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1. Introduction and summary. Let {F,} be a sequence of distribution functions
defined on the real line, and suppose {F,(x)} converges to some limiting distribution
function F(x). It is of interest to investigate the error involved in using F(x) as an
approximation to F,(x), that is to investigate the rate of convergence of {F,} to F.
This leads to the problem of finding bounds on M, = SUP_ , << |[Fu(x) = F(x)|.
In particular, this problem has been studied by several authors for cases where
F,(x) represents the distribution function of a certain sum of independent random
variables.

For cases involving the classical forms of the central limit theorem Berry [1] and
Esseen [3] have obtained certain bounds on M, which have been reinvestigated
and improved by many authors (c.f. [4] Chapter XVI).

Let (X,),k=1,2,-",k,;n=1,2,--+ be a system of random variables such
that for each n, X,;, -, X,, are independent (we say the system is independent
within each row). In [6], under suitable conditions, bounds have been obtained on
M, for the case where F,(x) is the distribution function of S, = Xy, +* "+ Xy
and F(x) is an infinitely divisible distribution. A basic assumption made in [6] was
that both X, and F(x) have finite variances.

The purpose of this study is to extend the results of [6] to include the case where
neither F(x) nor X,, need have finite variance. Our main theorem (Theorem 1)
gives a bound on M, under a mild assumption on X, and a certain assumption on
the derivative of the infinity divisible distribution F(x). It is shown in Section 4,
that if F(x) satisfies an additional condition which is considerably weaker than that
having finite variance, then the bound obtained tends to zero as » becomes infinite
under necessary and sufficient conditions that {F,(x)} converge to F(x).

In Section 5 our general results are applied to the case of convergence of distri-
bution functions of normed sums of independent identically distributed random
variables to an arbitrary stable law with exponent o, 0 < o < 2.

2. Notation and preliminaries. Let F(x) be an infinitely divisible distribution

with characteristic function ¢(#). According to the Lévy-Khintchine formula we
have

) © [ i+u \14u?
(2.1) 10g¢(t)=l?t+f_ (e""—l—1+u2>7d6(u)
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238 VIRGOL BOONYASOMBUT AND JESSE M. SHAPIRO

where y is a constant and G(«) is a bounded nondecreasing function. The logarithm
of ¢(t) can also be represented by Lévy’s formula:

0___ .
(2.2) logo(t) = iyt—%(t262)+f <ei"‘— 1 —:sz)dM(x)
1+x

-

e itx itx
—1—- dN(x),
+ \[)4. (e i+x2> (x)

where the connection between a2, M, N and G is given by

X 1 2
M(x) = J :2“ dG(u)  for x <0,
o] 1 +u2 . M
(2.3) N(x)= — e dG(u) for x>0,

ot = G(0+)—G(0—).

If an infinitely divisible distribution function F has finite variance, Kolmogorov’s
formula yields

(2.4) log (1) = ipt+ %, (i — 1 — itv)o™? dK(v),

where u is the mean of F, and K is a bounded nondecreasing function with

K(— o) = 0 and K(+ 00) equal to the variance of F. The relationship between (2.4)

and (2.1) is given by

(2.5) p=7y+[2,udG(u) and
K@) = % o (1+u?) dG(u).

A system of random variables (X,,) as considered in Section 1 is said to be
infinitesimal if for any &> 0 lim,., max, <, <4, P(|X| > €) = 0. Given such a
system, for any a > 0 let X7, be defined by

X:’lk=Xnk if —a <x"k§a
=0 otherwise;
and let F%(x), ¢%(t), u.(a), oi(a) denote respectively, the distribution function,
characteristic function, mean and variance of Xj,. Let S, = X,;+'-'+X,,, and
S, = Xpy++ X, Let F,(x) and ¢,(¢) denote the distribution function and
characteristic function of S, and let F,%(x), ¢,%(t), u,(@) and ¢,*(a) denote respec-
tively the distribution function, characteristic function, mean, and variance of S,

Let F(x) be an infinitely divisible distribution with corresponding G(x) and y
given by (2.1). For each a > 0 such that 4 a are continuity points of G(u) we define
(2.6) G(u) =0, ' us —a

= G(u)— G(—a), —a<usa

= G(a)~G(~a), u>a
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and
Y == fl>att” " dG(u).

The nondecreasing function G and the constant y* determine a unique infinitely
divisible distribution F“%(x) through the formula (2.1). In [8] it is shown that if
F,(x) - F(x) then for any a > 0 (with +a continuity points of G) F,*(x) — F%(x)
and that lim,., (2, x*dF,%(x) = [2, x*dF‘(x) for any positive integer k (the
result of [7] shows that limit is finite). We let ¢°(¢), u(a), and o*(a) denote the
characteristic function mean, and variance of F“(x). From (2.4) we have

2.7) log p*(t) = ip(a)t+ |2, (" — 1 —itv)o™ 2 dK*(v)
where
wa) ="+ 2, udG(u) and
K@) = [~ , (1 +u?*)dG*(v).
Let
K, () =Yk % o x? dFg(x + pu(a)).

For any A > 0 such that — A4 and A4 are continuity points of G(u), and hence
continuity points of K%(v), let0 < § < 24 and define

m = m(A, 8) = [24/5]+1.

Let —A=x,<x; < <x,=A be such that x; is a continuity point of K“(v)
and such that max; <; <, (x;—x;_;) < 4.
Define

E%(n, t, m(4, 8)) = $3t|(0,2(a) + o*(a)) + 31> Y1 o | K, (x;) — K(x)|
2.8) 1247 t|(K,(+ 00) — K, (A) + K*(+ 50) — K%(A)
+ K, (— A)+ K (—A4)).

E“ is used in obtaining the desired bounds which will involve g°(n, m(4, ), r)
defined by

g'(n, m(4, 8), ) = [$0,7(a) max, <<y, 0m(@)]"* +[$8(a,*(a) + 0*(a)]'*
+[4 Y0 o | Ko Cx) — K(xp)|1'72
(2.9) + {447 'K, (+ 00) — K,(A) + K%+ 00) — K*(A)
+K,(— A)+ KY(— A)] +2|u,(a) — (@)}
+[87 7" fluy>a U] dGw)] 0

where r is a positive real number.
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3. The general bound.
We require two lemmas.
LeEmMMA 1. With F,(x) and F,’(x) defined as in Section 2, it follows that
|Fu(x) = F,°(x)| < Yim 1 {Fu(—a) + 1= F(a)}.
Proor. We have that
F,(x) = P(S, < x) = P(S, £ x, X,x€(—a, a] for all k)
+P(S, < x and X, ¢(—a, a] for some k)
< P(S,” £ x)+P(X,x¢(—a, a] for some k)
< Fl(0)+ 26 P(Xu ¢ (—a, a]).

Thus F,(x)—F,"(x) £ Y4 [Fu(—a)+1—F,(a)]. A similar argument, starting
with F,%(x) proves the lemma.

LEMMA 2. Let F(x) be an infinitely divisible distribution with characteristic function
o(t) and with corresponding G(u) given by (2.1). Then for any real numbers a
and r with a > 1, (+ a continuity points of G) and 0 <r <1 we have I(p“(t)—(p(t)l <
41| § 141> a [u|" dG(u) where ¢*(2) is given by (2.7).

PrOOF. Since log ¢“(2) is given by formula (2.1) using G*(x) and y* given by (2.6),
we have using Lemma 1 of [6] that

o) — o(1)] < |log ¢°(1) —log ()|

| . itu \1+u? '
=!—itJ‘l . u ' dG(u)— s <e"“—]—ﬁ%>%dG(u)!

= “.|u|>a(eim— l)u_z(l +uz)dG(u)|.

Now for |u| > a > 1 we have
: 2]
i(ei'“— l)—l—-gzii < 2le™—1] = 4|sin4tuj.

Furthermore, for |4tu|21 we have 4|sindru| <4 <4|3u|" < 4|, and for
|3tu] < 1and0 < r < 1 wehave4|sindru| < 4|3ru| < 4|3l < 4 |tul".

It follows that |*(1) — @(1)| < 4|t]"f 4> 4|u|"dG(u), which proves the lemma.

We are now in a position to state and prove the theorem giving a general bound
mentioned in Section 1. We use the notation developed in Section 2.

THEOREM 1. Let F(x) be an infinitely divisible distribution function with corres-
ponding G(u) given by the Levy-Khintchine formula (2.1). Let Xk=1,ky
n=1,2, - be a system of random variables independent within each row. Let F,(x)
be the distribution function of the sum S, = X, + "+ + Xy, and suppose that

dF(x)/dx = F'(x) existsand |F'(x)|<B forall x.
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Assume that o (a) £ 1 for all n and k (as will be seen in the proof of Theorem 2,
this assumption is quite weak). Then it follows that for0 <r < 1 anda = 1,

Mn=sup—go<x<oo lF,,(x)—F(x)| ék(B)ga(n’m(A’(S)»r)"'zll:';1{Fnk(_a)+l_Fnk(a)}

where k(B) is a constant depending only on B and where g°(n, m(A, ), r) is given by
(2.9).

ProOF. We have
(CRY [F.(x) = F(x)| £ [F,(x) = F, ()| +|F,(x) = F(x)|.
Letting ¢(¢) be the characteristic function of F(x), from Lemma 2 it follows that
|02 = (D] = [~ 9" ()] + 0" (D)~ 0(1)]
< 0" = @O+ 4 [t] fruy > o] dG(u).

If we let T, = [g“(n, m(A4, ), r)] ™! and restrict |¢| < T,, by an argument analogous
to the proof of Theorem 3 of [ 6], it follows that

I‘Pna(t) - (Pa(t)l < $t* max, Sk=kn on(a)o,*(a)
+|un(@) = w(@)| [t + E*(n, t, m(A, 8))
where Eis given by (2.8). Thus

|0a ()= ()] < §1* max, ¢y <, o(@)0(a)
+ |un@)— (@) |t] + E*(n, t, m(A, 8))+4t]" fuya [u] dGw)
= h'(t, n, m(4, 9), r).
From this it follows that
D |t (@ (0 — (1) dr S 2[5 [kt n, m(A, 8), r)]dt < g%(n, m(A, B), r).

Now applying a Theorem of Esseen ([3] Theorem 2a, page 32), we have

M," = sup_ o, << [F,'(x) = F(x)| £ 2n) "' pg“(n, m(4, 8), r)+(p) - BIT,
where p > 1 and ¢(p) is a constant depending only on p(p > 1 is arbitrary). Thus

M," = (p/2m) + c(p)B)g“(n, m(4, ), r).

Applying Lemma 1 and (3.1) we have the proof of the Theorem.

4. Behavior of the estimate. In this section we examine, under suitable conditions,
the behavior of the bound

,.(41) D(na Aa 5: a, r) = k(B)ga(n’ m(Aa 6): r)+ZII:"=1 {Fnk(_a)+ 1 _Fnk(a)}

given in Theorem 1. Several lemmas will be needed.
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LEMMA 3. Let {Q,(a)} n =0, 1,2, - - - be defined for a > 0 and be such that
(i) for each n, Q,(a) = Q,(b) = 0 for a <b.

(i) lim,., 4 o, Qo(a) = 0.

(iii) lim, . Q,(a) = Qy(a) at every continuity point of Q.(a).

Then for any nondecreasing sequence {a,} such that each a, is a continuity point of
Qo(a), and such that lim,_, , a, = + 0 we have lim, ., ,, Q,(a,) = 0.

ProoF. Given ¢ > 0, let k be such that Q,(a,) < ¢&/2. Let n, be such that n > n,
implies Q,(a,) < Qo(a,)+¢/2 <e. Now for n > n, we have n > k so that by (i),
0.(a,) £ 0.(a,) <&, which proves the lemma.

LEMMA 4. Let (X,;), F,(x), F(x) and G(u) be as in Theorem 1. If
(i) the system (X,,) is infinitesimal,
(ii) lim,_, , F,(x) = F(x) at all continuity points of F(x),
then for any nondecreasing sequence {a,} such that —a, and a, are continuity points
of G and lim,_, ,, a, = oo we have

lim,, o Yk y {Fu(—a,)+1—Fu(a,)} = 0.
ProoF. Let M(x) and N(x) be given by (2.2) or (2.3) and let
Q@) =Yz {Fu(—a)+1—Fy(a)} and Qo(a) = M(—a)—N(a).
By Theorem 1, page 116 of [5] we have lim,_, , 0,(a) = Q(a) at continuity points
of Q(a) so that by Lemma 3, lim,,, , Q,(a,) =0.

LEMMA 5. Let g(n, a, 8) be nonnegative and be such that to each a there corresponds
a sequence {5,(a)} of positive real numbers such that lim,_, ., g(n, a, 8,(a)) = 0. Then
there exists a nondecreasing sequence {a,} such that lim,_, . a, = co and a sequence
{8,} such that

lim,.,g(n, a,, 8, =0.

PROOF. Let {¢,} be a sequence such that ¢, | 0 and let {a,} be such that @, 1 co. By
hypothesis we can choose {n,} such that n, > n, _; and such that g(n. a,, 6,(a,)) <

g forn > ny.
If we define
6, =0,(a,) for nz=n,,
=9d,a,) for nm.<nZng,, k=1,2,:--
and

, for n=n,

{
=
I
Ql

a, for nma<n=sn,y, k=1,2,-

it is not difficult to see that {a,} and {5, } satisfy the conclusion of the lemma.
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We now show that under suitable conditions we can choose sequences {4,},
{6,} and {a,} such that the bound, D(n, 4,, J,, a,, r) given by (4.1) approaches
zero as n becomes infinite.

Using the same notation as in Theorem 1, let 0 < < 1 be such that +J~ % are

continuity points of G(). Using (2.9) define g(n, a, 5) by
(4.2) g°(n, m(37%,0), r) = g(n, a, 5)+ {8r™" [|45 o u|dG(u)}/ *7.
This leads to the main result of this section.

THEOREM 2. Let (X,,), F,(x) and F(x) satisfy the conditions of Theorem 1. Assume
Surther that the random variables (X,,) are infinitesimal, F,(x) converges to F(x) at
continuity points of F, and that for some r, (without loss of generality assume
0<rgl)

120 lu]"dG(u) < .
Then there exist sequences {a,} and {3,} such that, for large n
4.3) M, =sUp_ci<o |F,,(x)—F(x)| <D(n,é," %, 6, a, r), and
(4.4) lim,., D(n, 8,” %, 8,, a, r) =0.
(The function D is given by (4.1) and (2.9)).

Proor. Since (X,,) are infinitesimal, (X75,) as well as (X4, —pu,(a)) are also
infinitesimal. By Theorems 3 and 6 of (8], if +a are continuity points of G, we
have lim,_, . F,“(x) = F(x) and lim,_, , 6,%(a) = (). It follows from the proof of
Theorem 5 of [6] that there exists a sequence {4,(a)} such that

4.5) lim,. . g(n, a, d,(a)) =0.
By Lemma 5 we can find sequences {a, } and {J,} such that
(4.6) lim,_ ., g(n, a,, 6,) =0,

a,<a,;y, and lim,_, a, = co. (Note that from (4.2) and (2.9) we see that (4.5)
and (4.6) imply lim,_ ., max,o(a) = lim,_ , max,c2(a,) = 0. This justifies the
parenthetical remark in the statement of Theorem 1.) Clearly from the proof of
Lemma 35, a, can be chosen so that +a, are continuity points of G(u) so that the
conclusion of Lemma 4 holds. Now since j‘fw|u|’dG(u)< oo it follows that
lim,, , 41> a, 4| dG(u) = 0. Since

D(n, 5,7 %, 6,, a,, r) = k(B){g(n, a,, 8,)+[8r™" [|,/>a, ul"dG(u)]"/**}
+ZII:"=1 {(Fu(—a)+1 —Fnk(a)}

we see that (4.4) holds. Finally from Theorem 1, as soon as n is so large that
a, = 1 and max, o(a,) < 1, it follows that (4.3) holds.
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5. Application to stable laws. The basic properties of stable distributions can be
found in [4] or [5]. We recall that a distribution function F(x) is stable if and only
if there exists a sequence of independent identically distributed random variables
{X,} and constants 4, and B, > 0 such that

X e X
'l-l_—BLn'—An é x}= F(x).

n

(5.1) lim, ., P{

Since stable distributions are infinitely divisible, by letting X,, = X,/B, it can be
seen that our previous results can be applied to limit theorems of the type (5.1).

As is well known to every stable distribution, there corresponds an exponent
(0 < a < 2). The case a = 2 corresponds to the normal distribution and will not
be discussed here. From the theorem on page 164 of [5] we know that for stable
distributions with exponent a, (0 < a < 2), the functions M and N and the constant

02 in (2.3) are given
M(x)=c,|x|7%, x<0
(5.2) N(x)= —c;x7%, x>0
6% =0 = G(0+)—G(0-)

where ¢, and ¢, are nonnegative and ¢, + ¢, > 0. From Section 36 of [5] it follows
that all proper stable distributions (and hence all stable distributions with
0 < o < 2) have bounded derivatives of all orders of every point. Thus for (proper)
stable distributions the assumption in Theorem 1 on the derivative of F(x) is

always satisfied.
The next lemma removes one of the hypotheses of Theorem 2.

LEMMA 6. If F(x) is a stable distribution function with corresponding function G(u)
given by the formula (2.1), then there exists a real number r > 0 such that

2 lurdG(u) < + oo.

ProoFr. From (5.2) and (2.3) we note that

1-a
(5.3) dG(u) = ¢, ':’Luzdu, for u<0
ul—a
=cy——du, for u>0.
1+u
+ oo +oox1—(avr)
Th "dG(u) = R
us le |u|" dG(u) = (c, +62)L+ el

which is finite if r < a.
“ The next two lemmas will be used to simplify the general estimate given in

Theorem 1 to the stable case.
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LEMMA 7. Let F(x) be a stable distribution function with representation given by (2.2)
and (5.2). Then using the notation of Section 2,

+ 0 du au2-adu
5.4 = - — ,
(5.4 ua) =y+(c, c2){L R L Huz}
2~a
(5.5) o%(a) = (1 +¢2) o,
2—a
and
K“(v) = 0, v< —a,
a2—¢ v 2-a
(5.6) =01(2—d—|2'—d R —asv<0,
az—a vZ—a‘
= <
01(2—a>+c2(2——a>’ 0sv<a
2-a
=(Cx+cz)<g_ >, asv

Proor. From (5.3) and (2.6) we have
du

+ oo
Y= ?+(C1—02)L Atude
Hence, from (2.7)
u(a) = y*+ % ,u dG(u)

0 Iull-—a a ul—a
=19* uc du uc, — du
Y +J 1 +J 2 1+u2

1+u2 0

—-a

+ 0 du a u2~a
= . T aub
')’+(C1 CZ){J; (1+u2)u¢ j01+u2 u}

This proves (5.4). For —a < v < 0, we have
K(v) = [* (1 +u?)dG(u) = [~ ,(1 +u?) dG(u)

2—-a

v a2-a v
=J cyful'*du = c1<§~_—&—2_a).

—-a

For0 < v < a, we have
K*(v) = |2 (1 +4%) dG(u)
= j‘la(l+u2)dG(u)+[G(O+)—G(O—)]+j'{,(l +u?)dG(u)

a2-—a vZ—a
=\, te 2—0a)’
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using (5.3) and the fact that G(0+)—G(0—) = 6 = 0 from (5.2). From this (5.6)
follows. Formula (5.5) follows from (5.6) and the fact that 62(a) = K*%(+ o).
LEMMA 8. Let F(x) be a stable distribution function as given in Lemma 7. If
0 <r <a,then
f lul dGu) < 12
lul>a

a—r)a*~"

Proor. Using (5.3) we have
+ 0 ul +r—a

ul{"dG(u) = (c;+c¢,) —s-du
J\|u|>a| I ( ( 1 2 . ]+u2
+oou1+r—a
g(cl+c2)f —-‘uz du
_ C1+02
(a—r)a*~"’

which proves the lemma.
As was done at the beginning of this section, let {X,},n =1, 2, - be a sequence
of independent random variables with a common distribution function F(x). For

each n, let

where B, are suitably chosen positive constants. Let F,(x) denote the distribution
function of S,,. To apply our general result, we let

X =X,/B,.
The results expressed in (5.7)-(5.13) follow easily.
(5.7) X4 =X,/B, —aB,<X,SaB,
=0 otherwise.
(5-8) F,(x) = F(xB,).
Fp(x)=0 for x< —a,

(5.9) = F(xB,)—F(—aB,) for —a<x<0,

= F(xB,)+1-F(aB,) for 0<x<a,

=1 for a<x.

(5.10)  pu(a) =B, ' [P xdF(x) and p,(a)= Bn,” "' [®r, xdF(x).
.11) 02(a) = By~ { [, x? dF(x)— ([, x dF(x))?} and
0,"(a) = Bn, ™ { [*Pry x* dF(x)— ({5, x dF(x))*}.
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K,(v) = n {20 (u— p(a))? dFplu)
=0, ov+ux(a) s —a,
=n |2 (u—p(@))’ dF(uB,),  —a <v+py(a) <O,
(5.12) = n [ (u— p,(a))* dF(uB,)
+[un(@]’[1 -F(aB,)+F(=aB,)], 0=v+pua)<a,
=n|%,(u—pu(a))* dF(uB,)
+ (i@ [1-FaB)+F(=aB)],  a < v+ a).
Finally we have
(5.13) Sk {Fu(—a)+1—F,(a)} = n{F(—aB,)+1—F(aB,)}.
The following theorem is an immediate consequence of Theorem 1, Lemmas 7
and 8, and (5.7)—(5.13).
THEOREM 3. Let {X,},n =1, 2, - be a sequence of independent random variables
with a common distribution function F(x). For each n, let
X+ +X,
R
where B, are positive constants. Let F,(x) denote the distribution function of S,. Let

F(x) be a stable distribution function with exponent o given by (2.2) and (5.2). Assume
that

S, =

B, 2 { [y x* dF(x)—([*Brs xdF(x))*} < 1.
(We note that this is 62,(a) < 1 so that by the proof of Theorem 2 this is a weak

assumption.)
Then for,0 <r < 1,a > 1, we have

M, = SUP_ << 4 o | Fol3) = F(2)|
< kg®(n, m(A4, 6), r)+n{F(—aB,)+1—F(aB,)},
where k is a constant depending only on the bound of the derivative of F, and
g°(n, m(4, 5), r)

n aB, aB,, 29127 1/5
B *dF(x)— dF
{33”4 [f_ “Bn A <j ~aB, * (x)> ] }
5 aB,, aB, 2 a2 —T)
+{85[1%{J—a3.. d dF(x>_<f—w,. xdF(x)> }+ (01_20—2_)5“_ ]}

+ {% sz= 0 IKna(xi) - Ka(xt)|}1/3

aB,, 4B, ) -
N (e B

_Ka(A)+Kn“(_A)+K“(_A)]+2 Blfa ) xdF(x)—y—(c;—¢,)

ndJ —aB,
. y + o0 du auZ—adu
. A+udur ), 14u?

1/2 8(Cl+02) 1+r-1



248 VIROOL BOONYASOMBUT AND JESSE M. SHAPIRO
The functions K,“(v) and K%v) are given by (5.12) and (5.6), and 4, §, m(4, §) are
given in Section 2.

6. An example. As an example we consider a sequence of independent random
variables {X,},n=1,2, -+ with a common distribution function F(x). Let F(x)
have density function

F(x)=n"(1—cosx),
and consider the normed sums
S,=n" X+ +X,).

Again, let F,(x) denote the distribution function of S,. The characteristic function
of F(x) (c.f. [2] page 94 ff)is

Py =1-f| or |f=1,.
=0 for i >1
and hence the characteristic function of F,(x) is
e () =~=n""Jth* for |t|<n,
=0 for |t| > n.

Clearly ¢,(t) converges to ¢(t) = e~!"! which is the characteristic function of the
well-known Cauchy distribution function

F(x) = n~'(An+arctan x).

We shall establish that the rate of convergence of sSUp_ , <<+ o ]F (X)—F (x)' to
zero is bounded by C/n'/!® where C is a constant.

As is well known, F(x) is stable with (c.f. [9] Section 4) the constants in (5.2) and
(2.2) given by

a=1,
6.1) co=c,=n""! and
y=0.

To apply the result of Theorems 1 or 3, we put X, = n~ ' X,. We have
tu(@) = 0 = p,(a),

1™ 11—cosx

2 2

oul(a) =— x4 - 5— dx
nt)_ . T X

2 .
=3 (na—sinna), and

a

2 .
6,2(a) = — (na—sinna).
nn
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For —a < v < awe have
n ("™ 11—cosu
— 2
K, (v) = —J u - >— du

n? u

1
= — [n(v+ a) —(sin nv +sin na)].
nn

Hence
K, (v)=0 for v< —a,

1
= —[n(v+a)—(sinnv—sinna)] for —agv<a,
nn

2 .
= —[na—sinna] for a=v.
nm

From (6.1) and (5.3) we have dG(u) = n~ (1 +u*)~ 'du. Applying Lemma 7 we have
wa) =0, o*a)=_2alxn, and
K(v) =0 for v< —a,
=(a+v)/n for —a=sv<a,
=2a/n for a=v.

For simplicity weleta = A = 6~ *. Then we have
1 1/5 16 1/5
(6.2) {3 0,’(a) max Ufk(a)} = {m} ,

5 1/4 5 1/4
6.3 {8 8(0,%(a) +o*(a) )} < {; N 6} , and

17 |sin nx; —sin nal}”3

rm 1/3
(6.4) {5 Z IKna(xi)_Ka(xi)l} = {2 z
i=0 i

<o nm

1 2 1/3 4 1/3
<= 1)— < {— ,
= {2 (m+1) nn} = {nné\/ 5}
from the definition of m. Furthermore,

(6.5) {447 (K, (+ 0)— K, (A) + K*(+ 00) — K%(A) + K,(— A) + K%(— A))
| +2|u,(a)—u(@)[}'"2 = 0.
Applying Lemma 8, and (6.1)—(6.5) to g*(n, m(A4, d), r) as given in (2.9) we have

5 16 1/5 5 5 1/4
a < —
rnmia 0.0 20

4 3 16 (@t SUL =P/ +r)
+{7zn6\/5} +{nr(1—r)} e )
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Applying (5.13) we have
Z'lf"=1 {Fu(—a)+1—F,(a)} = n{F(—an)+1—F(an)}
2J‘”° 1—cosx 4

n_
T X

n

From Theorem 1 or 3 we have

16 )13 5 1/4

16

4 " e a-nia+n 4
T 2 Sya=nia+n T s
+{nn5\/5} +{m‘(l-—r)} el +1r\/

Taking for example § = 1/n%/1%, r = 3, we find that
SUP- p<x<+o IF,,(X)—F(X)‘ é C/n”ls9

where C is a constant.
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