonstrate artifacts 

of spatial aliasing. 

It is possible to solve all four problems at once. Figure 11 shows 

an image that demonstrates antialiasing, motion blur, depth of 

field, and soft shadows. It was created by using all the techniques 

described above simultaneously. To create this image 66 crude 

images were integrated. As these images were drawn, the 

subpixel offset was altered as the geometry was moved in equal 

steps. In addition, the projection matrix used to draw the images 

was modified to create depth of field, and the light source was 

sampled at different points to create soft shadows. 

5. Discussion 

Many other sampling problems are supported by the hardware 

architecture described here. 

The Accumulation Buffer may be used to support anisotropic 

reflection models [Kajiya 85]. To do this, surface normals are 

distributed as images are accumulated. In addition, the 

Accumulation Buffer can be used to filter texture maps and 

environmenl maps. To do this, standard mip-mapping [Williams 

83] is done, but no interpolation is performed to filter textures in x 

and y. As images are accumulated, texture maps are filtered along 

with the scene geometry. In this way, eight texture accesses can 

be replaced by one texture map access to improve drawing 

performance. 

Figure 10. Soft shadows generated by accumulating 23 images. 

Alternate low cost implementations of the Accumulation Buffer 

can be created by reducing the number of bits in the drawing and 

the Accumulation Buffers. In such a system 4 bits are provided 

for each R, G, B and Alpha in the drawing buffer, and 8 bits are 

provided for each R, G, B and alpha in the Accumulation Buffer. 

High quality images are generated by dithering images into the 4 

bit per component frame buffer and accumulating up to 16 images 

in the 8 bit per component accumulator. By carefully selecting a 

different 4 by 4 dither matrix on each pass, most dithering 

artifacts can be removed from the accumulated images. 

Figure l 1. Antialiased image with motion blur, depth of field, 
and soft shadows generated by accumulating 66 images. 
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Figure 12. Environment mapped image with motion blur, and depth of field generated by accumulating 24 images. 

6. Conclusion 

The Accumulation Buffer meets our antialiasing requirements of 

compatibility, high quality, and a smooth tradeoff between 

performance and quality: 

Figure 12 shows a more complex scene generated using the 

Accumulation Buffer. 

1. Compatibility. Both the spectacular polygon performance 

and the accurate Point Sampling of modern workstation 

graphics systems are leveraged by the multi-pass 

Accumulation Buffer algorithm. Use of the Accumulation 

Buffer is independent of all other framebuffer algorithms - 

it simply improves the quality of any image that can be 

generated. 

2. High Quality. There is no practical limit to the image 

quality that can be obtained with the accumulation buffer. 

If more than 256 samples are desired, a weight less than 1.0 

can be used to avoid overflow. Because each sample is 

computed exactly, both in terms of parameter interpolation 

and depth buffering, only the number of samples taken 

limits image quality. 

3. Smooth pelformance/quality tradeoff. Performance and 

quality trade off smoothly as the number of samples per 

pixel is increased from 1. Because the Accumulation 

Buffer hardware is separate from the normal rendering 

hardware, the performance of that hardware is not 

compromised. 

These attributes, in addition to simplicity, elegance, and general 

purpose application, make the Accumulation Buffer a desirable 

architectural enhancement to a workstation graphics system. J 
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8. Appendix A 

The following function is used to specify a simple perspective 

projection in the SGI Graphics Library. 

window(left, right, bottom,top, nearJar) 

float left, right, bottom, top, near, far; 
I 

float Xdelta, Ydelta, Zdelta; 

float matrix[41141; 

Xdeita = right - left; 

Ydelta = top - bottom; 

Zdelta =far - near; 

matrix[O][O] = (2.0*near)/Xdelta; 

matrix[O][1] = 0.0; 

matrix[O][2] = 0.0; 

matrixlO][3] = 0.0; 

matrix[1][O] = 0.0; 

matrix[l][1] = ( 2.0*near)/Y delta; 

matrix[l][2] = 0.0; 

matrix[l][3] = 0.0; 

matrixl2][O] = (right+left)/Xdelta; 

matrix[2][1] = (top+bottom)/Ydelta; 

matrix[2][2] = -(far+near)/Zdelta; 

matrixl2][3] = -1.0; 

matrix[3][O] = 0.0; 

matrix[3H1] = 0.0; 

matrix[3]12] = -(2.0*far*near)/Zdelta; 

matrix13113] = 0.0; 

ioadmatrix( matrix); 
} 

The window command above creates a projection matrix that 

specifies the position and size of the rectangular viewing frustum 

in the near clipping plane, and the location of the far clipping 

plane. AII objects contained within this volume are projected in 

perspective onto the screen area of the current viewport. 

Subpixwindow, below, duplicates the functionality of window, 

and includes parameters that specify a subpixel offset in screen x 

and screen y. This function supports subpixel positioning for 

antialiasing. 

subpixwindow(left, right, bottom,top, nearJar, pixdx,pixdy) 

float left, right, bottom, top, near, far, pixdx, pixdy; 

I 
short vxl, vx2, vyl, vy2; 

float xwsize, ywsize, dx, dy; 

int xpixels, ypixels; 

calculated. Finally the projection matrix is set using the window 

function. 

9. Appendix B 

The genwindow function below extends the functionality of 

subpixwindow to support depth of field. 

genwindow(left, right, bottom,top, nearJar, pixdx,pixdy, 

lensdx, lensdyJocalplane) 

float left, right, bottom, top, near, far, pixdx, pixdy; 

float lensdx, lens@, focalplane; 

I 
short vxl, vx2, vyl, vy2; 

float xwsize, ywsize, dx, dy; 

int xpixels, ypixeis; 

g etvie wport( & v x l ,& vx2 ,& vy l ,& vy2 ) ; 

xpixels = vx2-vxl +l; 

ypixels = vy2-vyl+l; 

xwsize = right-left; 

ywsize = top-bottom; 

dx = -(pixdx*xwsize/xpixels + lensdx*near/foealplane); 

dy = -(pixdy*ywsize/ypixels + lensdy*near/focalplane); 

window(left+dx, right+dx, bottom+dy, top+dy, nearJar); 

translate(-lensdx,-lensdy, O.O); 

First the pixel size of the viewport is determined. Delta x and 

delta y values that incorporate the subpixel offset are calculated. 

The projection is then sheared to change the viewpoint position 

based on the lens x and y offsets, and set using the window 

function. Finally the projection is translated to insure that objects . 

in the focal plane remain stationary. 

getvie wport( & vx l ,& vx2 ,& v y l ,& vy2 ) ; 

xpixels = vx2.vxl+l; 

ypixels = vy2-vyl+l; 

xwsize = right-left; 

ywsize = top-bottom; 

dx = -pixdx*xwsize/xpixels; 

dy = -pixdy*ywsize/ypixels; 

window(Ieft+dx, right+dx, bottom+dy,top+dy, nearJar) ; 
) 

First the pixel size of the viewport is determined. Then delta x 

and delta y values that incorporate the subpixel offset are 
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