
~ Computer Graphics, Volume 24, Number 4, August 1990

The Accumulation Buffer:

Hardware Support for High-Quality Rendering

A B S T R A C T

Paul Haeberli and Kurt Akeley

Silicon Graphics Computer Systems

This paper describes a system architecture that supports realtime

generation of complex images, efficient generation of extremely

high-quality images, and a smooth trade-off between the two.

Based on the paradigm of integration, the architecture extends a

state-of-the-art rendering system with an additional high-precision

image buffer. This additional buffer, called the Accumulation

Buffer, is used to integrate images that are rendered into the

framebuffer. While originally conceived as a solution to the

problem of aliasing, the Accumulation Buffer provides a general

solution to the problems of motion blur and depth-of-field as well.

Because the architecture is a direct extension of current

workstation rendering technology, we begin by discussing the

performance and quality characteristics of that technology. The

problem of spatial aliasing is then discussed, and the

Accumulation Buffer is shown to be a desirable solution. Finally

the generality of the Accumulation Buffer is explored,

concentrating on its application to the problems of motion blur,

depth-of-field, and soft shadows.

CR Categories and Subject Descriptors: 1.3.1 [Computer

Graphics]: Hardware Architecture - Raster display devices; 1.3.3

[ComPuter Graphics]: Picture/Image Generation - display

algorithms; 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism - Color, shading, shadowing and texture.

Additional Key Words and Phrases: Accumulation buffer,

antialiasing, motion blur, depth of field, soft shadows, stochastic

sampling.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1. Introduction

Traditional 3D graphics workstations include simplistic scan

conversion hardware that samples points, lines, and polygons with

a single infinitely small sample per pixel. As a result, the

renderings of these primitives show aliasing artifacts. While

increasing monitor pixel density has reduced the effects of

aliasing, motion, the result of increased workstation performance,

has increased them. The problem of aliasing remains significant

in workstation rendering architectures.

Contemporary workstations have attempted to solve the problem

of aliasing using a variety of architectures. Several vendors offer

machines that compute proper pixel coverage for points and lines.

An early example is the raster-based Evans and Sutherland PS-

390 [E&S 87], whose design goal was to duplicate the point and

line quality of its calligraphic predecessors. A simpler and less

effective line drawing algorithm is implemented by the Silicon

Graphics GT system [Akeley 88]. This solution offers a great

improvement over aliased lines, but still displays slope and

endpoint related anomalies. Both these point and line solutions,

and all others known to the authors, rely on the following two

observations:

1. Pixel coverages are relatively easy to compute, because the

screen geometry of the scan converted primitive is regular

and predictable.

2. The quality of intersections is relatively less important than

the quality of background-abutting edges, both because

background-abutting edges predominate, and because

intersections are typically between unrelated points or lines.

Neither of these assumptions is correct for polygons. Because

vertexes and narrow areas are neither regular nor predictable, it is

difficult to compute correct pixel coverage during polygon scan

conversion. Further, polygons frequently share edges with related

polygons, and intersect unrelated polygons. Still, there are some

examples of workstation-class machines that attempt these

calculations. The Pixel Machine [Potmesil 89] takes the brute-

force approach of oversampling and convolution with an arbitrary

filter. While effective, this approach does not map nicely onto

conventional scan-conversion hardware (the Pixel Machine scan

conversion system is an array of general purpose processors). The

Graphicon 2000 [Star 89] implements an approximation of an A-

buffer [Carpenter 84], including hardware that computes a 4x4

coverage mask for each pixel. This implementation suffers from

limited (fixed) resolution and errors at polygon vertexes and edges

(when the polygon is very thin).

@ 1 9 9 0 ACM-0-89791-344-2/90/008/0309 $00.75 309

O SIGGRAPH '90, Dallas, August 6-10, 1990

We sought a polygon antialiasing solution with the following

properties:

• Compatibility. The solution should leverage the capabil!ties

of a contemporary scan conversion system. It should be

orthogonal to the features already present, including surface

generation, blending, texture mapping, and interactive

constructive solid geometry generation.

• High Quality. There should be no limit to the quality of the

result obtained. Thus, for example, fixed size masks, and

algorithms that store finite amounts of depth or color data per

pixel, could not be used.

• Smooth performance~quality tradeoff Not only must the

quality of the result be allowed to increase without bound, but

it also must decrease smoothly toward an acceptable

minimum. As quality is decreased, performance must

increase toward a maximum that is competitive with other

contemporary architectures.

First we describe the performance and quality characteristics of

the current generation of workstation graphics systems. Then we

describe an architecture that extends these characteristics to

include polygon antialiasing. Finally we discuss the additional

system features that result from the generality of our solution.

2. Current Architectures

The problem of correctly sampling, and thus antialiasing polygons

has been solved many times in many ways. Our concern here is

to solve it in a manner that complements the operation of a

contemporary high-performance scan conversion system. We

must first be familiar with the properties of such a system.

2.1 Polygon Performance

The most obvious trend in high-performance workstation graphics

is toward the capability of rendering lots of small polygons per

second. Numbers for previous generation machines reached the

100,000 to 150,000 range [Akeley 88, Apgar 88]. The recently

introduced Silicon Graphics 4D VGX raises this number to

750,000 RGB lighted, Gouraud shaded, z-buffered, connected

triangles per second, and to 1,000,000 per second when the

triangles are fiat shaded.

Substantial hardware resources are dedicated toward achieving

these impressive polygon rates. We would like to leverage this

investment when drawing antialiased polygons.

2.2 Sampling Quality

A second trend is that toward improved sampling quality.

Traditional workstation scan conversion systems have taken a less

than rigorous attitude toward sampling. Shortcuts in arithmetic

processing result in artifacts such as:

1. Non-subpixel positioning. After transformation, vertex

coordinates are rounded to the nearest pixel location in an

integer screen space.

2. Bresenham sampling. Pixels are included in the scan

conversion of a polygon based on arithmetic appropriate for

a line fill, rather than for an area sampling.

310

3. Sloppy iteration. Insufficient accuracy is maintained during

edge iteration. Slopes and initial values of parameters are

not corrected for the subpixel locations of vertexes, spans or

s c a n s .

Early Silicon Graphics machines [SGI 85] and Hewlett Packard

graphics systems [Swanson 86] were guilty of all thr~e errors.

The Silicon Graphics GT graphics system, first shipped early in

1988, addressed issues 2 and 3, but still forced transformed

coordinates to the nearest pixel center [Akeley 88]. More recently

shipped machines, including the Silicon Graphics Personal Iris

and the Stellar GSI000 [Apgar 88], correctly address all three

concerns. The Pixel-Planes system [Fuchs 85] is an early example

of an architecture that implements accurate polygon sampling.

2.3 Point Sampling

We refer to a scan conversion algorithm that rigorously selects

pixels for inclusion, and rigorously computes parameter values at

each pixel, as a Point Sampling algorithm. Such rigor is most

easily defined for triangles. The requirements are:

1. The projected vertexes of the triangle must not be perturbed

during the scan conversion proc,Sss.

2. Pixels must be chosen for inclusion in the triangle scan

conversion based on whether their infinitely small sample

point is inside or outside the exact triangle boundary. A fair

test must be established for pixets whose sample point is

exactly on the triangle boundary.

3. Parameter values must be assigned to each pixel based on

exact calculation at the infinitely small sample point. Such

exact calculation is easily defined for triangles as the

solution of the plane equation specified by the parameter

values at the triangle's three vertexes.

While Point Sampling can require significantly more arithmetic

than less rigorous sampling, it has numerous benefits. The Point

Sampling pixel inclusion property insures that adjacent polygons

neither share nor omit any pixels along their common border.

Thus algorithms that count on the number of times a pixel is

drawn, such as transparency and constructive solid geometry

[Goldfeather 86], operate correctly. Redraws of single-buffered

images also are much less "noisy", because pixels change color

less often.

The planar sampling inherent in Point Sampling allows polygon

intersections to be Z-buffered accurately, resulting in smooth

transitions from one polygon to the other. Likewise, smooth

shaded polygons show no shear artifacts, such as those illustrated

at the bottom of Figure 1.

Finally, as we will see in the following section, the accuracy

inherent in Point Sampling allows images to be integrated with

predictable results.

3. Antialiasing

When polygons are sampled with only one sample per pixel,

aliased images, such as the one illustrated in Figure 2, are created.

To obtain a properly sampled (antialiased) result, the rendering

must take into account the areas of all the polygons that contribute

to the shading of each pixel, rather than just a single sample point.

This can be accomplished in one of two fundamentally different

ways:

~ Computer Graphics, Volume 24, Number 4, August 1990

1. Area Sampling. The fraction of pixel coverage due to each

polygon that intersects the pixel (perhaps multiplied by a

filter function) is computed, and these fractions are blended

to obtain the final pixel shading.

2. Multi-Point Sampling. Many point samples are taken in the

region of each pixel, and these samples are integrated

(again perhaps with a weighting function) to obtain the final

pixel shading.

3.1 Area Sampling

While the area sampling solution has proved useful when

antialiasing points and lines, its implementation for the

antialiasing of polygons has several problems. These include:

1. Pixel coverage by a polygon is not easy to compute. Unlike

points and lines, polygons can become arbitrarily thin, and

have vertexes with arbitrary orientation relative to the pixel.

Pixel coverage therefore cannot be computed with a simple

function such as distance from the center of a point (or

line).

2. The choice of parameter values to assign to each coverage

fraction is arbitrary and inaccurate. Because parameters

typically vary across the pixel, no single sample will yield a

correct value. Worse yet, when the fraction-piece does not

include the pixel center, a Point Sample algorithm has no

parameter value to assign. (Any attempt to compute a

parameter value outside a Point Sampled polygon risks

substantial overflow or underflow.)

3. Correctly blending the pieces into a final pixel value is

difficult as well. If the geometric relationship of the pieces

is not known, blending will fail either for correlated edges

(adjacent polygons) or for uncorrelated edges (intersecting

polygons), depending on the blending function chosen.

Knowing the geometric relationship requires that some sort

of multi-sample operation be done, which violates the spirit

of this solution.

While all of these problems can and have been managed well

enough for useful area sampling systems to be built, we know of

no solution that meets our requirements of compatibility, high

quality, and smooth performance~quality tradeoffi Compatibility

is compromised because hardware that is fundamentally designed

to do Point Sampling is being used to do area sampling, and

because the Z-buffer hardware is no longer useable (the pieces

must be sorted, either prior to rendering or in the framebuffer

itself). High quality is compromised for all the reasons listed

above. Additionally, a smooth tradeoff between performance and

quality is unlikely as there is no obvious parameter to vary.

3.2 The Accumulation Buffer

Solution 2, the integration of multiple point samples taken in the

region of each pixel, is typically thought to require scan

conversion and storage of multiple samples per pixel in a single

rendering pass. The availability of hardware that renders roughly

1,000,000 Point Sampled polygons per second, however, allows

an alternative implementation to be considered. Specifically, the

Point Sampling hardware is used to render multiple images, each

with the sample point jittered by a specific amount. These images

are then integrated to form the final, antialiased result.

This basic technique for creating antialiased images has been

described by others. [Fuchs 85] was the first to propose a

successive refinement method that uses accumulation to create

antialiased images by rendering the scene repeatedly with sub-

pixel offsets. Also, [Deering 88] proposed that sub-pixet offsets

could be jittered to further reduce aliasing, while [Mammen 89]

described using alpha blending hardware to accumulate a series of

images.

The Accumulation Buffer provides 16 bits to store each red,

green, blue, and alpha color component, for a total of 64 bits per

pixel. The primary operations that may be applied to the

Accumulation buffer are:

1. Cleat'. The 16-bit components for red, green, blue and

alpha are set to 0 for each pixel.

2. Add with weight. Each pixel in the drawing buffer is added

to the Accumulation Buffer after being multiplied by a

floating-point weight that may be positive or negative.

3. Return with scale. The contents of the Accumulation

Buffer are returned to the drawing buffer after being scaled

by a positive, floating-point constant.

Figure 2. Point sampled polygons. 311

@ SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 3. Super sampled polygons.

Each of these operations can be performed for all the pixels in a

viewport on the screen at extremely high rates given the parallel

architecture of modem framebuffers [Akeley 88].

3.3 Super Sampling

As a first example of the use of the Accumulation Buffer, consider

duplicating the result of a single-pass super sample operation.

Each pixel is sampled on an nxm regular grid. The process is

begun by initializing the Accumulation Buffer, using the Clear

command. The scene is then rendered nxm times, each time with

a different subpixel offset. After each subpixel rendering is

completed, it is added to the Accumulation Buffer using the Add

with weight function, with weight set to one. When the final pass

has been completed, the Accumulation Buffer contents are

returned to the drawing buffer using the Return with scale

operation, with scale set to 1/(nxm). The image is made visible

by swapping the drawing and display buffers.

The results of 3 by 3 super-sampling with the Accumulation

Buffer are shown on the left side of Figure 3. At the cost a finite

amount of hardware (64 bits per pixel) and multiple passes

through the data base, the Accumulation Buffer has reproduced

the result of a very expensive multi-sample framebuffer. Because

the Z-buffer is "reused" on each iteration, each sample is correctly

depth buffered as well. From a programming standpoint, all that

has been required is multiple passes through a data base, each

preceded by a slight modification to the projection matrix [see

appendix A for the arithmetic]. No change is made either to the

data base itself, or to the process of its traversal. In particular, no

sorting of the data is required, and all framebuffer algorithms that

were used (blending, constructive solid geometry, etc.) continue

to work identically.

There is no reason to be confined to regular nxm super-sampling

in this architecture. The right side of Figure 3 shows geometry

being sampled 23 positions per pixel. A relaxation technique can

be used to automatically generate irregular super-sampling

patterns for any sample count. To do this, N sample points are

randomly distributed inside the area of the pixel. Then repulsion

forces were calculated and each point is moved incrementally to

respond to this force. By repeating this process, a distribution of

sample points is obtained. Figure 4 shows sample patterns with

several different numbers of samples per pixel.

3.4 Sampling with a Gaussian

In the limit, the above process will create antialiased images that

are box filtered. However, there is no reason to limit samples to

the area of a single pixel. Better results can be obtained by using

other sampling functions. By distributing point samples in the

region surrounding each pixel center, superior antialiasing results

0

] l I I

O

I. • • - . . . • " . ~ • ". .:: .] .: ,
,:.:.:. :.:.:.: ::.:.

, ; ~::.~':,

. ::...:..:!

i • i •
• • • ° • °

t

• • e ° ° o • • °

• • • • • ' • °

• . • °

] • . ! • [e

Figure 4. Sample patterns for 1, 2, 3, 4, 5, 8,
16, 33, and 60 samples per pixel.

312

~ Computer Graphics, Volume 24, Number 4, August 1990

can be obtained. Geometry can be sampled using a Gaussian (or

other sample function) in three distinct ways.

1. The first technique is to distribute samples with an even

density around each pixel center, and weight each sample

using a Gaussian.

2. Another technique is to distribute samples using a Gaussian

distribution and weight each sample equally. This

implements importance sampling.

3. As an alternative we can use convolution. After each image

is drawn into the drawing buffer, a 3 by 3 filter kernel is

calculated based on the subpixel offset used to create the

image. The drawn image is convolved by the kernel to

distribute samples to neighboring pixels. Then this

convolved image is added to the Accumulation Buffer.

Figure 5. illustrates the difference between the box and the

Gaussian filters. The left part of this figure shows the point

samples that contribute to a pixel when simple super-sampling

(box sampling) is used, while the right part of this figure shows

the sample contributions if Gaussian sampling is used.

To see the effectiveness of this antialiasing solutior/see Figure 6.

This shows an infinite perspective checker-board sampled with 1,

4, 16, and 64 samples per pixel. The top row uses a box filter to

sample the geometry, while in the bottom row a Gaussian filter is

used.

4. Additional Applications

The integration capabilities of the Accumulation Buffer allow us

to handle problems of motion blur, depth of field, and soft

shadows as well. Several general solutions to these problems

have been discussed in the past [Cook 84, Cook 86, Dippe 85].

4~

o

q~

o

e • Q • •

• • •

ee

• ~ Ib

~ a

0

o

O

Q

I

• •

• ~

u

°1

• i
• !

• Q • • •

I • I •

Figure 5. Box and Gaussian sampling geometry.

I

Figure 6. Antialiasing quality. The top row was created using a box filter while the bottom row shows the effect of
using a Gaussian. The images were made with 1, 4, 16 and 64 samples per pixel.

313

@ SIGGRAPH '90, Dallas, August 6-10, 1990

These solutions use raytracing to perform Monte Carlo evaluation

of the integrals in the rendering equation [Kajiya 86].

As an alternative, the Accumulation Buffer may be used to

evaluate these integrals. We have already shown how the

Accumulation Buffer can be used to integrate light arriving in the

vicinity of each pixel. In the following section we show how it

can be used to integrate light reflected by objects that move during

the time the camer shutter is open to solve the problem of motion

blur. In addition we show how is can be used to integrate light

travelling along different paths through the camera lens to

introduce depth of field, and also show how soft shadows can be

created by integrating illumination from area light sources. These

results are natural extensions of the work described in [Cook 84].

4.1 Motion Blur

In order to properly render objects with motion blur, we must

integrate light reflected from all objects over the time that the

camera shutter is open. Several different approaches to this

problem have been explored. As mentioned above, stochastic

sampling has been used in raytracers to sample rays over time to

create motion blurred images. Another approach uses image

processing techniques to provide an approximate solution

[Potmesil 85]. Other solutions work well only if graphics

primitives are drawn in priority order and do not self intersect

[Max 85]. We would like to use a Z-buffering approach to solve

this problem.

In order to create motion blurred images with the Accumulation

Buffer, we follow almost the same procedure that was used above

to perform antialiasing. However, instead of changing the

subpixel offset on each pass, the geometry is allowed to move as

the image is being accumulated. By accumulating a series of

discrete still images, motion blur can easily be created as shown

in Figure 7. This image was created by integrating 23 images.

If N images are integrated, This process will normally create a

new image for display once every N frames. However, if higher

update rates are desired, and all the frames are weighted equally,

filtering by repeated integration [Heckbert 86] can be used to

increase performance. To do this, we first accumulate N moving

frames, and then display the accumulated image. Now the frame

that was drawn N-1 frames ago is drawn, and it is subtracted from

the Accumulation Buffer. Finally, the next frame is drawn added

to the Accumulation Buffer. The result is a moving box average

that is advanced one frame at a time. A new image can be

displayed for every two images drawn.

4.2 Depth of Field

To create depth of field in an image, light traveling along different

paths through the aperture of the lens must be integrated.

Solutions to this problem include stochastic sampling using

raytracing as described above, and an approximate solution

provided by [Potmesil 82]. In our architecture, the projection

matrix is modified as images are accumulated to view the scene

from various discrete points across the aperture of the lens. The

eye point is perturbed using a distribution of sample points as

shown in Figure 8. For each sample point, the projection matrix

is loaded, and the scene is drawn [see appendix B for the

arithmetic]. After accumulating a number of images, the

Accumulation Buffer will hold an image that demonstrates depth

of field. Figure 9 shows an image created by accumulating 23

images.

4.3 Soft Shadows

To properly sample light sources requires that we integrate light

emitted from the entire area of each light source. Again stochastic

raytracing solves this problem as described above. Other

solutions include [Brotman 84], where the scene is rendered with

shadows while being illuminated from different points on the

surface of each light source. And [Reeves 87] where shadow

boundaries are blurred to simulate penumbra. To create proper

penumbra, again we integrate a series of crude images.

We assume that the rendering hardware can render the scene

illuminated by one light source with correct shadows. Given this

capability, the solution is to repeatedly render the scene, while

accumulating images. Each time the scene is drawn, a light

source is chosen and a point on that light source is chosen. A

Figure 7. Motion blur image generated by accumulating Figure 8. Positions of 23 sample locations used to

314 23 images, sample the aperture of the camera lens.

~ Computer Graphics, Volume 24, Number 4, August 1990

Figure 9. Depth of field image generated by accumulating
23 images.

series of images are integrated to create correct penumbra. Figure

10 shows the result of illuminating a scene with one light, and

accumulating 23 images.

4.4 Doing it all

We have shown how the accumulation buffer provides solutions

to the problems of spatial aliasing, motion-blur, depth of field, and

penumbra. However, in each of the examples above only one

problem was solved independently. For example, the motion-

blur, depth of field, and penumbra images all demonstrate artifacts

of spatial aliasing.

It is possible to solve all four problems at once. Figure 11 shows

an image that demonstrates antialiasing, motion blur, depth of

field, and soft shadows. It was created by using all the techniques

described above simultaneously. To create this image 66 crude

images were integrated. As these images were drawn, the

subpixel offset was altered as the geometry was moved in equal

steps. In addition, the projection matrix used to draw the images

was modified to create depth of field, and the light source was

sampled at different points to create soft shadows.

5. Discussion

Many other sampling problems are supported by the hardware

architecture described here.

The Accumulation Buffer may be used to support anisotropic

reflection models [Kajiya 85]. To do this, surface normals are

distributed as images are accumulated. In addition, the

Accumulation Buffer can be used to filter texture maps and

environmenl maps. To do this, standard mip-mapping [Williams

83] is done, but no interpolation is performed to filter textures in x

and y. As images are accumulated, texture maps are filtered along

with the scene geometry. In this way, eight texture accesses can

be replaced by one texture map access to improve drawing

performance.

Figure 10. Soft shadows generated by accumulating 23 images.

Alternate low cost implementations of the Accumulation Buffer

can be created by reducing the number of bits in the drawing and

the Accumulation Buffers. In such a system 4 bits are provided

for each R, G, B and Alpha in the drawing buffer, and 8 bits are

provided for each R, G, B and alpha in the Accumulation Buffer.

High quality images are generated by dithering images into the 4

bit per component frame buffer and accumulating up to 16 images

in the 8 bit per component accumulator. By carefully selecting a

different 4 by 4 dither matrix on each pass, most dithering

artifacts can be removed from the accumulated images.

Figure l 1. Antialiased image with motion blur, depth of field,
and soft shadows generated by accumulating 66 images.

315

O SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 12. Environment mapped image with motion blur, and depth of field generated by accumulating 24 images.

6. Conclusion

The Accumulation Buffer meets our antialiasing requirements of

compatibility, high quality, and a smooth tradeoff between

performance and quality:

Figure 12 shows a more complex scene generated using the

Accumulation Buffer.

1. Compatibility. Both the spectacular polygon performance

and the accurate Point Sampling of modern workstation

graphics systems are leveraged by the multi-pass

Accumulation Buffer algorithm. Use of the Accumulation

Buffer is independent of all other framebuffer algorithms -

it simply improves the quality of any image that can be

generated.

2. High Quality. There is no practical limit to the image

quality that can be obtained with the accumulation buffer.

If more than 256 samples are desired, a weight less than 1.0

can be used to avoid overflow. Because each sample is

computed exactly, both in terms of parameter interpolation

and depth buffering, only the number of samples taken

limits image quality.

3. Smooth pelformance/quality tradeoff. Performance and

quality trade off smoothly as the number of samples per

pixel is increased from 1. Because the Accumulation

Buffer hardware is separate from the normal rendering

hardware, the performance of that hardware is not

compromised.

These attributes, in addition to simplicity, elegance, and general

purpose application, make the Accumulation Buffer a desirable

architectural enhancement to a workstation graphics system. J

7. Acknowedgements

We thank the entire VGX graphics group at Silicon Graphics for

supporting this work, and appreciate the comments of the

reviewers.

I. Some aspects of this work are patent pending.

316

~ Computer Graphics, Volume 24, Number 4, August 1990

8. Appendix A

The following function is used to specify a simple perspective

projection in the SGI Graphics Library.

window(left, right, bottom,top, nearJar)

float left, right, bottom, top, near, far;
I

float Xdelta, Ydelta, Zdelta;

float matrix[41141;

Xdeita = right - left;

Ydelta = top - bottom;

Zdelta =far - near;

matrix[O][O] = (2.0*near)/Xdelta;

matrix[O][1] = 0.0;

matrix[O][2] = 0.0;

matrixlO][3] = 0.0;

matrix[1][O] = 0.0;

matrix[l][1] = (2.0*near)/Y delta;

matrix[l][2] = 0.0;

matrix[l][3] = 0.0;

matrixl2][O] = (right+left)/Xdelta;

matrix[2][1] = (top+bottom)/Ydelta;

matrix[2][2] = -(far+near)/Zdelta;

matrixl2][3] = -1.0;

matrix[3][O] = 0.0;

matrix[3H1] = 0.0;

matrix[3]12] = -(2.0*far*near)/Zdelta;

matrix13113] = 0.0;

ioadmatrix(matrix);
}

The window command above creates a projection matrix that

specifies the position and size of the rectangular viewing frustum

in the near clipping plane, and the location of the far clipping

plane. AII objects contained within this volume are projected in

perspective onto the screen area of the current viewport.

Subpixwindow, below, duplicates the functionality of window,

and includes parameters that specify a subpixel offset in screen x

and screen y. This function supports subpixel positioning for

antialiasing.

subpixwindow(left, right, bottom,top, nearJar, pixdx,pixdy)

float left, right, bottom, top, near, far, pixdx, pixdy;

I
short vxl, vx2, vyl, vy2;

float xwsize, ywsize, dx, dy;

int xpixels, ypixels;

calculated. Finally the projection matrix is set using the window

function.

9. Appendix B

The genwindow function below extends the functionality of

subpixwindow to support depth of field.

genwindow(left, right, bottom,top, nearJar, pixdx,pixdy,

lensdx, lensdyJocalplane)

float left, right, bottom, top, near, far, pixdx, pixdy;

float lensdx, lens@, focalplane;

I
short vxl, vx2, vyl, vy2;

float xwsize, ywsize, dx, dy;

int xpixels, ypixeis;

g etvie wport(& v x l ,& vx2 ,& vy l ,& vy2) ;

xpixels = vx2-vxl +l;

ypixels = vy2-vyl+l;

xwsize = right-left;

ywsize = top-bottom;

dx = -(pixdx*xwsize/xpixels + lensdx*near/foealplane);

dy = -(pixdy*ywsize/ypixels + lensdy*near/focalplane);

window(left+dx, right+dx, bottom+dy, top+dy, nearJar);

translate(-lensdx,-lensdy, O.O);

First the pixel size of the viewport is determined. Delta x and

delta y values that incorporate the subpixel offset are calculated.

The projection is then sheared to change the viewpoint position

based on the lens x and y offsets, and set using the window

function. Finally the projection is translated to insure that objects .

in the focal plane remain stationary.

getvie wport(& vx l ,& vx2 ,& v y l ,& vy2) ;

xpixels = vx2.vxl+l;

ypixels = vy2-vyl+l;

xwsize = right-left;

ywsize = top-bottom;

dx = -pixdx*xwsize/xpixels;

dy = -pixdy*ywsize/ypixels;

window(Ieft+dx, right+dx, bottom+dy,top+dy, nearJar) ;
)

First the pixel size of the viewport is determined. Then delta x

and delta y values that incorporate the subpixel offset are

317

O SIGGRAPH '90, Dallas, August 6-10, 1990

10. References

1. [Akeley 88] Kurt Akeley, and Tom Jermoluk, "High-

Performance Polygon Rendering", Computer Graphics,

1988.

2. [Apgar 88] Brian Apgar, et al., "A Display System for the

Stellar Graphics Supercomputer Model GS 1000", Computer

Graphics, 1988.

3. [Brotman 84] Lynne Shapiro Brotman and Norman I.

Badler, "Generating Soft Shadows with a Depth Buffer

Algorithm", IEEE CG+A October, 1984.

4. [Carpenter 84] Loren Carpenter, "The A-buffer, an

Antialiased Hidden Surface Method" Computer Graphics,

1984.

5. [Cook 84] Robert L. Cook et al,, "Distributed Ray Tracing",

Computer Graphics, 1984.

6. [Cook 86] Robert L Cook, "Stochastic Sampling in

Computer Graphics", ACM Transactions on Graphics,

January, 1986

7. [Deering 88] Michael Deering, et al., "The Triangle

Processor and Normal Vector Shader: A VLSI System for

High Performance Graphics", Computer Graphics, 1988.

8. [Dippe 85] Mark A. Z. Dippe' and Erlin Henry World,

"Antialiasing Through Stochastic Sampling", Computer

Graphics, 1985.

9. [E&S 87] Evans and Sutherland, PS 390 Marketing

Brochure, 1987.

10. [Fuchs 85] Henry Fuchs, et al., "Fast Spheres, Shadows,
Texture, Transparencies, and Image Enhancements in

Pixel-Planes", Computer Graphics, 1985.

11. [Goldfeather 86] Jack Goldfeather, et al., "Fast

Constructive-Solid Geometry Display in the Pixel-Powers

Graphics System", Computer Graphics, 1986.

12. [Heckbert 86] Paul S. Heckbert,'"Filtering by Repeated

Integration", Computer Graphics, 1986.

13. [Kajiya 85], James T. Kajiya, "Anisotropic Reflection

Models", Computer Graphics, 1985.

14. [Kajiya 86] James T. Kajiya, "The Rendering Equation"

Computer Graphics, 1986.

15. [Mammen 89] Abraham Mammen, "Transparency and

Antialiasing Algorithms Implemented with the Virtual Pixel

Maps Technique", IEEE CG+A, July 1989.

16. [Max 85] Max, Nelson L., and Douglas M. Lerner, "A
Two-and-a-Half-D Motion Blur Algorithm", Computer

Graphics, 1985.

17. [Potmesil 82] Potmesil, Michael, and Indranil Chakravarty,

"Synthetic Image Generation with a Lens and Aperture

Camera Model", ACM Transactions on Graphics, April

1982.

t8. [Potmesil 83] Potmesil, Michael and lndranil Chakravarty,
"Modeling Motion Blur in Computer Generated Images",
Computer Graphics, 1983.

318

19. [Potmesil 891 Michael Potmesil, and Eric M. Hoffert, "The

Pixel Machine: A Parallel Image Computer", Computer

Graphics, 1989.

20. [Reeves 87] William T. Reeves, et al., "Rendering Anti-

Aliased Shadows with Depth Maps", Computer Graphics,

1987.

21. [SGI 85] Silicon Graphics, "Silicon Graphics 3000
Technical Report", 1985.

22. [Star 89] Star Technologies, "Graphicon 2000 Technical

Overview", 1989.

23. [Swanson 86] Roger W. Swanson, and Larry J. Thayer, "A

Fast Shaded-Polygon Renderer", Computer Graphics, 1986.

