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L
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M,
Campagnole-Santos MJ. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angio-
tensin System: Focus on Angiotensin-(1–7). Physiol Rev 98: 505–553, 2018. Pub-
lished December 20, 2017; doi:10.1152/physrev.00023.2016.—The renin-angio-
tensin system (RAS) is a key player in the control of the cardiovascular system and

hydroelectrolyte balance, with an influence on organs and functions throughout the body. The
classical view of this system saw it as a sequence of many enzymatic steps that culminate in
the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the
angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some
of the intermediate products, beyond their roles as substrates along the classical route. They may
be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to
establish a second axis through ACE2/ANG-(1–7)/MAS, whose end point is the metabolite ANG-
(1–7). ACE2 and other enzymes can form ANG-(1–7) directly or indirectly from either the deca-
peptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate
the effects of the classical axis. ANG-(1–7) itself acts on the receptor MAS to influence a range of
mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current
knowledge about the roles of ANG-(1–7) in physiology and disease, with particular emphasis on the
brain.
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I. INTRODUCTION

The renin-angiotensin system (RAS) is a key player in the
control of blood pressure and the hydroelectrolyte balance.
The first end product of this system associated with a bio-
logical activity was the octapeptide angiotensin (ANG) II,
produced through the activity of the angiotensin converting
enzyme (ACE) at the end of the pipeline. Years later it was
discovered that the amino-terminal aspartate could be re-
moved from ANG II to produce the heptapeptide ANG III,
which had similar biological activities (67, 562). Finally,

about three decades ago came the discovery that phenylal-

anine could be removed from the carboxy terminus of ANG

II to produce another RAS peptide, ANG-(1–7) (45, 65, 85,

470, 492).

Originally the biological relevance of this finding was

questioned because up to that point, ANG-(1–7) had

been seen purely as a degradation product of ANG I and

ANG II (221, 619). This perception has changed mainly

through the discovery that the ACE homolog ACE2 is

often involved in its formation and that ANG-(1–7) acts

on the G protein-coupled receptor MAS (468). ANG-

(1–7) and ANG II usually have opposing effects, stimu-

lating high interest because it suggests that ANG-(1–7) or

other MAS agonists might be useful in the development

of therapeutic agents to counteract the negative role of

ANG II in many diseases. This review will examine phys-

iological aspects of the ACE2/ANG-(1–7)/MAS axis in

different organs/systems, with special emphasis on the

role of ANG-(1–7) in the brain.
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II. THE DISCOVERY OF THE
ACE2/ANGIOTENSIN-(1–7)/MAS AXIS

FIGURE 1 shows the main findings which contributed to the
discovery of the ACE2/ANG-(1–7)/MAS axis as one of the
main components of the RAS. In 1968, Yang, Erdos and
Chiang (619) described the heptapeptide Des-Phe8-Angioten-
sin II, generated from ANG II as a route for the inactivation of
ANG II. Tonnaer et al. (544) came to the same conclusion
when he found this heptapeptide in brain synaptosomes. In
1988, Santos and colleagues examined tissue taken from dogs
that had been treated with enalapril to determine how this
affected the RAS in the brain (470). They incubated brain
micro-punch homogenates with 125I-labeled ANG I and dis-
covered a consistent formation of a radioactive peak they iden-
tified as 125I-ANG-(1–7). The peptide continued to form when
they added an ACE inhibitor to the incubation. This meant
that the ANG-(1–7) peptide was being formed from ANG I,
but along a different route that bypassed ACE (470). The
formation of 125I-ANG-(1–7) from 125I-ANG I was in keeping
with an early observation made by Greene et al. (221) in whole
rodent brain homogenates, who had interpreted ANG-(1–7)
as the end point of an angiotensin inactivation pathway. San-
tos et al. (470) suggested instead that ANG-(1–7) might be

another biologically active product of the RAS, achieved along
this enzymatic pathway. The same year, Schiavone et al. (492)
delivered proof through experiments with hypothalamus/
hypophysial explants. The function they found for ANG-(1–7)
in this preparation was to trigger the release of vasopressin
(AVP), through dose-dependent effects that were just as potent
as those of ANG II. In vivo confirmation came 1 yr later, when
Campagnole-Santos et al. reported the first biological action of
ANG-(1–7) in vivo (65). Microinjection of femtomole
amounts of ANG-(1–7) in the nucleus tractus solitarii (NTS)
produced significant reductions in the blood pressure of ure-
thane-anesthetized rats. This effect was similar to that pro-
duced by microinjection of ANG II in the same region. These
exciting observations motivated Carlos Ferrario’s group at
Cleveland Clinic to produce an ANG-(1–7) antibody which
was then used by Block et al. (45) to describe the localization
of ANG-(1–7) immunoreactivity in the brain. In 1989, Chap-
pell et al. (85) again using this antibody confirmed these find-
ings. In 1994, we (473) and Ambühl et al. (17) described the
first selective antagonist for ANG-(1–7), its analog D-Ala7-
ANG-(1–7), synthetized by Prof. Mahesch Khosla, which we
named A-779. Having a selective antagonist was critical in
uncovering many of the physiological actions of ANG-(1–7)
including its role in baroreflex modulation (66) and in the

1988

1989

1994

2000

2002

2003

2013

• ANG-(-1-7) formed from ANG I by an ACE-independent pathway. Santos et al., 1988

• First biological action of ANG-(1-7) ex-vivo.  Schiavone et al., 1988

• First biological action of Ang-(1-7) in vivo.  Campagnole-Santos et al.,  1989

• Identification of Ang-(1-7) immunoreactivity in the brain.  Block et al., 1989

• Identification of Ang-(1-7) in rat brain and plasma. Chappell et al., 1989

• First antagonist for ANG-(1-7).  Santos et al., 1994 and Ambühl et al., 1994

• Identification of ACE2.  Tipnis et al 2000 and Donoghue et al., 2000

• First study demonstrating that AVE0991 elicits effects similar to those Angiotensin-(1-7). Wiemer et al., 2002.

• Identification of Mas as the receptor for ANG-(1-7). Santos et al., 2003  

• Identification of Alamandine/MrgD. Lautner et al., 2003  

FIGURE 1. ACE2/angiotensin-(1–7)/Mas axis discovery timeline.
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central control of blood pressure (183). The use of A-779 was
also important in postulating that ANG-(1–7) had a specific
receptor (183).

Despite the relatively large body of evidence that ANG-
(1–7) was a biologically active component of the RAS, the
idea only gained general acceptance with the discovery that
ACE2 was the major enzyme involved in its formation (140,
543, 570, 647), followed by identifying MAS as its receptor
years later (479). ACE2 is a membrane-anchored carboxy-
peptidase, which is the product of an ancient duplication of
ACE that underwent a fusion with collectrin. Its discovery
was reported in two papers which appeared almost simul-
taneously in 2000 (140, 543). The first, by Tipnis et al.
(543) reported on the ability of ACE2 to convert ANG II to
ANG-(1–7) and thus identified it as the key ANG-(1–7)
forming enzyme. The Donoghue et al. article (140) did not
test ANG II as a substrate for ACE2; they identified several
other substrates, such as des-Arg9-bradykinin, apelin, and
neurotensin, and first reported ANG-(1–7) generation in a
subsequent paper (570). Later the Turner group also discov-
ered that the ectodomain of ACE2 can be shed from the mem-
brane by ADAM17 (290). Interestingly, some years later it
turned out that the carboxypeptidase activity is not the only
function of the enzyme. Its collectrin domain serves as traffick-
ing adaptor for the large amino acid transporter B(O)AT1,

transferring it to the apical membrane of epithelial cells in the
intestine (285). This translocation is essential for the uptake of
several amino acids from food, and the absence of ACE2 leads
to the depletion of some, particularly of tryptophan in the
blood (242). Later ACE2 was also discovered to be the cellular
receptor of the SARS coronavirus (309).

MAS is a G protein-coupled receptor (GPCR) that was first
described in 1986 as mas oncogene (the name is the first 3
surname letters of the patient whose tumor cells were used
to identify the gene)(624) and was initially thought to be a
receptor of ANG II (263). However, this hypothesis was
disproved through further studies on MAS signaling (15)
and also cloning of the ANG II receptor AT1 in 1991 (382,
487). It was not until 2003 that we finally demonstrated the
specific binding of ANG-(1–7) to Mas-transfected cells
(479). The fact that this binding was abolished in kidney
sections of Mas-deficient mice demonstrated that MAS is a
receptor for the heptapeptide (479).

III. ANGIOTENSIN-(1–7) FORMATION AND
METABOLISM

FIGURE 2 shows the main enzymatic pathways involved in
the formation and catabolism of angiotensin peptides. In
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FIGURE 2. The renin-angiotensin system

cascade: updated view. ACE, angiotensin-

converting enzyme; ACE2, angiotensin-

converting enzyme 2; APA, aminopepti-

dase A; APN, aminopeptidase N; PRCP,

prolyl endopeptidase; PCP, prolylcarboxy-

endopeptidase; NEP, neutral endopepti-

dase; PEP, prolyl endopeptidase; CP,

carboxypeptidase; AP, aminopeptidase;

Dcase, decarboxylase; THOP, thimet

oligopeptidase.
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the classical RAS, the enzyme renin cleaves its substrate
angiotensinogen to form the decapeptide ANG I, which is in
turn cleaved by ACE to produce ANG II, a key player in this
system. As shown in FIGURE 2, ANG-(1–7) can be generated
by the cleavage of ANG I by endopeptidases or ANG II by
carboxypeptidases. The main enzymes involved in the pro-
duction of ANG-(1–7) from ANG I are thimet oligopepti-
dase (THOP1; EC 3.4.24.15), neutral endopeptidase (NEP;
EC 3.4.24.11) and prolyl oligopeptidase (PEP; EC
3.4.21.26). In addition, ACE2 (EC 3.4.17.23), carboxypep-
tidase A (EC 3.4.17.1), and prolyl carboxypeptidase (EC
3.4.16.2) can generate ANG-(1–7) from ANG II (72, 441,
468). The formation of ANG-(1–7) from ANG I by ACE2
involves the production of the intermediate ANG-(1–9) and
its subsequent cleavage by ACE or NEP (444). However,
the catalytic efficiency of this pathway is much lower than
that of the ACE2-dependent conversion of ANG II to ANG-
(1–7) (444).

A. Alamandine

Recently a new biologically active angiotensin, alamandine,
was discovered (297) as seen in FIGURE 2. Alamandine has
an Ala which replaces Asp at position 1 of ANG-(1–7). This
peptide can be generated by either decarboxylation of the
Asp residue or through the catalytic action of ACE2 on
ANG A (264), Ala1-ANG II. Functional studies in blood
vessels (235, 297) and transfected cells (297) have provided
evidence that the receptor for alamandine is the MAS-re-
lated G protein-coupled receptor D (MrgD). However, de-
spite solid functional evidence that the effects of alaman-
dine can be at least partially mediated through binding to
MrgD, there is no direct radioligand binding data or other
classical pharmacological data to fully demonstrate that
MrgD has this function. Even so, alamandine has attracted
attention as a potential mediator of the RAS.

IV. TOOLS FOR STUDYING ANG-(1–7)

A. Pharmacological Tools

The main pharmacological tools used to study the ACE2/
ANG-(1–7)/MAS axis are shown in FIGURE 3. Many are
MAS agonists that stimulate NO production/release [ANG-
(1–7), AVE 0991, CGEN 861, CGEN 856, CGEN 856S,
cyclic ANG-(1–7)] (3, 147, 163, 281, 424, 449, 489, 490,
509, 545, 594), NorLeu3-A(1–7) (2, 448). There are also
two antagonists [D-Ala7-ANG-(1–7) (A-779) and D-Pro7-
ANG-(1–7)]. Other MAS ligands, the non-peptides
AR234960 (agonist) and AR244555 (inverse agonist) and
neuropeptide FF (NPFF) appear to act through a different
signaling pathway in which ANG-(1–7) is essentially inef-
fective (276, 633). Therefore, the possibility that some of
the non-peptide or peptidic compounds are biased MAS
agonists should be considered (522).

One of the formulations for the chronic administration of
ANG-(1–7) that has been well tested in animals is an inclu-
sion compound, hydroxypropyl-�-cyclodextrin/ANG-
(1–7) [HP�CD-ANG-(1–7)]. This compound protects
ANG-(1–7) from inactivation by digestive tract enzymes
and permits oral administration (188, 332). It should be
emphasized that in this case, only ANG-(1–7) enters the
bloodstream. The inclusion compound acts as a sustained-
release system or, more properly, as a long-lasting releasing
system. This approach has led to the description of many
beneficial cardiovascular and metabolic effects of ANG-(1–
7), including antithrombogenesis (185), an attenuation of
cardiac remodeling induced by isoproterenol treatment
(347), a reduction of the lesion area, and an attenuation of
acute and chronic postinfarction cardiac dysfunction (348).
There have also been reports of antihypertensive effects (37)
and improvements in cases of erectile dysfunction (187),
muscular dystrophy (5a, 455), and type II diabetes mellitus
(486). Some of the effects in preclinical studies have been
remarkable considering that the peptide was given orally
once a day in doses ranging from 10 to 50 �g/kg, which are
equivalent to 11 to 55 nmol·kg�1·day�1.

In addition to cyclodextrins, cyclic ANG-(1–7) is also un-
dergoing preclinical testing (146, 281). It is more resistant
to enzymatic hydrolysis than ANG-(1–7). Interestingly, the
vasorelaxation produced by cyclic ANG-(1–7) in aortic
rings from Sprague-Dawley rats is only partially blocked by
the MAS antagonist A-779 (281), whereas this effect is
completely blocked by the ANG-(1–7) analog D-Pro7-ANG-
(1–7), an ANG-(1–7)/alamandine antagonist (297). This
pharmacological profile suggests that cyclic ANG-(1–7)
could be a dual MAS/MrgD agonist sharing ANG-(1–7)
and alamandine characteristics. This possibility awaits clar-
ification.

In addition to MAS agonists, recombinant human ACE2
(hACE2) is currently being used in physiological/pharma-
cological studies and tests of its potential therapeutic use

Angiotensin II

Angiotensin-(1-7)

Genetic models

MAS–/–

ACE2–/–

Transgenic mice
and rats

ACE2
activators

CGEN8
56S

AVE0091

rhACE2

Liposome
encapsulated

CyclicHPβCD

MAS

FIGURE 3. Pharmacological and genetic tools for the study of the

ACE2/angiotensin-(1–7)/Mas axis.

SANTOS ET AL.

508 Physiol Rev • VOL 98 • JANUARY 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 4, 2022.

https://www.ncbi.nlm.nih.gov/nuccore/27277916
https://www.ncbi.nlm.nih.gov/nuccore/27292356


(241). Prof. Raizada’s group has suggested another interest-
ing possibility: to use ACE2 activators to alter the balance
between the ACE/ANG II/ AT1R and the ACE2/ANG-(1–
7)/MAS axes. The group virtually screened its structure to
identify small-molecule ACE2 activators (250). The first
compound they found was the 1-[(2-dimethylamino)ethyl-
amino]-4-(hydroxymethyl)-7-[(4-methylphenyl)sulfony-
loxy]-9H-xanthene-9-one, or XNT. Acute administration
induced a dose-dependent hypotensive response in sponta-
neously hypertensive rats (SHR), while long-term treatment
with XNT improved cardiac function and reversed the car-
diac and renal fibrosis in these animals (250). Oral admin-
istration of XNT was able to attenuate diabetes-induced
heart dysfunction (381). XNT adminstration also pre-
vented the increase in right ventricular systolic pressure and
hypertrophy in a monocrotaline-induced pulmonary hyper-
tension model (169) and attenuated thrombus formation in
SHR (190). Numerous protective effects have been reported
with diminazene aceturate (DIZE), another putative ACE2
activator (102, 118, 119, 184, 186, 335, 341, 357, 429,
445, 511, 513, 535, 566). It should be pointed out, how-
ever, that the beneficial effects of these small-molecule acti-
vators might also depend on ACE2-independent mecha-
nisms (234). And results obtained in rodents should be in-
terpreted with caution considering the important
differences between the biochemical properties of rodent
and human ACE2 (622). Moreover, ACE2 can cleave other
substrates (140), a fact which should be taken into account
when interpreting results obtained with methods involving
the gain or loss of ACE2 functions.

More recently, oral delivery of ACE2 and ANG-(1–7) bio-
encapsulated in plant cells has been reported to attenuate
pulmonary hypertension (497). This is in keeping with early
studies using a similar construct, developed by the Reudel-
huber group (556), showing that transgenic rats and mice
which overexpress an ANG-(1–7)-forming fusion protein
presented reduced heart failure/remodeling following iso-
proterenol treatment or ANG II infusion (366, 466).

B. Genetic Models

1. ACE2 models

A) ACE2 KNOCKOUT MICE. Based on the pleiotropic actions of this
protein, mice lacking ACE2 are expected to exhibit in-
creased levels of ANG II, and decreased levels of ANG-
(1–7) and tryptophan as well as alterations in other peptide
levels, all of which may contribute to the phenotypes that
are observed. The X-chromosomal localization of the
ACE2 gene makes male mice with ACE2 gene deletion al-
ready deficient in the enzyme in the hemizygous state
(ACE2-/y). The first report on ACE2-/y mice described sev-
eral cardiac abnormalities, particularly at older ages (104),
which were later attributed to an increased effect of ANG II.
However, other groups could not confirm these effects and

the issue remained controversial (231, 232, 617). Notwith-

standing, several studies report a higher susceptibility of

ACE2-/y and heterozygous female ACE2�/� mice to cardiac

injury induced by pressure overload or diabetes (410, 598,

617). Additional cardiovascular effects of ACE2 deletion

remain under debate, including hypertension. Here the

strain of mice that is used seems to be important. The 129

strain of mice lacking ACE2 is normotensive and C57BL/6

and FVB/N mice are hypertensive (232, 541) (our unpub-

lished results). The hypertensive phenotype of ACE2-defi-

cient mice on the C57BL/6 background is exacerbated in

pregnancy, and they develop a preeclampsia-like syndrome

(39). The main reason for increased blood pressure in

ACE2-/y mice is probably endothelial dysfunction (327), but

central effects including an increased sympathetic outflow

cannot be excluded (605). Moreover, endothelial dysfunc-

tion may be involved in the aggravating effect of ACE2

deficiency in two models of atherosclerosis and aortic an-

eurysm, apolipoprotein E (ApoE)- and low-density lipopro-

tein receptor-deficient mice (397, 457, 537, 538), as well as

in the increased neointima formation after vascular injury

(457). ACE2-deficient mice also show a worse outcome in

other inflammation and injury models, such as diabetic and

shock-induced kidney injury (501, 598, 621), chronic he-

patic injury (406), bleomycin- or influenza virus-induced

lung injury (443, 648), and in models of acute respiratory

distress syndrome (258). The lung injury phenotype could

be rescued by infused mesenchymal stem cells overexpress-

ing ACE2 (243). The unifying feature of most of the injury

models is an increase in oxidative stress in ACE2-/y mice,

which was recently confirmed for the kidney (603), liver

(own unpublished results), and vessels (412, 431) of these

animals.

Due to the trafficking function of ACE2 in the gut, mice

lacking this protein show reduced tryptophan and other

large amino acids in the blood, alterations in their gut mi-

croflora, and intestinal inflammation (242). These effects

may contribute to the metabolic changes observed in these

mice, mainly in insulin resistance and impaired glucose ho-

meostasis (397, 406), which is aggravated under high-fat

diets (328). The fact that ANG-(1–7) could rescue this phe-

notype in the liver seems again to indicate that the dysbal-

ance between different angiotensin peptides is crucial.

B) HUMAN ACE2 OVEREXPRESSION IN MOUSE. In an effort to human-

ize mice regarding their susceptibility to the human severe

acute respiratory syndrome (SARS) coronavirus, several

transgenic mouse models have been generated expressing

human ACE2 in a range of tissues using the ACE2 promoter

itself (620), the ubiquitously active cytomegalovirus pro-

moter (546, 623), or the airway-specific cytokeratin 18 pro-

moter (355, 392). One of these mice was also used in a

kidney injury model and showed a protected phenotype

(621).
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C) HUMAN ACE2 OVEREXPRESSION IN MOUSE HEART. Somewhat sur-

prisingly, ventricular tachycardia and sudden death were

observed in transgenic mice expressing human ACE2 in the

heart (141). This was accompanied by a dysregulation of

connexin expression. Peptides besides angiotensins are

likely to be involved in this gain-of-function model, and

apelin may be a candidate, since it has been shown to be

important for cardiac function (287) and is also metabo-

lized by ACE2 (570).

D) HUMAN ACE2 OVEREXPRESSION IN MOUSE PODOCYTES. In contrast to

the heart, overexpression of human ACE2 in the kidney,

particularly using the nephrin promoter in podocytes,

turned out to be protective in diabetes-induced kidney in-

jury (386). Again, the shifted balance between ANG II and

ANG-(1–7) seemed to be critical through its regulation of

the local expression of transforming growth factor �.

E) HUMAN ACE2 OVEREXPRESSION IN MOUSE BRAIN. ACE2 seems to be

particularly important in the central nervous system for

cardiovascular regulation. Transgenic mice expressing hu-

man ACE2 driven by the synapsin promoter exhibit protec-

tive phenotypes for cardiovascular diseases including hy-

pertension induced by peripheral infusions of ANG II (154)

and by DOCA-salt treatment (605), cardiac hypertrophy

also induced by ANG II (154), chronic heart failure elicited

by coronary ligation (606), and stroke triggered by middle

cerebral artery occlusion (91, 637). The balance between

ANG-(1–7) and ANG II in different brain regions, which

determines local NO production and regulates the auto-

nomic nervous system, seems to be critical in these effects.

F) HUMAN ACE2 OVEREXPRESSION IN RAT VASCULAR SMOOTH MUS-

CLE. ACE2 is a candidate gene for hypertension in the spon-

taneously hypertensive stroke-prone rat (SHRSP) strain.

This is based on a linkage study and on the fact that very

low levels of the enzyme are found in these animals (104).

Therefore, we restored ACE2 expression specifically in the

vascular smooth muscle cells (VSMC) of these rats by ex-

pressing human ACE2 from the smooth muscle myosin

heavy chain promoter. This again shifted the balance be-

tween ANG II and ANG-(1–7) to the protective side,

blunted oxidative stress, improved endothelial function,

and markedly reduced blood pressure in the transgenic rats

(439).

2. MAS models

A) MAS KNOCKOUT MICE. The first phenotypes analyzed in Mas-

deficient (Mas�/�) mice concerned brain function, since this

is the most important MAS expressing organ (578). Male
(but not female) (579) Mas�/� mice showed increased anx-
iety-like behavior and long-term potentiation (LTP) in the
hippocampus. Unexpectedly, despite the improved LTP,
object recognition memory was impaired (299).

The discovery of MAS as the receptor for ANG-(1–7) trig-
gered extensive cardiovascular phenotyping. On the
C57BL/6 mouse background, MAS deficiency leads to car-
diac fibrosis and dysfunction both in vitro (78) and in vivo
(416, 476). While oxidative stress and endothelial dysfunc-
tion were observed in the C57BL/6 and FVB/N genetic
backgrounds (430, 611), it resulted only in significantly
increased blood pressure in FVB/N mice. MAS seems to
play a major role in regional hemodynamics since vascular
resistance was significantly and differentially altered in the
tissues of Mas�/� mice (48). Increased vascular resistance in
the corpus cavernosum is also the most likely cause of the
erectile dysfunction that occurs in these mice (107).

Renal function is also impaired in Mas�/� mice, which ex-
hibit increased urinary volume and proteinuria (423). Sur-
prisingly, however, the absence of MAS seems to be bene-
ficial in one kidney injury model (149), while in others the
outcome is worse, confirming the protective effects of the
ACE2/ANG-(1–7)/MAS axis of the RAS (507). This dis-
crepancy remains unresolved, but anti-inflammatory ac-
tions of MAS have repeatedly been described (267, 485,
514), most recently in an endotoxic shock model (515).

Mas�/� mice develop metabolic abnormalities such as type
2 diabetes mellitus and dyslipidemia (484), which together
with their increased blood pressure renders them a valuable
model for the metabolic syndrome. This is accompanied by
decreased PPAR� expression in adipose tissue (346) and the
development of liver steatosis when the animals are bred
with apolipoprotein E (ApoE)-deficient mice (505).

B) MAS OVEREXPRESSION IN RETINA. MAS has a certain degree of
constitutive, ligand-independent activity that may induce
proliferative effects in cells when the gene is overexpressed.
This may be the reason for the degeneration of photorecep-
tors in a transgenic mouse in which MAS is overexpressed
in the retina under the control of the opsin promoter (612).

3. ANG-(1–7) models

A) TRANSGENIC RATS OVEREXPRESSING ANG-(1–7). Using an artificial
protein which releases a predesigned peptide upon secretion
from a cell (366, 368), ANG-(1–7) was overexpressed in
transgenic rats using the cytomegalovirus promoter (166).
Surprisingly the resulting strain, TGR(A1–7)3292, ex-
pressed the peptide mainly in the testis, which nevertheless
led to significantly increased plasma levels. Despite a de-
crease in total peripheral resistance and increases in blood
flow to several organs, the animals remained normotensive,
which may be due to their improved cardiac function (48).
These cardiac effects protect the heart from pressure and
ischemia-induced damage (477). The high plasma levels of
ANG-(1–7) also have effects in the kidney, such as a re-
duced urinary flow and increased urinary osmolality (166).
Furthermore, the TGR(A1–7)3292 strain exhibits de-
creased levels of lipids in plasma, improved glucose toler-
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ance, and less fat mass, confirming the beneficial metabolic
actions of the peptide (44, 483).

B) TRANSGENIC MICE AND RATS OVEREXPRESSING ANG-(1–7) IN THE

HEART. Transgenic mice and rats expressing the ANG-(1–7)
release construct specifically in the heart with the alpha
cardiac myosin heavy chain promoter show normal to
slightly improved cardiac function at the baseline and are
protected from cardiac hypertrophy (161, 366), but not
from myocardial infarction (589).

V. ACTIONS OF ANGIOTENSIN-(1–7)

A. Brain

The brain expresses all the necessary components, precur-
sor and enzymes, to produce the active peptides of the RAS
known to date: ANG II, ANG III, ANG IV, ANG-(1–7),
and alamandine. The effects elicited by angiotensins in the
brain are complex, site-specific, and dependent on the
pathophysiological condition. ANG II, ANG III, and ANG-
(1–7) can be considered the main effectors of the RAS in the
brain, since ANG IV presents more restricted actions (599).
These peptides interact with a certain degree of selectivity to
receptor proteins including AT1, AT2, MAS, or MrgD dis-
tributed within the central and peripheral nervous systems.
Although there is still a debate on whether ANG II or ANG
III is the true ligand of the AT1 receptor in the brain (195),
the effects described for ANG-(1–7) appear to be related to
MAS (479). It is well established that in the central nervous
system (CNS), ANG II/ANG III function through AT1 to
induce thirst, release of AVP, an increase of sympathetic
activity and blood pressure, and an impairment of the baro-
reflex function. In contrast, ANG-(1–7) facilitates the baro-
reflex and may lower or increase blood pressure depending
on the specific brain area or the pathophysiological condi-
tion in which it occurs. Additional features not directly
related to cardiovascular function have been described, in-
cluding neuroprotection from brain ischemia or hemor-
rhage, improvements of memory, and an attenuation of
epileptic seizures. The possibility that ANG II and ANG-
(1–7) may exert opposite effects from each other in the
brain, even if this only occurs under specific physiological
situations, provides a more complete picture of the RAS
mechanisms involved in the neural regulation of physiolog-
ical functions.

1. ANG-(1–7) metabolism in the brain

The exact site at which angiotensins are generated in the
brain, intracellular or extracellular, is still uncertain (269,
415, 592). Nor is it known whether the generation of ANG
peptides is solely dependent on brain angiotensinogen (An-
giotensinogen), ACE, ACE2 and renin, taking into account
discrepancies in the location of RAS components (23, 45,

56, 160, 224, 415). However, increasing evidence suggests

that RAS generation is intracellular and includes the expres-

sion of intracellular ANG II and ANG-(1–7), as well as their

respective receptors (87, 233, 289, 379). Krob et al. (286)

demonstrated intense ANG-(1–7) immunostaining in hypo-

thalamic neurons of TGR(mREN2)27 transgenic rats, sug-

gesting an intracellular localization of the peptide. Further

experiments have demonstrated an intracellular expression

of ACE2 based on immunohistochemistry in different areas

of the brain (142) and ANG-(1–7) expression in primary

neuronal cell cultures from the hypothalamic-brain stem

areas (209, 211, 325). Interestingly, studies using double

transgenic mice that overexpress both human Angio-

tensinogen and renin in either glial or neuronal cells suggest

that the source of ANG II may be both cell types. Moreover,

glia-derived angiotensin peptides are responsible for im-

pairments in the baroreflex sensitivity (BRS) that controls

heart rate (HR), whereas neuronal overexpression of angio-

tensin peptides resets the baroreceptor set point without

altering BRS (458). Overexpression in both glial and neu-

ronal cells contributes to increases in resting arterial pres-

sure (379). On the other hand, rats that express an antisense

RNA against Angiotensinogen under the control of the glial

GFAP promoter indicates that the source of ANG-(1–7) is

mainly non-glial cells (460).

More recently an interesting possibility has been raised:

ANG-(1–12) could be a renin-independent precursor for

angiotensin peptides in the rodent brain (158). ANG-(1–12)

exhibits higher concentrations in the brain than ANG II and

displays cardiovascular effects upon microinjection into

discrete areas of the medulla and hypothalamus. These ef-

fects were partially antagonized by A-779, suggesting that

ANG-(1–12) can be metabolized to ANG-(1–7) (158).

Nevertheless, ANG-(1–7) can be processed directly from

ANG I by several endopeptidases including NEP, thimet

oligopeptidase, and prolyl endopeptidase (84, 442, 592).

Additionally, ANG-(1–7) is efficiently generated directly

from ANG II by the monocarboxypeptidase, ACE2, and

prolyl carboxypeptidase (136, 211). Accordingly, it has

been shown that ANG-(1–7) attenuates the ANG II pressor

response in the hypothalamus, and concomitant injections

of ANG II and A-779 increased the response, suggesting

that ANG-(1–7) may be formed from ANG II, at least in the

hypothalamus (256). It is interesting to point out that al-

though ACE constitutes the major ANG II-forming path-

way, it also degrades ANG-(1–7) in a way that leads to

ANG-(1–5) (89). However, so far not a single brain cell has

been detected that expresses all components of the RAS;

thus the formation of bioactive forms of angiotensin might

require interactions between multiple cell types, or, the

brain possesses enzymatic mechanisms different from the

classical ones which are responsible for the formation of

neuroactive forms of angiotensins (115, 116, 574).
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Recently, sheep medulla and cerebrospinal fluid (351) have
demonstrated a peptidase activity capable of metabolizing
ANG-(1–7) to ANG-(1–4). This peptidase exhibits marked
sensitivity to mercury-based inhibitors, chelating agents,
and the metalloendopeptidase agent JMV-390. It also hy-
drolyzes ANG-(1–7) to a greater extent than ANG II and
ANG I, while other bioactive peptides such as bradykinin,
neurotensin, and apelin-13 are not cleaved. The peptidase
appears to preferentially cleave the Tyr4-Ile5 bond of ANG-
(1–7) generating ANG-(1–4). These data likely represent a
novel pathway for the specific regulation of central ANG-
(1–7) levels. The intracellular distribution of this ANG-
(1–7) peptidase and the specific cell type that may express it
within the brain (i.e., neuronal vs. glia) are not known. This
peptidase may influence the local processing of ANG-(1–7)
within cells or may be secreted or released from medullary
tissue to degrade extracellular ANG-(1–7) or other pep-
tides/substrates (87). The protein identity of this metalloen-
dopeptidase-like activity, which converts ANG-(1–7) to
ANG-(1–4) in the brain, has not yet been described, and its
role in the physiological regulation of the brain RAS is
similarly elusive.

ANG-(1–7) in the brain can also be converted to alaman-
dine, through the decarboxylation of aspartate to alanine
(297). Although a selective enzyme responsible for this de-
carboxylation has not yet been identified, the actions of
alamandine and the receptor mediating its effects, MrgD,
have been described in the brain (573).

2. ANG-(1–7) location in the brain

ANG-(1–7) immunoreactivity has been described in para-
ventricular, suprachiasmatic nuclei, the bed nucleus of the
stria terminals, substantia innominata, median eminence,
and neurohypophysial and other areas of the medulla ob-
longata and amygdala of normotensive rats (45). ANG-
(1–7) was also identified in hypothalamic extracts (63, 85).
Later, ANG-(1–7) immunoreactivity was described in neu-
rons of the supraoptic nucleus (SON), and in the anterior
(ap-), medial (mp-), and lateral (lp-) parvocellular, and pos-
terior magnocellular (pm-) subdivisions of the paraven-
tricular nucleus (PVN) in TGR(mREN2)27 transgenic hy-
pertensive rats (286). Furthermore, cells immunoreactive
for ANG-(1–7) were also stained for AVP, specifically in the
SON and in the pmPVN, suggesting that ANG-(1–7) and
AVP are colocalized, coreleased, and may carry out similar
actions on common targets (286), possibly in combination.
Interestingly, ANG-(1–7) levels were found to be fivefold
higher in hypophysial-portal plasma than in jugular plasma
of normotensive sheep, while no differences were observed
for ANG II, renin, or angiotensinogen (298). In addition, it
was shown that ACE2, the major enzyme involved in ANG-
(1–7) formation, is present in the brain, predominantly in
neurons (142). ACE2 immunostaining is in fact widespread
throughout the brain, from the telencephalon to the me-
dulla, at least in the mouse (142).

3. MAS location in the brain

The hypothesis of a receptor that selectively mediated the
physiological effects of ANG-(1–7) in the brain developed
from studies that showed that ANG-(1–7) and ANG II trig-
gered distinct effects. The first antagonistic effect of ANG-
(1–7) was described on the modulation of the baroreflex
(66). ANG-(1–7), given intracerebroventricularly (ICV), fa-
cilitated baroflex control, while ANG II attenuated it (66).
Further studies have strengthened this hypothesis by show-
ing that ANG-(1–7) binds with low affinity to AT1 and AT2
receptors (452) and that its central and peripheral effects
are different from those induced by ANG II (159, 473).

In 2003, with the identification of MAS as an ANG-(1–7)
receptor (479), we showed that MAS expression was local-
ized to specific areas of the brain (30) particularly related to
cardiovascular control. There was a strong staining in the
NTS, caudal and rostral ventrolateral medulla (CVLM and
RVLM), inferior olive, parvo- and magnocellular portions
of the PVN, SON, and lateral preoptic area (LPA) of nor-
motensive Sprague-Dawley (SD) rats. However, other areas
also stained for MAS, such as the hippocampal nucleus,
different subregions of the frontal cortex, anterodorsal tha-
lamic nucleus, basomedial and basolateral amygdaloid nu-
cleus, and hypoglossal nucleus (nXII). In fact, MAS had
already been recognized as an orphan receptor for some
time and mRNA had been found in areas such as the hip-
pocampus, the dentate gyrus, piriform cortex, and
amygdala (58, 352, 369). In the murine brain, strong MAS
protein expression was detected in the dentate gyrus of the
hippocampus, within the piriform cortex, hippocampus,
amygdala, basal ganglia, thalamus, and hypothalamus
(192). Recently, Regenhardt et al. (433) have shown MAS
immunostaining mainly in the soma of neurons and micro-
glia of the adult rat cerebral cortex but not in astroglia, and
in both nonnuclear and nuclear compartments. We still do
not know whether AT1, AT2, and MAS may have a degree
of overlapping localization or are expressed in distinct neu-
ronal populations.

4. ANG-(1–7) actions in the brain

ANG-(1–7) acts as an important neuromodulator, espe-
cially in areas related to the tonic and reflex control of
arterial pressure, in the hypothalamus, and in the dorsome-
dial and ventrolateral medulla (FIGURE 4). At these sites, the
cardiovascular effects induced by ANG-(1–7) are blocked
by the MAS antagonist A-779 (133, 336), suggesting that in
the brain, ANG-(1–7) actions are mainly mediated by its
interaction with MAS.

Among its central actions, the more consistent effects of
ANG-(1–7) are related to the modulation of the baroreflex,
especially through improving the bradycardic component
of the baroreflex control of heart rate in normotensive (46,
66) or hypertensive animals (249, 402). This effect was
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initially investigated through short-term infusions of ANG-
(1–7) into the lateral ventricle. On the other hand, infusion
of A-779 attenuated the baroreflex sensitivity of normoten-
sive rats but did not significantly alter the depressed baro-
reflex sensitivity of SHR (249, 402), suggesting an overall
imbalance of ANG formation or MAS expression in SHR.
However, when SHR received an ICV infusion of an ACE
inhibitor, baroreflex experienced a significant increase in
sensitivity that could be completely prevented by ICV
A-779 (249). Moreover, the improvement in baroreflex af-
ter oral treatment with an ACE inhibitor in Goldblatt two
kidney-one clip (2K1C) hypertensive rats was also reversed
by ICV infusions of A-779 (52), showing that ANG-(1–7)
may at least partly contribute to the beneficial effects on
baroreflex from ACE inhibitor treatments. Because ACE
inhibitors also affect bradykinin metabolism, we showed
that ICV infusions of subeffective doses of ANG-(1–7),
combined with equally subeffective doses of bradykinin,
significantly facilitated baroreflex bradycardia, an effect
which could be completely blocked by the bradykinin B2
receptor antagonist HOE-140 or by A-779, suggesting an
interaction of both peptides in modulating baroreflex
gain (46).

No alteration in blood pressure or drinking behavior was
observed after short-term (up to few hours) infusions of
ANG-(1–7) into the lateral ventricle (66) or microinjections
into the PVN (427), in contrast to the classical stimulatory
effect mediated by AT1 in the brain (339). However, when

long-term infusions (14–28 days) were performed, a

chronic increase in ANG-(1–7) levels in the CNS strongly

attenuated the increase in arterial pressure that is observed

in DOCA-salt rats (226), TGR(mREN2)27 hypertensive

rats (390), or in female rats (614) subjected to DOCA-salt

or ANG II hypertension (613). Similar data were observed

after the delivery of an ANG-(1–7) fusion protein at the

cisterna magna of TGR(mREN2)27 hypertensive rats

(197). Furthermore, the blood pressure-lowering effect of

ANG-(1–7) in DOCA-salt hypertensive rats was related

to an improvement in baroreflex bradycardia, the resto-

ration of the baroreflex control of renal sympathetic

nerve activity (RSNA), and a regaining of the balance of

cardiac autonomic tone (226). These effects were

blocked by A-779, once again suggesting a mediation by

MAS (273). An enhancement of the baroreflex control of

the RSNA was also observed after 4 days of ICV infusion

of ANG-(1–7) in rabbits subjected to chronic heart fail-

ure (274) and in transgenic mice overexpressing human

ACE2 selectively in the brain (154). Additionally, mice

lacking MAS presented a marked imbalance in the neural

control of blood pressure, with a blunted sensitivity of

not only the baroreflex but also the chemo- and Bezold-

Jarisch reflexes (125). It is interesting to observe that in

pathophysiological conditions, such as aortic coarctation

(209), TGR(mREN2)27 hypertensive transgenic rats

(493) exhibit an increase in concentrations of ANG-(1–7)

in the brain.

FIGURE 4. Localization of Mas in the central nervous system and main actions of angiotensin-(1–7) in the

brain. See text for definitions.
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Interestingly the facilitatory effect of ANG-(1–7) on the

baroreflex control of heart rate is also consistently observed

in the NTS, a key site in the brain stem which controls

cardiovascular reflex functions (20, 90, 103, 135, 136, 459,

460). Microinjections of ANG-(1–7) induce facilitation,

while injections of ANG II produce attenuation of the baro-

reflex bradycardia (90, 133). Accordingly, A-779 and losar-

tan, selective MAS and AT1 receptor antagonists, produce

opposite effects on the baroreflex in normotensive or hyper-

tensive rats (90, 135, 460). At this site ANG-(1–7), which

can be at least partially derived from ANG II through ACE2

(136), is degraded by ACE (259) and may have a preferen-

tial non-glial source (103, 460). Moreover, decreased levels

of ANG-(1–7) at the NTS may be related to the attenuated

baroreflex control that is observed in hypertension and ag-

ing (20, 90, 133, 249, 389, 459).

More recently studies in rats that develop metabolic syn-

drome after chronic fructose intake have shown that fruc-

tose-fed rats receiving ANG-(1–7) infusions into the lateral

ventricle had normalized baseline mean arterial pressure,

baroreflex control of heart rate (HR), and reduced cardiac

sympathetic tone (225). More strikingly, alongside these

cardiovascular improvements, the rats presented normal-

ized glucose tolerance, glycemia, insulinemia, and HOMA

score. Fructose-fed rats treated with ANG-(1–7) had in-

creased HDL and normalized hepatic and muscle glycogen

content (225). These data suggest that activation of ANG-

(1–7)/MAS pathway in the brain may produce important

benefits for cardiovascular and metabolic disorders.

Molecular analyses of the brains of fructose-fed rats treated

with ANG-(1–7) ICV revealed a reduced mRNA expression

of neuronal nitric oxide synthase (nNOS) and NR1/

NMDAr in the hypothalamus and medullary areas of these

animals (225). The major candidates for mediation of the

central actions of ANG-(1–7)/MAS lie in these regions:

the PVN, the RVLM, and the NTS, which are crucial for the

sympathetic drive to the cardiovascular system and for

baroreflex control. In agreement with this interpretation, a

selective overexpression of ACE2 in the RVLM (618) or

PVN (635) induces a significant decrease in blood pressure

of SHR (618), attenuation of sympathetic activity, and im-

provement of the baroreflex function in animals with con-

gestive heart failure (635).

Antagonizing the effect of ANG-(1–7) through ICV infu-

sions of A-779 attenuated ethanol-induced activation of

NOS in the PVN and restored hemorrhage-induced AVP in

circulation (593). In congestive heart failure (CHF), restor-

ing ACE2 induces an increase in NO and a decrease in

sympathetic nerve activity (275, 605). In the ethanol-intox-

icated hemorrhaged states, ICV A-779 administration de-

creased NOS activity and NO concentrations, partially re-

storing the rise in levels of circulating AVP, suggesting that

MAS activation contributes to the NO-mediated inhibitory
tone of AVP release (593).

5. Cardiovascular effects of angiotensin-(1–7) at
specific medullary sites

At selective medullary sites, the acute stimulation of MAS
induces effects similar to those triggered by ANG II (12, 14,
17, 26, 31, 64, 65, 103, 133, 170, 171, 180, 182, 183, 210,
297, 403, 425, 492, 506). In the NTS, ANG-(1–7) induces
neuronal excitation (26) and decreases baseline blood pres-
sure in normotensive (65) and hypertensive rats (90, 135).
In the CVLM, an inhibitory area participating in the baro-
reflex arch (595), ANG-(1–7) induces decreases in mean
arterial pressure similar to those observed for ANG II (13,
14, 69, 170, 581). However, the hypotensive effect of ANG-
(1–7) was blocked by A-779, while ANG II was inhibited by
losartan (475). Wang et al. (581) showed that the depressor
response to ANG-(1–7) in the CVLM was accompanied by
an increased release of glutamate and a decrease in taurine.
More interestingly, we showed that the signaling mecha-
nisms triggered by these peptides at the CVLM were dis-
tinct. ANG-(1–7) acts through a nitrergic pathway sensible
to the NOS inhibitors, L-NAME and 7-NI, while ANG II
acts preferably by decreasing the noradrenergic drive (14).
Also in contrast to ANG II, microinjections of ANG-(1–7)
into the CVLM attenuated the bradycardia and facilitated
the baroreflex tachycardia (13). These effects were com-
pletely abolished by intravenous methyl-atropine, showing
a dependence of a cholinergic/nitrergic peripheral mecha-
nism (13). In SHR, the hypotensive effect of these peptides
reaches a similar magnitude but involves the participation
of different vascular beds (170). The hypotensive effect
produced by ANG-(1–7) and ANG II at CVLM was
caused by a decrease in renal vascular resistance, but did
not alter femoral vascular resistance as shown for ANG-
(1–7) in normotensive rats (170). This suggests a possible
impairment of vasodilatory mechanisms triggered by
ANG-(1–7) in the CVLM of SHR to the hindlimb. In
2K1C rats, the CVLM BP effect of ANG-(1–7) is medi-
ated by MAS. However, A-779 at the CVLM of renovas-
cular hypertensive rats induced a fall in BP and improved
baroreflex bradycardia (69).

The RVLM represents the main relay for sympathetic out-
put regulating cardiovascular homeostasis (112). MAS is
expressed in the RVLM (29, 30) and microinjections of
ANG-(1–7) induce a pressor response whose magnitude is
similar to that of ANG II (172, 182, 183, 308, 316, 506,
640). Conversely, the selective blockade of endogenous
ANG-(1–7) actions by A-779 results in a decrease in BP in
normotensive (24, 180, 182, 315) and hypertensive rats
(143, 172, 180, 307, 308, 388). The ANG-(1–7) pressor
effect at the RVLM is increased after hemorrhage (316) and
in hypertensive rats (172, 388). In keeping with the excit-
atory role of ANG-(1–7) after acute injections, A-779 or an
inhibition of ACE2 with DX600 induces greater decreases
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in blood pressure in SHR (388) and TGR(mREN2)27 rats
(180). In addition, RVLM microinjections of ANG-(1–7)
induce an increase in RSNA in normotensive (425, 640) and
renovascular hypertensive rats (307). Although ANG-(1–
7)/MAS at this site does not alter baroreflex (13), it in-
creases the cardiac sympathetic afferent reflex (CSAR),
which contributes to sympathetic excitation in hyperten-
sion (307, 388, 640). The facilitation of CSAR seems to be
mediated by MAS activation of cAMP-protein kinase A and
increases in NAD(P)H oxidase activity and the superoxide
anion level (307, 308).

The pressor effect induced by acute injections of ANG-
(1–7) into the RVLM may involve the release of glutamate
and decreases in glycine, taurine, and GABA (582). Inter-
estingly, in astrocytes from newborn SHRs, MAS mediates
ANG-(1–7)-driven increases in Ca2� signaling (228). On
the other hand, A-779 but not the AT1 receptor antagonist
losartan inhibited [Ca2�]i elevations induced by ANG-(1–
7), which could also be antagonized by blocking intracellu-
lar Ca2� stores (228). ANG-(1–7) evoked no consistent
changes in [Ca2�]i or membrane excitability in cat-
echolaminergic or noncatecholaminergic neurons of slice
cultures containing the RVLM in either SHR or WKY
(228). Recently, in an evaluation of the peripheral mecha-
nism involved in the ANG-(1–7) effect at the RVLM, we
showed that its pressor response may involve an increase in
sympathetic tone, the release of AVP and possibly the inhi-
bition of a vasodilatory peripheral mechanism (403).

All the excitatory effects described above counter the hy-
pothesis that ANG-(1–7) plays a counterregulatory role to
ANG II and mediates a decrease in blood pressure, improve-
ment in baroreflex, decrease in sympathetic tone, and in-
crease in vagal tone to the periphery. These effects were
triggered by acute injections of ANG-(1–7) or antagonists
into the RVLM. However, inducing a long-term alteration
of RAS peptides at this site led to specific results which are
informative. Stress-induced hypertension, for instance, in-
duces increases in the expression of ACE and AT1, a de-
crease in ACE2, and a hyperresponsiveness of the RVLM to
ANG II (143). Moderate physical exercise during SHR de-
velopment (7–23 wk old) attenuates hypertension, prevents
increases in tumor necrosis factor (TNF)-�, interleukin (IL)-
1�, ACE, and AT1 expression in the RVLM and upregu-
lates IL-10, ACE2, and MAS at this site (6). In addition,
these changes are associated with reductions in plasma
ANG II levels, neuronal activity, NADPH-oxidase subunit
gp91(phox), and inducible NOS in trained SHRs, all of
which indicate reduced oxidative stress (6). Accordingly,
exercise rescues ACE2 expression in the RVLM of animals
subjected to heart failure (275). Exercise training in normo-
tensive rats, on the other hand, induces a pressor response
to A-779, suggesting that in this condition, endogenous
ANG-(1–7) triggers the inhibition of pressor neurons at the
RVLM (31). Nevertheless, the most striking result was ob-

tained with lentivirus-mediated long-term ACE2 expression
in the RVLM, which induced a significant and long-term
reduction in blood pressure in SHR (618). This suggests
that increasing the level of ANG-(1–7) may contribute to
the anti-hypertensive effects of exercise training, at least in
the RVLM.

6. Cardiovascular effects of angiotensin- (1–7) at
specific hypothalamic sites

Biological effects of ANG-(1–7) have been described in sev-
eral nuclei of the hypothalamus (80, 108, 134, 137, 138,
213, 214, 252, 253, 349, 353, 414, 504, 547, 649). Diz et
al. (134) used hypothalamic slice preparations of normo-
tensive and hypertensive TGR(mREN2)27 rats to show
that ANG-(1–7) produced a significant increase in the re-
lease of substance P from the hypothalamus of normoten-
sive but not hypertensive rats. The physiological signifi-
cance of these actions is still unclear. ANG-(1–7) does not,
however, change the firing of cultured hypothalamic neu-
rons; instead, it attenuates the action of ANG II in neurons
of prehypertensive SHR through MAS and PTEN (phos-
phatase and tensin homolog deleted on chromosome 10)
signaling (370).

Microinjections of ANG-(1–7) in the anterior hypothala-
mus (AH) had no effect in normal rats but induced a de-
crease in blood pressure in baroreceptor denervated rats
(252). This effect, which was blocked by A-779, was in
contrast to the excitatory effect induced by ANG II in con-
trol and pressoreceptor-denervated rats. More interesting,
ACE inhibitors lower blood pressure after microinjections
into the AH of denervated rats, an effect that is blocked by
A-779 (252). This suggests that the effect of ACE inhibition
is due to the formation of ANG-(1–7), which increases in
this condition.

Felix and co-workers (16, 17, 152) used a microiontopho-
resis methodology to show that most neurons in the PVN
are excited by ANG-(1–7). In fact, Qadri et al. (427) con-
firmed the first study performed in neurohypophysial ex-
plants by Schiavone et al. (492), showing that ANG-(1–7)
microinjections into the PVN induce a release of AVP.
However, in this study ANG-(1–7) was much less potent
and its effect was abolished by losartan (AT1 antagonist)
and PD123319 (antagonist for AT2 and MrgD). More re-
cently, Whitaker and Molina (593) studied hemodynamic
alterations after hemorrhagic shock in a model of acute
ethanol intoxication. They found a reduction in the release
of AVP mediated by a decrease in central NO inhibitory
tone. The decrease in AVP release is considered the main
factor in aggravating hemodynamic instability in animals
with ethanol intoxication that suffer hemorrhages. These
authors further showed an increase in ACE2 activity and
ANG-(1–7) and substantial MAS-mediated upregulation of
NOS in PVN of acute ethanol intoxicated hemorrhaged
animals. A blockade of MAS ICV or in the PVN partially
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restored circulatory levels of AVP, suggesting that NO up-
regulation mediated by ANG-(1–7) contributes to inhibi-
tory tone upon AVP release during hemorrhaging in acute
ethanol intoxication (593). Although these studies point to
contrasting effects of ANG-(1–7) on the release of AVP,
together they strengthen the concept that distinct ANG-
(1–7) effects can be observed in specific brain areas depend-
ing on the existing pathophysiological condition.

In anesthetized normotensive rats, Fontes and colleagues
(504) in our laboratory showed that bilateral microinjec-
tions of A-779 into the PVN decreased the RSNA, suggest-
ing that endogenous ANG-(1–7) at the PVN contributes to
the maintenance of the tonic activity of the sympathetic
system and blood pressure. More recently, A-779 injections
into the PVN have been shown to attenuate hypertension
induced by a sleep apnea model in rats (108), which agrees
with the sympathetic stimulatory effect of acute injections
of ANG-(1–7) into the PVN. Nevertheless, ANG-(1–7) in-
jections into the PVN effectively increased the RSNA,
CSAR, and arterial pressure through an activation of MAS
via the cAMP-PKA pathway (237, 307, 308, 527, 640).
However, these studies were performed in anesthetized va-
gotomized and sinoaortic denervated rats, a condition that
may introduce important changes in the activity of PVN
neurons and their sensitivity to neuromodulators. For in-
stance, others have reported opposite trends in other mod-
els (409, 413, 635)

7. Other angiotensin-(1–7) effects in the brain

A role for ANG-(1–7) has been reported in stress, learning,
and memory processes that occur in central limbic regions
such as the hippocampus and amygdala (7, 43, 246, 299,
404, 518, 607, 629). Hellner et al. (246) were the first to
show that ANG-(1–7) enhances LTP in limbic structures,
implicating a distinct function in learning and memory
mechanisms via MAS. In 2007, Albrecht (7) showed that
the LTP modulatory effect of ANG-(1–7) working through
MAS in the lateral nucleus of the amygdala depended on
cyclooxygenase-2 (COX-2) and NO. Moreover, St-
aschewski et al. (518) showed that there is a gender-
dependent involvement of different isoforms of NOS in the
effects of ANG-(1–7) on LTP in the amygdala. The ANG-
(1–7)-induced increase in the magnitude of LTP involves
nNOS in males and eNOS in females (518). In CA1 region
of the hippocampus, Lazaroni et al. (299) showed that mice
without MAS or subjected to MAS blockade present im-
paired object recognition memory (ORM). In addition, in
Mas�/� mice, ANG-(1–7) concentrations are increased in
the whole hippocampus, as well as in the CA1 area, sug-
gesting the need for a functional ANG-(1–7)/MAS axis for
normal ORM processing (299). Interestingly, it has been
reported that in this brain region ANG-(1–7) can be formed
independent of ANG II processing (417). Despite this evi-
dence, the role of ANG-(1–7)/MAS axis in limbic-depen-
dent memories remains poorly understood.

In 1998 Walther et al. (578) reported that Mas-deficient
animals displayed an increase in anxiety-like behavior. Ac-
cordingly, years later Bild and Ciobica (43) showed an anx-
iolytic-like effect after chronic ICV infusions of ANG-(1–7),
accompanied by a reduction in oxidative stress in the
amygdala. More recently, using two different transgenic rat
lines, we showed that ANG-(1–7) ICV infusions could at-
tenuate anxiety-like behavior (11, 272). In addition, we
showed that ANG-(1–7) was also effective in attenuating a
depression-like phenotype (11). Interestingly, hypertensive
patients who suffer from depression exhibit mood improve-
ments after treatment with the ACE inhibitor captopril,
which increases levels of ANG-(1–7) (50). Recently, we
showed that the anxiety-like behavior of hypertensive rats
was rescued in enalapril-treated animals after blockade, un-
veiling an anti-aversive role for endogenous ANG-(1–7), at
least in hypertensive rats (11). More recently, similar find-
ings have been obtained in mice by increasing ACE2 activity
(583).

ANG-(1–7) is involved not only in modulating chronic
stress-coping responses in psychiatric disorders, such as anxi-
ety and depression, but can also participate in cardiovascular
adjustments to acute responses to stress. Fontes and colleagues
(181, 353, 404) have suggested that the ANG-(1–7)/MAS axis
is a promising target to attenuate the physiological response to
emotional stress and reduce the risk of cardiovascular diseases.
ANG-(1–7) given in the lateral ventricle (353) or microinjected
into the basolateral amygdala (404), an area of the limbic
system that is involved in coordinating emotional responses,
markedly attenuated the pressor and tachycardia responses
evoked by air jet stress, a model to study cardiovascular
changes to acute stress. Additionally, ANG-(1–7) injections
into basolateral amygdala also attenuated the pressor re-
sponse evoked by the cage-switch stress paradigm, another
model of acute psychosocial stress (404). These effects were
blocked by A-779, suggesting that they are MAS-mediated
(353, 404). These findings reinforce the concept that ANG-
(1–7)/MAS can modulate the cardiovascular responses
evoked by emotional stress and point to the basolateral
amygdala as an important site for mediating these actions.

Another area implicated in the integration of emotional
behavior and sympathetic drive to the periphery is the peri-
aqueductal gray (PAG). Xing et al. (608) showed that ANG-
(1–7) interaction with MAS inhibits the neuronal activity of
dorsolateral PAG which depends on a NO-dependent sig-
naling pathway via MAS activation. More recently, these
authors showed a decrease in ANG-(1–7) levels and an
attenuation in MAS-nNOS pathways in the PAG of rats
with chronic heart failure (609). Moreover, ANG-(1–7)’s
ability to attenuate the neuronal activity of the dorsolateral
PAG was significantly decreased in chronic heart failure
animals (609). Whether the inhibitory effects of ANG-(1–7)
at PAG are involved in modulating responses of emotional
stress is an open question; however, it is very likely consid-
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ering the role of the PAG in controlling sympathetic and
cardiovascular system.

The ACE2/ANG-(1–7)/MAS axis also exerts a neuroprotec-
tive influence on ischemic and hemorrhagic strokes. In
2011, the Sumners group published the first (357) of a series
of studies showing that ICV infusions of ANG-(1–7) or an
ACE2 activator before and after endothelin-1-induced mid-
dle cerebral artery occlusion (MCAO) significantly attenu-
ated the size of the cerebral infarct and the neurological
deficits measured 72 h after the insult (32, 357, 433, 434,
526). These data were corroborated and extended by oth-
ers, who showed an involvement of NO and different NOS
isoforms, a decrease in cytokines, and a reduction in NF�B,
COX-2, ROS, and neuronal apoptosis (267, 268, 421, 422,
637). The anti-inflammatory effects of central administra-
tions of ANG-(1–7) were in accordance with the demon-
stration of a decrease in the activation of microglia both in
ischemic stroke (433) and in hemorrhagic stroke induced in
SHR-SP (434). All of these effects were attenuated by
A-779, but were unaffected by the AT2 receptor antagonist
PD123319, pointing to MAS as the receptor involved (526).

It has been reported that ischemic stroke increases ACE2
activity and MAS expression in the brain and ANG-(1–7) in
the brain and circulation (329). Nevertheless, treatment
with an ACE2 activator after stroke induces a decreased
infarct volume and improves neurological functions with-
out significant changes in cerebral blood flow (357). Ac-
cordingly, ACE2 overexpression in neurons of transgenic
mice that overexpress human renin and Angiotensinogen
(SARA, triple transgenic mice) induced neuroprotection, as
demonstrated by a reduction in MCAO-induced infarct vol-
ume, an increase in cerebral blood flow, attenuation of neu-
rological deficits, and increases in cerebral microvascular
density in the peri-infarct area (636). These effects were
MAS-related and independent of baseline arterial pressure.
Moreover, there were increases in the ANG-(1–7)/ANG II
ratio, angiogenic factors, eNOS expression, and NO pro-
duction, whereas levels of NADPH oxidase subunits and
ROS were decreased in the brain of SARA mice (636). The
counterbalancing effect of ANG-(1–7) in the presence of
high levels of ANG II was also observed in hemorrhagic
stroke (42).

Other effects of ACE2/ANG-(1–7)/MAS in cerebroprotec-
tion are an attenuation of the loss of endothelial function of
cerebral arteries that occurs with aging (421), increases in
cerebral angiogenesis in ischemic stroke (268), and an at-
tenuation of alterations in the integrity of the blood brain
barrier after ischemia reperfusion injury (IRI), which in-
duces deleterious alterations in brain permeability and
edema (600). In this regard, ANG-(1–7) infusion restored
the expression of tight junction proteins (claudin-5 and
zonula occludens ZO-1) in IRI-induced blood-brain barrier
damage by modulating the TIMP1-MMP9 pathway (600).

Imbalances of the two arms of the RAS in the brain favoring
ANG II/AT1 activity are involved in the pathophysiology of
diseases such as arterial hypertension, metabolic syndrome,
heart failure, psychiatric disorders, and emotional stress.
Strategies aimed at rescuing the RAS balance and inducing
an increase in ANG-(1–7) in the brain can help ameliorate
the problems that arise as these diseases develop. Physical
exercise is an effective, nonpharmacological strategy to
lower blood pressure in hypertensive patients, improving
cognitive function, attenuating depression, and demon-
strating other effects. Recent studies have shown that phys-
ical exercise induces changes in RAS components that lead
to an increase in ACE2 activity and ANG-(1–7) in the brain
in animals with heart failure or arterial hypertension (81,
275). Future studies will be necessary to reveal the mecha-
nisms involved in exercise-triggered alteration in RAS com-
ponents in the brain and their role in the beneficial effects of
exercise.

8. Neurotransmitter/neuromodulator effects of
ANG-(1–7)

Gironacci and colleagues have contributed to the under-
standing of the intracellular mechanisms triggered by ANG-
(1–7) in neurons (80, 211–214, 325). These authors showed
that ANG-(1–7) acting induces a decrease in presynaptic
norepinephrine (NE) release in hypothalamus isolated from
normotensive (214) and SHR (213) both by direct action or
by blocking the release of ANG II-stimulated NE, thus bal-
ancing the stimulatory action of ANG II. They also showed
that the decrease in NE release through ANG-(1–7)/MAS
activation leads to bradykinin generation, which stimulates
the B2 receptor and enhances NO release, activating the
cGMP/PKG signaling pathway (215). In agreement, Feng
and colleagues (154, 634) showed that the overexpression
of ACE2 produces a significant increase in brain NO pro-
duction, as do ICV administrations of ANG-(1–7). The ac-
tivation of cGMP/PKG signaling in turn inhibits voltage-
dependent calcium channels or induces the phosphoryla-
tion of proteins of the synaptic vesicle, decreasing the
release of neurotransmitters and thus lowering their levels
at the synaptic cleft. Additionally, it was shown that ANG-
(1–7) decreases tyrosine hydroxylase (TH) activity and ex-
pression, the rate-limiting enzyme in catecholamine biosyn-
thesis, in neurons from the hypothalamus and brain stem of
WKY and SHR (325). This effect was unrelated to MAS,
but blocked by PD123319, which led the authors to con-
clude that ANG-(1–7) acts via AT2 receptor activation, to
stimulate the ubiquitin-proteasome system; this, in turn,
induces increases in TH degradation. However, the recent
finding that PD123319 also inhibits MrgD (297) means
that the reduction in TH activity could be due to alaman-
dine, a possibility yet to be explored.

Neuronal communication in the brain depends on neu-
rotransmitter transporters in the cell membrane of neurons
and/or glial cells which limit concentrations of neurotrans-
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mitters in the synaptic cleft. ANG-(1–7) does not alter acute
NE neuronal uptake in the hypothalamus of SHR (212).
However, through MAS, ANG-(1–7) induces both MEK1/
2-ERK1/2 and phosphatidylinositol 3-kinase/AKT path-
ways, resulting in increase in NE transporter transcription
and translation (326). This suggests that ANG-(1–7) in-
duces a long-term stimulatory effect on NE uptake by aug-
menting levels of the transporter. In addition to NE,
Stragier et al. (523) showed that ANG-(1–7)/MAS stimu-
lated the release of GABA and dopamine, but not of gluta-
mate, in the rat striatum. In contrast, ANG-(1–7)/MAS
stimulation in the CVLM induces an increase in the release
of glutamate and a decrease in taurine (581). Thus a site-
specific regulation of levels of synaptic neurotransmitters
may be an alternative mechanism by which ANG-(1–7)
contributes to the control of various functions in a range
pathophysiological conditions through MAS.

B. Heart

Effects of ANG-(1–7) in the heart have been reported in a
large number of studies (4, 9, 10, 21, 35, 78, 79, 82, 101,
120–124, 130, 145, 146, 161, 162, 164, 165, 167, 168,
175, 193, 203, 204, 206, 208, 216, 217, 222, 227, 239,
240, 260–262, 277, 303, 311, 313, 317–319, 321, 347,
354, 356, 358, 362, 366, 370, 377, 393, 394, 398, 408,
411, 413, 465, 476, 477, 489, 494, 498, 521, 531, 532,
561, 565, 576, 585–587, 589, 641, 646). Averill et al. (21)
were the first to report ANG-(1–7) immunoreactivity
within myocytes in the heart. This was in line with immu-
noreactivity in blood collected from the canine coronary
sinus (472). More recently, ANG-(1–7) and MAS were
identified in the sinoatrial node, providing the morpholog-
ical basis for the ANG-(1–7) antiarrythmogenic effect
(164). The presence of ACE2 in cardiomyocytes further
supports a local formation of ANG-(1–7) in the heart of
different species (164, 646). It should be pointed out that
other enzymes capable of directly or indirectly forming
ANG-(1–7) are also present in the heart, including prolyl-
oligopeptidase (94) and cathepsin A (262).

1. Coronary vessels

ANG-(1–7) produces vasorelaxation in the coronary vessels
of dogs (53, 54) and pigs (220, 426). In rodents, the peptide
generally has no effects or produces vasoconstriction (288,
371, 393, 474). However, these observations were made
using relatively high concentrations of ANG-(1–7) (nano-
to micromolar range). Recently, using picomolar concen-
trations of ANG-(1–7), Souza et al. (516) were able to de-
tect a significant vasodilator effect of ANG-(1–7) in isolated
hearts from aorta-coarcted rat. Intriguingly, the blunted
ANG-(1–7)-induced vasodilation in hypertensive animals
was rescued by acute or chronic AT1 blockade using losar-
tan. These observations are in keeping with an interaction
of AT1 receptors with MAS (68, 79, 284), which still needs
to be addressed in more detail.

2. Cardiomyocytes

In cardiomyocytes, acute exposure to ANG-(1–7) has no
demonstrable effect on Ca2� transients but promotes NO
release by activating endothelial NO synthase (eNOS) and
nNOS (101, 130). On the other hand, chronic exposure to
ANG-(1–7) or genetic deletion of MAS has significant ef-
fects on Ca2�-handling proteins (217, 476). Transgenic rats
harboring an ANG-(1–7)-producing fusion protein in the
heart show an increased Ca2� transient amplitude, faster
Ca2� uptake, and increased expression of SERCA2 (217).
Cardiomyocytes from Mas�/� mice have a smaller peak
Ca2� transient and a slower uptake of Ca2�, probably due
to the decreased expression of SERCA2 (217). These
changes translated into impaired heart functions in Mas�/�

mice (48, 198, 476). The changes in calcium-handling pro-
teins were paralleled by changes in the NO production ma-
chinery (130). Cardiomyocytes from Mas�/� mice have
normal eNOS protein levels, but a 70% increase in caveo-
lin-3 expression and a decrease in heat shock protein 90
(117, 130). These two alterations may induce a decrease in
eNOS activity because caveolin-3 prevents interactions be-
tween calmodulin and NOS, and heat shock protein 90 acts
as a scaffold protein to recruit protein kinase B (AKT) to the
eNOS complex (602).

3. ANG-(1–7) and cardioprotection

Most data related to ANG-(1–7) or other MAS agonists in
the heart deal with its cardioprotective effects (FIGURE 5)

(117, 168, 216, 223, 465, 477).

The first description of such an effect was made by Ferreira
et al. (168). Low concentrations (220 pM) of ANG-(1–7)
produced a significant reduction of ischemia/reperfusion-
induced cardiac arrhythmias in isolated rat hearts. This was
in contrast to the pro-arrhythmogenic effects of ANG-(1–7)
at 10-fold higher concentrations (393). In keeping with
these observations, De Mello et al. (124) reported a biphasic
effect of ANG-(1–7) on impulse propagation and cardiac
arrhythmias: at 10 nM, an anti-arrhythmogenic effect was
observed (466), whereas at a 10-fold higher concentration,
ANG-(1–7) was pro-arrhythmogenic (124). In transgenic
TGR(A1–7)3292 rats which presented a moderate increase
in circulating ANG-(1–7), a reduction in the duration of
reperfusion cardiac arrhythmias and improved postisch-
emic heart functions were observed (466). The mechanism
of the anti-arrhythmogenic effect of ANG-(1–7) seems to
involve, at least in part, the sodium pump (124).

In addition to influencing cardiac rhythm, ANG-(1–7) has a
significant anti-remodeling effect in different models of car-
diomyopathy. TGR(A1–7)3292 rats exhibit a marked at-
tenuation of isoproterenol-induced cardiac fibrosis (466).

A number of later studies have described anti-remodeling
effects of ANG-(1–7) (82, 117, 161, 177, 216, 223, 229,
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311, 317, 348, 354, 366, 428, 440, 465, 585) and of other
MAS agonists (AVE0991, CGEN-856S) (105, 165, 244,
334, 490, 628). These observations are in line with the
deleterious cardiac effects of the genetic ablation of MAS
in mice (48, 75, 78, 198, 476, 611). Interestingly, even an
acute blockade of MAS with A-779 has been reported to
produce a deterioration of function in isolated mouse
hearts (78).

In contrast to the consistent antifibrotic effects of ANG-(1–
7)/MAS, the picture is less clear for cardiomyocyte hyper-
trophy, although in general antihypertrophic effects have
been described. The pro-hypertrophic effect of isoprotere-
nol is attenuated in ANG-(1–7)- overexpressing TGR(A1–
7)3292 rats (387). Similarly, treatments with ANG-(1–7)
attenuated ANG II-induced cardiac hypertrophy (216).
However, in the DOCA-salt model of hypertension, treat-
ment with ANG-(1–7) attenuated cardiac fibrosis without
interfering with blood pressure or cardiac hypertrophy
(223), whereas the induction of DOCA-salt hypertension in
TGR(A1–7)3292 rats (466) resulted in the attenuation of
hypertension, myocardial fibrosis, and cardiac hypertrophy
(465). An anti-hypertrophic effect of ANG-(1–7) was also
observed in cultured cardiomyocytes treated with ANG II
(177), AVP (177), and endothelin (193).

In contrast to several reports showing a cardioprotective
effect of ANG-(1–7), Velkoska et al. (565) reported a dra-
matic deleterious effect of ANG-(1–7) infusions in SD rats
after 5/6 nephrectomy. However, opposite effects were re-
ported by Li et al. in the mouse (311) and, more recently, Xu
et al. in the rat (610). In their studies, ANG-(1–7) prevented
heart dysfunctions and left ventricular remodeling. Addi-
tional studies are needed to clarify this issue. It would be

interesting, for example, to remove interfering factors such
as the action of ANG-(1–7) on AT1 receptors in this con-
dition (468). In a contrasting report, Zhang et al. (633)
showed that the overexpression of human MAS in rat car-
diomyocytes leads to hypertrophy. In addition to the possi-
bility that the overexpressed receptors might be uncoupled
from the usual signaling machinery activated by endoge-
nous receptors, these data and other studies of ANG-(1–7)
(393) indicate that important differences in signaling may
arise in conditions where levels of MAS or ANG-(1–7) rise
well above physiological concentrations.

C. Blood Vessels

The production of ANG-(1–7) in vascular endothelium was
first described by Santos et al. (471). Its endothelium-depen-
dent vasorelaxation has been reported by many authors.
ANG-(1–7) relaxes the aortic rings of SD (300) and
TGR(mREN2)27 (304) rats, canine (53) and porcine (426)
coronary arteries, the canine middle cerebral artery (174),
piglet pial arterioles (361), feline systemic vasculature
(405), rabbit renal afferent arterioles (437), and mesenteric
microvessels of normotensive (156) and hypertensive (155)
rats. Moreover, ANG-(1–7) potentiates the vasodilator ef-
fect of bradykinin in several vascular beds, including dog
(53) and rat (10) coronary vessels, rat kidney vessels (467),
mesenteric arteries (156), and pancreatic microcirculation
(625).

Although vasodilation is the most well-characterized action
of ANG-(1–7), the ANG-(1–7)/MAS axis also induces an-
tiproliferative (191, 530) and antithrombotic (185, 189)
effects in vasculature. ANG-(1–7) and MAS are expressed

Cardiomyocytes actions

Cardiac actions
Antifibrotic and antitrophic actions
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   reperfusion arrythmias
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•  Improves autonomic

   function

•  Prevents heart

   dysfunction

•  Inhibits oxidative stress

•  Upregulates nitric oxide

    synthase in SHR

•  Protects against cardiac hypertrophy
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•  Prevents cell growth through inhibition

   of MAPK ERK1/2 activity
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FIGURE 5. Effects of ANG-(1–7) in the heart. The effects illustrated in the figure include the ones produced

in coronary vessels, fibroblasts, and cardiomyocytes.
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in VSMCs (530) and platelets (189). The antiproliferative
action of ANG-(1–7) in the vasculature has been demon-
strated in VSMCs, in which ANG-(1–7) reduces the ANG
II-stimulated mitogen-activated protein kinase (MAPK) ac-
tivities of ERK1/2 through an increase in prostacyclin
(PGI2) (530). A concurring result was observed in a rat
stenting model, where ANG-(1–7) treatment produced a
significant reduction in neointimal thickness, neointimal
area, and stenosis (292). In rats with vascular calcification,
ANG-(1–7) restored the decreased expression of lineage
markers in VSMCs, including smooth muscle �-actin,
SM22�, calponin, and smoothelin, and retarded the osteo-
genic transition of these cells by reducing the expression of
bone-associated proteins (525). This antiproliferative po-
tential was also observed in cardiac fibroblasts (354) and
tumor cells (194).

As for antithrombotic effects, experiments performed in
Mas�/� mice demonstrated an increased venous thrombus
size and short bleeding times (189). Changes of an opposing
nature were observed with the administration of an orally
active form of ANG-(1–7), based on ANG-(1–7) inclusion
in cyclodextrin [HP�CD-ANG-(1–7)]. The oral administra-
tion of HP�CD-ANG-(1–7) promotes an antithrombotic
effect that has been associated with an increase in the
plasma concentration of ANG-(1–7) (185). The antithrom-
botic effects of HP�CD-ANG-(1–7) were abolished in
Mas�/� mice (185). This activity was also found in brady-
kinin B2 receptor-deleted mice (Bdkrb2�/�), in which the
MAS antagonist A-779 shortens the time leading up to ar-
terial thrombosis and tail bleeding time (150). MAS-medi-
ated NO release from platelets and increased prostacyclin
seem to mediate these antithrombogenic actions (150, 189).

Most work on the hemodynamic actions of ANG-(1–7)
over the years has been focused on clarifying its effects on
vessels and blood pressure. FIGURE 6 illustrates its main
effects on blood vessels. Interestingly, the vasodilator effect
of ANG-(1–7)/MAS is selective for specific vascular beds,

contrasting with the more widespread vasoconstriction de-
scribed for ANG II/AT1. In normotensive rats, ANG-(1–7)
produced marked changes on regional blood flow, increas-
ing vascular conductance in the mesenteric, cerebral, cuta-
neous, and renal territories. Furthermore, ANG-(1–7) si-
multaneously increases cardiac output (CO) by 30% and
decreases total peripheral resistance (TPR) by 26%. These
opposing changes lead to an absence of substantial changes
in blood pressure (462). Similarly, transgenic rats with a
slight increase in circulating ANG-(1–7) over their lifetime,
TGR(A1–7)3292, present pronounced changes in regional
blood flow, resulting in an increase in vascular conductance
in the kidneys, lungs, adrenals, spleen, brain, testis, and
brown fat tissue. In contrast, Mas�/� mice show a marked
increase in vascular resistance in many territories such as
the kidney, lung, adrenal gland, mesentery, spleen, and
brown adipose tissue. This model also exhibited a parallel
increase in TPR and decreased CO (48).

Many vascular actions of ANG-(1–7) have their effects
through the release of NO. Human endothelial cells express
MAS, through which ANG-(1–7) mediates an activation of
eNOS and NO production via AKT-dependent pathways.
ANG-(1–7) also promotes NO release in Mas-transfected
Chinese hamster ovary cells via the phosphoinositide 3-ki-
nase (PI3K)/AKT pathway (463). Recently, it has been dem-
onstrated that ANG-(1–7) can also activate downstream
components such as the FOXO1 transcription factor, a
well-known negative modulator of the AKT signaling path-
way (568). These results highlight the complex modulatory
effects of ANG-(1–7), which probably involve downstream
effectors that coordinate negative feedback loops through
fine-tuned mechanisms.

Regarding its effects on NO generation, ANG-(1–7) regu-
lates the phosphorylation of eNOS at Ser1177 and Thr495.
In resting conditions, eNOS is phosphorylated on Thr495
and only weakly phosphorylated on Ser1177. The relative
phosphorylation state of Ser1177 and Thr495 determines

Endothelial and antithrombotic actions
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•  Nitric oxide release through AKT-eNOS activation

•  FOXO1 activation

•  Counterregulation of ANG II signaling, inhibiting
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•  Anti-thrombogenic effects through NO and
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FIGURE 6. Main known effects of ANG-

(1–7) in blood vessels.

SANTOS ET AL.

520 Physiol Rev • VOL 98 • JANUARY 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 4, 2022.



the activity of eNOS in endothelial cells (176). ANG-(1–7)
increases Ser1177 phosphorylation while simultaneously
decreasing the phosphorylation of Thr495; both posttrans-
lational effects are blocked by the MAS antagonist A-779
(461). Subsequently, it was demonstrated that the ANG-(1–
7)-mediated activation of PI3K/AKT counteracts the nega-
tive effects of ANG II on insulin signaling in endothelial
cells and is involved in the survival and proliferation of
CD34(�) cells from diabetic individuals (536). In vivo, this
pathway seems to mediate the improvement of insulin sen-
sitivity induced by ANG-(1–7) in liver, skeletal muscle, and
adipose tissue from fructose-fed rats (384).

In human endothelial cells, ANG-(1–7) also counterregu-
lates ANG II signaling, blunting the phosphorylation of
c-Src and ERK1/2 as well as the activation of NAD(P)H
oxidase by ANG II. This modulatory effect is mediated by
the phosphorylation of SHP-2, preventing ANG II-induced
SHP-2 dephosphorylation and promoting interactions be-
tween SHP-2 and c-Src. A-779 inhibited these actions, dem-
onstrating that these effects are mediated through MAS
(463). In keeping with this concept, the impairment of en-
dothelial function in two different genetic backgrounds
with MAS deficiencies, C57Bl/6 and FVB/N, indicates a
crucial role of MAS in endothelial functions through its
effects on the generation and metabolism of NO and ROS
(430, 611). In the FVB/N background, endothelial dysfunc-
tion is associated with an increase in blood pressure (611),
whereas in C57BL/6 mice, no alteration of blood pressure
has been reported (430). A worsening of 2K1C Goldblatt
hypertension has also been observed in Mas�/� mice (432).
Conversely, short-term infusions of ANG-(1–7) improve
endothelial functions, significantly increasing the hypoten-
sive effects of administering intra-arterial acetylcholine in
normotensive rats (151). In diet-induced obesity mice,
chronic treatments with ANG-(1–7) induced a significant
improvement in endothelial functions and reversed the
elevated aortic expression of the NAD(P)H oxidase sub-
units p22(phox) and p47(phox) and plasma TBARS (38).
Similar results were obtained in diabetic rats, in which
the carotid blood flow was restored by chronic treatment
with ANG-(1–7), probably through the MAS-mediated
antioxidant effects that oppose AT1-activated NAD(P)H
oxidase (420). Moreover, ANG-(1–7) also negatively
regulates the ANG II-induced expression of VCAM-1 by
attenuating the nuclear translocation of NF�B in endo-
thelial cells (630).

The actions of ANG-(1–7) in human vasculature still re-
quire investigation to determine whether the potent vasodi-
lator effect described in rodents applies. Although an initial
examination focused on human vessels led to some contro-
versy, the conflicting results could be due to methodological
divergences, or a racial or vascular territory selectivity of
ANG-(1–7). The infusion of ANG-(1–7) in patients chron-
ically treated with ACE inhibitors had no effect on forearm

blood flow, whereas the infusion of bradykinin produced a
noticeable vasodilation (114). This observation was taken
as evidence that ANG-(1–7) played no role in the hemody-
namic effects of ACE inhibitors. However, this did not con-
sider the fact that ACE inhibition significantly increases
circulating levels of ANG-(1–7), which means that using a
MAS antagonist rather than ANG-(1–7) would have been
more suitable to evaluate the peptide’s effects on blood
flow. Similar negative results were obtained in the forearm
blood flow of normotensive patients, in which ANG-(1–7)
did not alter vasodilation produced by bradykinin infusion
(596). In contrast, Sasaki et al. (488) observed a dose-de-
pendent vasodilation in the forearm circulation in normo-
tensive subjects and patients with essential hypertension.
Ueda et al. (548) similarly reported a dose-dependent po-
tentiation of bradykinin vasodilation by ANG-(1–7) in nor-
motensive forearm resistance vessels of normotensive
healthy men, which is in keeping with the well-known bra-
dykinin-potentiating activity of ANG-(1–7) described in
animal models (10, 53, 156, 467). An attenuation of the
vasoconstrictor effect of ANG II, but not of NE, by ANG-
(1–7) was described in the forearm of normotensive patients
as well as in mammary arteries in vitro (451, 488). ANG-
(1–7) also antagonized ANG II in renal vessels in vitro,
but does not appear to have a pronounced effect in nor-
mal physiological regulation of renal vascular function in
vivo (450). More recently, Van Twist et al. (560) ob-
served a significant dose-dependent increase in blood
flow to the kidney during intrarenal infusions of ANG-
(1–7) in hypertensive patients. Interestingly, like the ob-
servation made in rat renal vessels (555), this effect was
weakened in patients on a low-salt diet, probably because
this diet leads to an increase in circulating angiotensin
peptides including ANG-(1–7) (282). The same authors
(560) demonstrated that the effect of ANG-(1–7) infu-
sion on renal blood flow was also reduced in stenotic
kidneys. Mendonça et al. (359) have recently demon-
strated that ANG-(1–7) significantly attenuates ANG II-
induced vasoconstriction in human mammary arteries
from patients submitted to coronary revascularization,
probably through direct effects on smooth muscle cells,
since this action was not abolished by A-779, PD123177,
or endothelium removal.

As discussed here there are numerous MAS-mediated ef-
fects of ANG-(1–7) in blood vessels. Here the ANG-(1–
7)/MAS axis clearly acts as an important counterregula-
tory arm within the RAS. However, further studies are
required to elucidate the complex interactions between
RAS receptors, peptides, and enzymes in the vasculature.

D. Kidney

ANG-(1–7) has many well-established effects in the kidney.
Since the initial reports, the complexity of the vascular and
nonvascular actions of ANG-(1–7) in this organ have been
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recognized. They appear to be highly dependent on experi-
mental conditions, gender, species, the nephron segment,
and hydroelectrolyte status (83, 86, 131, 474, 508, 643).
For example, in water-loaded rats, ANG-(1–7) produces a
potent antidiuretic effect (469), while in baseline condi-
tions, natriuresis or an absence of a clear effect has been
reported (see TABLE 1). At least some of the controversial
effects of ANG-(1–7) in the kidney may be due to an in-
volvement of AT1 and AT2 in its actions (293, 295, 474).
For instance, in water-loaded rats, the antidiuretic effects of
ANG-(1–7) could be blocked by pretreatment with the AT1
antagonist losartan (25). An involvement of non-angioten-
sin receptors can also explain the variability of its kidney
effects. For example, evidence for a participation of AVP V2
receptors in distal tubular cells was obtained by Magaldi et
al. (337). In these cells, ANG-(1–7) produces a marked
increase in cAMP. Interestingly, pretreatment with A-779
in this preparation abolished the effect of AVP on water
absorption, while pretreatment with an AVP antagonist
abolished the effects of ANG-(1–7). However, when the
antagonist was added on top of the AVP or ANG-(1–7)
effects, no cross-inhibition was observed. Yet as expected,
A-779 reversed the effects of ANG-(1–7), and the AVP an-
tagonist reversed the effects of AVP. Whether this phenom-
enon is due to a cross-internalization of MAS and AVP V2
receptors induced by the antagonists or crosstalk between
the signaling mechanisms remains to be clarified.

TABLE 1 lists most of the known actions of ANG-(1–7) in
the kidney, illustrating its complexity and unpredictability
in this organ (28, 33, 34, 36, 40, 41, 59, 60, 76, 77, 128,
129, 132, 196, 202, 218, 238, 245, 251, 256, 257, 266,
271, 278, 294, 320, 342–344, 378, 391, 400, 408, 453,
478, 480, 495, 499, 512, 519, 520, 524, 534, 552–554,
557, 558, 564, 597, 615, 631, 638, 639, 644, 645).

1. Vascular effects of ANG-(1–7) in the kidney

The first direct demonstration of a vasoactive activity of
ANG-(1–7) in the kidney was provided by Ren et al. using
microperfused rabbit afferent arterioles (437). ANG-(1–7)
produced a NO-dependent vasodilation that was abolished
by A-779 but not by AT1 (L-158809) or AT2 (PD-123319)
antagonists. The blockade of cyclooxygenase had no effect
on ANG-(1–7) action (437). Evidence for vasodilator ac-
tion in vivo was provided by Sampaio et al. using fluores-
cent microspheres (462). Other approaches did not lead to
any direct effects of the heptapeptide on the renal vascula-
ture in vivo despite in vitro activity (TABLE 1). This latter
observation has led to skepticism regarding the biological
significance of ANG-(1–7) in vivo (57). However, more
recent studies in humans clearly indicate that ANG-(1–7)
promotes vasodilation in human kidneys, a phenomenon
that is influenced by the Na� balance (560) or by the pres-
ence of renal artery stenosis (559).

E. Lung

Although little is known concerning the physiological roles
of the ACE2/ANG-(1–7)/MAS axis in the lung, it appears to
be critically involved in pathophysiological processes in this
organ. ANG-(1–7) has been reported to reduce lung inflam-
mation, fibrosis, and pulmonary arterial hypertension (92,
310, 333, 338, 364, 445, 449, 576). MAS has been detected
in the epithelium and bronchial smooth muscle, suggesting
sites where the beneficial actions of ANG-(1–7) may occur
(148, 338). Anti-inflammatory actions of ANG-(1–7) were
first described in a model of allergic asthma by El-Hashim et
al. (148). The authors demonstrate that treatments with
ANG-(1–7) resulted in the inhibition of the ovalbumin-in-
duced increase in total cell counts, eosinophils, lympho-
cytes, and neutrophils as well as significantly reductions in
ovalbumin-induced perivascular and peribronchial inflam-
mation, fibrosis, and goblet cell hyper/metaplasia. These
effects were mediated via MAS and blocked by A-779.
ANG-(1–7) further reduced ovalbumin-induced increases
in phosphorylation levels of ERK 1/2 and I�B-� and also
inhibited the phytohemagglutinin-stimulated proliferation
of human peripheral blood mononuclear cells (HPBMC). In
chronic asthma, ANG-(1–7) triggered the beneficial atten-
uation of three major characteristics of this disease: lung
inflammation, airway remodeling, and hyperresponsiveness
(338). Similar effects were achieved in a model using the
ANG-(1–7) mimetic compound AVE 0991 (449). The mo-
lecular mechanisms involved in these anti-inflammatory ac-
tions include a reduction of NF�B-related signaling, reduc-
tions of transforming growth factor (TGF)-�, and cytokine
modulation (reducing IL-6 and IL-1� and increasing IL-10)
(312, 363) (see FIGURE 7). The pulmonary activity of ACE
and ACE2 activity becomes imbalanced in acute respiratory
distress syndrome, which is characterized by an enhance-
ment in ACE activity, the main pathway to ANG-(1–7)
degradation, combined with a reduction in the activity of
ACE2, which mainly generates it (598a). Experimental
models of acute lung injury have highlighted an important
protective role for ANG-(1–7). Infusions protected rats
from acute lung lesions after oleic acid administration as
seen through a decrease in lung edema, myeloperoxidase
activity, histological lung injury score, and pulmonary vas-
cular resistance (280). Similar results were observed in a
pulmonary injury model based on lipopolysaccharide (LPS)
(92). ANG-(1–7) treatment also decreases the severity of
lung damage and inflammation induced by a combination
of acid aspiration and high stretch ventilation. Moreover,
continuous infusions of ANG-(1–7) reduced lung fibrosis 2
wk after acid aspiration injury, indicating its potential use
in therapies for acute respiratory distress syndrome (ARDS)
(626). The signaling mechanisms underlying the protective
effects of the ACE2/ANG (1–7)/MAS axis against lung fi-
broblast migration and lung fibrosis seem to involve the
inhibition of the NOX4-derived ROS-mediated RhoA/
Rock pathway (363). In addition to its protective actions in
pulmonary inflammatory progression, ANG-(1–7) also reg-
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Table 1. Renal actions of ANG-(1–7)

Species ANG-(1–7) Effects Condition Reference Nos.

Rat Antidiuresis Water loaded 469

Rat Natriuresis/diuresis SD isolated kidneys 128

Rat *Biphasic dose-dependent effect on fluid
absorption (11 pM) (210 nM)

Isolated rat proximal straight tubule 196

Rat Natriuresis/diuresis SD isolated kidneys 251

Rat Transient natriuresis/diuresis Hypertensive 33

Rat Antidiuresis Water loaded 480

Rat Natriuresis/diuresis Na-repleted anesthetized rats with
denervated kidney and rat
proximal tubules in vitro

238

Rat *Biphasic dose-dependent effect on fluid
absorption (1 10�8 M) (2 10�12 to
10�10 M)

Anesthetized Wistar rats 553

Rat Antidiuresis Water loaded 25

Rat Natriuresis/diuresis Anesthetized rat 552

Dog Natriuresis/diuresis Anesthetized dogs 245

Pig Modulation of Na�-ATPase
ouabain-insensitive

Cortex homogenates and
basolateral membranes from
adult pig kidney

76, 294

Rabbit Vasodilation Isolated afferent arterioles 437

Rat 1Oxidative stress generation Production of TBARS in rat kidneys 218

Rat ANG II-mediated vasoconstriction Interlobular arteries, afferent and
efferent arterioles

557

Rat Blunted the ANG II–induced decrease in
Na� excretion

Normotensive anesthetized rats 59

Rat 1 RBF Urethane-anesthetized rats, using
fluorescence microspheres

462

2 RVR

Rat Inhibition of ANG I and ANG II-mediated
norepinephrine release in kidney

Isolated kidney 520

Mouse MAS-dependent antidiuretic effect Water loaded 479

Rat 1Water permeability involving
vasopressin V2 receptors

Normotensive rat IMCD 337

Rat 1 NE release and inhibition of ANG I
and ANG II-mediated NE release in
kidney

Isolated kidneys of SHR 519

Rat No antiproteinuric effect Adriamycin-induced proteinuria 554

Rat 2 Proteinuria and 2 histological
indexes of renal damage

L-NAME-induced proteinuria in SHR 34

Rat 2 TGF–�1 Proximal tubular cells 524

2 ANG II-stimulated phosphorylation of
p38, ERK 1/2, and JNK

Rat 2 Urine flow [TGR(A1–7)3292] rats with a
chronic 2.5-fold increase in
plasma ANG-(1–7)

166

1 Urinary osmolality compared with SD
control

Rat 2 ANG-II-induced constriction of isolated
renal arteries

Isolated perfused kidneys, intravital
microscopy in vivo under
anesthesia, electromagnetic flow
probe in freely moving rats

555

No effects on ANG-II-induced
constriction of glomerular afferent
and efferent arterioles in vivo

No effect on ANG-II-induced renal blood
flow reduction in vivo

Continued
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Table 1.—Continued

Species ANG-(1–7) Effects Condition Reference Nos.

Rat Vasodilation and 2 renal vascular
responsiveness to ET-1, NE, and ANG
II in SHR

SHR and diabetic SHR 30

1 Sodium excretion

2 Proteinuria

2 Renal NOX-mediated oxidative stress

Rat 1 Diuresis in late gestation Pregnant and virgin rats 271

2 Diuresis in virgin rats

1 AQP1 (virgin)

2 AQP1 (pregnant)

Rat 2 Effects of ovariectomy on renal wrap-
induced renal pathology
(tubulointerstitial fibrosis and
glomerulosclerosis)

Ovariectomized renal wrap model of
hypertension

266

Rat 2 Renal function Streptozotocin (STZ) injection-
induced diabetic rats

495

1 TGF-�1, ACE, and AT1 receptor

Sheep Minimal effects on basal GFR, renal
plasma flow, and Na� excretion in
males

Prenatal betamethasone-exposed
ewes and rams

534

1 Na� excretion in vehicle-treated
females when compared with
betamethasone-exposed females

Human 1 Growth-stimulatory effects in human
mesangial cells

Cultured human mesangial cells 643

Pig 2 Profibrotic effects of high glucose LLC-PK1 proximal tubular cells 199

Mice 2 Urine volume and fractional sodium
excretion

Mas knockout mice 423

1 Microalbuminuria

2 Renal blood flow in Mas-knockout
mice

Mice 2 NF-�B activation and proinflammatory
cytokines in Mas knockout

Unilateral ureteral obstruction
(UUO) model in Mas knockout
mice

149

Rat A-779 infusion reduced RPF 2-Kidney-1-clip model in [TGR
(A1–7)3292] rats

60

Rat 2 Glomerulosclerosis Monoclonal anti-Thy-1 antibody, OX-
7 induced glomerulonephritis

630

Mice Did not alter FITC-inulin clearance or
urinary albumin excretion, increased
relative mesangial area

Mouse model of chronic kidney
disease (CKD)

132

Rat 2 Proteinuria, renal collagen content,
blood urea nitrogen, and dyslipidemia

STZ diabetic model 512

Rat 2 NADPH oxidase activity SHR-STZ combined model 129

1 Catalase and PPAR-gamma

Rat 2 Proteinuria, and structural
alterations in the kidney (1
glomerular nephrin, 2 IL-6, TNF-�,
and NF-�B)

Salt-loaded SHRSP 207

Rat 1 Plasma ANG-(1–7) correlated with
glomerular sclerosis and 2 renal
perivascular collagen deposition

SHR given an AT1 receptor blocker 257

Rat 1 ERK1/2 in a MAS/cAMP/PKA/
MEK-dependent way

SD mesangial cells 320

Continued
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Table 1.—Continued

Species ANG-(1–7) Effects Condition Reference Nos.

Rat 2 �-SMA, vimentin, E-cadherin, TGF-�1,
and fibronectin

High glucose-induced epithelial to
mesenchymal transition (EMT)
NRK-52E cells

637

2 ERK, p38 phosphorylation

Mice 2 Neutrophil influx and CXCL1/KC
chemokine and renal damage

AVE0991 treatment in renal
ischemia and reperfusion (I/R)
injury in Mas knockout mice

28

2 Serum creatinine

Rat 2 Triglyceridemia Zucker diabetic fatty rats (ZDF) 202

2 Proteinuria

2 Renal fibrosis

1 Creatinine clearance

Rat 2 ERK1/2 and TGF-�1 phosphorylation Cultured rat renal mesangial cells
(MCs)

615

Mice 1 RVR and 2 RBF in Mas-knockout
mice

Mas knockout mice 48

Sheep 2 RBF ANG-(1–7)–treated adult,
uninephrectomized rams exposed
to betamethasone before birth

40

2 Basal sodium excretion

Rat 2 Basal sodium excretion Normal, low and high salt intake
rats

400

2 Diuresis and natriuresis in high-salt
intake

Rat 2 JHCO3
� [endogenous ANG-(1–7)] In vivo proximal tubules 77

Biphasic dose-dependent effect on
JHCO3

�, mediated via NHE3

Mice AVE0991 treatment 2 renal injury and
proteinuria

Adriamycin (ADR)-induced
nephropathy in Mas-KO mice

507

No differences in adriamycin-induced
nephropathy in Mas-knockout or wild-
type mice

2 Losartan reduction in renal injury in
Mas knockout

Mice 2 Urinary albumin excretion Diabetic nephropathy in db/db
mice

378

2 NADPH oxidase activity

2 Inflammation in perirenal adipose
tissue

Rat 1 RBF in male and female, A-779
blocked this response only in female

Male and female Wistar rats 378

Human 2 LDL-induced lipid deposition Human mesangial cells (HMCs) 256

2 LDLr-SREBP2-SCAP

Dual effect on TGF-�1

Human 2 Podocyte injury Podocytes incubated with serum
from preeclamptic and normal
pregnant women

539

2 MAPK (p38, ERK1/2, and JNK)
phosphorylation

Rat No effect on glomerular damage Uni-nephrectomized fawn-hooded
hypertensive rat

564

Rat A-779 blockage 1 urine flow rate and
sodium excretion in males, but not in
females

Anesthetized male and female rats 344

Sheep 2 8-Isoprostane excretion Male and female adult sheep
preexposed to antenatal
betamethasone

41

Continued
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ulates cell survival, inhibiting alveolar epithelial cell (AEC)
apoptosis, a critical event that initiates and propagates lung
fibrotic disease. It decreases AEC apoptosis through path-
ways including the inhibition of JNK activation (312), re-
duction of endoplasmic reticulum (ER) stress-induced apo-
ptosis (549), inhibition of LPS-induced ADAM17 shedding
activity (333), and the upregulation of MAPK phospha-
tase-2 (219). Altogether, these findings indicate that this
peptide may hold therapeutic potential in the treatment of
lung fibrosis.

Since the demonstration of the beneficial effects of the
ACE2/ANG-(1–7)/MAS axis in pulmonary arterial hyper-

tension (PAH) by Shenoy et al. (497), emerging evidence has
suggested that ANG-(1–7) has a protective role in this con-
dition (498). Its importance in PAH comes from the obser-
vation that in patients with PAH from congenital heart
disease, the peptide is reduced in plasma (110). The signif-
icant smaller response shown by TGR(mREN2)27 rats than
SD to chronic hypoxia was related to the increased expres-
sion of ACE2 in the lung, leading to ACE2 activity and
especially to markedly increased lung ANG-(1–7) concen-
trations and MAS expression in this strain (236). Interest-
ingly, treatments with DIZE, a putative ACE2 activator,
protect rats from monocrotaline (MCT)-induced PAH and
reverse the imbalance in the autonomic nervous system

Table 1.—Continued

Species ANG-(1–7) Effects Condition Reference Nos.

Human Vasodilation in contralateral stenotic
kidneys, but reduced in stenotic
kidneys

Human kidneys with renal artery
stenosis

559

Rat 2 Glomeruli sclerosis STZ rats 638

2 Oxidative stress Rat mesangial HBZY-1 cell line
exposed to high-glucose

2 Cell proliferation,

2 Collagen IV, TGF-�1, VEGF, NOX4,
p47phox, PKC�, and PKC�1

2 Smad3 phosphorylation

Mice 2 Kidney injury Type 1 diabetic Akita mice 499

2 Urinary albumin/creatinine ratio,
glomerular hyperfiltration, renal
hypertrophy, fibrosis, and tubular
apoptosis

2 Renal oxidative stress

Mice 1 Renal injury in Mas-knockout mice
[endogenous ANG-(1–7) protection]
and in high doses of ANG-(1–7)

Mice with unilateral ureteral
obstruction

644

Mice 2 Glomerular damage db/db mice 408

2 Renal oxidative stress

Rat 2 Renal apoptosis and fibrosis Unilateral ureteral obstruction in
SD rats

278

2 TGF-�1/Smad

Rat Dose-dependent increase in RBF Ovariectomized female Wistar-rats
treated with ANG-(1–7)

453

Rat In presence of AT1 and AT2 blockade,
there was a tendency for an increase
in RBF/kidney weight by A779 (P �

0.08)

Anesthetized male and female
Wistar rats

343

Human Intrarenal infusion of ANG-(1–7) 1 RBF Hypertensive patients with
multifocal renal artery
fibromuscular dysplasia

558

Rat Significant increase in RBF Hemorrhagic shock model in
Wistar rats

342

Rat 2 Renal injury (fibronectin and
plasminogen activator inhibitor-1)

SD nephrectomized rats 610

2 Serum creatinine, 2 proteinuria

SD, Sprague-Dawley rats; IMCD, inner medullary collecting duct; SHR, spontaneously hypertensive rats; SHRSP, stroke-prone spontaneously

hypertensive rats; STZ, streptozotocin-induced diabetic nephropathy; NE, norepinephrine; ET1, endothelin-1; AQP1, aquaporin 1; NRK-52E, rat

renal cell line; �-SMA, �-smooth muscle actin; 2K1C, two-kidney one-clip Goldblatt hypertensive rats; RPF, renal plasma flow; RBF, renal blood

flow; RVR, renal vascular resistance; JHCO3
�, bicarbonate reabsorption; NHE3, Na�/H� exchanger 3; LDLr-SREBP2-SCAP, low-density

lipoprotein receptor-sterol regulatory element binding proteins 2-SREBP cleavage activating protein; LLC-PK1, porcine kidney cells.
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modulation elicited by PAH, increasing parasympathetic
and decreasing sympathetic cardiac activation (445). Al-
though the administration of ANG-(1–7) and cyclic ANG-
(1–7) immediately after induction of PAH in rats demon-
strated no superiority of the MAS agonists compared with
conventional treatments, the route of administration as well
as the high doses used, which may have effects via AT1
receptors, suggest caution in interpreting the authors’ con-
clusions (51). On the other hand, these results are important
in designing future evaluations of the therapeutic potential
of ANG-(1–7) for PAH treatment. Remarkable recent re-
sults from the Touyz group demonstrated that ANG-(1–7)
negatively modulates the pro-inflammatory signaling of en-
dothelin-1, a powerful pro-fibrotic mediator and vasocon-
strictor that is elevated in PAH (255). This protective effect
involves a crosstalk between MAS and the ETB receptor.
These data identify the endothelin system as a novel molec-
ular mechanism involved in the putative protective actions
of ANG-(1–7) in PAH and illustrate the need for more
studies to clarify the therapeutic usefulness of MAS agonists
in this area.

F. Endocrine System

In addition to its actions directly related to the cardiovas-
cular system, ANG-(1–7) has widespread effects in the en-
docrine system. The majority of these actions can also in-
fluence the role of the RAS in cardiovascular, metabolic,
and electrolyte control. As discussed below, ANG-(1–7) has
physiological actions in the major endocrine organs and
plays a modulatory role in metabolic disorders such as dia-

betes and metabolic syndrome. FIGURE 8 illustrates the ben-
eficial effects of ANG-(1–7) in diabetes (35, 36, 47, 71, 129,
139, 147, 202, 345, 377, 438, 447, 481–483, 486, 510).

RAS components have been identified in both the endocrine
and exocrine pancreas. Angiotensinogen, renin, AT1 and
AT2 receptors, ACE, and ACE2 are all expressed in this
organ (74, 88, 305, 306, 542). The pancreatic RAS appears
to be important in pathological conditions such as pancre-
atitis, hypoxia, inflammation, and endocrine pancreatic tu-
mors. The expression of both ANG-(1–7) (88) and ACE2
(542) has been established in the rat and canine endocrine
pancreas as well as in the developing mouse pancreas,
where ACE2 and MAS proteins were similarly localized in
cytoplasm throughout the periods of gestation that were
evaluated (E12.5 to E18.5) (580). ANG-(1–7) modulates
islet function through the regulation of blood flow and in-
hibition of fibrosis by stimulating eNOS expression and NO
release (625). Islet blood flow is critical for endocrine pan-
creas function, and it is important to note that pancreatic
islets have a wide capillary network. Each �-cell neighbors
at least one islet endothelial cell, which delivers signals for
islet cell development and for adult �-cell proliferation
(291). It has been reported that ANG-(1–7) attenuates
palmitate-induced apoptosis in islet endothelial cells, de-
creasing phosphorylation levels of p38 MAPK and JNK and
preventing palmitate-induced decreases in the PI3K/AKT/
eNOS pathway (625). In islets isolated from neonatal
mouse pancreas, treatment with ANG-(1–7) augmented
mRNA levels of insulin and the pancreatic progenitor
marker Ngn3 (584). These effects were attenuated by co-

Pulmonary actions

Lung signalling

•  Decreases airway hyperresponsiveness

•  Improves oxygenation and reduces cellular

   infiltrate in experimental Acute Respiratory

   Distress Syndrome (ARDS)

•  Attenuates pulmonary hypertension immune

   system actions

•  Reduces pro-inflammatory cytokines

•  Increases anti-inflammatory cytokines

•  Decreases NF-kB and ERK phosphorylation

•  Inhibits LPS-induced JNK activity and ADAM17 shedding

   activity

•  Reduces lung fibrosis inhibiting the MAPK/NF-kB pathway

•  Prevents JNK phosphorylation and apoptosis of alveolar

   epithelial cell (AEC)

•  Activates JNK-selective phosphatase MKP-2

•  Inhibits NOX4-derived ROS-mediated RhoA/Rock pathway

FIGURE 7. Effects of ANG-(1–7) in the lung. Most of the known effects of ANG-(1–7) in the lungs are related

to inflammation.
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treatment with A-779, suggesting that ANG-(1–7), via
MAS, stimulates the differentiation of pancreatic progeni-
tors into insulin-producing cells (584). Increased plasma
and pancreatic levels of ANG-(1–7) and increased ACE2
expression were observed in a murine model of severe acute
pancreatitis, suggesting that the ACE2/ANG-(1–7)/MAS
axis participates in the pathogenesis of severe acute pancre-
atitis (322, 588). Endogenous ACE2 seems to have a key
role in the adaptive �-cell hyperinsulinemic response, as
seen in a diet-induced diabetes type 2 model, in which �-cell
mass and proliferation were significantly reduced in
ACE2-/y mice compared with controls (502).

In addition to its effects on acute pancreatic conditions, the
protective axis of the RAS, ACE2/ANG-(1–7)/MAS also

has beneficial modulatory effects in chronic metabolic dis-
eases such as diabetes and metabolic syndrome. In these
conditions, the triad insulin resistance/hyperglycemia/ANG
II is intimately involved in the pathogenesis of target organ
damage (49, 73). The main triggers for the development of
vascular complications are endothelial dysfunction, inflam-
mation, and proliferation of VSMC. High levels of ANG II
and hyperglycemia form a self-reinforcing positive feed-
back loop that accelerates vascular damage. Like other
growth factors, insulin stimulates the MAPK pathway, and
the stimulatory cascade starts with the phosphorylation of
IRS and/or Shc proteins that interact with the Grb2 protein.
It is constitutively associated with the SOS protein, which
sequentially activates Ras, a small G protein. In turn, Ras
triggers the sequential phosphorylation of the MAPK cas-
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FIGURE 8. Protective effects of ANG-(1–7) on diabetes. ANG-(1–7) improves insulin signaling, increasing

AKT phosphorylation, which is a key event for GLUT translocation to membrane and glucose uptake. This effect

on AKT is also related to the increase in nitric oxide release and vasodilation. In addition to the anti-inflammatory

and antioxidative properties, these effects lead to the reduction in microcapillary damage and in the vascular

damage. Together, these actions result in clinical benefits, including reduction in cardiomyopathy and nephrop-

athy, decrease in peripheral insulin resistance, protection against eye microcirculation damage, and retinop-

athy as well as acceleration in wound dermal repair.
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cade, leading to cell proliferation and differentiation (350).
The responses of ANG II in vascular cells are mediated by
various and complex effector systems of the plasma mem-
brane, such as phospholipases (A, C, and D), adenylyl cy-
clase, PKC, and ion channels, which are activated in con-
junction with a number of microdomain proteins, mainly
adapters. These proximal pathways lead to the activation of
Ras/MAPK/ERK and JAK/STAT cascades which amplify
the signal and extend it to the nucleus by regulating gene
expression and stimulating cell proliferation (350). In addi-
tion, ANG II stimulates TGF-�, an important mediator of
collagen formation, extracellular matrix (ECM) deposition
and fibrosis, all of which are involved in nephropathy. Hy-
perglycemia enhances the vasoconstrictive and proliferative
actions of ANG II, increasing vascular hyperplasia and the
progression of diabetic nephropathy (49). On the other
hand, ANG-(1–7) has protective actions on vascular func-
tions, increasing the generation of NO and inhibiting both
vascular proliferation and inflammation. Intracellular path-
ways activated by ANG-(1–7) are opposed to those stimu-
lated by ANG II. The antiproliferative effects of ANG-(1–7)
on VSMC are associated with inhibitory activity on MAPKs
ERK1/2 (p44/42 MAPK) and p38 (530, 601).

An essential pathway in insulin signaling is PI3K/AKT.
ANG II, via the AT1 receptor, inhibits the protective effects
of insulin in the vasculature, interfering with the PI3K/AKT
cascade and reducing NO availability while also reducing
GLUT translocation and glucose transport (517). ANG-(1–
7), on the other hand, induces the in vivo activation of
GSK3�, the downstream target of AKT, in liver and skeletal
muscle (385). It stimulates the phosphorylation of crucial
insulin signaling mediators (AKT, GSK3�, and AS160) in
liver, skeletal muscle, and adipose tissue (384). Chronic
ANG-(1–7) treatment restored IR/IRS-1/PI3K/AKT activa-
tion, which was decreased in fructose-fed rats, a model of
metabolic syndrome. Additionally, ANG-(1–7) ameliorates
insulin resistance in this model (205). It was also demon-
strated that a high sucrose intake in rats is associated with
increased ACE2 and ANG-(1–7) levels in adipose tissue,
suggesting a modulatory role of this axis under altered met-
abolic conditions (96). In TGR(A1–7)3292 rats, increased
ANG-(1–7) levels enhanced glucose tolerance, insulin sen-
sitivity, and insulin-stimulated glucose uptake and de-
creased levels of triglycerides, cholesterol, and abdominal
fat mass, despite normal food intake (483). Moreover, the
elevated levels of ANG-(1–7) protected the rats against met-
abolic stress induced by a high-fat diet by decreasing the
proinflammatory molecules IL-1� and COX-2 in adipose
tissue (485). Similar results were observed by Santos et al.
(485) and Mario et al. (346), also suggesting crosstalk be-
tween ANG-(1–7) and sirtuins, particularly, SIRT1, whose
levels rise in the adipose tissue of mice on a high-fat diet
which are treated with ANG-(1–7) (346). In these mice, the
oral administration of ANG-(1–7) improved insulin sensi-
tivity and glucose tolerance and lowered plasma levels of

fasting glucose and lipids (346). These effects were associ-
ated with an increase in GLUT4 and AMPK/FOXO1/per-
oxisome proliferator-activated receptor gamma (PPAR�)
expression in adipose tissue (346). ANG-(1–7) and MAS
are also essential in mediating the endothelium-dependent
relaxation response induced by perivascular adipose tissue
(302). MAS deficiency alters the response of adipocytes to
insulin and decreases the expression of PPAR� in adipose
tissue, which is accompanied by a lower expression of
acetyl-CoA carboxylase and lower amounts of fatty acid
synthase, which are the target enzymes of PPAR� (346). Oh
et al. (401) showed that the effect of captopril in body
weight decrease was partly related to ANG-(1–7)-stimu-
lated NO release, since this action was attenuated by pre-
treatment with A-779 as well as by both PI3K and eNOS
inhibitors. Interestingly, Gupte et al. (230) demonstrated
that sex differences in the development of obesity-associ-
ated hypertension are related to the ACE2-mediated regu-
lation of the ANG II/ANG-(1–7) balance. Male mice exhib-
ited obesity hypertension associated with enhanced ANG
II/AT1 effects, whereas the protection of female mice
against obesity hypertension was abolished by the MAS
antagonist A-779.

1. Female reproductive system

The presence of ANG-(1–7) in the ovary was initially de-
scribed by Costa et al. in 2003 (100). These authors also
were the first to suggest an involvement of the ANG-(1–7)
peptide in pre- and postovulatory events, demonstrating
higher levels of ANG-(1–7) in the proestrus and estrus as
well as in equine chorionic gonadotropin (eCG)-treated rats
(254). Later, the same group demonstrated that the ACE2/
ANG-(1–7)/MAS axis is fully expressed in rat ovaries (419)
and in all stages of follicular development in humans (436).
ANG-(1–7) also plays a role in the ovulatory process, stim-
ulating estradiol production and enhancing ovulatory effi-
ciency. The specific ANG-(1–7) antagonist A-779 blocked
these effects (569). Additionally, ANG-(1–7) promotes mei-
otic resumption in follicle-enclosed oocytes (FEOs), and
gonadotropins upregulate the ACE2/ANG-(1–7)/MAS
axis. A-779 reduced the percentage of germinal vesicle
breakdown in luteinizing hormone (LH)-stimulated FEOs,
suggesting that ANG-(1–7) participates in oocyte matura-
tion as a gonadotropin intermediate (254). In addition to
this action in ovaries, the expression of ANG-(1–7) in rat
longitudinal myometrium and uterine serosa may indicate
that the peptide is important for muscle physiology (563).
Interestingly, ovarian steroids are not required for the en-
dometrial expression of ANG-(1–7) in rats, since it remains
abundant in ovariectomized animals. However, estrogen
and progestin may modulate the distribution pattern of
ANG-(1–7) in endometrial glands, where this peptide par-
ticipates in the regulation of the endometrial response to
ovarian steroids (563).
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The ACE2/ANG-(1–7)/MAS axis is also differentially ex-
pressed during follicular development in cattle (27). ACE2
was upregulated in the granulosa cells of the largest follicles
(F1) during and after the follicular deviation. MAS was up-
regulated in granulosa cells of the second-largest follicles (F2)
after the establishment of follicular deviation, while its expres-
sion increased in F1 in which atresia had been induced, sug-
gesting that MAS may be involved with the establishment of
follicular dominance (27).

There is also evidence indicating that ANG-(1–7) plays an
important role in pregnancy. In humans, ANG-(1–7) plas-
matic and urinary levels increase during pregnancy, indicat-
ing that this peptide may have an important function in
adaptations during gestation. Remarkably, lower concen-
trations of maternal and fetal ANG-(1–7) have been inde-
pendently associated with preterm births (93). Moreover, in
pregnant rats, ANG-(1–7)-induced vasodilation in mesen-
tery resistance vessels increases, reinforcing the hypothesis
that ANG-(1–7) may make an essential contribution to the
regulation of blood pressure during pregnancy (55). Sys-
temic infusions of ANG-(1–7) resulted in a greater increase
in CO in normotensive pregnant women than in women
who were not pregnant (616).

Merril et al. (367) were the first to demonstrate an increase
in plasma ANG-(1–7) in normal pregnant women com-
pared with nonpregnant women; they also found decreased
levels of ANG-(1–7) in preeclamptic compared with normal
pregnant women. Velloso et al. (567) also found a signifi-
cant reduction in plasma ANG-(1–7) levels, as well as a
significantly higher plasma ACE activity and a marked re-
duction in plasma renin activity in preeclamptic women,
especially in patients presenting the ACE deletion polymor-
phism deletion/deletion (DD) genotype. In contrast, ANG II
levels in the plasma of preeclamptic women did not differ
from those of normotensive pregnant subjects (567). Preg-
nancy-induced increases of plasma ANG-(1–7) are also
blunted in gestational diabetes (399). Following iontopho-
retic applications of ANG-(1–7), normotensive pregnant
women exhibited a higher change in skin flow compared
with preeclamptic women (616). Women who developed
gestational hypertension or preeclampsia had increased
ANG-(1–7) levels at 15 wk of gestation compared with
women with normal pregnancies, suggesting that levels of
ANG-(1–7) during early gestation could be useful indica-
tors in predicting a woman’s risk of developing hyperten-
sion during pregnancy (528).

Regarding the expression of ACE2/ANG-(1–7)/MAS axis
components in human placentas of normal and pathologi-
cal pregnancies, syncytial ANG-(1–7) expression in samples
obtained from pathological placentas was higher than those
from normal-term pregnancies. In the maternal stroma,
ANG-(1–7) and ACE2 expression was found in the invad-
ing and intravascular trophoblast and in decidual cells. Fur-

thermore, ANG-(1–7) and ACE2 are expressed in arterial
and venous endothelium and smooth muscle of the umbili-
cal cord. The expression of ACE2 is increased in umbilical
arterial endothelium in preeclampsia (550). Preeclamptic
women also exhibit an imbalance of local RAS in the cho-
rionic villous in the placenta, where it is responsible for the
regulation of fetal oxygen and nutrient transport. In asso-
ciation with the upregulation of angiotensinogen and the
AT1 receptor, a significant increase in ANG II was ob-
served, but there was no accompanying increase in ANG-
(1–7) and a decrease in MAS (19). In the uteroplacental unit
of pregnant rats, the distribution profile of ANG-(1–7) and
ACE2 expression differs during early stages of pregnancy
(decidua, luminal, and glandular epithelium, embryo, and
ectoplacental cone) and late pregnancy (epithelial cells of
the yolk sac and amnion). This pattern indicates that ANG-
(1–7) participates in the initial events of a pregnancy, in-
cluding angiogenesis, apoptosis, and growth, and it also
plays a role in uteroplacental blood flow during the last
phase of gestation (395). In guinea pigs, ANG-(1–7) and
ACE2 have been detected in the endothelium and syncy-
tiotrophoblast of the labyrinthine placenta, interlobium,
subplacenta, giant cells, syncytial sprouts, syncytial stream-
ers, and myometrium throughout pregnancy. Moreover,
ANG-(1–7) and ACE2 expression were especially notable
in giant cells, which also express kallikrein, the bradykinin
B2 receptor, vascular endothelial growth factor (VEGF)
and its type 2 receptor, and eNOS, which integrates ANG-
(1–7) into the uteroplacental vasodilatory network (551).
The expression of the ACE2/ANG-(1–7)/MAS axis was also
found in two trophoblast cell lines (HTR-8/SVneo and
BeWo cells), reinforcing the idea that ANG-(1–7) is in-
volved in the early stages of pregnancy (588). ANG-(1–7)
treatment attenuated podocyte injuries in cultured podo-
cytes incubated with preeclamptic serum, which demon-
strated a decrease in the expression of podocyte-specific
proteins (nephrin and WT-1), a rearrangement of F-actin,
and apoptosis. These protective effects of ANG-(1–7) are
probably mediated through the downregulation of MAPK
(p38, ERK1/2, and JNK) phosphorylation (539).

2. Male reproductive system

ANG-(1–7) also plays a role in the male reproductive sys-
tem, regulating spermatogenesis and erection. The expres-
sion of MAS mRNA was detected in Leydig cells (8), and a
specific binding of fluorescent-labeled ANG-(1–7) in testis
occurred mainly in the intertubular compartment (likely
also in Leydig cells), where ANG-(1–7) has regulatory ac-
tions on spermatogenesis (301). Studies in Mas�/� mice
demonstrated that these animals exhibited a significant re-
duction in testis weight and a greater volume of apoptotic
cells, giant cells, and vacuoles in the seminiferous epithe-
lium (301). Moreover, Mas�/� mice also showed lower
Sertoli efficiency, meiotic index, overall rate of spermato-
genesis, and daily sperm production, indicating the overall
importance of MAS in male reproduction (301). Neither
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ANG-(1–7) nor MAS was detected in the seminiferous tu-
bules of infertile men with nonobstructive azoospermia and
severely impaired spermatogenesis. Furthermore, testicular
samples from infertile men with impaired spermatogenesis
(nonobstructive azoospermia) expressed MAS and ACE2
mRNA at lower concentrations than samples with normal
spermatogenesis (obstructive azoospermia) (435).

ANG-(1–7) also mediates penile erection through the acti-
vation of MAS. Erectile functions of Mas�/� gene-deleted
mice are substantially reduced and associated with a
marked increase in fibrous tissue in the corpus cavernosum
(107). In rats, the MAS agonist AVE 0991 potentiates the
penile erectile response in a NO-dependent manner (106).
Similarly, chronic treatment with HP�CD-ANG-(1–7), an
oral formulation of ANG-(1–7), reduces penile fibrosis as-
sociated with an attenuation of oxidative stress in hyper-
cholesterolemic ApoE�/� mice) (187).

G. Skeletal Muscle System

The identification of RAS components in skeletal muscle
(590) indicates that the effects of angiotensins on metabo-
lism and skeletal muscle blood flow can also be adjusted
locally. In addition, due to their large presence throughout
the body, skeletal muscle cells represent important modu-
lators of the systemic effects of angiotensins.

The local production of ANG II and its effects on skeletal
muscle have been widely studied (61, 111, 126, 157, 179,
200, 270). ACE inhibition and AT1 blockade represent
novel strategies that are being pursued in the treatment of
various skeletal muscle disorders and cachexia induced by
CHF (97, 127, 144, 464, 491, 529, 575).

An example is Duchene Muscular Dystrophy (DMD),
caused by mutations in the dystrophin gene, the most
common muscular dystrophy in children. The primary
animal model used to study this pathology is the MDX
mouse (503). Recently, rodent studies have shown bene-
ficial effects of ANG-(1–7) in this and other muscular
dystrophy models (5a, 95, 360, 372, 374, 375, 446, 454,
456) (FIGURE 9).

In a recent study, chronic infusion or oral treatment with
ANG-(1–7) in MDX mice normalized skeletal muscle struc-
ture, drastically reducing the total amount of collagen and
collagen III and improving muscle function “in vitro” and
“in vivo” (5a). This study also demonstrated that MDX
mice treated with A-779 or crossed with Mas�/� mice
(mdxKOMas) presented a dramatic increase in damaged
and inflamed tissue in comparison with MDX mice. These
effects are mediated TGF-�/Smad signaling (5a).

Chronic ANG II treatment induced skeletal muscle wasting
in a manner involving p38MAPK and Smad TGF-�1 signal-
ing (376). The accompanying increases of fibronectin, col-
lagen, TGF-�1, atrogin, and MURF1 induced by ANG II
were attenuated by treatment with ANG-(1–7) (95).

Some patients with DMD carry mutations in genes that
encode sarcoglycans (SGs). �-Sarcoglycan-deficient mice
(Sgcd�/�) develop a DMD-like disease and exhibit higher
levels of ANG I, ANG II, and AT1 expression in skeletal
muscle, whereas the levels of ANG-(1–7) and MAS expres-
sion are reduced (454). Mice treated with HP�CD-ANG-
(1–7) exhibited ameliorations in skeletal muscle pathology,
a normalization of autonomic activity, and an increase in
spontaneous locomotor activity (455). Skeletal muscle fi-

Skeletal muscle actions
•  Anti-fibrotic effects

•  Reduces apoptosis

•  Decreases atrophy

Metabolic actions
•  Reduces insulin resistance

•  Induces AKT phosphorylation

•  Increases skeletal muscle glucose uptake

Kinesiological actions
•  Restores muscle strength in dystrophic muscle

•  Improves locomotor phenotypes in muscular dystrophy

Muscular signalling
•  Inhibits TGF-β signaling

•  Decreases p38 MAPK phosphorylation

FIGURE 9. Actions of ANG-(1–7) in the skeletal muscle system.
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brosis and oxidative stress were also markedly reduced in

Sgcd�/� mice treated with HP�CD-ANG-(1–7).

Riquelme et al. (446) suggested that the expression of ACE2

regulates fibrosis in dystrophic muscle since muscle damage

causes increased activity of ACE2, and ACE2 levels corre-

late with the degree of fibrosis. Recently it has been reported

that ACE2-/y mice show reduced performance in voluntary

running (380), but it is unknown whether this is a result of

the genetic deletion of ACE2 in muscle cells, considering

that this mouse exhibits an overall deficiency in ACE2.

MAS is also upregulated in skeletal muscle atrophies that

have been induced by sepsis, immobilization, or ANG II

(373). In these conditions, MAS expression in gastrocne-

mius and tibialis anterior muscles was upregulated, as were

atrogin-1 and MURF-1. These data and the fact that ANG-

(1–7) has protective effects against muscle atrophy suggest

that MAS is involved in modulating the muscle wasting

response (95, 360, 372–375). Mice who are submitted to a

unilateral cast immobilization of the hindlimbs for a period

of 14 days developed decreased muscle strength; pretreat-

ment with ANG-(1–7) improved isometric strength and

prevented the decreased fiber diameter of muscle. This also

increased atrogin and MuRF1 expression, important mark-

ers of muscle atrophy (372). These anti-atrophic effects of

ANG-(1–7) involve the IGF-1/IGFR-1/AKT pathway as

shown by the fact that pretreatment with ANG-(1–7) pre-

vents the decrease in AKT phosphorylation and FOXO3.

All the effects of ANG-(1–7) were absent in Mas�/� mice,

confirming the involvement of MAS in the actions of ANG-

(1–7) in muscle tissue (372).

H. Liver

A number of reports document beneficial effects of the
ACE2/ANG-(1–7)/MAS axis in the liver (FIGURE 10). They
include improvements in nonalcoholic steatosis and inflam-
mation (70, 153, 533), liver fibrosis (331, 340, 406, 418,
591), and sensitivity to insulin (71, 205). These observa-
tions are in keeping with the increase in ACE2 in chronic
liver injuries in rats and humans (247, 407) and with the
liver steatosis associated with MAS-deficiencies in ApoE�/�

mice (505). Other reports indicate that ANG-(1–7) sup-
presses the growth of hepatocellular carcinoma and angio-
genesis via interactions of different angiotensin receptors
(323).

The liver ACE/ANG II axis is mainly activated in patients
with chronic liver disease and plays important roles in he-
patic fibrosis and portal hypertension (279). On the other
hand, as in other tissues, the axis also has a protective role,
delaying the development of hepatic fibrosis (406, 571).
Lubel et al. (330) demonstrated that human patients with
cirrhosis exhibit markedly elevated levels of concentrations
of both plasma ANG-(1–7) and ANG II. Furthermore,
ANG-(1–7) levels were higher in non-cirrhotic patients with
hepatitis C than in controls. This study also showed that
ANG-(1–7) is upregulated in human liver disease and has
antifibrotic actions in a rat model of cirrhosis (bile-duct
ligation). Hepatic stellate cells (HSCs) expressed MAS and
when treated with ANG-(1–7) or the MAS agonist AVE
0991 produced less �-SMA and hydroxyproline, which was
blocked by the MAS antagonist A-779 (331). In cirrhotic
rat liver, ANG-(1–7) significantly inhibits vasoconstriction
induced by intrahepatic ANG II or the �1 agonist methox-

Hepatic vascular actions

Tissue remodelling actions

Metabolic actions

•  Decreases hepatic vascular resistance, inhibits intra hepatic

   vasoconstriction and mediates mesenteric vasodilatation in

   cirrhosis

•  Vasodilatory effect NOS and guanylate cyclase-dependent

•  Blunts hepatic fibrosis decreasing fibroblast proliferation

   and inhibit sinusoid angiogenesis

•  Produces anti-fibrotic activity in the bile-duct-ligated rat

•  In cultured hepatic cells produced less α-SMA and

   hydroxyproline

•  Reduces infiltration of inflammatory cells and release of

   inflammatory cytokines in hepatic diseases

•  Promotes downregulation of hepatic gluconeogenesis

•  Reduces hepatic insulin resistance

•  Activates AKT/PI3K/IRS-1/JNK insulin signaling pathway

•  Inhibit liver resistin/TLR4/MAPK/NF-kB pathway

FIGURE 10. Effects of ANG-(1–7) in the liver.
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amine (MTX) through eNOS and guanylate cyclase-depen-
dent NO signaling pathways (248). Recently, it has also
been demonstrated that ANG-(1–7) reduces bile duct liga-
tion-induced hepatic fibrosis via redox balance modulation.
ANG-(1–7) treatment decreased H2O2 as well as NOX4
and the NOD-like receptor family pyrin domain containing
3 (NLRP3) inflammasome, which is activated by reactive
oxygen species (ROS) and is involved in ANG II-stimulated
collagen synthesis (62, 632). On the other hand, ANG-
(1–7) increased glutathione and the nuclear erythroid 2-re-
lated factor 2 antioxidant response element (218).

VI. INTRACELLULAR SIGNALING
PATHWAYS INDUCED BY
ANGIOTENSIN-(1–7)

In recent decades several aspects of ANG-(1–7)-induced
signaling have been clarified. The increase in NO release is
the most classic event related to the protective role of ANG-
(1–7) and includes calcium-independent pathways and the
posttranslational regulation of eNOS (463). ANG-(1–7),
via AKT-dependent pathways, stimulates eNOS activation
(reciprocal phosphorylation/dephosphorylation at
Ser1177/Thr495), which triggers NO production (463) and
increases levels of cGMP (174, 216, 536). ANG-(1–7)-
mediated AKT activation is also involved in its metabolic
actions and participates in improvements in insulin resis-
tance (205). In addition to the phosphorylation of AKT,
ANG-(1–7) mediates the phosphorylation of GSK-3� and
AS160, which are crucial insulin mediators (384). It has
also been demonstrated that chronic oral administration of
HP�CD-ANG-(1–7) attenuates hyperglycemia in an animal
model of type 2 diabetes (486), indicating the potential of
ANG-(1–7) as a hypoglycemic drug.

Although AKT is an important FOXO inactivator, ANG-
(1–7) is able to dephosphorylate FOXO1 at Ser256, directly
activating this transcription factor (568). This effect is
probably involved in the antitumor actions of ANG-(1–7)
since FOXO1 is a well-known tumor suppressor (99).

ANG-(1–7) increases arachidonic acid (AA) release, phos-
pholipase A2 (PLA2) activity and prostaglandin E2 (PGE2)/
prostacyclin (PGI2) synthesis (18, 324, 383). It also coun-
terregulates ANG II signaling, blunting the phosphoryla-
tion of c-Src and the activation of NAD(P)H oxidase by
ANG II and reducing ROS generation (461). This modula-
tory effect is mediated by the phosphorylation of SHP-2,
preventing ANG II-induced SHP-2 dephosphorylation and
promoting the interaction between SHP-2 and c-Src (461).
Additionally, ANG-(1–7) inhibits MAPKs (ERK1/2, p38,
JNK), which are central mediators in cell proliferation, fi-
brosis, and remodeling. The inhibition of these pathways
has been demonstrated in a number of cell types including
VSMCs (642), lung cancer cells (194, 396), cardiac myo-
cytes (531), endothelial cells (461), and kidney proximal

tubule cells (LLC-PK) (199). In tumor cells (98) and myo-
cytes (354), the inhibition of MAPK induced by ANG-(1–7)
probably involves the MAPK phosphatase dual-specificity
phosphatase (DUSP)-1.

ANG-(1–7) additionally decreases TGF-�/NF�B signaling
(148, 267, 345, 482, 627), a key pathway in inflammation.
Reductions in proinflammatory molecules such as TNF-� (5,
207, 482, 514), MCP-1, IL-8 (42), IL-1� (42, 485), and
COX-2 (267, 365, 485) were observed. The anti-inflamma-
tory role of ANG-(1–7) has been demonstrated in pathological
conditions such as asthma (148, 338), arthritis (5, 109), an-
gioplasty (627), cerebral ischemia (267), diabetes (486), and
intracerebral hemorrhagic stroke (42). There is growing evi-
dence for an activation of the GS pathway by ANG-(1–7)
(320), leading to increased cAMP formation and PKA activity
(337).

The signaling pathways elicited by alamandine are being
clarified and also involve NO release. In ventricular myo-
cytes, alamandine leads to the phosphorylation of 3-phos-
phoinositide dependent protein kinase-1 (PDK1), which is
crucial for the activation of AKT and interferes with GSK3�

depending on the model. In cardiac myocytes from TGR(m-
REN2)27 rats, alamandine increases GSK3� phosphoryla-
tion but decreases it in myocytes from healthy animals
(265). FIGURE 11 summarizes the main signaling pathways
involved in the ANG-(1–7) effects.

Besides MAS, other GPCRs have been implicated in medi-
ating ANG-(1–7) actions. The blockade of some functions
of ANG-(1–7) by the bradykinin B2 receptor antagonist
HOE-140 has been taken as evidence that these receptors
are linked (1, 178). This may indicate that some vascular
actions of ANG-(1–7) depend on protein-protein interac-
tions involved in eNOS activation (283). In addition to
caveolin and calmodulin, which undergo reciprocal Ca2�-
dependent associations and dissociations with eNOS, the
eNOS protein complex includes the B2 receptor and other
proteins, including the AT1 receptor, the cationic amino
acid transporter-1 arginine transporter, and the chaperone
heat shock protein 90 (283). The direct heterodimerization
of MAS with the B2 receptor is another possibility to ex-
plain the effect of HOE-140. However, the fact that ANG-
(1–7), through MAS, is capable of producing strong actions
in B2-deficient mice demonstrates that these actions of
ANG-(1–7) are independent of B2 receptors (496).

The participation of the ANG II AT2 receptor in some of
the ANG-(1–7) effects has also been suggested (79, 500,
572, 577). Part of the evidence for this has been derived
from experiments using the putative AT2 antagonist
PD123319 (572). The specificity of this compound has been
challenged, however, because it can produce effects in AT2
knockout mice (113), and it can displace the binding of
alamandine to human MrgD-transfected cells and the vas-
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cular effects of alamandine. On the other hand, MAS ap-
pears to heterodimerize with AT2 (572). More reports in-
clude a ligand-induced heterodimerization of MAS with
endothelin ETB receptors (255). Weak interactions of
ANG-(1–7) with MrgD receptors have also been described
(201). Finally, the heterodimerization of MAS with the AT1
receptor has been reported, and this inhibited the actions of
ANG II. In this situation, MAS acts as a physiological an-
tagonist of AT1 (284). These observations are in keeping
with the well-known heterodimerization of other GPCRs
(173).

VII. CONCLUDING REMARKS

Since the initial discovery of the RAS made by Tigerstedt
and Bergmann by the end of the 19th century (540), studies
by many laboratories have contributed to the establishment
of this system as a key player in the physiology and patho-
physiology of systems throughout the body. This review
covers one of the most important recent chapters in the
never-ending story of this system. The compelling evidence
that the stimulation of the ACE2/ANG-(1–7)/MAS axis of
the RAS may represent a powerful, novel therapeutic
approach in the treatment of cardiometabolic diseases
and other disorders has motivated many groups to eval-
uate the role of ANG-(1–7) in a range of conditions re-
lated to health. In this review we have attempted to high-

light relevant aspects of the role of ANG-(1–7) in a broad
range of physiological and pathophysiological contexts.
Ongoing clinical trials based on ACE2- and ANG-(1–7)/
MAS-related strategies may soon usher in a new chapter
of the RAS saga.
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